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Abstract—Quantum low-density parity-check (QLDPC) codes
have emerged as a promising technique for quantum error
correction. A variety of decoders have been proposed for QLDPC
codes and many utilize belief propagation (BP) decoding in some
fashion. However, the use of BP decoding for degenerate QLDPC
codes is known to have issues with convergence. These issues are
typically attributed to short cycles in the Tanner graph and error
patterns with the same syndrome due to code degeneracy.

In this work, we propose a decoder for QLDPC codes based on
BP guided decimation (BPGD), which has been previously studied
for constraint satisfaction and lossy compression problems. This
decimation process is applicable to both binary and quaternary
BP and it involves sequentially freezing the value of the most
reliable qubits to encourage BP convergence. We find that BPGD
significantly reduces the BP failure rate due to non-convergence,
achieving performance on par with BP with ordered statistics
decoding and BP with stabilizer inactivation, without the need
to solve systems of linear equations. To explore how and why
BPGD improves performance, we discuss several interpretations
of BPGD and their connection to BP syndrome decoding.

I. INTRODUCTION

In a quantum computing system, error correction is an
essential building block to protect fragile quantum informa-
tion against noise. The general framework of quantum stabi-
lizer codes has been studied extensively [1]-[3]. Using this
framework, various quantum error-correcting codes have been
constructed over the past two decades including toric codes
[4], [5], surface codes [6]-[10], and various quantum low-
density parity-check (QLDPC) codes [11]-[17]. Among them,
QLDPC codes provide a promising direction because they
support multiple logical qubits and their low-weight stabilizers
allow reliable syndrome measurement in practice.

For classical communication, low-density parity-check
(LDPC) codes are decoded with the belief propagation (BP) al-
gorithm [18], which has low complexity and can provide good
performance for code rates close to the channel capacity [19]-
[22]. However, in the quantum scenario, the performance of
BP decoding based on syndrome measurement is hindered by
cycles in the Tanner graph and code degeneracy [23]-[25].
Since the initial application of BP to decode QLDPC codes by
Poulin and Chung [23], significant efforts have been made to
enhance its performance. Various methods have been proposed
to modify the BP decoding process itself, including random
perturbation [23], enhanced feedback [26], grouping check
nodes as super nodes [24], parity-check matrix augmentation

[27], neural BP [28]-[30], generalized BP [31], and adaptive
BP with memory [32]. Alternatively, post-processing methods
have also been explored to improve performance. In [16],
when BP fails to converge, they use ordered statistics decoding
(OSD) to construct a syndrome-matching error pattern based
on the soft information provided by BP. This is called the
BP-OSD algorithm. Another post-processing approach intro-
duced in [33] involves iteratively running BP with stabilizer
inactivation (BP-SI).

In this work, we improve the BP decoding performance for
QLDPC codes by combining it with guided decimation. The
term “decimation” refers to the process of sequentially fixing
variables to hard decisions during iterative decoding [34],
[35]. In the proposed belief propagation guided decimation
(BPGD) algorithm, we sequentially freeze the most reliable
qubit based on its soft information after a certain number
of BP iterations. Despite its simplicity, we show that BPGD
achieves performance on par with both order-0 BP-OSD and
BP-SI. Notably, BPGD exhibits lower complexity than BP-
OSD and comparable complexity to BP-SI, without the need
to solve any systems of linear equations. To better understand
how guided decimation improves BP performance for QLDPC
codes, we also discuss some interpretations of BPGD and their
connection to the BP syndrome decoding problem.

