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Extracting Recalcitrant Redox Data on Fluorophores to Pair with 
Optical Data for Predicting Small-Molecule, Ionic Isolation Lattices 
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Pamidighantam,a,c,d Krishnan Raghavachari,a Amar H. Flooda* 

Redox and optical data of organic fluorophores are essential for using design rules and properties screening to identify new 

candidate dyes capable of forming optical materials. One such optical material is small-molecule, ionic isolation lattices 

(SMILES), which have properties defined by the optical and electrochemical properties of the fluorophores used. While 

optical data are available and readily extracted, the promise of digital discovery to mine the data and identify new dye 

candidates for making new fluorescent compounds is limited by experimental electrochemical data, which is reported with 

varying quality. We report methods to extract data from 20,000+ literature-reported dyes for generating a library of both 

redox and optical data constituted by 206 dye-solvent entries. Wide heterogeneity in data collection and reporting practices 

predicated use of a workflow involving manual data extraction, expert annotations of data quality and validation. 

Chemometric analysis shows distributions of solvents, electrolytes, and reference electrodes used in electrochemistry and 

the distributions of dye families and molecular weights. Data were extracted and screened to identify fluorophores predicted 

to form fluorescent solids based on SMILES. Screening used three design rules requiring dyes to be cationic, have a redox 

window within –1.9 and +1.5 V (vs ferrocene), and a size less than 2 nm. A set of 47 dyes are compliant with all design rules 

showcasing the potential for using paired electrochemical-optical data in a workflow for designing optical materials.  

1 Introduction 
Optically active materials composed of molecular building blocks2-5 have 
garnered attention for their potential applications in lasers,6 solar energy 
harvesting,7 and fluorescent sensors.8, 9 The delivery of target properties to 
the materials, e.g., light absorption and emission, energy and electron 
transfer, can benefit from well-defined design rules, working models, and 
structure-property relationships.10 This knowledge of the design criteria 
provides a basis for selection of molecular fluorophores to create new 
materials. For this reason, use of large datasets,11-16 cheminformatics,12, 13 and 
machine learning14, 15 approaches involving dyes and their key properties12, 17-

19 can enhance the development of optical materials. 
Small-molecule, ionic isolation lattices (SMILES) are a class of new optical 

materials (Figure 1a), with well-defined design rules (Figure 1b).20 These rules 
can be used to select the set of dyes that impart specific properties (e.g., 
color,21 degree of absorption,22 emission lifetimes,23, 24 brightness3) onto a 
solid-state material. Rule 1 requires the dyes to be cationic. This charged state 
is responsible for directing alternating charge-by-charge packing when mixed 
with the anion-binding cyanostar.3 Rule 2 involves the nesting of the highest 
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) of the dye inside the frontier molecular orbitals of the cyanostar-
anion complex. These orbital energies are approximated by the oxidation and 
reduction potentials and must therefore sit between +1.5 and −1.9 V vs 

Department of Chemistry, Indiana University 

800 E. Kirkwood Avenue, Bloomington, IN 47405, USA. 

Nano-Science Center & Department of Chemistry, University of Copenhagen, 

Universitetsparken 5, 2100 Copenhagen, Denmark 

Center for AI in Science and Engineering (ARTISAN), Georgia Institute of Technology 

1283B CODA Building, 756 W Peachtree St NW, Atlanta, GA 30308, USA. 

Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology 

1283B CODA Building, 756 W Peachtree St NW, Atlanta, GA 30308, USA. 

† These authors contribute equally.  
Electronic Supplementary Information (ESI) available: [details of any supplementary 
information available should be included here]. See DOI: 10.1039/x0xx00000x 

 
 
Fig. 1 (a) SMILES materials are made by mixing cyanostar (left) with 
compliant dyes (blue) to form ordered lattices (middle) that can be 
processed into fluorescent forms (right). (b) The creation of fluorescent 
SMILES materials is governed by three design rules for selecting dyes that 
are: (1) cationic, (2) aligned inside a redox window, and (3) less than 2 
nm in size. (c) The screening process uses the three rules to identify 
SMILES-compliant dyes. 
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Fc/Fc+. This alignment ensures that there is no electron transfer process or 
charge-transfer states21 generated after photoexcitation. A corollary of this 
rule is that the optical gap of the dye must be less than the cyanostar-anion 
complex. Rule 3 requires the dye to be smaller than the ~2 nm diameter of 
the cyanostar-anion complex to allow spatial isolation and exciton decoupling 
of the dyes.23, 25  
A dataset containing cationic dyes that include charge states, redox data, 

