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Abstract
Objective. Non-invasive electroencephalograms (EEG)-based brain–computer interfaces (BCIs)
play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and
communication technologies, holding potential promise to benefit users across various clinical
spectrums. Effective integration of these applications into daily life requires systems that provide
stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode,
a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel
electrode (AIRTrode). The AIRTrode has shown lower skin-contact impedance and greater stability
than dry electrodes and, unlike wet gel electrodes, does not dry out after just a few hours,
enhancing its suitability for long-term application. This study aims to demonstrate the efficacy of
AIRTrodes in facilitating reliable, stable and long-term online EEG-based BCI operations.
Approach. In this study, four healthy participants utilized AIRTrodes in two BCI control
tasks–continuous and discrete–across two sessions separated by six hours. Throughout this
duration, the AIRTrodes remained attached to the participants’ heads. In the continuous task,
participants controlled the BCI through decoding of upper-limb motor imagery (MI). In the
discrete task, the control was based on decoding of error-related potentials (ErrPs). Main Results.
Using AIRTrodes, participants demonstrated consistently reliable online BCI performance across
both sessions and tasks. The physiological signals captured during MI and ErrPs tasks were valid
and remained stable over sessions. Lastly, both the BCI performances and physiological signals
captured were comparable with those from freshly applied, research-grade wet gel electrodes, the
latter requiring inconvenient re-application at the start of the second session. Significance.
AIRTrodes show great potential promise for integrating non-invasive BCIs into everyday settings
due to their ability to support consistent BCI performances over extended periods. This technology
could significantly enhance the usability of BCIs in real-world applications, facilitating continuous,
all-day functionality that was previously challenging with existing electrode technologies.

© 2025 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

In recent years, brain–computer interfaces (BCIs)
have emerged as promising communication and
assistive tools for individuals with disabilities, offer-
ing them the ability to interact with their surround-
ings and control external devices [1]. Among vari-
ous noninvasive BCI methods, substantial progress
has been achieved in electroencephalogram (EEG)-
based BCIs due to EEG’s high temporal resolution,
cost-effectiveness, and the overall ease of use of EEG
systems [2, 3]. Two particular EEG-BCIs that have
achieved success are motor imagery (MI) and error-
related potential (ErrP)-based BCIs. MI involves the
mental simulation of limb movement [4], produ-
cing distinct EEG patterns that BCIs can decode to
operate assistive technologies such as wheelchairs [5],
robotic prostheses [6, 7], telepresence robots [8], and
spelling systems [9]. Different from MI, ErrPs are
event-related potentials (ERPs) elicited upon the per-
ception of an error [10]. In prior research, ErrP-based
BCIs have been integrated in spellers to facilitate effi-
cient communication in clinical populations such as
those with amyotrophic lateral sclerosis (ALS) [11]
and have been used to personalize robot trajectories
for obstacle avoidance [12].

Despite these advancements, the practical applic-
ation of EEG-based BCIs requires long-term, stable
signal acquisition, a significant challenge with tradi-
tional gel and dry electrodes. The gold-standard in
research laboratories for EEG recording is the gel sil-
ver/silver chloride (Ag/AgCl) electrodes. These elec-
trodes rely on conductive gel to reduce the impedance
between the skin and the electrodes, thereby minim-
izing noise from interface mismatch. The effective-
ness of gel electrodes largely stems from their ability
to conform to the skin, yielding low impedance and
high-quality EEG signals [13]. However, their major
drawback is that the conductive gel typically dries out
within about 4 h, leading to deterioration of imped-
ance and rendering them unsuitable for prolonged
EEG monitoring [14].

In contrast, dry electrodes, made from solid con-
ductive materials such as metals, conductive tex-
tiles, and polymers [15, 16], do not dry out, offer
simpler usage and greater accessibility for untrained
users [17, 18]. Yet, they lack the necessary soft-
ness and adhesiveness to establish robust contact
with the scalp, particularly through hair. To mit-
igate this, surface structural designs like micro-
needle or pillar-shaped configurations are often
utilized [16, 19, 20]. However, these designs can
require external forces to maintain contact, caus-
ing discomfort during prolonged use [16, 21, 22].
Furthermore, the long-term use of dry electrodes is
challenged by reduced impedance stability due to

insufficient contact, as well as deterioration caused
by ambient humidity and sweat-induced corrosion.
These factors increase susceptibility to motion arti-
facts and degrade signal quality over time [23].A
recent development in dry electrodes is the car-
bon nanotube (CNT)/adhesive polydimethylsilox-
ane (aPDMS) composite-based electrode, which has
shown good adhesion, contact and signal-to-noise
ratio (SNR) in EEG recordings [24]. Similar to some
hydrogel electrodes, this electrode addresses the chal-
lenges of recording EEG signals through hair, achiev-
ing comparable signal quality to conventional gel
electrodes. While these electrodes show promise for
long-term stability and reliable BCI performance,
their long-term reliability has yet to be validated.

The shortcomings of conventional gel and dry
electrodes in long-term use have prompted research-
ers to explore alternatives. One such example is
the MXtrodes–a non-hydrogel, bioelectronic inter-
face built from MXenes–transition metal carbides,
nitrides, and carbonitrides. Unlike gel electrodes,
MXtrodes do not require wet gels, allowing them
to maintain stable electrode-skin interface imped-
ance and recording quality over time without
drying out. Leveraging the unique properties of
MXenes, MXtrodes offer low-cost, rapid, and scalable
processing [25–27]. With these properties, MXtrodes
show great potential for long-term, widespread, high-
precision recordings, though their long-term stability
has yet to be fully demonstrated in the literature.
Another promising alternative is conductive hydrogel
electrodes, which utilize self-electrolytes to form ion
channels at the skin interface, eliminating the need
for conductive gel [28]. As a result, hydrogel elec-
trodes support the acquisition of high-quality EEG
signals over extended periods, effectively addressing
the limitations of gel electrodes. Additionally, the soft
and adhesive properties of hydrogels allow these elec-
trodes to penetrate hair and establish robust contact
with the scalp without the need for needle-shaped
designs or the application of external force, overcom-
ing the primary issues associated with dry electrodes.
Existing literature has shown the long-term imped-
ance stability of hydrogel electrodes [28–31] and
their efficacy in passive, long-term EEG recordings
[23, 32, 33].

Recently, we introduced AIRTrode, an on-site
formed self-adhesive (A), injectable (I), and room-
temperature (RT) spontaneously-crosslinked hydro-
gel electrode (AIRTrode), designed for long-term
sleep EEG monitoring applications [34]. In this previ-
ous work, we showcased AIRTrode’s ability to main-
tain low impedance of 17.53 kΩ over eight hours of
continuous wear on hairy scalp regions. Additionally,
these electrodes showed a high adhesiveness of
0.92 N/cm2 and repeatable adhesion, confirming
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their suitability for long-term usage during both daily
activities and overnight sleep. Moreover, AIRTrode
exhibited a superior signal-to-noise ratio (SNR of
23.97 dB), significantly outperforming commercial
gel electrodes (SNR of 17.98 dB), and matched the
performance of research-grade gel electrodes in sleep
stage classification [34]. For a visual illustration of
the AIRTrode electrode, please refer to supplement-
ary figure S1

Despite recent advancements in conductive
hydrogel electrodes and existing EEG studies invest-
igating long-term recordings over periods of five-six
days [34, 35], to our knowledge, no existing stud-
ies have demonstrated a hydrogel-based electrode
capable of supporting reliable, online EEG-based
BCI operations for extended periods. Building on
the demonstrated long-term stability and efficacy of
AIRTrode in EEG monitoring, we hypothesize that
AIRTrode can robustly support reliable MI and ErrP-
based BCI operations for periods exceeding six hours
without degrading the BCIs’ online performance or
the quality of the captured physiological patterns.
Moreover, we expect that BCI performance with
AIRTrode will be statistically indistinguishable, if not
exceed, the benchmarks set by traditional, research-
grade gel electrodes, ensuring no significant deviation
in effectiveness across extended usage.