II. PRELIMINARIES
A. Stabilizer Formalism

An [[n, k]] quantum stabilizer code is an error correction
code designed to protect k logical qubits with n physical qubits
against noise. For a single qubit, its pure quantum state is
represented as a unit vector in the two-dimensional Hilbert
space Co. The Pauli operators for a single qubit system are
defined as the 2 x 2 complex Hermitian matrices

o o 1 [
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where 2 = +/—1. For an m-qubit system, we are work-
ing in the n-fold Kronecker product of the two-dimensional
Hilbert space C5". Given two length-n binary vectors a =
(a1,...,ay,) and b= (by,...,b,) in Fy, we define the n-fold
Pauli operator D(a,b) as

0
~1l> Oy = 1050z,

D(a,b) =0cc% ® 0262 ®...® ot gbn. (1)

z
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It follows that the Pauli operators :*D(a,b) with a,b € F%
and an overall phase ¥ with k € {0,1,2,3} form the n-qubit
Pauli group, denoted as P,,, with the multiplication rule

D(a,b)D(d, V) = (=1)**" " D(d’,b')D(a,b). (2)
The symplectic inner product between length-2n binary vec-
tors (a,b) and (a’,b’) is defined by

((a,b), (a',V))s & (a',1) B Ig] (a,b)" mod 2.  (3)

———
denoted by A

A quantum stabilizer code C with n physical qubits is
defined via a commutative subgroup & C P, referred to as
the stabilizer group with —I$™ ¢ S. The Pauli operators in S
are called the stabilizers. The code space consists of all states
in C5" stabilized by S as

C={ly)eC": M) =[¥), VM € S}. @)

The code space C has dimension £ if S has n — k inde-
pendent generators. The weight of a Pauli operator in P, is
defined to be the number of elements in its n-fold Kronecker
product that are not equal to I. The distance of C is defined as
the minimum weight of all Pauli operators in N(S)\S, where
N(S8) denotes the normalizer group of S in P,,. If code C has
distance d, we call C an [[n, k, d]] quantum stabilizer code. In
particular, C is called degenerate if its distance d is larger than
the minimum weight of its stabilizers.

In the symplectic representation, the stabilizer group S
is constructed from the rows of the stabilizer matrix H =
[H., H,], where H,, H, € Fy"*" are binary matrices with
m rows and n columns. In particular, each row (hg,h,) of
H defines the stabilizer D(h,, h.), and the set of stabilizers
defined by all rows generates S. In this way, the constraint
requiring S to be commutative can be expressed as HAH? =
H,HT + H,HI = 0. An important class of stabilizer codes,
known as Calderbank—Shor-Steane (CSS) codes [36], [37],
where each stabilizer has the form D(a,0) or D(0,b) have

10 | H
H:)f_|:G2:|7 HZ_|:O:|7 (5)

where H; € F{" F)*" is the parity-check matrix of a

classical [n, k] code C; and Gy € F52*™ is the generator
matrix of a classical [n, k2] code Cy with Co C Cy. In this
work, we will focus our discussion on the CSS codes.

B. Syndrome Decoding of Stabilizer Codes

For an [[n,k]] stabilizer code C, we consider the error
model where the encoded state [¢) is corrupted by an n-
qubit Pauli error E = D(z,z) € P, as |¢) — E|¢). The
goal of the decoder is to detect and correct this error by
conducting measurements on all the stabilizers in H. The
stabilizer measurement result can be expressed as a length-
m binary syndrome vector s = (z,2)AH?. Here, we assume
that all syndrome measurements are perfect.

After obtaining the syndrome s, the decoder aims to find
an estimated E yielding this syndrome, so that the inverse

operator ET can be applied to map E|)) — ETE|y) for
error correction. This decoding process has the following four
possible outcomes:

1) Failure: The decoder fails to provide an estimated E
that yields the syndrome s.

2) Successful (Exact Match): The estimated error is equal
to the channel error, ie., £ = F.

3) Successful (Degenerate Error): The difference between
FE and E is a stabilizer, i.e., FE ¢ 8. R

4) Failure (Logical Error): The difference between £ and
E is a logical operator, i.e., EE € N(S)\S.

Using the names from [38], two decoding strategies for
stabilizer codes are Quantum Maximum Likelihood Decoding
(QMLD), where the decoder aims at finding the most probable
error I/ given the syndrome, and Degenerate Quantum Max-
imum Likelihood Decoding (DQMLD), the optimal strategy,
where the decoder aims at finding the most probable coset of
the stabilizer group S given the syndrome.