optical data, and size would be valuable for screening dyes for use in creating 

SMILES materials (Figure 1c). The dye’s charge and size can be assigned in a 

straightforward way, with pen and paper, if necessary, but the redox and 

optical data need to be determined experimentally or using calibrated 

computational methods. The literature holds a wealth of experimental data 

from decades of research across many fields.26-31 Often, however, the 

literature is too extensive to extract the data by hand. Therefore, an 

automated process for data extraction using natural language processing 

(NLP) is preferred.32-34 Previous work has successfully extracted optical 

data on dyes from the literature, 18, 19 and recent advancements have 

extended this to include electrochemical data from tables. These tools, 

like ChemDataExtractor18, 19 and ChemDataExtractor 2.0,18, 19 help 

address the challenges of parsing and structuring data directly from 

primary sources, especially when dealing with large datasets and 

complex formats. There have been several reports where 

ChemDataExtractor35-39 and similar software40-42 have been used to inform the 

selection of dyes for targeting specific materials properties, such as, use in 

dye-sensitized solar cells.43  

The extraction of optical data is easily automated using NLP methods.18, 19, 37 

Electrochemical data are rarely extracted despite the importance of the 

optical and redox properties for topical areas of research, such as, 

photordedox catalysis.1, 29, 30, 44, 45 Even if the cyclic voltammograms (CVs) are 

provided, figures are currently inaccessible to current NLP methods. 

Electrochemical data is only accessible to these existing NLP methods if it is 

reported in tables or the text with its full experimental context. Collections of 

these data in the related literature have been presented but mostly as tables 

in publications.46-50 Another topical area is redox flow batteries. We found an 

example that outlined data infrastructure, D3TaLES, providing for redox 

potentials to be sourced from experiment and computations.51 Most 

databases of their redox potentials appear to be comprised of computed 

values.26, 52 The rarity of databases of experimental electrochemical 

properties likely stems from several challenges in the variety of the reporting 

practices.53 Unlike optical data, which is recorded on instruments that are 

internally calibrated and require little user modification or interpretation to 

obtain wavelengths of light absorption and emission, electrochemical data 

requires user-defined calibration of the reference electrode and an 

assessment of reversibility (vide infra). This calibration occurs both during 

experimentation and when reporting the data. These metadata, e.g., 

reference electrode, are often reported separately from the electrochemical 

data and are not always complete. This reporting style causes difficulty for 

automated extraction software to put the data in its context, leading to 

incomplete or incorrect data extraction. Recently, a model involving a 

convolutional neural network (CNN) and the large language model (LLM) GPT-

3.554 has been developed to extract tabular oxidation potentials, showing 
promise in overcoming some of these challenges by improving the accuracy 

and completeness of the data extraction process.  However, like NLP models, 

it cannot extract data from figures (such as CV curves) and therefore cannot 

assess the reversibility of the reported potentials. A recent report of carbon 

dioxide electrocatalytic reduction processes55 overcame this issue by 

extracting their data on electrocatalytic reduction from the literature by using 

expert annotations in a semi-manual process. This process required that 

people examine the primary literature, assess and extract quality-controlled 

data. This method resulted in a dataset that could be applied to the discovery 

of new and effective catalysts.  

The need for expert annotations also stems from the reversibility of 
electrochemical processes measured using CV. The CV provides data on 
oxidation and reduction processes that can be classified as either reversible 
or irreversible. While there are well-described methods56 to make this 
classification, these are not always undertaken. There are also a variety of 
ways in which these classifications are reported in the primary literature. This 
limitation requires expert annotations of the data. A recent editorial authored 
by multiple journal editors lays out the case for systematic reporting of 
electrochemical data.53 

Herein, a dataset is generated that contains paired redox and optical data 
on cationic dyes from the literature with the goal of using the data to inform 
the selection of candidate dyes for making fluorescent SMILES materials. A 
three-step approach was ultimately adopted consisting of extraction, 
validation, and analysis (Figure 2). This process resulted in a collection of 
optical and electrochemical data and size. The dataset included 206 entries, 

 

 
Fig. 2 A graphical representation of the three-step workflow involving 
extraction, validation, and analysis that was developed during our study. 

 
Fig. 3 Papers were collected from three sources: Deep4Chem dataset,  the 

photoredox catalysis literature, and a targeted search for other dyes. The 

unique dye-solvent entries contained within the papers were down-

selected to remove those without positively charged dyes and without 

electrochemical data. After removing duplicate entries, 206 unique dye-

solvent entries remained. 
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spanning 13 dye families. The workflow we followed led to a sequential 
buildup of data that is not intended to be representative of the literature but 
instead to examine the literature as a potential source of electrochemical 
data. Significant heterogeneity in the reporting of electrochemical data 
required expert evaluations, annotations of high/medium/low data quality, 
and hand extraction of the data that constituted a substantial bottleneck. 
Cheminformatic analysis of this dataset was performed to identify trends and 
patterns in the data and to provide an understanding of the scope of chemical 
diversity from among the literature we surveyed. The immediate goal, 
described herein, is use of validated electrochemical data and screening 
(Figure 1c) to identify 47 dyes that have the potential to form fluorescent 
SMILES materials. In the future, the dataset of 206 dyes can serve as a 
validated collection against which theoretical methods can be calibrated for 
the calculation of redox properties.  

