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/X0 X Redox and optical data of organic fluorophores are essential for using design rules and properties screening to identify new

candidate dyes capable of forming optical materials. One such optical material is small-molecule, ionic isolation lattices
(SMILES), which have properties defined by the optical and electrochemical properties of the fluorophores used. While
optical data are available and readily extracted, the promise of digital discovery to mine the data and identify new dye
candidates for making new fluorescent compounds is limited by experimental electrochemical data, which is reported with
varying quality. We report methods to extract data from 20,000+ literature-reported dyes for generating a library of both
redox and optical data constituted by 206 dye-solvent entries. Wide heterogeneity in data collection and reporting practices
predicated use of a workflow involving manual data extraction, expert annotations of data quality and validation.
Chemometric analysis shows distributions of solvents, electrolytes, and reference electrodes used in electrochemistry and
the distributions of dye families and molecular weights. Data were extracted and screened to identify fluorophores predicted
to form fluorescent solids based on SMILES. Screening used three design rules requiring dyes to be cationic, have a redox
window within —1.9 and +1.5 V (vs ferrocene), and a size less than 2 nm. A set of 47 dyes are compliant with all design rules
showcasing the potential for using paired electrochemical-optical data in a workflow for designing optical materials.

1 Introduction

Optically active materials composed of molecular building blocks®® have
garnered attention for their potential applications in lasers,® solar energy
harvesting,” and fluorescent sensors.® ® The delivery of target properties to
the materials, e.g., light absorption and emission, energy and electron
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transfer, can benefit from well-defined design rules, working models, and Cyanostar Perchlorate SMILES 3D Print
structure-property relationships.’® This knowledge of the design criteria
provides a basis for selection of molecular fluorophores to create new
materials. For this reason, use of large datasets,'**® cheminformatics,*>** and Rule 1
machine learning* > approaches involving dyes and their key properties* - ®) Cationic Dyes © 1+
9 can enhance the development of optical materials. y L 2+ Charge
Small-molecule, ionic isolation lattices (SMILES) are a class of new optical [ = ) g - g Filter
materials (Figure 1a), with well-defined design rules (Figure 1b).%° These rules - ~
can be used to select the set of dyes that impart specific properties (e.g.,
color,?* degree of absorption,? emission lifetimes,?* 2 brightness®) onto a  — llF & 1I| Voltage
solid-state material. Rule 1 requires the dyes to be cationic. This charged state o Filter
is responsible for directing alternating charge-by-charge packing when mixed Design -1.9V 1.5V
with the anion-binding cyanostar.® Rule 2 involves the nesting of the highest Rules L
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
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Fig. 1 (a) SMILES materials are made by mixing cyanostar (left) with
compliant dyes (blue) to form ordered lattices (middle) that can be
processed into fluorescent forms (right). (b) The creation of fluorescent
SMILES materials is governed by three design rules for selecting dyes that
are: (1) cationic, (2) aligned inside a redox window, and (3) less than 2
nm in size. (c) The screening process uses the three rules to identify
SMILES-compliant dyes.

(LUMO) of the dye inside the frontier molecular orbitals of the cyanostar-

anion complex. These orbital energies are approximated by the oxidation and

reduction potentials and must therefore sit between +1.5 and -1.9 V vs

Please do not adjust margins




Please do not adjust margins

Journal Name

Extraction Validation Analysis

Fig. 2 A graphical representation of the three-step workflow involving
extraction, validation, and analysis that was developed during our study.

Fc/Fc*. This alignment ensures that there is no electron transfer process or
charge-transfer states?! generated after photoexcitation. A corollary of this
rule is that the optical gap of the dye must be less than the cyanostar-anion
complex. Rule 3 requires the dye to be smaller than the ~2 nm diameter of
the cyanostar-anion complex to allow spatial isolation and exciton decoupling
of the dyes.?>?