In Sections III and IV that follow, we will focus on the
independent Pauli-o,, error channel with probability p,., where
the Pauli error has the form F = D(X,0), with X € F7 being
a random vector with

Pr (X:(xl,xQ,...,zn)) :Hpgi(l—px)lf‘”i. (6)
i=1

For CSS codes in this case, given X, the decoder only needs
to consider part of the syndrome S, = XH{, where H; is
the submatrix of H, as in LS). The QMLD decoding problem
then becomes computing X where

X = argmax Pr(X = 2|8, = s,) = argmin wt(z). (7)
zeFy z€Fy :aHT =s,

This is equivalent to the maximum-likelihood decoding prob-

lem for the binary symmetric channel (BSC) in classical cod-

ing theory, which is known to be NP-complete [39]. Thus, we

turn to the low-complexity belief propagation (BP) algorithm.

III. BELIEF PROPAGATION DECODING
A. Belief Propagation Syndrome Decoding

BP is an iterative message-passing algorithm first introduced
for the LDPC codes by Gallager [40], and first applied to
the quantum decoding problem by Poulin and Chung in [23].
For the syndrome decoding problem of stabilizer codes over
independent Pauli-o,, errors, BP runs on a Tanner graph G =
(V,C, E) representing H; in (5). In this Tanner graph, the
variable nodes in V = {vy,...,v,} represent the elements of
X = (X1,...,X,) and the check nodes in C' = {c1,...,cm}
represent the o,-stabilizers in H;. A variable node v; is
connected to a check node c; if H; (4, j) = 1. In addition, each
variable node v; is connected to a degree 1 check node that
represents the source of the channel log-likelihood ratio (LLR)
Iy, » and each check node c; is connected to a degree 1 variable
node that represents the source of a syndrome bit s; ; in
Sz = (Sg.1,---8z,m). An example Tanner graph representing
H, for the [[7,1,3]] Steane code [37] is shown in Figure 1.
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check nodes in C'

syndrome

Figure 1. Tanner graph of H; for the [[7,1, 3]] Steane code

Set pp, = log((1 — p)/ps) as the initial estimate of the
overall LLR of X;, and set the message from each v; to all
its connected c; as mq(]?)_m ; = My, at iteration ¢ = 0. Then for
iteration ¢ = 0,1,...,7, BP updates the messages between
variable nodes and check nodes as

mggU = (=1)% tanh~* H tanhmgfk)ﬂcj , (8)
v €0c;\v;
and
cr€0v;\¢j

This update rule is called the sum-product algorithm [18]. The
bias for variable node v; after ¢ iterations can be computed as

m) =, + > mi,, (10)

cpEOv;

For sufficiently large ¢, the bias me)

of the marginal probabilities for X; as
Pr(X;=0]|S, =s.)
Pr(X; =1|S,=s.)
This approximation is exact if G is a tree [18]. The sign of
mEf) represents the hard value toward which v; is biased, and
the absolute value of the bias denoted as v (v;) = |m§,?\
represents the reliability of this variable node.

BP for syndrome decoding is commonly equipped with the
early termination rule when the hard values of the variable
nodes z(V) = (fﬁ”, Eg), e ,/x\%t)) match the syndrome by
satisfying Z(Y) H] = s,. This syndrome match event is called
convergence. If none of the estimated Z(*) vectors match the
syndrome when ¢ reaches a preset maximum iteration number
T, then the BP decoder reports failure due to non-convergence.

approximates the LLR

(1)

m{}) ~ log

B. Prior Works that Mitigate the Non-Convergence Issue

BP for the syndrome decoding problem of QLDPC codes
is known to have issues with convergence [23], [25]. Consider
the [[882,24,18 < d < 24]] generalized bicycle B1 code
proposed in [16]. We simulated its BP decoding performance
with the sum-product algorithm over independent Pauli-o,
errors with probability p, and the performance can be found
in the blue curve in Figure 2. In our simulation, all the block
error cases that we observe are due to non-convergence.

To mitigate the non-convergence issue, Pantaleev and
Kalachev [16] proposed the use of ordered statistics decoding

as a post-processor when BP fails to converge. In Figure 2,
the red curve shows the BP-OSD performance with order
0. In this simulation, BP-OSD employs the normalized min-
sum algorithm for message passing with the normalization
factor aw = 0.625, matching the decoder in [16]. The BP-OSD
decoder shows a significant performance improvement over
BP and this gain has been observed across various families of
quantum stabilizer codes [16], [41], with the cost of a higher
computational complexity of O(n?) [16].