2 Methods 

Data Collection. The data selection criteria were guided by the 

established design rules for SMILES materials and the need for paired 

optical and redox data. We prioritized entries that met the +1 charge 

requirement and which contained both optical and electrochemical 

data. This systematic filtering ensured that the dataset was tailored to 

the study's objectives, despite the inherent limitations in the availability 

of such paired data in the literature. The data used in the study was 

obtained from the scientific literature (Figure 3) using various means. A 

search of the literature using Web of Science and a topic of “molecular dyes” 

shows over 36,000 publications. The dataset generated in this work 

represents a subset of these papers although not representative of all the 

data in the literature. We found too few examples where optical and redox 

data were paired, such that we had to alter our data extraction process in an 

ad hoc manner. Thus, the final dataset is not necessarily representative of the 

literature, but it provides a starting point for evaluating our workflow and 

identifying the bottlenecks in collecting paired redox and optical data. 
Our exploration of the data available began with a dataset of optical 

properties generated by Deep4Chem using CDE.35 This dataset has 20,000 

entries constituted by unique dye-solvent pairs from ~800 papers in the 

primary literature. These entries were down selected using an automated 

process that parses the SMILES string of the fluorophore to retain only those 

with a net charge of +1. This selection process conforms to the first design 

rule for making SMILES materials. This sorting resulted in approximately 1,700 

dye-solvent entries from fewer than 100 papers and represents a ~10% yield. 

These entries were further down selected by expert assessment of the ~100 

papers to identify those that contained electrochemical data. This reduced 

the dataset by another order of magnitude to ~100 dye-solvent entries. Our 

anecdotal observation is that 10% of publications on dyes report their 

electrochemical data. After applying these two rules, we obtained a ~0.5% 

yield from the original dataset. 

This intermediate dataset (~100 entries) was evaluated and found to 

contain a restricted number of dye classes. To diversify the dataset, we 

undertook various approaches. One approach was to conduct manual 

searches on Web of Science and Sci-findern, using “cyanine” and “rhodamine” 

as search keywords, aiming to identify established classes of cationic 

fluorophores.57, 58 While this approach yielded valuable papers on cyanines, 

the search for rhodamines generated many papers focused on bioimaging, 

thereby limiting the effectiveness of this method with this class of dyes. 

Furthermore, only a limited number of the identified papers contained 

electrochemical data, prompting us to explore a different approach. We 

directed our attention towards triangulenium dyes due to the routine 

collection of both optical and electrochemical data by one of us (BWL).45, 59-63 

Additionally, we targeted papers within the emerging field of photoredox 

catalysis,1, 29, 30, 44, 45 where both optical and redox data are essential for 

 
Fig. 4 Literature examples of (a) high quality (HQ) electrochemical data 

and (b) medium quality (MQ) electrochemical data. HQ data has a clear 

reference electrode and reversible CV “ducks,” while the ducks in MQ 

data are distorted in some manner. Reprinted with permission from ref. 
1. Copyright 2024 American Chemical Society. 

 
Fig 5 A bar plot that displays the frequency of high, medium, and low-

quality electrochemical data. (nreduction = 191, noxidation = 123) 
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examining the reactivity of the photocatalysts. The expected wealth of 

electrochemical data within these paper collections was confirmed, 

significantly enriching our dataset. Following the removal of duplicate entries, 

the final dataset provided a collection of 206 entries from nearly 30 papers.  

The output of this optical data extraction was a dataset that included 25 

entity labels: Tag, SMILES string, DOI, Molecular weight, Name of data entry 

person, Name of compound, Frequency of occurrences of the keyword 

“electroch” in the main text, Reduction potential, Reduction half-wave (h) or 

peak (p), Reduction solvent, Reduction electrolyte, Oxidation  potential, 

Oxidation half-wave (h) or peak (p), Oxidation solvent, Oxidation electrolyte, 

Reference electrode quoted against, Reference electrode measured against, 

Electrochemical method, Temperature, Data location in paper, Expert 

validation of electrochemistry, Reduction potential quality, Oxidation 

potential quality, Size and Notes.  