A dataset containing cationic dyes that include charge states, redox data,
optical data, and size would be valuable for screening dyes for use in creating
SMILES materials (Figure 1c). The dye’s charge and size can be assigned in a
straightforward way, with pen and paper, if necessary, but the redox and
optical data need to be determined experimentally or using calibrated
computational methods. The literature holds a wealth of experimental data
from decades of research across many fields.?*3! Often, however, the
literature is too extensive to extract the data by hand. Therefore, an
automated process for data extraction using natural language processing
(NLP) is preferred.3>** Previous work has successfully extracted optical
data on dyes from the literature, '® '° and recent advancements have
extended this to include electrochemical data from tables. These tools,
like ChembDataExtractor'® ' and ChemDataExtractor 2.0,'® ® help
address the challenges of parsing and structuring data directly from
primary sources, especially when dealing with large datasets and
complex formats. There have been several reports where
ChemDataExtractor®>*° and similar software*®“2 have been used to inform the
selection of dyes for targeting specific materials properties, such as, use in
dye-sensitized solar cells.*

The extraction of optical data is easily automated using NLP methods.*® %37
Electrochemical data are rarely extracted despite the importance of the
optical and redox properties for topical areas of research, such as,
photordedox catalysis.' 2% 3% %45 Even if the cyclic voltammograms (CVs) are
provided, figures are currently inaccessible to current NLP methods.
Electrochemical data is only accessible to these existing NLP methods if it is
reported in tables or the text with its full experimental context. Collections of
these data in the related literature have been presented but mostly as tables
in publications.***° Another topical area is redox flow batteries. We found an
example that outlined data infrastructure, D°TaLES, providing for redox
potentials to be sourced from experiment and computations.”® Most
databases of their redox potentials appear to be comprised of computed
values.?® 2 The rarity of databases of experimental electrochemical
properties likely stems from several challenges in the variety of the reporting
practices.’® Unlike optical data, which is recorded on instruments that are
internally calibrated and require little user modification or interpretation to
obtain wavelengths of light absorption and emission, electrochemical data
requires user-defined calibration of the reference electrode and an
assessment of reversibility (vide infra). This calibration occurs both during
experimentation and when reporting the data. These metadata, e.g.,
reference electrode, are often reported separately from the electrochemical
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data and are not always complete. This reporting style causes difficulty for
automated extraction software to put the data in its context, leading to
incomplete or incorrect data extraction. Recently, a model involving a
convolutional neural network (CNN) and the large language model (LLM) GPT-
3.5° has been developed to extract tabular oxidation potentials, showing
promise in overcoming some of these challenges by improving the accuracy
and completeness of the data extraction process. However, like NLP models,
it cannot extract data from figures (such as CV curves) and therefore cannot
assess the reversibility of the reported potentials. A recent report of carbon
dioxide electrocatalytic reduction processes®® overcame this issue by
extracting their data on electrocatalytic reduction from the literature by using
expert annotations in a semi-manual process. This process required that
people examine the primary literature, assess and extract quality-controlled
data. This method resulted in a dataset that could be applied to the discovery
of new and effective catalysts.

The need for expert annotations also stems from the reversibility of
electrochemical processes measured using CV. The CV provides data on
oxidation and reduction processes that can be classified as either reversible
or irreversible. While there are well-described methods®® to make this
classification, these are not always undertaken. There are also a variety of
ways in which these classifications are reported in the primary literature. This
limitation requires expert annotations of the data. A recent editorial authored
by multiple journal editors lays out the case for systematic reporting of
electrochemical data.>

Herein, a dataset is generated that contains paired redox and optical data
on cationic dyes from the literature with the goal of using the data to inform
the selection of candidate dyes for making fluorescent SMILES materials. A
three-step approach was ultimately adopted consisting of extraction,
validation, and analysis (Figure 2). This process resulted in a collection of
optical and electrochemical data and size. The dataset included 206 entries,

Photoredox Targeted
DeepdChem Catalysis Search for
Literature Other Dyes

20,000 1,000 300
Entries Entries Entries

@‘.