Another approach to mitigate the non-convergence issue of
BP, called BP with stabilizer inactivation, is proposed by Crest,
Mhalla and Savin in [33]. In Figure 2, the performance of
BP-SI with A = 10 on the B1 code is shown in the yellow
curve, where \ denotes the maximum number of inactivated
stabilizers attempted. The data points for the yellow curve
are taken and translated directly from [33, Figure 2], where
the decoder uses the serial message-passing scheduling for
the normalized min-sum algorithm with normalization factor
a = 0.9. In [33], the worst-case complexity and the average
complexity of BP-SI are claimed to be O(A\naxnlogn) and
O(Aavgnlogn), respectively, assuming BP has complexity
O(nlogn). Here, Ay represents the maximum number of in-
activated stabilizers and A,y represents the average number of
inactivated stabilizers. Notably, at the end of post-processing
for both BP-OSD and BP-SI, one needs to solve a system of
linear equations.

IV. BELIEF PROPAGATION WITH GUIDED DECIMATION

In this work, we improve BP on QLDPC codes by com-
bining it with guided decimation. Message-passing algorithms
with “decimation” were first introduced for the K-SAT con-
straint satisfaction problem based on insights from statistical
physics [34]. In such problems, there are typically many
valid solutions and the goal is to find just one of them.
In [34], decimation was first combined with a related message-
passing algorithm called survey propagation. Later, the idea of
decimation was extended to define the BP guided decimation
(BPGD) algorithm [35] and related approaches were applied
to the lossy compression problem [42], [43].

A. Intuition Behind BPGD for Quantum Decoding

In [35], the BPGD algorithm is understood to approximate
the process of sampling a vector from the distribution implied
by the Tanner graph. From Figure 1, we see that the Tanner
graph for BP syndrome decoding constrains the error vector
to match the observed syndrome and assumes each error bit
is drawn independently with probability p,. Applying this
picture to the quantum decoding problem, we can think of
BPGD decoding as sampling from the error patterns that match
the syndrome with weights proportional to the distribution
in (6). While this type of decoding is not equivalent to
either QMLD or DQMLD, we will argue that the sampling
approach is closer in spirit to DQMLD than QMLD. The
reason is that the sampling probability for a correction operator
is proportional to the sum of the probabilities of all the
error patterns associated with that correction operator. Thus,
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Figure 2. Performance of B1 code [16] over Pauli-o, errors.

the error is more likely to be corrected. This connection is
discussed further in [44].

B. The BPGD Algorithm

Now, the BPGD algorithm is described in detail. First, the
channel LLRs for all the variable nodes in the Tanner graph are
initialized as p,, = log((1 — py)/ps) like BP. Then, decoding
proceeds in rounds. In the r-th round, the BP algorithm is
run for T iterations following (8) and (9). If it converges
to an error pattern matching the syndrome, then the decoder
terminates and returns the hard values of the variable nodes
as the estimated error. Otherwise, out of all the variable nodes
that are not yet decimated, the variable node v; with the largest
reliability ~y(v;) is decimated by updating its channel message

[i, based on its bias m{"") to
U, im0 >0 12
Hor = D, if m <0,

where llr,.« is a fixed large value (e.g., llry,ax = 25 through-
out this paper). If we choose llry,,x = o0, then decimation
effectively assigns a hard value for the variable node v; based
on its bias. While such a choice makes sense in theory, it can
also introduce numerical problems in practice.

After decimating the most reliable variable node, the process
starts round r + 1 and continues either until convergence (i.e.,
the estimated error pattern matches the syndrome) or all the
variable nodes have been decimated. After all variable nodes
are decimated, if the hard values of the variable nodes do not
match the syndrome, then this is called a non-convergence
failure of the BPGD algorithm. The pseudo-code for the
BPGD algorithm is provided in the extended version of this
paper [44, Algorithm 1].