To investigate these hypotheses, we carried out a
four-day cross-over experiment, with each day spaced
a week apart. On days one and two, participants used
AIRTrode and gel electrodes, respectively, to control a
left hand (LH) versus right hand (RH) MI-based BCI.
Days three and four followed the same pattern but for
an ErrP-based BCI. Each experimental day consisted
of morning and afternoon sessions, separated by a
six-hour break during which participants continued
with their usual activities, such as attending lectures,
eating lunch, and riding bicycles. For each electrode
type, we assessed the stability of neurophysiological
properties and online performance across morning
and afternoon sessions for each BCI paradigm, and
compared them to the benchmarks established by
research-grade gel electrodes.

2. Materials andmethods

2.1. Participants
We recruited four participants (3 self-reported Asian
males and 1 self-reported male of Arab ethnicity,
age range of 25-30 years, M = 26.75, SD = 2.06),
all right-handed. Participants were designated as
‘male’ based on their self-reported sex. The parti-
cipants had diverse hair length, texture and color.
Two participants had medium-length, dense black
hair, approximate 10–12 cm in length. One parti-
cipant had medium-length, fine black hair, approx-
imately 6–8 cm in length. Another participant had

long, curly, dense dark brown hair, approximately
15 cm in length. Inclusion criteria included normal or
corrected-to-normal vision, absence of neurological
disorders, and no use of psychoactive medications.
All participants provided written informed consent
in accordance with the Declaration of Helsinki. The
study protocol was approved by the local ethics com-
mittee (2020–03-0073, The University of Texas at
Austin, TX, USA).

2.2. Experimental paradigm and set-up
Subjects participated in a 4-days cross-over study. On
each day, participants engaged in either MI-based or
ErrP-based BCI control, using either AIRTrode or gel
electrodes. Days were divided into morning and after-
noon sessions, each lasting approximately 90 min,
separated by a six-hour interval (figure 1). In each
recording session, the participant sat on a comfort-
able chair in front of a computer screen (14-inch dis-
play, 2560× 1440 pixels, 60 Hz refresh rate, ThinkPad
X1 Carbon), which displayed either the MI or ErrP
task.

Morning sessions began with a calibration phase
to train personalized decoders, followed by an online
BCI operation phase using these decoders. Afternoon
sessions resumed with participants returning to use
the same decoders for further online BCI operation.

In days of MI-based BCI recordings, during off-
line sessions, participants completed four runs of MI
tasks involving pseudo-random cues for LH or RH
movements. Each run included 10 trials per class,
used to construct a binary-class BCI. Online ses-
sions included three runs following the same struc-
ture, with participants receiving real-time feedback
on their performance.

In days of ErrP-based BCI recordings, offline
sessions comprised three runs where participants
passively observed actions performed by an external
agent, classified as correct or erroneous (100 trials
per run). Online sessions followed the same struc-
ture and included performance feedback. An addi-
tional offline session was recorded before the after-
noon session each day for neurophysiological analysis
purposes, not for decoder training.

For AIRTrode recordings, AIRTrode electrodes
were kept in place throughout the day, including dur-
ing the six-hour inter-session break. Gel electrodes,
however, were removed and reapplied fresh for each
afternoon session.

2.3. AIRTrode
The AIRTrode hydrogel electrodes were synthes-
ized according to the previous report with no
modifications [34]. In brief, Dimethyl sulfox-
ide (DMSO) was first blended with poly (3, 4-
ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) at a 4.5% weight ratio relative to
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Figure 1. Study protocol. Each recording day involved participants undergoing MI or ErrP-based BCI control with either
AIRTrode or research-grade gel electrodes. Impedance measurements (IMP) were taken at the start and end of each recording day.
Subject-specific decoders were trained after the morning offline session and used in the following two online sessions. AIRTrode
remained in place during the six-hour break while participants engaged in daily activities; gel electrodes were reapplied
post-break.

PEDOT:PSS. A vortex mixer (Corning LSE Vortex
Mixer, Fisher Scientific) was used for 30 s to pre-
pare a homogeneous mixture. This mixture was then
further blended with 17.3% weight ratio glycerol rel-
ative to PEDOT:PSS for 30 s using a vortex mixer.
Next, 2-Acrylamido-2-methylpropane sulfonic acid
(AMPS) monomer with 73.5% weight ratio relative
to PEDOT:PSS was added to the mixture in the same
vortex mixer and mixed for 60 s to obtain an uniform
dispersion. The final mixture was then loaded to a syr-
inge, and placed at room temperature. AIRTrode was
spontaneously formed without any external stimulus
or crosslinking reagent within 30 min.

2.4. EEG acquisition
EEG signals were recorded from 13 electrodes: Fz,
FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2
and CP6, according to the 10/20 international system.
GND was placed at AFz and reference at CPz. EEG
was recorded at 512 Hz using an eego system (ANT
Neuro, Netherlands). The hydrogel electrodes were
applied via a syringe to a waveguard EEG cap (ANT
Neuro, Netherlands), which was mounted on the par-
ticipant’s head. Electrode impedance was acquired
using eego software (ANT Neuro, Netherlands).

2.5. MI experiments

2.5.1. Brain–computer interface task
The ‘bar feedback task’ used in the MI experiment is
based on traditional protocols that have been com-
monly used in the BCI research field over the past
decade. The ‘bar feedback task’ or its slight vari-
ations have been employed in several prior studies
[36–42]. In this task, participants received visual feed-
back through a bar displayed on the screen, extend-
ing from one side to the other, with the left-hand side

indicating the LH class and the right-hand side the
RH class. Each trial started with a 2 s rest period (±
1 s), followed by a 2 s fixation period. Subsequently,
a task cue for 2 s indicated the trial’s class: a blue
arrow pointing left for LH and a red arrow pointing
right for RH. In offline runs, the task execution period
lasted 5 s, with a simulated BCI output moving the
bar towards the indicated direction, providing con-
tinuous visual feedback. The participant performed
MI, as directed by this feedback. During online runs,
the BCI output controlled the direction of the bar.
Specifically, the bar moved in proportion to the accu-
mulated evidence from the BCI decoder for the two
MI classes. Two decision thresholds were represen-
ted by lines at opposite ends of the screen. If the bar
reached a decision threshold, discrete feedback in the
form of an arrow appeared for 2 s to indicate the
executed command. In online runs, the feedback dur-
ation was capped at 7 s. If a decision threshold was
not reached within this time, the trial ended with a
‘Timeout’.

To perform MI correctly, subjects were given the
following instructions: ‘Based on the presented task
cue, you have to mentally rehearse the kinesthetic
experience for a single sustained movement of your
right or left hand. You must not physically perform
the movement nor elicit any muscular contraction.
Make sure to attempt consistent imagination of the
movements over sessions.’