S —
Charges 2,000 dye-solv
Remove w W
Duplicates
o o)
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206 Dye-Solvent Entries

Fig. 3 Papers were collected from three sources: Deep4Chem dataset, the
photoredox catalysis literature, and a targeted search for other dyes. The
unique dye-solvent entries contained within the papers were down-
selected to remove those without positively charged dyes and without
electrochemical data. After removing duplicate entries, 206 unique dye-
solvent entries remained.
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Fig. 4 Literature examples of (a) high quality (HQ) electrochemical data
and (b) medium quality (MQ) electrochemical data. HQ data has a clear
reference electrode and reversible CV “ducks,” while the ducks in MQ
data are distorted in some manner. Reprinted with permission from ref.
!, Copyright 2024 American Chemical Society.

spanning 13 dye families. The workflow we followed led to a sequential
buildup of data that is not intended to be representative of the literature but
instead to examine the literature as a potential source of electrochemical
data. Significant heterogeneity in the reporting of electrochemical data
required expert evaluations, annotations of high/medium/low data quality,
and hand extraction of the data that constituted a substantial bottleneck.
Cheminformatic analysis of this dataset was performed to identify trends and
patterns in the data and to provide an understanding of the scope of chemical
diversity from among the literature we surveyed. The immediate goal,
described herein, is use of validated electrochemical data and screening
(Figure 1c) to identify 47 dyes that have the potential to form fluorescent
SMILES materials. In the future, the dataset of 206 dyes can serve as a
validated collection against which theoretical methods can be calibrated for
the calculation of redox properties.

2 Methods

Data Collection. The data selection criteria were guided by the
established design rules for SMILES materials and the need for paired
optical and redox data. We prioritized entries that met the +1 charge
requirement and which contained both optical and electrochemical
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Fig 5 A bar plot that displays the frequency of high, medium, and low-
quality electrochemical data. (Nreduction = 191, Noxidation = 123)

data. This systematic filtering ensured that the dataset was tailored to
the study's objectives, despite the inherent limitations in the availability
of such paired data in the literature. The data used in the study was
obtained from the scientific literature (Figure 3) using various means. A
search of the literature using Web of Science and a topic of “molecular dyes”
shows over 36,000 publications. The dataset generated in this work
represents a subset of these papers although not representative of all the
data in the literature. We found too few examples where optical and redox
data were paired, such that we had to alter our data extraction process in an
ad hoc manner. Thus, the final dataset is not necessarily representative of the
literature, but it provides a starting point for evaluating our workflow and
identifying the bottlenecks in collecting paired redox and optical data.

Our exploration of the data available began with a dataset of optical
properties generated by Deep4Chem using CDE.* This dataset has 20,000
entries constituted by unique dye-solvent pairs from ~800 papers in the
primary literature. These entries were down selected using an automated
process that parses the SMILES string of the fluorophore to retain only those
with a net charge of +1. This selection process conforms to the first design
rule for making SMILES materials. This sorting resulted in approximately 1,700
dye-solvent entries from fewer than 100 papers and represents a ~10% yield.
These entries were further down selected by expert assessment of the ~100
papers to identify those that contained electrochemical data. This reduced
the dataset by another order of magnitude to ~100 dye-solvent entries. Our
anecdotal observation is that 10% of publications on dyes report their
electrochemical data. After applying these two rules, we obtained a ~0.5%
yield from the original dataset.

This intermediate dataset (~100 entries) was evaluated and found to
contain a restricted number of dye classes. To diversify the dataset, we
undertook various approaches. One approach was to conduct manual
searches on Web of Science and Sci-finder", using “cyanine” and “rhodamine”
as search keywords, aiming to identify established classes of cationic
fluorophores.>” 58 While this approach yielded valuable papers on cyanines,
the search for rhodamines generated many papers focused on bioimaging,
thereby limiting the effectiveness of this method with this class of dyes.
Furthermore, only a limited number of the identified papers contained
electrochemical data, prompting us to explore a different approach. We
directed our attention towards triangulenium dyes due to the routine
collection of both optical and electrochemical data by one of us (BWL).* %3
Additionally, we targeted papers within the emerging field of photoredox
catalysis, 2% 3% 4 45 \here both optical and redox data are essential for
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Fig. 6 A selection of a representative dye from each of the 13 dye families
explored in this report. With the dyes is the molecular weight and the
number of heavy (i.e., non-hydrogen) atoms.

examining the reactivity of the photocatalysts. The expected wealth of
electrochemical data within these paper collections was confirmed,
significantly enriching our dataset. Following the removal of duplicate entries,
the final dataset provided a collection of 206 entries from nearly 30 papers.
The output of this optical data extraction was a dataset that included 25
entity labels: Tag, SMILES string, DOI, Molecular weight, Name of data entry
person, Name of compound, Frequency of occurrences of the keyword
“electroch” in the main text, Reduction potential, Reduction half-wave (h) or
potential,
Oxidation half-wave (h) or peak (p), Oxidation solvent, Oxidation electrolyte,

peak (p), Reduction solvent, Reduction electrolyte, Oxidation

Reference electrode quoted against, Reference electrode measured against,
Electrochemical method, Temperature, Data location in paper, Expert
validation of electrochemistry, Reduction potential quality, Oxidation
potential quality, Size and Notes.