The CDE was used to extract optical data from a subset of the papers and 

effectively extracted optical data for 118 entries with an F-score of 86.8%,6 

where 100% is perfect precision and recall of data from the papers. We have 

taken steps to adapting CDE for electrochemical data, which have, so far, 

been unsuccessful. Optical data has numerous advantages for extraction 

over electrochemical data. Raw results do not require calibration 

(absorption peak position reported in nanometers are obtained directly from 

the measurement) nor does the data acquired require an assignment of the 

underlying process (absorption spectra are measured using a UV-Vis 

spectrometer while emission spectra are measured on a different 

instrument). Electrochemical data require the voltages to be calibrated to a 

reference electrode, and the reversibility of the electron transfer processes 

need to be assigned. As a result, our findings suggest that electrochemical 

data do not reach the same precision or recall as optical data extraction. For 

instance, identification of the reference electrode and accurately identifying 

if the redox process is reversible or not. Thus, even a modified NLP extraction 

process fails to reach the levels of precision and recall required to produce a 

usable dataset. 

The electrochemical data and metadata for the 206 entries in the dataset 

were manually extracted from the papers. Expert annotations (vide infra) 

were used to classify the data as high, medium, or low quality.  

To ensure the accuracy of the data extraction, a validation process was 

enacted in which data extracted by one member of the team was reviewed 

and verified by another. Validation identified errors in less than five percent 

of the manually extracted data. The output of this electrochemical data 

collection campaign was a dataset that included ten entity labels for redox 

data: potential, half wave or peak position, solvent, electrolyte, quality (x5) 

for both oxidation and reduction (x2).  

A procedure to estimate the size of the dyes was implemented using the 

mol-ellipsize64 Python package. This package fits an ellipsoid to each 

 
Fig. 7 Bar charts showing the (a) dye family distribution and (b) the 

distribution of redox pairs in each dye family, presented in both 

numerical and percentage terms.  

 

 

 
Fig. 6 A selection of a representative dye from each of the 13 dye families 
explored in this report. With the dyes is the molecular weight and the 
number of heavy (i.e., non-hydrogen) atoms.   
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conformer and calculates its diameter. The size of each dye is obtained by 

the mean ellipsoid diameter of five conformers generated using the RDKit 

package.65 

When each of the unique 206 dye-solvent pairs are combined with the 

12 optical and 10 entity labels, a maximum of 4,796 data points are included 

in the final dataset.  

Quality Validation. Expert annotations were used to assess the quality of 

the electrochemical data. The entries were categorized based on the 

assessment of the electrochemical experiments (Figure 4). This quality 

assessment sorts the CV data and associated metadata into high, medium, 

and low quality. These assessments are made based on the reversibility of the 

CV curve and the availability of metadata that places the curve in its 

experimental context. Ensuring data quality is crucial, as it directly 

impacts the confidence in subsequent analyses and the potential for 

these data to be used in calibrating computational models. High quality 

(HQ) data were identified based on two criteria: (1) The reference electrode 

associated with the data is clearly reported, and (2) the voltammograms 

conform to a reversible electrochemical process. The latter was assessed 

using various accepted methods,56 i.e., the CVs display a well-defined and 

reversible pair of redox waves, colloquially referred to as “clean ducks”. This 

criterion also benefits future use of these data for calibrating the redox 

potentials calculated using quantum chemistry methods. For HQ data, half-

wave potentials (Figure 4a) were reported in the dataset. 
Data of medium quality (MQ) possess a well-defined reference electrode 

and a CV indicative of irreversible electron transfer (Figure 4b). For CVs that 

display irreversible redox processes (e.g., imperfect “ducks”), peak positions 

were reported. These peaks do not accurately reflect the reversible half-wave 

potentials.66, 67 MQ data will still be analyzed but are understood to provide 

less accurate estimates of the formal reduction and oxidation potentials.  

In instances where there was no clear description of the reference 

electrode, voltammograms were not available, or curve shapes were 

imperfect, the electrochemical data were defined as low quality (LQ). 

Additionally, there were instances where the reduction potential of one 

compound was classified as HQ while the oxidation potential was classified as 

MQ. 

Out of a total of 302 electrochemical potentials 107, 76 and 131 were 

classified as HQ, MQ and LQ, respectively. Within the subset of 116 oxidation 

and 186 reduction potentials, 31 and 76 were classified as HQ, 36 and 40 as 

MQ, and 56 and 75 as LQ (Figure 5). 

Post processing. The manually extracted data undergoes a cleansing 

process to improve accuracy. The SMILES strings of all entries were converted 

into canonical SMILES strings using the cheminformatics toolkit RDKit. These 

canonical SMILES strings, along with the reference column containing DOIs, 

are examined for any instances of duplication. The duplicated entries serve as 

a convenient sample corpus for accuracy validation. In total, 28 duplicates 

were identified in this process. Any discrepancies found during this review of 

the duplicates are corrected using original papers. After addressing identified 

discrepancies, redundant records are removed from the dataset. Violin plots 

of the electrochemical properties are generated. Five outliers were identified 

by having unphysical values. These data were corrected. 