2.5.2. MI classification
During online operation, EEG signals were bandpass
filtered within the [8,30] Hz range using a second-
order Butterworth filter. This frequency range was
selected because MI is typically associated with event-
related desynchronizations (ERDs) in the sensor-
imotor rhythms (SMRs), particularly within the µ
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([8,13] Hz) and β ([18,30] Hz) bands. By choos-
ing this specific frequency range, we aimed to effect-
ively capture the neural patterns specific to MI
and reduce noise from irrelevant bands, thereby
improving the performance of the BCI [43–46].
Features were extracted from 1-second sliding win-
dows, updated every 62.5 ms, by calculating the cov-
ariance matrices of the EEG signals within these win-
dows. A Riemannian geometry based-decoder was
used, utilizing a minimum-distance-to-mean classi-
fication scheme on the Riemannian manifold com-
prised of spatial covariance matrices. This classifier
operates similarly to a nearest neighbor classifier,
categorizing covariance matrices into distinct classes
based on their distance from class-specific means loc-
ated on the Riemannian manifold [47]. We chose
to use a classification method based on Riemannian
geometry for several reasons. First, Riemannian
geometry-based methods have demonstrated accur-
ate and robust classification in EEG MI-based BCIs
in prior literature [48, 49], especially in online
experiments [42, 50]. During the pilot stage of our
experiment, we initially used a linear algorithm, LDA,
but it underperformed in both offline and online per-
formances compared to Riemannian methods, espe-
cially given the limited number of channels available.
Second, in prior literature, Riemannian geometry-
based methods have proven to be robust in captur-
ing non-stationarities in EEG signals over multiple
sessions [42, 50–52]. This robustness is particularly
relevant in our study, where EEG signals recorded
over a 6-hour timeframe can exhibit non-stationary
behavior, with statistical properties changing over
time. By working on the Riemannian manifold of cov-
ariance matrices, this approach enables more reliable
tracking of underlying signal changes, which is cru-
cial for maintaining performance in a long-duration
MI BCI. For further details on the classifier’s method-
ology and implementation, refer to [47, 50].

To deliver a command (RH versus LH), the BCI
accumulates estimated probabilities for each class
until one class’s accumulated probability reaches a
pre-set threshold. A trial is deemed a ‘hit’ if the accu-
mulated probability meets the threshold for the cor-
rect class, and a ‘miss’ if it reaches the threshold for the
incorrect class. If neither threshold is reached within
the designated timeout period, the trial is classified
as a ‘Timeout’. Evidence for each class is accumulated
using an exponential smoothing formula [40]:

ei = 0.95 · ei−1 + 0.05 · pi (1)

where ei is the accumulated evidence for a given class
and pi is the posterior probability of that class for the
ith sample. Evidence accumulation is reset to 0.5 at the

beginning of every trial. The thresholds were adjusted
to provide a suitable challenge level while minimizing
the likelihood of misses.

2.5.3. BCI performance analysis
To assess online BCI performance, we evaluated the
accuracy of BCI output using sample-wise classi-
fication accuracy, user’s control level using the bar
dynamics metric, and command delivery perform-
ance using the BCI hits accuracy metric.

• Sample-wise classification accuracy: this measures
the percentage of samples correctly classified as the
respective class (RH vs LH) in each run

Acc =
TP+TN

TP+TN+ FP+ FN
, (2)

where TP, TN, FP and FN correspond respectively
to true positives, true negatives, false positives and
false negatives. Contrarily to trial-level perform-
ance, sample-level accuracy is independent of the
thresholds used for evidence accumulation.

• Bar dynamics: this reflects the extent of BCI con-
trol by indicating the percentage of time during the
MI task execution period of a trial that the accumu-
lated evidence from the BCI decoder supported the
correct class. It was calculated based on the propor-
tion of samples for which the accumulated probab-
ility for the correct class exceeded 50%.

• BCI hits accuracy: this metric calculates the ratio of
trials with correct threshold hits to the total num-
ber of threshold crossings within a session, exclud-
ing trials with a ‘Timeout’ outcome. The metric was
then normalized by 1− ntimeouts

ntrials
, where ntimeouts is the

number of trials that concluded with ‘Timeout’ and
ntrials is the total number of trials in a session.

The chance levels for the classification accuracy and
the command delivery metrics above were computed
by randomly permuting the testing labels 10 000 times
and averaging the corresponding outcomes over the
permutations.

2.5.4. MI neurophysiology analysis.
To compute event-related desynchronizations
(ERDs) in the sensorimotor rhythms (SMRs) within
the µ ([8,13] Hz) and β ([18,30] Hz) bands, EEG sig-
nals underwent several processing steps. Initially, sig-
nals were spatially filtered using a surface Laplacian to
enhance spatial resolution. They were then band-pass
filtered within the specified frequency ranges using a
4th order non-causal Butterworth filter. Next, we cal-
culated the band-limited power of the filtered signals
by averaging the squared voltage amplitudes for each
electrode during the task execution period of each
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trial. This task-relevant band power was then nor-
malized by subtracting and dividing by the baseline
power, which was computed from the pre-task fixa-
tion period [44]. ERDs were averaged over all trials
and participants. For visualization, ERDs from right
hand (RH) trials were medially transposed, ensuring
that contra-lateral ERDs consistently appeared on the
right hemisphere in topological plots.

2.6. ErrP experiments

2.6.1. Brain–computer interface task
We used a cursor task in the ErrP experiments,
based on established protocols widely employed in
BCI research over the past decade. This task, along
with its variations, has been utilized in several pre-
vious studies [53–57]. Similar to before, participants
monitored a dynamic cursor, represented by a blue
circle (3.14,cm−2), moving across 10 square locations
(4cm−2) along the screen’s central horizontal plane.
The cursor’s target square location was highlighted
in red. At each time step, termed a trial here, the
cursor moved horizontally to an adjacent square loc-
ation, either to the right or left, ensuring it remained
within the predefined working area. Each trial lasted
between 2000 and 2500 ms. The cursor movement
stopped once the target was reached, after which a
new cursor and target were randomly placed among
the 10 squares.

Participants were instructed to fix their gaze on
the center of the screen and passively monitor the
cursor’s movement, expecting it to move in the direc-
tion towards the target. An ErrP was elicited whenever
the cursor moved away from the target, contrary to
the participants’ expectation. Each run consisted of
100 trials lasting about 3 min, with a 30% error prob-
ability per trial where the cursor moved in the erro-
neous direction (i.e. direction contrary to the parti-
cipants’ expectation).

Our protocol included BCI feedback during the
online operation of the ErrP task. Specifically, if the
BCI falsely detected the presence of an ErrP following
a correct cursor movement, the cursor would jump
two locations further from the target in the next trial.
If this displacement moved the cursor outside the
working area, it would instead move by only one loc-
ation. Conversely, if the BCI correctly detected the
presence of an ErrP following an erroneous cursor
movement, the cursor would move two locations
closer to the target on the next trial. The primary goal
during online sessions was to move the cursor to the
target location as many times as possible, encouraging
participants to elicit accurate neural responses—i.e.
to generate an ErrP for erroneous actions and not
elicit an ErrP for correct actions. Similar to the off-
line run, the online run consisted of 100 trials lasting
about 3 min, with a 30% error probability per trial.

2.6.2. ErrP classification
To build the decoder to detect presence/absence of
ErrPs in each online trial, EEG signals were first pre-
processed with a 4th order causal Butterworth band-
pass filter within the [1, 10] Hz range. These filtered
signals were then segmented into epochs using win-
dow of [0.20, 0.60] s post-cursor onset. This specific
window was chosen to cover the critical error-related
negativity (ERN) and error-positivity (Pe) compon-
ents of the ErrP, as highlighted in the grand aver-
age (figure 5). Epochs containing any EEG sample
that exceeded 50 µV on any channel were excluded
due to artifacts. This exclusion criterion led to the
identification of one artefactual epoch in total across
the AIRTrode recordings, with no artefactual epochs
identified in the research-grade gel recordings, span-
ning four subjects and two sessions.