The CDE was used to extract optical data from a subset of the papers and
effectively extracted optical data for 118 entries with an F-score of 86.8%,°
where 100% is perfect precision and recall of data from the papers. We have

taken steps to adapting CDE for electrochemical data, which have, so far,
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Fig. 7 Bar charts showing the (a) dye family distribution and (b) the
distribution of redox pairs in each dye family, presented in both
numerical and percentage terms.

been unsuccessful. Optical data has numerous advantages for extraction
data.
(absorption peak position reported in nanometers are obtained directly from

over electrochemical Raw results do not require calibration
the measurement) nor does the data acquired require an assignment of the
underlying process (absorption spectra are measured using a UV-Vis
spectrometer while emission spectra are measured on a different
instrument). Electrochemical data require the voltages to be calibrated to a
reference electrode, and the reversibility of the electron transfer processes
need to be assigned. As a result, our findings suggest that electrochemical
data do not reach the same precision or recall as optical data extraction. For
instance, identification of the reference electrode and accurately identifying
if the redox process is reversible or not. Thus, even a modified NLP extraction

process fails to reach the levels of precision and recall required to produce a

usable dataset.

The electrochemical data and metadata for the 206 entries in the dataset
were manually extracted from the papers. Expert annotations (vide infra)
were used to classify the data as high, medium, or low quality.

To ensure the accuracy of the data extraction, a validation process was
enacted in which data extracted by one member of the team was reviewed
and verified by another. Validation identified errors in less than five percent
of the manually extracted data. The output of this electrochemical data
collection campaign was a dataset that included ten entity labels for redox
data: potential, half wave or peak position, solvent, electrolyte, quality (x5)
for both oxidation and reduction (x2).

A procedure to estimate the size of the dyes was implemented using the
mol-ellipsize®® Python package. This package fits an ellipsoid to each
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Fig. 8 Histogram representing the distribution of molecular weights for
all the dyes in the dataset.

conformer and calculates its diameter. The size of each dye is obtained by
the mean ellipsoid diameter of five conformers generated using the RDKit
package.®

When each of the unique 206 dye-solvent pairs are combined with the
12 optical and 10 entity labels, a maximum of 4,796 data points are included
in the final dataset.

Quality Validation. Expert annotations were used to assess the quality of
the electrochemical data. The entries were categorized based on the
assessment of the electrochemical experiments (Figure 4). This quality
assessment sorts the CV data and associated metadata into high, medium,
and low quality. These assessments are made based on the reversibility of the
CV curve and the availability of metadata that places the curve in its
experimental context. Ensuring data quality is crucial, as it directly
impacts the confidence in subsequent analyses and the potential for
these data to be used in calibrating computational models. High quality
(HQ) data were identified based on two criteria: (1) The reference electrode
associated with the data is clearly reported, and (2) the voltammograms
conform to a reversible electrochemical process. The latter was assessed
using various accepted methods,* i.e., the CVs display a well-defined and
reversible pair of redox waves, colloquially referred to as “clean ducks”. This
criterion also benefits future use of these data for calibrating the redox
potentials calculated using quantum chemistry methods. For HQ data, half-
wave potentials (Figure 4a) were reported in the dataset.