3 Results 
An analysis of data on dye class, molecular weights, sizes, aromaticity, optical 

properties, and electrochemical properties is undertaken as a basis to inform 

SMILES design rules. An analysis of distributions of the dye families (Figure 6) 

reveals that this dataset consists of 13 categories of cationic dyes, with 

acridinium and cyanine dyes dominating the collection (Figure 7a). The 

prevalence of any one family does not guarantee availability of both 

reduction and oxidation potentials. We identify instances where both 

reduction and oxidation potentials are present for a specific dye-solvent 

 
Fig. 8 Histogram representing the distribution of molecular weights for 

all the dyes in the dataset. 

 
Fig. 9 Bar chart which represents distribution in the number of rings in 

an entry determined by RDKit’s smallest set of smallest rings (SSSR). 

 
Fig. 10 Bar chart representing the solvents used to collect electrochemical 

(reduction in red, oxidation in blue) and optical (yellow) data of high and 

medium quality. (nreduction = 198, noxidation = 94, noptical = 135) 
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system, which we term a “redox pair” (Figure 7b). In this case, while 

acridinium dyes are present in large number, only a few are redox pairs. In 

this dataset, there are a total of 75 dyes that have redox pairs among the 206 

entries.  
Most of the dyes (79.4%) studied have a molecular weight between 300 

and 500 g/mol (Figure 8). Only a few had a mass of over 600 g/mol including 

highly functionalized cyanine dyes. The optical gap and electronic properties 

have been demonstrated to correlate well with the number of rings for 

conjugated dye systems, such as, polycyclic aromatic hydrocarbons.68-71 An 

analysis of the number of rings (Figure 9) shows that 4, 5, or 6, were most 

common with rhodamine and triangulenium families being in this range. 

These analyses show that the data collected and reported in this work 

represent a broad chemical diversity within the 13 dye families. These data 

are also known to be correlated to optical and electrochemical properties of 

organic fluorophores,72 making them valuable to the practical use of this data 

in future work. In addition, the correlation between optical and 

electrochemical data provides an empirical basis for using the optical data to 

predict some missing electrochemical data.” 

To better understand the methods of data collection used in the 

literature, an analysis of metadata was performed. Only electrochemical data 

of high and medium quality was analyzed. Thus, we only include redox 

potentials that have clearly defined reference electrodes, and may either be 

electrochemically reversible (high quality, HQ) or irreversible (medium 

quality, MQ). Data that was poorly referenced or for which the CV data had 

non-ideal behavior (low quality, LQ) was excluded. See Methods section for 

more details on classification of quality.  

The metadata of a reduced HQ and MQ dataset of 116 reductions and 67 

oxidations from 175 and 123 total entries, respectively, was analyzed. The 

solvent in which the sample is dissolved influences both optical and 

electrochemical results. The majority of the data was collected in acetonitrile 

(Figure 10). This observation is true for all measurements we analyzed 

(reduction, oxidation, optical) and most likely originates from this solvent 

having a wide window of electrochemical stability, also offering reasonable 

polarity to dissolve salts like the cationic dyes being analyzed here. Other 

common solvents include methanol, dichloromethane, and 

dimethylformamide. A few other solvents are used sparingly with only one or 

two reported examples of their use in the literature sources we surveyed. 

The electrolytes and reference electrodes used and reported in the data 

were analyzed. TBAPF6 and TBAClO4 are the most common electrolytes for 

measuring the reduction potential of molecular dyes (Figure 11a). To measure 

the oxidation potential, TBABF4 is the most common. LiCl was also used but 

was the least common. During the analysis of the reference electrodes used 

in this dataset, it was observed that some authors opted to use one reference 

electrode during the electrochemical measurement, while reporting the 

potentials relative to a different reference electrode (Figure 11b). It is also 

common73 to add ferrocene to the solution being analyzed as an internal 

standard, and then to adjust the reference electrode to another one when 

reporting the data in the literature. Comparison of data to ferrocene ensures 

the accuracy of the peak positions collected from the CV experiment. Thus, 

the data reported below is referenced to ferrocene. 

One additional problem with electrochemical data is that only one of the 

reduction and oxidation potentials are reported when both are needed for 

 
Fig. 11 (a) Bar chart of the electrolyte used to measure reduction potentials 

(red) and oxidation potentials (blue). (nreduction = 178, noxidation = 66) (b) Bar 

chart representing the reference electrode against which electrochemical 

data was reported (green) and measured (purple). (nreported = 90, nmeasured = 

145) (High and medium quality data included) 

 
 

Fig. 12 Plots of electrochemical window between oxidation and reduction 

versus (a,d) absorption maxima, (b,e) emission maxima and (c,f) the 

estimates for the 𝐸0,0
‡  defined as the numerical average of the absorption 

and emission maxima. The second column is specific to triangulenium, 

which is a prevalent dye family in the dataset.  
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SMILES compliance (vide infra). Fortunately, the more prevalent optical data 

can be used together with one of the redox potentials to estimate the location 

of the missing potential. For this purpose, we rely on the observation that the 

optical gap, Eop (eV), is often seen to correlate74-80 with the potential 

difference, ∆Eredox (V) between the first oxidation, Eox, and reduction, Ered, 

processes (Eq. 1):  