To enhance the signal-to-noise ratio (SNR), a spa-
tial filter using canonical correlation analysis (CCA)
was applied to the offline epochs. This CCA filter
transformed the EEG data to a subspace where the
correlation between the epochs and the grand aver-
age ErrPs was maximized [58]. We retained the first
three CCA components. On each CCA component,
we extracted two types of features: (1) The EEG
voltage for each time sample after downsampling to
32 Hz (60 temporal features), and (2) Power spectral
density (PSD) computed at [4, 6, 8, 10] Hz frequency
bins using the Welch method (12 PSD features) [59].
These 72 features per epoch were normalized to [0,
1] to form the feature vector x [12]. From the fea-
ture vector x, the ErrP decoder estimated the posterior
probability about the presence of an ErrP, p(error|x),
using diagonal linear discriminant analysis:

p(error|x) =
1

1− exp−(w ′x+b)
(3)

where w represents the weights applied to the input
features and b is the bias term. An epoch was classi-
fied as containing an ErrP if p(error|x) exceeded a pre-
determined threshold, τ . This threshold τ was optim-
ized through a leave-one-run-out cross-validation
on the offline data [60]. We evaluated the average
receiver operating curve (ROC) for various τ values
ranging from 0 to 1 in steps of 0.025. A true positive
(TP) was defined as an epoch where an ErrP was cor-
rectly detected, and a false positive (FP) was an epoch
where an ErrP was incorrectly flagged. The optimal
τ was chosen to maximize the product of the average
true positive rate (TPR) and true negative rate (TNR)
from the average ROC during the cross-validation
process, and was used in subsequent online sessions.

2.6.3. BCI performance analysis
To evaluate the performance of the ErrP-based BCI
performance, we used the following metrics:
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• Kappa value: Due to the imbalanced nature of the
number of correct and error trials, we computed
Cohen’s Kappa value to evaluate the classification
performance on the imbalanced data, following
[61]:

Kappa =
pa − pe

1− pe
(4)

where pa is the classification accuracy and pe is
the probability of a chance detection within the
provided dataset.

• True Negative Rate (TNR): This is defined as the
proportion of error trials in which the presence
of an ErrP was correctly detected (true negatives).
TNR is calculated by dividing the number of true
negative trials by the total number of error trials.

• True Positive Rate (TPR): This is defined as the pro-
portion of correct trials in which no ErrP was cor-
rectly detected (true positives). TPR is calculated by
dividing the number of true positive trials by the
total number of correct trials.

To calculate the chance levels for Kappa value, TNR
and TPR, we randomly permuted the testing labels
10 000 times and averaged the corresponding out-
comes over the permutations.

2.6.4. ErrP neurophysiological analyses
Neurophysiological analyses of ErrPs, specifically the
analyses of ERN and Pe amplitudes and latencies,
peak-to-peak (pk-to-pk) amplitudes of the ErrP and
individual θ peak frequency (ITF), were conducted
at electrode Cz, as the ErrP components prominently
manifest over fronto-central areas like FCz and Cz
[10].

To extract the ERN and Pe components, we first
computed difference waveforms by subtracting the
grand average of correct epochs from error epochs
for each group (AIRTrode and research-grade gel)
and session (morning offline and afternoon offline).
Visual inspection of the grand average identified con-
sistent timings for ERN and Pe across sessions and
groups: ERN appeared as a negative deflection around
200 ms post-cursor onset, and Pe as a positive deflec-
tion around 260 ms post-onset, within a window
from [150, 450] ms relative to the onset (figure 5).
Therefore, three zero-crossing timestamps marking
the start and end of these components were retained
from this window.

On the grand average of each run, the Pe amp-
litude was defined as the maximum value observed
between the first and last zero-crossing timestamps.
Conversely, the ERN amplitude was determined as
the minimum value between the first zero-crossing
and the Pe peak. The peak-to-peak amplitude was
calculated by subtracting the ERN amplitude from

the Pe amplitude. Latencies for each component were
measured from the time post-cursor onset to when
the respective peaks occurred.

Since ErrPs are often associated with an increase
in fronto-central θ power [10], we also computed the
individual θ peak frequency (ITF) as a neurophysiolo-
gical characteristic of ErrP. To compute the ITF, we
first performed a time-frequency decomposition of
single-trial EEG data using complex Morlet wavelets
(1 to 30 Hz with 0.1 Hz resolution and 6 cycles for
increased spectral resolution). After decomposition,
we squared and averaged the magnitudes across tri-
als to compute the average total power for each fre-
quency at Cz, decibel normalized by the power dur-
ing a baseline interval ([−500, −250] ms pre-cursor
onset). The difference in average power between error
and correct trials was averaged over a window of
[200, 600] ms post-cursor onset, yielding the power
per frequency. The ITF was identified as the fre-
quency with the maximum power within the [4,8] Hz
range. These neurophysiological characteristics–pk-
to-pk amplitude, ERN latency, Pe latency, and ITF–
were extracted from each participant’s recording per
run.

2.7. Statistical analyses
The BCI performance and neurophysiological res-
ults satisfied the assumptions of the statistical tests
used. We assessed data normality using the Lilliefors
test, considering data normally distributed if the p-
value exceeded 0.05 [62]. We employed mixed-effects
model to study the effects of time (morning vs.
afternoon sessions) and electrode type (AIRTrode vs.
research-grade gel) on BCI performance and neuro-
physiological patterns. For this analysis, we used each
run as a separate data point, allowing us to utilize the
full dataset and increase statistical power. The inclu-
sion of a random effect for subjects models the cor-
relation within subjects across multiple runs, valid-
ating the use of run-level data and preserving the
model’s statistical integrity. To evaluate the changes
in BCI performances and neurophysiological patterns
between morning and afternoon sessions, paired two-
tailed t-tests were used for normally distributed data,
and the Mann-Whitney U test was applied other-
wise. Differences between electrode types were eval-
uated using unpaired two-tailed t-tests for normally
distributed data and Wilcoxon signed-rank tests for
non-normal data. Results were reported with means
and standard deviations to describe central tendency
and variability. Statistical significance was indicated
with p-values, and effect sizes were calculated using
Cohen’s dz alongside t-statistics (when applicable),
providing insight into the magnitude of observed
effects. Apart from the mixed-effect model analysis,
all other statistical analyses of the BCI performances
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and neurophysiological results were conducted at the
subject level.

To explore the similarities in neurphysiolo-
gical patterns, we performed Pearson’s two-tailed
correlation, and reported the correlation coeffi-
cients r and corresponding p-values. To adjust for
multiple comparisons, we applied the Bonferroni
correction by dividing the significance threshold
by the number of tests in the corresponding
analysis (i.e. αadjusted =

α

number of tests ). Additionally,
cluster permutation testing, implemented via
FieldTrip, facilitated comparisons of spatial dis-
tributions of ERD patterns across electrode types
and sessions, while also adjusting for multiple
comparisons.

3. Results

3.1. An online, AIRTrode, MI-based BCI operates
reliably for at least six hours

3.1.1. Neurophysiology
To evaluate the effectiveness of AIRTrodes in long-
term MI-based BCIs, we first analyzed the ERD pat-
terns over the contra-lateral C3/C4 channels and
their topological distribution during the MI execu-
tion periods, in both µ and β bands.

As illustrated in figure 2, the grand average power
patterns for both electrode types across all sessions
exhibited a clear ERD (i.e. decrease in power) over
the contra-lateral C3/C4 channels upon execution of
the MI tasks, in the µ and β bands. Additionally,
supplementary figure S2 showed physiologically valid
lateralization of µ and β ERDs towards the contra-
lateral hemisphere in the morning (morn) and after-
noon (aft) online sessions across both electrode types.
These observations aligned with established neuro-
physiological patterns of MI reported in the literature
[45, 63].