C. Numerical Results

In Figure 2, we show the simulation result of the BPGD
decoder for the [[882,24,18 < d < 24]] Bl code [16]
over independent Pauli-o,, errors with probability p,. BPGD
with 7" = 100, shown by the green curve, yields the best
performance. Using 7' = 100 ensures that in each round, BP

100 =
o 1071 i
< = -
~ I .
§ [ ﬁ
m 1072 =
2 = -
] & &
B F .
m [~ .
10—3 = —e— BP
& —e— BP-OSD-0
I BP-SI, A = 10 [33]
1074 = ‘ : —e—BPGD, T = 10
0.04 0.05 0.06 007 0.08 0.09 0.10

Px
Figure 3. Performance of C2 code [16] over Pauli-o, errors.

is run for a sufficient number of iterations to provide accurate
approximate marginal probabilities for the variable nodes.
Reducing the number of BP iterations per round from 7" = 100
to 7" = 10, shown by the purple curve, does not significantly
degrade the BPGD performance. It is worth noting that, in
our simulations, the majority of the errors (over 90%) from
the BPGD runs for both 7" = 100 and 7" = 10 are attributed to
non-convergence. Therefore, similar to the BP algorithm, we
rarely encounter logical errors upon convergence from running
BPGD. For comparison, Figure 2 also includes the decoding
performance of BP, BP-OSD with order 0, and BP-SI with
A = 10, whose settings are explained in Section III-B.

In Figure 3, we also show the performance of BPGD with
T = 10 for the [[1922, 50, 16]] hypergraph product C2 code
[16] over independent Pauli-o,, errors with probability p,. For
comparison, we include the performances for BP, BP-OSD
with order 0, and BP-SI with A = 10, whose respective settings
remain consistent with those in Figure 2: 1) the BP decoder
runs the basic sum-product algorithm; 2) the BP-OSD decoder
with order O runs the serial normalized min-sum algorithm
with normalization factor o« = 0.625; 3) the BP-SI decoder
with A = 10 runs the serial normalized min-sum algorithm
with normalization factor o = 0.9, whose data points are taken
and translated directly from [33, Figure 2]. We can see that for
the two QLDPC codes we considered in Figure 2 and Figure 3,
BPGD shows better performance compared with order-0 BP-
OSD and BP-SI with A = 10.

D. Complexity Analysis for BPGD

BPGD requires at most n decimation rounds, each involving
T iterations of message-passing updates of complexity O(n)
and a search for the most reliable qubit for decimation with
complexity O(n). Therefore, the worst-case complexity of
BPGD is O(Tn?). This worst-case complexity scales roughly
the same as BP with SI [33], and it is better compared with
BP-OSD with order 0, which has complexity O(n3) [16].
Moreover, unlike BP-OSD and BP-SI, BPGD does not require
solving systems of linear equations, which makes it potentially
more friendly for hardware implementation.
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Pz 0.05 0.06 0.07 0.08
simulation runs | 1000000 | 100000 | 100000 | 10000
Tavg 291 9.82 60.46 231.7

Table1. Average number of decimated variables nodes of BPGD with
T = 10 when decoding the B1 code [16] over Pauli-o, errors.

For the BPGD algorithm, if we assume BP in each round
has complexity O(T'n), then its average-case complexity is
O(ravgTn), where 7, denotes the average number of deci-
mated variable nodes. The value of r,,s is highly dependent
on the Pauli-o, error rate p,, meaning BPGD has different
average complexity in different error rate regimes. In Table
1, we show the average number of decimated variable nodes
for BPGD with T' = 10 when decoding the B1 code. From
Table 1 we can see that, in the low error rate regime such
as p, = 0.05, 7y becomes very small, making the average
complexity of the BPGD approach O(T'n), the complexity
of the BP algorithm. We note that a similar observation has
also been made for BP-SI concerning the average number of
inactivated stabilizers in the low error rate regime [33].