 𝐸𝑜𝑝 ≈  Δ𝐸𝑟𝑒𝑑𝑜𝑥 =  𝐸𝑜𝑥 −  𝐸𝑟𝑒𝑑 (Eq. 1) 

The redox gap can be approximated by utilizing optical experimental data 

(Figure 12). This relationship also provides a means to extend the data, which 

 
Fig. 13 Violin plots showing the distributions of (a) the redox potentials (nreduction = 116, noxidation = 67) and (b) the electrochemical windows of the dyes collected 

in the dataset. The electrochemical gap of cyanostar is shown in green. (n = 92) The data plotted is of high, medium, and low-quality experimental data. The 

lowest datum in the acridinium and triangulenium violin plots are at 0.9 and 0.8 V, respectively. 
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can be used to estimate missing redox potentials (vide infra). Hence, our dual 

data extraction method addresses the challenge of incomplete data reporting 

and enhances our ability to screen for SMILES-compliant materials efficiently. 

These data include absorption and emission maxima, both of which can be 

reliably extracted from the literature. In order to examine these correlations, 

we need a collection of dyes for which we have the redox gap (Eox and Ered), 

as well as the optical gaps approximated by EAbs and EEm, and by the E0,0 (see 

next).  

The E0,0 value is frequently used to estimate the adiabatic energy 

difference between ground and excited states of the dyes.81 The literature 

and thus our dataset does not explicitly include E0,0. As a consequence, we 

generate estimates, 𝐸0,0
‡ , from the numerical mean of the absorption and 

emission energies (Eq. 2): 

 𝐸0,0
‡  ≙ 

𝐸𝐴𝑏𝑠−𝐸𝐸𝑚

2
 (Eq. 2) 

This relationship (Eq. 2) assumes that the reported absorption band 

corresponds to the S0-S1 transition.  

Our data correlating redox window (∆Eredox) to absorption maxima (Figure 

12a) only include 40 data points that include both optical data and paired 

redox data. From the original dataset, 155 of the 206 dyes have absorption 

maxima and 75 of the 206 dyes have both EOx and ERed (Figure 7b). The same 

limitation arises with the emission maxima and 𝐸0,0
‡  for which we have 31 

(Figure 12b) and 26 (Figure 12c) datapoints, respectively, limiting the total 

number of entries to analyze. 

We see that the correlations are poor. However, we note that the data is 

dominated by two dye families, the trianguleniums and rhodamines totaling 

23 out of the 40 examples. These two families account for the two regions in 

the plots (see Figure 12c). 

For this reason, we examined these correlations by plotting the data 

based on these two dye families (Figure 12d and Figure S1a, n = 14 and 9, 

respectively), and observe higher correlations (R2 = 0.556 and 0.773). Similar 

trends can be found in the literature correlating the electrochemical  and 

optical gap for polyquinolines and polyanthrazolines.82 This finding suggests 

that higher correlations can be obtained when investigating similar 

classes/families, aka, homologous series.  

 The poor correlation is also likely due to slight variations in data 

collection methods and techniques across different laboratories. The same 

improvements (0.657 ≤ R2 ≤ 0.784, see Figure S2c-e) can be seen when 

 

 
Fig. 14 Three curves representing for the probability of forming 

emissive SMILES materials based on (a) Boltzmann Distribution, (b) 

linear decrease in probability within ± 1 eV, and (c) exact alignment with 

the redox window of a cyanostar anion complex.  

 

 
Fig. 16 The reduction (blue) and oxidation (green) potentials of cyanine 

dyes plotted from lowest to highest oxidation potential. Any reduction 

potentials that were obtained by extending the data using Eq. 3 or 4 are 

denoted as open circles. Dyes that do not follow Rule 3 are marked with a 

single X. Dyes that do not follow Rules 2 and 3 are marked with a double X. 

 
Fig. 17 Solid and open circles indicate literature and extended data, 

respectively. 

 

 
Fig. 15 By fitting the molecular dyes to an ellipse, an approximation of 

their size can be made. This size approximation can also be performed 

on cyanostar (orange) (n = 170). 
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examining dyes from within a single paper (containing more than four dyes, 

n > 4), for 3 of the 4 paper specific plots. For one of the papers (Figure S2b), 

the R2 = 0.040, however this is due to opposing trends in the collected data. 

Nevertheless, these findings suggest that electrochemical and absorption 

data are dependent on the dye family and experimental conditions, which 

may not be consistent across papers.  