Pearson’s correlation analysis confirmed high
similarities between the grand average ERD pat-
terns at C3/C4 recorded from AIRTrodes and those
from research-grade gel electrodes across both online
sessions morn online: r = 0.935, p< 0.001 for µ,
r = 0.856, p< 0.001 for β; aft online: r = 0.899,
p< 0.001 for µ, r = 0.884, p< 0.001 for β), below
adjusted α level of 0.0125 for each frequency band
(i.e. 0.05 divided by 4 for Bonferroni correction).
supplementary figure S2 confirmed that the topo-
logical distribution of ERD patterns showed mostly
no significant differences across the two electrode
types (p> 0.05). An exception was observed in sup-
plementary figure S2b, where AIRTrode captured sig-
nificantly stronger β ERDs over the contra-lateral C4
channel in the morning session when compared to gel
(tC4 =−4.959, p< 0.001).

Furthermore, Pearson’s correlation analysis
showed strong correlations in the grand average
ERD patterns at C3/C4 between the morning and

afternoon sessions for AIRTrode (µ band: r = 0.878,
p< 0.001; β band: r = 0.953, p< 0.001) consist-
ent with the case for the standard gel (µ band:
r = 0.945, p< 0.001; β band: r = 0.918, p< 0.001).
The topological analysis through cluster permutation
testing revealed no significant differences in ERD
patterns between morning and afternoon sessions
for AIRTrode, underscoring its stability (p> 0.05).
Conversely, the research-grade gel electrodes showed
a significant shift in µ ERD patterns on channel
CP6 upon re-application in the afternoon session
(tCP6 =−3.195, p< 0.001), suggesting potential vari-
ability with traditional electrodes.

Overall, these results support that AIRTrodes con-
sistently captured physiologically valid, contra-lateral
ERD patterns during MI-BCI operations over exten-
ded periods. These patterns were mostly not stat-
istically different from those captured by research-
grade gel electrodes, highlighting the reliability and
stability of AIRTrode in long-term BCI operation.
The only exception was when AIRTrode exhibited
stronger contra-lateral SMR modulations than the
standard gel during MI tasks at the morning session.

3.1.2. Online BCI performances
To assess the effectiveness of AIRTrode in support-
ing long-term MI-based BCI operations, figure 3
details the online classification accuracy, bar dynam-
ics, and BCI hits accuracy of the MI-BCI across morn-
ing (morn) and afternoon (aft) sessions. For both
electrode types, the performance metrics consistently
exceeded their respective chance levels throughout
the sessions.

A mixed-effect model with TIME (morn
and aft) as a within-subjects factor and GROUP
(AIRTrode and research-grade gel) as a between-
subjects factor revealed no significant TIME x
GROUP interaction effect (classification accur-
acy: Coefficient = 2.744± 4.929, t(44) = 0.557,
p= 0.581; bar dynamics: Coefficient = 3.915± 5.045,
t(44) = 0.633, p= 0.530, and BCI hits: Coefficient =
−5.417± 9.157, t(44) =−0.592, p= 0.557). In addi-
tion, there was no significant main effect of TIME
(classification accuracy: Coefficient =−3.025±
3.485, t(44) =−0.868, p= 0.390; bar dynam-
ics: Coefficient =−2.255± 3.567, t(44) =−0.632,
p= 0.531; and BCI hits: Coefficient = 2.083± 6.475,
t(44) = 0.322, p= 0.749) nor GROUP (classifica-
tion accuracy: Coefficient =−0.970± 4.828, t(44) =
−0.201, p= 0.842; bar dynamics: Coefficient =
−2.934± 5.073, t(44) =−0.578, p= 0.566; and BCI
hits: Coefficient = 3.333± 13.778, t(44) = 0.242,
p= 0.810), indicating consistent performance across
times and groups.

Post-hoc t-tests further confirmed no stat-
istically significant differences in BCI perform-
ances between sessions for each electrode type. For
AIRTrode, results showed no significant differences
in classification accuracy (morn = 62.058± 8.927%,
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Figure 2. ERD grand averages in MI trials. Contra-lateral ERD patterns averaged over C3 and C4 channels for corresponding RH
and LH trials in the morning and afternoon online sessions. a and b display the µ and β band ERDs, respectively, from AIRTrode
recordings; c and d present the µ and β band ERDs from research-grade gel recordings. Shaded areas represent the standard error
over participants [n= 4]. Horizontal black dashed lines indicate the start of the MI execution period following 2 s of cue
presentation.

aft = 65.084± 8.997%, p= 0.574, dz = 0.338), bar
dynamics (morn = 61.024± 8.963%, aft = 63.280±
9.972%, p= 0.875, dz = 0.238) and BCI hits accur-
acy (morn = 60.417± 15.237%, aft = 62.727±
39.402%, p = 0.878, dz = 0.084). Similar non-
significant variations across sessions were observed
with the gel electrodes in classification accuracy
(morn = 63.832± 10.848%, aft = 64.114± 5.076%,
t3 = 0.046, p= 0.966, dz = 0.033), bar dynamics
(morn = 61.285± 11.509%, aft = 60.345± 6.539%,
p= 0.896, dz =−0.100) and BCI hits accuracy
(morn = 58.333± 11.982%, aft = 61.667± 8.001%,
p = 0.783, dz = 0.164).

Comparisons between electrode types in each ses-
sion also showed no significant differences in the
online classification accuracy (morn: t6 =−0.253,
p= 0.809, dz = 0.179; aft: t6 =−0.188, p= 0.857,
dz =−0.133), bar dynamics (morn: t6 = 0.036, p =
0.973, dz = 0.024; aft: p= 0.486, dz = 0.348) and BCI
hits accuracy (morn: p= 0.893, dz =−0.099; aft:
p = 0.857, dz = 0.133). Additionally, analysis of the
EEG channels contributing to BCI decoding per-
formance confirmed significant contributions from
similar, physiologically relevant, C3/C4 channels for
both AIRTrode and research-grade gel, as depicted
in figure 4. Subject-wise illustration of EEG chan-
nel contributions to MI decoding performance shows
similar trends, despite some individual variations
(supplementary figure S3).

Overall, the effect sizes (dz) reported in the
post-hoc tests for the BCI performance metrics
between sessions and electrodes are classified as either
trivial (0.0 ⩽ dz ⩽ 0.20) or small (0.20 ⩽ dz ⩽ 0.50),
suggesting minor differences if any. These results,
consistent with neurophysiological findings from

section 3.1.1, confirm the robustness of AIRTrode
for long-term BCI operations, maintaining reliable
online BCI performances comparable to that of
freshly applied gold-standard gel electrodes even after
extended periods.

3.2. An online, AIRTrode, ErrP-based BCI operates
reliably for at least six hours
3.2.1. Neurophysiology
To evaluate the robustness of AIRTrodes for long-
term ErrP-driven BCIs, we first analyzed changes
in the grand averages and specific neurophysiolo-
gical characteristics of ErrPs at channel Cz across
morning (morn) and afternoon (aft) sessions. The
neurophysiological characteristics examined include:
(1) peak-to-peak amplitude (pk-to-pk), computed
as magnitude of Error Positivity (Pe) minus Error-
related Negativity (ERN), (2) ERN latency, (3) Pe
latency, and (4) the individual peak θ frequency of
error trials (ITF).