V. QUATERNARY BP WITH GUIDED DECIMATION

In this section, for the syndrome decoding problem of
stabilizer codes over the depolarizing channel, we present a
natural extension of the binary BPGD algorithm that gives the
quaternary version. In the depolarizing channel with physical
error probability p, each encoded qubit is independently af-
fected by a Pauli 0, oy, or o, error, each occurring with
a probability of p/3. Here, we represent the Pauli error as
a random quaternary vector @ (Q1,...,Qn) with its
realization ¢ = (¢q1,...,¢,) € {0,1,2,3}", with 0,1,2,3
representing the absence of error, or the presence of a Pauli
O, Oy O 0, error, respectively.

For the depolarizing channel, we consider the quaternary
BP (Q-BP) algorithm that jointly decodes the o, and o, errors
from depolarizing noise. For detailed descriptions of Q-BP, we
refer the readers to [45] and to [24]. An efficient log domain
implementation of Q-BP has also been discussed in [46].

For the syndrome decoding problem on a CSS code, Q-BP
runs on a Tanner graph G = (V,C, E) similar to the binary
BP, except that here C' contains check nodes representing both
the o,-stabilizers in GG and the o, -stabilizers in H;, where
H; and G are submatrices of H, and H,, respectively, as
shown in (5). In addition, channel LLR becomes the channel
message initialized as u,, = (1—p, p/3, /3, p/3), and each
variable node v; € V contains four normalized probabilities
(Pv;.,05 Dv; 1, Pw; 2, Duv;,3) Which, after a sufficient number of
message-passing iterations, approximate the marginal proba-
bilities for Q; conditioned on the syndrome s as

P, =~ Pr(Qi =7 | S= 8)7 for j € {Oa 152~3} (13)

Define the reliability for the variable node v; as ~y(v;) =
max{py, 0, Pv; 1, Pv;,2, Pv;,3 - Similar to its binary counter-
part, the Q-BP algorithm can also be improved by guided dec-
imation, denoted as the quaternary belief propagation guided
decimation (Q-BPGD) algorithm. After T iterations of Q-
BP in each round, out of all the variable nodes we have

10-1 B T T T T T ]
o 1072 E =
3 = =
~ I N
. o i
S | i
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L1073 =
Q - .
2 r N
m I i
10—4 - —e— Q-BP
F —&— BP-OSD-0 [16, Figure 2]
N ! ‘ ‘ —e— Q-BPGD, T = 10
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Physical Error Rate p

Figure 4. Performance of B2 code [16] over depolarizing noise.

not yet decimated, we pick the variable node v; with the
largest reliability v(v;) and decimate it by changing its channel
message as

(1 —¢€¢6¢€€), ify=0
(e, 1 GG&% ifyy =1
Py = _ ., Y = argmax p, j.
° (eel—ee), ifyy=2"" o2
(e,¢,6,1 —€), if v =3

(14)

As € approaches zero, this decimation rule essentially fixes
Q; to one of the values in {0,1,2,3} according to the bias
of its corresponding variable node v;. In our implementation,
we set € = 1 x 10719 for numerical stability. We repeat this
process until either convergence is reached at some round r, or
until all the variable nodes have been decimated. The pseudo-
code for the Q-BPGD algorithm is provided in the extended
version of this paper [44, Algorithm 3].

In Figure 4, we present the Q-BPGD performance with 7' =
10 for the [[882,48,16]] generalized hypergraph product B2
code proposed in [16]. The comparison includes both the Q-BP
decoder with the sum-product algorithm and the order-0 BP-
OSD decoder from [16, Figure 2]. For the B2 code, Q-BPGD
outperforms the BP-OSD decoder in the high-error regime but
is surpassed by BP-OSD in the low-error-rate regime.

VI. CONCLUSION

In this paper, we introduce and evaluate the use of BPGD
for the decoding of QLDPC codes in order to encourage
convergence. BPGD shows strong performance compared with
BP-OSD and BP-SI under independent Pauli-o, errors. To
better understand how BPGD boosts convergence, we provide
an alternative view of the BP syndrome decoding setup for
stabilizer codes as a sampling problem. Furthermore, we
extend our guided decimation from binary BP to quaternary
BP, demonstrating performance competitive compared to BP-
OSD in the high-error regime under depolarizing noise.
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