We observe the same trends for correlations of the redox gap to the 

emission maxima (Figure 12b, R2 = 0.329, n = 31) and 𝐸0,0
‡  values (Figure 12c, 

R2 = 0.065, n = 26). We observe the plots to be bimodal and that the dye-

specific correlations separate these into distinct datasets showing clear 

improvements, 0.511 ≤ R2 ≤ 0.912 (Figure 12e and Figure S1b, n = 14 and 8), 

as do paper specific correlations, 0.861 ≤ R2 ≤ 0.926 (Figure S3b-d) and 0.800 

≤ R2 ≤ 0.893 (Figure S4b-d). These relations between optical and redox gaps 

allow us to estimate values of missing redox potentials. 

Extending the Data. A proportion of the data (133 of 206) included just one 

of the two redox potentials. For example, acridiniums typically have only a 

reduction or oxidation potential reported due to their use in photoredox 

catalysis29, 30, 50, 83 such that only one of these potentials is important. The 

dataset can be extended84, 85 by various means to add these missing entries.  
In order to extend the data for use in data mining for SMILES compliance, 

we use the correlation between the optical data and the gap (Equation 1) to 

estimate the missing data, either the oxidation or reduction potential. For this 

purpose, we either used the estimated 𝐸0,0
‡  when both absorption and 

emission maxima are available or the absorption maximum, EAbs (eV) in its 

place, and following equations:  

 𝐸𝑟𝑒𝑑
‡ = 𝐸𝑜𝑥(𝑉) − 𝐸0,0 

‡ (𝑒𝑉) (Eq. 3) 

 𝐸𝑜𝑥
‡ = 𝐸𝑟𝑒𝑑(𝑉) − 𝐸0,0 

‡ (𝑒𝑉) (Eq. 4) 

4 Discussion 

Analysis of Electrochemical Data. An analysis of the electrochemical data 

was performed to identify candidate dyes for forming SMILES materials. All 

the dyes in consideration are cationic and fulfill Rule 1 (Figure 1b). The next 

assessment was to fulfill Rule 2 by identifying those dyes with both reduction 

and oxidation potentials sitting inside the redox window of the cyanostar 

complex.  

A visualization approach to assess compliance can be conducted using 

violin plots (Figure 13a) where the oxidation and reduction potentials of all 

dyes in a family with blue and red violins respectively. These plots were 

constructed and compared to the redox potentials of the cyanostar-anion 

complex. They provide valuable information on the types of dyes that are 

expected to make emissive SMILES materials based on Rules 1 and 2. For 

example, both the reduction and oxidation potentials for many triangulenium 

dyes are within the bounds defined by the redox window of the cyanostar-

anion complex (green). Consequently, triangulenium dyes are good 

candidates for SMILES materials, which has been demonstrated in previous 

reports.3 

Violin plots of the gap (Eq. 1) based on the redox window (Figure 13b) 

show that most of the dyes in the dataset are predicted to have an optical 

 
Fig. 18 All 47 unique SMILES-compliant dyes from the 13 dye families.  
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transition of lower energy than cyanostar’s. Thus, the width of these windows 

and alignment relative to the redox properties of the cyanostar complex could 

be tuned by functional group modulation. The data suggest that some 

coumarin dyes may be suitable for use in SMILES materials, however, the 

∆Eredox is quite wide, and it approaches the width of cyanostar’s redox window 

(green). Thus, any fine-tuning of the redox window of a coumarin to fit within 

cyanostar’s needs to account for these small tolerances closer to the edges of 

the window.  

The edges of the window are subject to uncertainties. There exists 

experimental error (±0.1 V) arising from the uncertainties in the 

measurements. If computational chemistry is used to estimate redox 

properties in the future, chemical accuracy often offers a larger error (±0.25 

eV). Furthermore, while the redox window is set by the electrochemical 

potentials, the possibility for “uphill” electron transfer can also occur if there 

are charge-transfer (CT) products in which Coulombic interactions in the 

proximal D+A– pair provide thermodynamic stability.86  

Screening of the Data for SMILES Compliance. The original and 

extended dataset set of data provide the redox potentials can be combined 

with estimates of dye sizes to identify the subset of dyes that are compliant 

with the SMILES design rules. We can consider the compliance with the 

second design rule using probability curves (Figure 14). Each curve represents 

an approximation of this probability. The first (Figure 14a) includes the 

possibility of Boltzmann weighted distributions of electron transfer products 

and experimental error in the measurements. The second (Figure 14b) 

approximates this distribution with a simple linear form. The simplest (Figure 

14c) is a hard cut-off at the edge of the redox window and is the criterion we 

used during screening.  

Compliance with Rule 3 was determined using an estimation of molecular 

size by mol-ellipsize (Figure 15).64 These data can be compared to the size of 

cyanostar (2 nm diameter). This analysis was performed on each of the 170 

unique dyes in the dataset, revealing 120 dyes that are smaller than 

cyanostar. These 120 dyes adhere to Rule 3. This list can be compared to the 

list of redox-aligned dyes to produce a collection of dyes that adhere to all 

three design rules. 