The grand averages of the ErrPs from the error
minus correct condition are displayed in figure 5.
ErrPs recorded from both AIRTrode and gel elec-
trodes in the morning and afternoon sessions dis-
played physiologically valid shapes in the temporal
domain, aligning with established literature [11, 64,
65]. Consistently across both types of electrodes and
both sessions, the topological plots revealed that the
ErrPs were characterized by a central negative deflec-
tion appearing approx. 200 ms after the cursor onset
of the erroneous action (ERN), followed by a frontal
and fronto-central positive peak (Pe) approx. 260 ms
after cursor onset. These patterns are established
EEG neural correlates of error recognition [11, 64,
65]. An unexpected positive deflection at Fz, approx.
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Figure 3. Online MI-based BCI performance. a Classification accuracy, b Bar dynamics, and c BCI hits accuracy in online MI-based
BCI feedback for participants wearing AIRTrode [n= 12] and gel [n= 12] electrodes during morning and afternoon sessions.
Each dot indicates a performance value from one run, with three runs per session. Asterisks indicate the average performance of
each participant per session, calculated across three runs. There are four participants for each electrode type. Error bars represent
the standard error of the mean for the performance metrics. Solid horizontal lines within the bars denote the chance levels for
each metric and session. n.s. indicates not significant at the adjusted alpha level of 0.0125 (i.e. 0.05 divided by 4 for Bonferroni
correction).

200 ms after error observation in the gel recordings,
was likely due to ocular artifacts generated during
the error monitoring task. Subject-wise illustration
of ErrP grand averages show similar physiologically
valid shapes, despite some individual variations (sup-
plementary figure S4, S5).

Furthermore, strong Pearson’s correlations were
observed between the grand average ErrPs across
sessions for both types of electrodes (AIRTrode,
r = 0.794, p< 0.001; gel, r = 0.747, p< 0.001) and
between the two electrodes within each session (morn
offline, r = 0.692, p< 0.001; aft offline, r = 0.821,
p< 0.001), below adjusted α level of 0.0125 (i.e. 0.05
divided by 4 for Bonferroni correction).

We conducted a mixed-effect analysis to eval-
uate each of the quantitative neurophysiological
measures with TIME (morn and aft) as a within-
subjects factor and GROUP (AIRTrode vs gel) as a

between-subjects factor. Our analysis revealed no
significant TIME X GROUP interaction effects in
any physiological measures (pk-to-pk: Coefficient =
0.176± 0.419, t(44) = 0.421, p= 0.676; ERN
latency: Coefficient = 0.007± 0.023, t(44) = 0.291,
p= 0.772; Pe latency: Coefficient = 0.001± 0.018,
t(44) = 0.082, p= 0.935; ITF: Coefficient = 0.233±
0.726, t(44) = 0.322, p= 0.749, indicating no group-
specific changes across sessions. Additionally, no sig-
nificant main effects of TIME were observed (pk-
to-pk: Coefficient =−0.202± 0.96, t(44) =−0.683,
p= 0.498; ERN latency: Coefficient = 0.001± 0.016,
t(44) = 0.050, p= 0.960; Pe latency: Coefficient =
−0.003± 0.012, t(44) =−0.245, p= 0.808;
ITF: Coefficient = 0.333± 0.513, t(44) = 0.650,
p= 0.519). Furthermore, no significant main effects
of GROUP were observed (pk-to-pk: Coefficient =
−0.299± 0.874, t(44) =−0.342, p= 0.734; ERN
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Figure 4. EEG channel contributions to MI decoding
performance. Topological plots show the contribution of
each recorded EEG channel to the performance of the
Riemannian Geometry decoding for participants
wearing AIRTrode and gel electrodes, averaged across all
subjects and recorded sessions. The channel importance
was computed as the percentage increase in
classification accuracy when the channel was included
in the classification model. Values were normalized
relative to the maximum across all channels.

latency: Coefficient =−0.001± 0.016, t(44) =
−0.050, p= 0.960; Pe latency: Coefficient = 0.001±
0.018, t(44) = 0.051, p= 0.960; ITF: Coefficient =
−0.367± 0.513, t(44) =−0.715, p= 0.479).

Post-hoc analyses further confirmed no sig-
nificant changes across sessions for both elec-
trode types in the physiological characteristics of
ErrPs. For AIRTrode, results showed no signific-
ant differences in pk-to-pk amplitude (morn =
2.415± 1.497 uV, aft = 2.617± 1.593 uV, t3 =
−0.320, p = 0.696, dz = 0.131), ERN latency
(morn = 0.184± 0.013 s, aft = 0.183± 0.029 s, p =

0.948, dz =−0.037), Pe latency (morn = 0.263±
0.017 s, aft = 0.266± 0.034 s, p = 0.770, dz =
−0.115) and ITF (morn = 5.967± 0.789 Hz, aft =
5.492± 1.009 Hz, t3 = 0.642, p = 0.567, dz =
−0.368). Similarly, gel electrodes also exhibited
no significant post-hoc differences across sessions,
as demonstrated by pk-to-pk amplitude (morn =
2.292± 1.535 uV, aft = 2.318± 1.101 uV, t3 =
−0.077, p = 0.944, dz = 0.020), ERN latency
(morn = 0.190± 0.018 s, aft = 0.182± 0.034 s, p =
0.449, dz =−0.271), Pe latency (morn = 0.265±
0.022 s, aft = 0.267± 0.038 s, p = 1.0, dz = 0.052)
and ITF (morn = 5.542± 0.578 Hz, aft = 5.342±
0.691 Hz, t3 = 1.897, p = 0.154, dz =−0.890).

In addition, no post-hoc differences were detec-
ted between the two electrode types in either session
for any of the measured neurophysiological para-
meters: pk-to-pk (morn: t6 = 0.115, p = 0.912, dz =
−0.081; aft: t6 = 0.309, p = 0.768, dz =−0.218),
ERN latency (morn: t6 =−0.525, p = 0.618, dz =
0.371; aft: p = 0.972, dz =−0.026), Pe latency
(morn: p = 0.914, dz = 0.122; aft: p = 0.971, dz =

0.027), and ITF (morn: t6 = 0.273, p = 0.794, dz =
−0.193; aft: t6 = 0.600, p = 0.571, dz =−0.424).

The effect sizes (dz) reported in the post-hoc tests
were mostly trivial (0.0 ⩽ dz ⩽ 0.20) or small (0.20 ⩽

dz ⩽ 0.50), suggesting any observed differences are
minor and practically insignificant. Notably, a large
effect size was observed in the within-group compar-
ison of gel electrodes for ITF, which did not reach stat-
istical significance. The large effect size observed in
ITF within the gel group was primarily driven by two
subjects who exhibited approx. a 1 Hz change in their
peak theta frequency between the morning and after-
noon sessions, while the other two subjects showed
much smaller changes, remaining within 0.2 Hz. We
hypothesise that this variability reflects typical neural
fluctuations rather than a consistent effect of the elec-
trode type. This is further supported by evidence in
the literature showing that theta frequency dynam-
ics can be influenced by a variety of factors, including
internal thoughts, anxiety, and temperature [66, 67].

Together, these findings demonstrate the effect-
iveness of AIRTrodes in capturing event-related
potentials, such as ErrPs. Moreover, the consistent
absence of significant differences in ErrPs across time
or between electrode types underscores AIRTrode’s
reliable and stable recording capabilities over exten-
ded periods.

3.2.2. Online BCI performances.
To evaluate the effectiveness of AIRTrode in support-
ing long-term ErrP-based BCI operations, figure 7
shows the online Kappa, TNR and TPR of the ErrP-
BCI across morning (morn) and afternoon (aft) ses-
sions. The performance metrics for both types of
electrodes consistently exceeded their corresponding
chance levels across sessions, apart from the TPR with
the AIRTrode set-up was slightly below chance (<
5%) in the afternoon session.