Data of medium quality (MQ) possess a well-defined reference electrode
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Fig. 9 Bar chart which represents distribution in the number of rings in

an entry determined by RDKit’s smallest set of smallest rings (SSSR).

and a CV indicative of irreversible electron transfer (Figure 4b). For CVs that
display irreversible redox processes (e.g., imperfect “ducks”), peak positions

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Solvent

= Reduction
Il Oxidation
[ Optical

100 150

Frequency

0 50

Fig. 10 Bar chart representing the solvents used to collect electrochemical
(reduction in red, oxidation in blue) and optical (yellow) data of high and
medium quality. (Nreduction = 198, Noxidation = 94, Noptical = 135)

were reported. These peaks do not accurately reflect the reversible half-wave
potentials.?® ®” MQ data will still be analyzed but are understood to provide
less accurate estimates of the formal reduction and oxidation potentials.

In instances where there was no clear description of the reference
electrode, voltammograms were not available, or curve shapes were
imperfect, the electrochemical data were defined as low quality (LQ).
Additionally, there were instances where the reduction potential of one
compound was classified as HQ while the oxidation potential was classified as
MaQ.

Out of a total of 302 electrochemical potentials 107, 76 and 131 were
classified as HQ, MQ and LQ, respectively. Within the subset of 116 oxidation
and 186 reduction potentials, 31 and 76 were classified as HQ, 36 and 40 as
MQ, and 56 and 75 as LQ (Figure 5).

Post processing. The manually extracted data undergoes a cleansing
process to improve accuracy. The SMILES strings of all entries were converted
into canonical SMILES strings using the cheminformatics toolkit RDKit. These
canonical SMILES strings, along with the reference column containing DOls,
are examined for any instances of duplication. The duplicated entries serve as
a convenient sample corpus for accuracy validation. In total, 28 duplicates
were identified in this process. Any discrepancies found during this review of
the duplicates are corrected using original papers. After addressing identified
discrepancies, redundant records are removed from the dataset. Violin plots
of the electrochemical properties are generated. Five outliers were identified
by having unphysical values. These data were corrected.

3 Results

An analysis of data on dye class, molecular weights, sizes, aromaticity, optical
properties, and electrochemical properties is undertaken as a basis to inform
SMILES design rules. An analysis of distributions of the dye families (Figure 6)
reveals that this dataset consists of 13 categories of cationic dyes, with
acridinium and cyanine dyes dominating the collection (Figure 7a). The
prevalence of any one family does not guarantee availability of both
reduction and oxidation potentials. We identify instances where both
reduction and oxidation potentials are present for a specific dye-solvent
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Fig. 11 (a) Bar chart of the electrolyte used to measure reduction potentials
(red) and oxidation potentials (blue). (Nreduction = 178, Noxidation = 66) (b) Bar
chart representing the reference electrode against which electrochemical
data was reported (green) and measured (purple). (Nreported = 90, Nmeasured =
145) (High and medium quality data included)

system, which we term a “redox pair” (Figure 7b). In this case, while
acridinium dyes are present in large number, only a few are redox pairs. In
this dataset, there are a total of 75 dyes that have redox pairs among the 206
entries.

Most of the dyes (79.4%) studied have a molecular weight between 300
and 500 g/mol (Figure 8). Only a few had a mass of over 600 g/mol including
highly functionalized cyanine dyes. The optical gap and electronic properties
have been demonstrated to correlate well with the number of rings for
conjugated dye systems, such as, polycyclic aromatic hydrocarbons.®®7* An
analysis of the number of rings (Figure 9) shows that 4, 5, or 6, were most
common with rhodamine and triangulenium families being in this range.
These analyses show that the data collected and reported in this work
represent a broad chemical diversity within the 13 dye families. These data
are also known to be correlated to optical and electrochemical properties of
organic fluorophores,” making them valuable to the practical use of this data
In addition, the correlation between optical and
electrochemical data provides an empirical basis for using the optical data to
predict some missing electrochemical data.”

in future work.

To better understand the methods of data collection used in the
literature, an analysis of metadata was performed. Only electrochemical data
of high and medium quality was analyzed. Thus, we only include redox
potentials that have clearly defined reference electrodes, and may either be
electrochemically reversible (high quality, HQ) or irreversible (medium
quality, MQ). Data that was poorly referenced or for which the CV data had
non-ideal behavior (low quality, LQ) was excluded. See Methods section for
more details on classification of quality.