Testing Dyes for SMILES Compliance. Cyanines make up a large 

percentage (28.4%) of the dataset and typically have both reduction and 

oxidation data reported. By plotting the redox window of cyanine dyes 

against the redox window of the cyanostar-anion complex, we see that 34 of 

the 48 cyanine dyes fit the electrochemical design rule (Figure 16) as defined 

by the simplest hard cut off.  

Across all the 206 dye-solvent pairs, we found a total of 57 pairs (Figure 

17) that were compliant with all design rules leading to 47 (Figure 18) unique 

dyes. The distribution of SMILES-compliant dyes (Figure 19) shows the 

prevalence of three dye families constituted byrhodamine-like dyes (40%), 

cyanines (34%), and trianguleniums (15%) totaling 89%.  Focusing on Rule 2, 

183 of the 206 dyes are compliant and fit inside the redox window but many 

are too large in size which leads to the decrease in the final number. 

Considering Rule 3 alone, we find 120 dyes are of the right size to serve as 

building blocks for making SMILES. When taking Rule 2 into account this 

number again drops to 57 dye-solvent pairs and unique dyes. 

Looking to SMILES Compliance and Beyond. The dataset shared here 

provides a set of paired optical and electrochemical data for a variety of 

fluorophores that can be used in various ways to advance the science, 

engineering, and digital discovery of SMILES materials. Given the paucity of 

electrochemical studies on fluorophores, this validated dataset can serve as 

a test set for calculating redox potentials using quantum chemical methods. 

These calculated potentials can then be used to estimate electrochemical 

properties in future literature extraction campaigns to augment any of the 

missing redox data. In addition, the workflow defined here may also be 

utilized or modified toward other goals. For example, the production of redox 

flow batteries26, 27 requires the selection of molecules with specific oxidation 

and reduction potentials as well as high reversibility, which is constituted by 

the dyes tagged with the HQ signifier. Another use is for selection of 

photoredox catalysts (redox potentials, optical properties).1, 29, 45  

5 Conclusions 
A data extraction workflow has been used to generate a library of 

206 dye-solvent combinations bearing both optical and electrochemical 
data from which properties screening identified 47 candidates that are 
predicted to form emissive SMILES materials. In these concluding 
remarks, we address recommendations for electrochemical data 
reporting, a summary of the key cheminformatic findings, and provide 
insights as to how these data can be used for improving materials design 
workflows. 

The extraction of electrochemical data from the literature relied on 
expert annotations, which restricted our workflow. This method was 
used to circumvent a series of serious limitations to extraction that arise 
because of the nonuniform reporting of electrochemical data. The 
workflow used here can be improved upon by relying on data that has 
been reported in a more uniform format. For example, we recommend 
following the advice of American Chemical Society editors53 to use 
systematic procedures for reporting electrochemical data and to 
promote use of natural language processing for extracting these 
properties. Submission of the data to appropriate databases is also 
recommended. Such databases include D3TaLES51 for experimental 
electrochemical data and RedDB87 for computational electrochemical 
data. Recent papers19, 39 have highlighted the importance of domain-
specific corpuses for data extraction, thus the creation of a molecule-
centric schema for organizing the data collected herein represents the 
next logical step in this work. These remedies would allow the data to 
be presented in a way that is easily managed by automated tools such 
as web scraping and NLP. In addition to data extraction and validation, 
we used a method for estimating missing redox potentials from optical 
data.  

The library of 206 dyes represented 13 different dye families. Our 
analyses show that the majority of cationic dyes present in the literature 
we sampled are acridiniums, followed closely by cyanines. We note a 
variety in the experimental conditions used to collect electrochemical 
data with some commonalities. The majority of the data extracted came 
from experiments run in acetonitrile, likely due to its wide solvent 
window and reasonable polarity.  

The set of 47 candidate dyes include six dye families that have not 
previously been utilized in SMILES materials showcasing the use of 
mining methods to enable digital discovery. In future screening 

 
Fig. 19 Dye family distribution of 47 SMILES-compliant dyes. 
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campaigns, and particularly when using larger datasets, the order of the 
rules can be changed to more efficiently identify SMILES dye candidates. 
Finally, the dataset can be utilized by members of the scientific 
community to identify candidates for a variety of applications beyond 
optical materials including photoredox catalysts and redox flow 
batteries. With input from others, this dataset can be expanded to be 
more representative of the dyes published across the literature.  

6 Data Availability 

The data collected for this analysis is available at Figshare 

(https://doi.org/10.6084/m9.figshare.25852909.v1). The deposited data 

contains DOI information as well as all entity labels described and analysed 

above. 
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