We performed a mixed-effect analysis on each of
the BCI performance metrics with TIME (morn and
aft) as within-subjects factors and GROUP (AIRTrode
and gel) as between-subjects factor. Similar to the
observations on the neurophysiological measures,
no significant TIME x GROUP interaction effects
were found in the performance measures (Kappa:
Coefficient =−0.012± 0.067, t(44) =−0.184,
p= 0.855; TNR: Coefficient = 0.035± 0.070, t(44) =
0.500, p= 0.620; TPR: Coefficient =−0.020±
0.035, t(44) =−0.573, p= 0.570). Furthermore,
there were no significant main effects of GROUP
(Kappa: Coefficient =−0.002± 0.094, t(44) =
−0.018, p= 0.986; TNR: Coefficient =−0.082±
0.049, t(44) =−1.673, p= 0.101; TPR: Coefficient =
0.034± 0.060, t(44) = 0.571, p= 0.571.). There
was also no significant main effects of TIME
(TNR: Coefficient = 0.037± 0.049, t(44) = 0.759,
p= 0.452; TPR: Coefficient = 0.031± 0.024, t(44) =
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Figure 5. ErrP grand averages. a Grand averages of time-locked ErrPs, error-minus-correct condition, at Cz recorded with
hydrogel AIRTrodes during morning and afternoon offline sessions. Time 0 s, marked by horizontal black dashed line,
corresponds to the onset of cursor movement. Shaded areas represent the standard error over participants [n= 4]. Inset is
topographical plot of EEG amplitude over the participants’ scalp for ErrPs at two different time points with respect to the cursor
onset: 0.20 s and 0.26 s. b Response-locked grand averages of ErrPs as described in a, recorded using research-grade gel electrodes.

1.267, p= 0.212; Kappa: Coefficient = 0.073± 0.047,
t(44) = 1.542, p= 0.130).

Post-hoc t-tests confirmed that changes in BCI
performance across sessions were not significant for
either electrode type. For AIRTrode, results showed
no significant differences in Kappa (morn = 0.390±
0.095%, aft = 0.317± 0.160%, t3 = 1.458, p =
0.241, dz =−0.558), TNR (morn = 71.209±

9.270%, aft = 67.480± 9.454%, p = 0.666, dz =
−0.398) and TPR (morn = 72.627± 6.214%, aft =
69.526± 8.9.018%, t3 = 1.086, p = 0.357, dz =
−0.400). For gel, no significant differences were
observed in Kappa (morn = 0.375± 0.156%, aft =
0.315± 0.173%, t3 = 2.541, p = 0.085, dz =
−0.369), TNR (morn = 66.462± 7.720%, aft =
59.258± 4.681%, p = 0.106, dz =−1.128) and
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Figure 6. Neurophysiological properties of ErrPs. a Peak-to-peak amplitude, b ERN latency, c Pe latency, and d peak θ frequency of
the ErrPs recorded during the offline morning and afternoon sessions from participants wearing AIRTrode [n= 12] and gel
[n= 12] electrodes. Each dot represents a neurophysiological value from one of three runs per session, Asterisks indicate the
average performance of each participant per session, calculated across three runs. There are four participants for each electrode
type. Error bars represent the standard error of the mean for the performance metrics. n.s. indicates not significant at the adjusted
alpha level of 0.0125 (i.e. 0.05 divided by 4 for Bonferroni correction).

TPR (morn = 74.066± 10.690%, aft = 72.947±
13.500%, p = 0.875, dz =−0.093).

Additionally, no significant differences were
found between the two groups at any of the
metrics or sessions in the independent samples
post-hoc t-tests: Kappa (morn: t6 = 0.153, p =
0.883, dz =−0.108; aft: t6 = 0.014, p = 0.989, dz =
−0.009), TNR (morn: p = 0.461, dz =−0.556; aft:
p = 0.170, dz =−1.102), and TPR (morn: t6 =
−0.244, p = 0.816,dz = 0.172; aft: p = 0.686, dz =
0.295).

When evaluating BCI performance in this
paradigm, we recommend prioritizing the Kappa
value, which accounts for both TNR and TPR, provid-
ing a more balanced assessment. For comprehensive-
ness, we reported the statistical results for all three
metrics above. Cross-group comparisons between
electrode types showed that AIRTrode consistently
outperformed gel electrodes in the TNR metric, with
a medium effect size observed in the morning session

and a strong effect size in the afternoon. However,
this comparison should be interpreted in the con-
text of TPR as well, where AIRTrode consistently
showed a lower average performance. Therefore,
considering the Kappa value, which integrates both
TNR and TPR, offers a more balanced evaluation of
BCI performance. The effect sizes (dz) reported in
the post-hoc tests of Kappa are classified as either
trivial (0.0 ⩽ dz ⩽ 0.20) or small (0.20 ⩽ dz ⩽ 0.50),
apart from the Kappa value for AIRTrode showed a
non-significant decline with a nearly medium effect
size across sessions. It remained high and well above
chance levels despite the slight decrease.

In summary, the performance of an ErrP-based
BCI employing AIRTrode electrodes was generally
reliable and comparable to that of research-grade
gel electrodes, although the TPR slightly dipped
below chance levels in the afternoon session, possibly
due to participant fatigue. Nonetheless, this value
remained high because the task design, where only
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Figure 7. Online ErrP-based BCI performance. a Kappa value, b True negative rate (TNR), and c True positive rate (TPR) in online
ErrP-based feedback for participants wearing AIRTrode [n= 12] and gel [n= 12] electrodes during morning and afternoon
sessions. Each dot indicates a performance value from one run, with three runs per session. Asterisks indicate the average
performance of each participant per session, calculated across three runs. There are four participants for each electrode type. The
correct trials were labelled positive and the error trials were labelled negative. Error bars represent the standard error of the mean
for the performance metrics. Solid horizontal lines within the bars denote the chance levels for each metric and session. n.s.
indicates not significant at the adjusted alpha level of 0.0125 (i.e. 0.05 divided by 4 for Bonferroni correction).

30% of cursor movements were erroneous to cre-
ate an expectation mismatch, sets a high chance level
for TPR (> 70%). Overall, these findings confirm the
effectiveness and stability of AIRTrode for long-term
use in ErrP-based BCIs.

4. Discussion

In this work, we have demonstrated three key aspects
of hydrogel AIRTrode in the context of EEG BCI
operations, underscoring its potential promise for
future clinical and practical applications. Firstly, the
AIRTrode electrodes exhibited excellent recording
quality, effectively capturing valid neurophysiolo-
gical patterns that characterize MI and ErrPs. For

MI tasks, the electrodes consistently tracked con-
tinuous oscillatory SMRs, while for ErrPs, they reli-
ably captured discrete, event-related potentials that
occur in response to specific errors. In addition, the
impedance of AIRTrodes was comparable to that
of research-grade gel electrodes, with no signific-
ant differences in average impedance between the
two (morn: t6 = 1.160, p = 0.290, dz = 0.820; aft:
t6 = 1.517, p = 0.180, dz = 1.072)(supplementary
figure S6). Though the average impedance across sub-
jects was slightly higher in AIRTrode than that of gel
electrodes with a large effect size, it remained below
60 kΩ for all participants and sessions, indicating
good recording quality.

Secondly, AIRTrodes maintained stability in
recording quality over extended periods–at least
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six hours. There were no significant differences
in average impedance over the two sessions, and
medium effect size (morn: 29.800± 3.747 kΩ, aft:
36.133± 12.569 kΩ, t3 = 1.263,p = 0.296, dz =
0.683). This medium effect size was primarily driven
by a single subject whose impedance increased by
20 kΩ, while the impedance variation for the remain-
ing subjects stayed within 5.5 kΩ. This stability was
also demonstrated in that the characteristics of the
ErrPs (figures 5 and 6(a)–(d)) and the ERD pat-
terns of MI (figure 2 and supplementary figure S2)
showed no significant changes over the extended
period. This stability minimizes the need for fre-
quent re-calibrations, which can be cumbersome and
time-consuming in everyday use.

Thirdly and most importantly, the combination
of high-quality recording and prolonged stability
underpins the reliable functionality of AIRTrode in
online BCI operation for extended durations. For
both tasks, online performances in both sessions
were reliable and comparable to that achieved with
research-grade gel electrodes. While our findings
suggest that gel-based systems can maintain satis-
factory BCI performances even after re-application,
the frequent need for re-application poses prac-
tical challenges. It can be time-consuming, uncom-
fortable, and inconvenient for users in real-world
settings.Comparatively to gel electrodes, AIRTrode’s
reduced need for consumables and less frequent
maintenance/re-applications might potentially lead
to lower operational costs including the costs of labor,
which might often be the most significant expense in
clinical and practical settings [68]. Its maintenance-
free nature in continuous recordings may be par-
ticularly advantageous in dynamic environments,
simplifying logistics and reducing activity interrup-
tions. Most importantly, AIRTrode’s stable, non-
displacement design continuously maintains signal
integrity, mitigating risks associated with frequent
electrode adjustments. This study represents the first
demonstration of a hydrogel electrode’s effectiveness
in supporting multi-hour BCI operations, setting a
precedent for its application in long-term scenarios.

The direct implications of our research are sig-
nificant. AIRTrode electrodes may be integrated into
MI-based BCI-controlled devices, such as wheelchairs
and robotic prostheses, and ErrP-based BCI spellers.
These applications, as referenced in prior studies [5, 6,
11], may benefit in terms of practicality from our sys-
tem’s ability to operate reliably over extended periods,
far surpassing typical durations in controlled labor-
atory settings. Furthermore, AIRTrodes hold poten-
tial promise for improving the effectiveness of BCI-
based neuro-rehabilitation. The electrodes’ continu-
ous stability can help BCI users to learn to effect-
ively modulate their SMRs across multiple longitud-
inal training sessions [69–71]. This sustained inter-
action can promote increased motor cortex engage-
ment, enhanced corticospinal excitability [72–76],

stronger muscle activations [73, 77, 78] and improved
BCI performances [70], thereby supporting super-
ior rehabilitation outcomes. Lastly, these electrodes
show potential in BCI-controlled robotic assistants,
as highlighted by the systems or concepts described in
[79] and [80], which can benefit from extended oper-
ational periods.

In addition to BCI applications, the demon-
strated stability and reliability of AIRTrodes may sup-
port their use in long-term, multi-hour EEG stud-
ies, such as sleep monitoring and the diagnosis of
sleep disorders [34, 81]. Furthermore, these elec-
trodes may be potentially suited for multi-day EEG
longitudinal studies that track the progression of
cognitive decline associated with healthy aging [82],
as well as the progression of neurodegenerative dis-
eases and their associated biomarker changes. Such
studies include the monitoring of specific conditions
like Alzheimer’s disease [83, 84], multiple sclerosis
[85], and ataxias [86]. Additionally, this capabil-
ity holds potential promise for not only the long-
term evaluation of therapeutic interventions, such as
in stroke recovery [87], but also aids in the early
detection of patients at risk of neurodegeneration
[84]. Furthermore, AIRTrode’s capability for long-
term, high-quality EEG recordings may hold prom-
ise in enhancing personalized medicine by enabling
continuous monitoring and treatment customization
based on individual patient responses, particularly in
complex cases like stroke recovery, as highlighted by
Fleury et al [88].

Comparative analysis of BCI performances
between AIRTrode and gel electrodes across two ses-
sions, separated by a 6-hour interval, reveals no con-
sistent performance advantage for either electrode
type. In the MI task, while there are slight indications
that the AIRTrode may outperform the gel electrode
in session 2, these differences are not statistically sig-
nificant (P > 0.40 with a small effect size of dz < 0.3)
across all performance metrics. Similarly, in the ErrP
task, AIRTrode shows a slight edge over the gel elec-
trode in session 1 when considering the Kappa metric,
which accounts for both TNR and TPR, but again,
this difference does not reach significance (P > 0.40
with a small effect size of dz < 0.3). These prelimin-
ary observations suggest a potential trend favoring
AIRTrode in online BCI performances; however, to
confirm consistent performance advantages, these
trends would need validation in studies with larger
and more diverse populations.

Despite the novelties, the study has several lim-
itations that should be acknowledged. Due to the
demanding nature of the study and the commit-
ment required, our sample size was small, and coin-
cidentally, only male participants were enrolled des-
pite efforts to recruit female participants. We recog-
nize that this limitation may affect the generaliz-
ability of our findings to a broader population,
including females. Future research should aim to
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include a larger and more diverse sample, incorpor-
ating both male and female participants, to enhance
the generalizability of the results. However, we do
not anticipate significant differences in our results
with female subjects for several reasons. Firstly, the
hydrogel electrodes used in this study have demon-
strated stable performance across both male and
female subjects with various hair characteristics in
pilot recordings [34]. Secondly, a recent comprehens-
ive study involving over 200 subjects found no sig-
nificant differences in neurophysiological character-
istics during operation of MI-based BCIs, similar to
the MI-BCI studied here, suggesting that sex may not
be a predictive factor for MI-BCI performance [89].
While a prior study has indicated potential small dif-
ferences in the amplitude of error-related brain activ-
ities between sexes [90], there is no evidence of sex-
related discrepancies in the operation of ErrP-based
BCIs. Furthermore, our male participants exhibited
a diverse range of hair lengths, textures, and thick-
nesses, resembling those commonly found in the
female population. This diversity included long curly
hair, dense medium-length hair and fine medium-
length hair, providing a valuable range of conditions
for assessing the performance of the novel electrodes.
While we do not expect significant differences in
outcomes with female subjects, further studies are
needed to confirm this with a balanced participant
pool. Furthermore, despite the findings from this
study, future research is needed to confirm its clinical
and practical relevance.Additionally, while our find-
ings indicate that AIRTrode may offer stability and
user convenience, a comprehensive economic analysis
is needed to fully assess its cost-effectiveness in prac-
tical and clinical settings. Future studies should com-
pare the costs of AIRTrode with other electrodes, con-
sidering manufacturing and maintenance expenses,
to evaluate its economic feasibility and potential for
broader adoption. This comparative analysis should
also consider parameters like signal quality to bet-
ter assess AIRTrode’s overall performance. To sup-
port this, we have included a comparison table in
supplementary figure S7, which evaluates AIRTrode
against other novel electrode types based on MI-BCI
performance, ErrP-BCI performance, signal quality,
long-term recording capability and user comfort/skin
irritation. Lastly, future studies should validate the
use of AIRTrode in BCI applications that extend bey-
ond 6 hours, including operations spanning multiple
days.

In conclusion, our findings demonstrate that
hydrogel AIRTrode electrodes provide a reliable and
stable interface for online EEG-based BCI opera-
tions, suitable for both short-term and extended use.
This capability may mark a significant advancement
toward practical, all-day BCI solutions that can be
seamlessly integrated into everyday activities, offering
sustained assistance and enhancing quality of life for
users.
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