The metadata of a reduced HQ and MQ dataset of 116 reductions and 67
oxidations from 175 and 123 total entries, respectively, was analyzed. The
solvent in which the sample is dissolved influences both optical and
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Fig. 12 Plots of electrochemical window between oxidation and reduction
versus (a,d) absorption maxima, (b,e) emission maxima and (c,f) the
estimates for the E;o defined as the numerical average of the absorption
and emission maxima. The second column is specific to triangulenium,
which is a prevalent dye family in the dataset.

electrochemical results. The majority of the data was collected in acetonitrile
(Figure 10). This observation is true for all measurements we analyzed
(reduction, oxidation, optical) and most likely originates from this solvent
having a wide window of electrochemical stability, also offering reasonable
polarity to dissolve salts like the cationic dyes being analyzed here. Other
common solvents include methanol, dichloromethane, and
dimethylformamide. A few other solvents are used sparingly with only one or
two reported examples of their use in the literature sources we surveyed.

The electrolytes and reference electrodes used and reported in the data
were analyzed. TBAPFs and TBACIO4 are the most common electrolytes for
measuring the reduction potential of molecular dyes (Figure 11a). To measure
the oxidation potential, TBABF4 is the most common. LiCl was also used but
was the least common. During the analysis of the reference electrodes used
in this dataset, it was observed that some authors opted to use one reference
electrode during the electrochemical measurement, while reporting the
potentials relative to a different reference electrode (Figure 11b). It is also
common” to add ferrocene to the solution being analyzed as an internal
standard, and then to adjust the reference electrode to another one when
reporting the data in the literature. Comparison of data to ferrocene ensures
the accuracy of the peak positions collected from the CV experiment. Thus,
the data reported below is referenced to ferrocene.

One additional problem with electrochemical data is that only one of the

reduction and oxidation potentials are reported when both are needed for
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Eap ~ AEredox = on - Ered (Eq- 1)
SMILES compliance (vide infra). Fortunately, the more prevalent optical data
can be used together with one of the redox potentials to estimate the location The redox gap can be approximated by utilizing optical experimental data
of the missing potential. For this purpose, we rely on the observation thatthe  (Figure 12). This relationship also provides a means to extend the data, which
optical gap, Eop (eV), is often seen to correlate’®® with the potential
difference, AEredox (V) between the first oxidation, Eox, and reduction, Ered,
processes (Eq. 1):
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Fig. 14 Three curves representing for the probability of forming
emissive SMILES materials based on (a) Boltzmann Distribution, (b)
linear decrease in probability within + 1 eV, and (c) exact alignment with
the redox window of a cyanostar anion complex.

can be used to estimate missing redox potentials (vide infra). Hence, our dual
data extraction method addresses the challenge of incomplete data reporting
and enhances our ability to screen for SMILES-compliant materials efficiently.
These data include absorption and emission maxima, both of which can be
reliably extracted from the literature. In order to examine these correlations,
we need a collection of dyes for which we have the redox gap (Eox and Ered),
as well as the optical gaps approximated by Eaws and Eem, and by the Eoo (see
next).

The Eoo value is frequently used to estimate the adiabatic energy
difference between ground and excited states of the dyes.®! The literature
and thus our dataset does not explicitly include Eopo. As a consequence, we
generate estimates, Eglo, from the numerical mean of the absorption and
emission energies (Eq. 2):

A Eaps—EEm
B}, 2 SabsEem (Eq.2)

2

This relationship (Eq. 2) assumes that the reported absorption band
corresponds to the So-S:1 transition.

This journal is © The Royal Society of Chemistry 20xx
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Fig. 15 By fitting the molecular dyes to an ellipse, an approximation of
their size can be made. This size approximation can also be performed
on cyanostar (orange) (n = 170).

denoted as open circles. Dyes that do not follow Rule 3 are marked with a
single X. Dyes that do not follow Rules 2 and 3 are marked with a double X.

Our data correlating redox window (AEredox) to absorption maxima (Figure
12a) only include 40 data points that include both optical data and paired
redox data. From the original dataset, 155 of the 206 dyes have absorption
maxima and 75 of the 206 dyes have both Eox and Ered (Figure 7b). The same
limitation arises with the emission maxima and Eg,O for which we have 31
(Figure 12b) and 26 (Figure 12c) datapoints, respectively, limiting the total
number of entries to analyze.

We see that the correlations are poor. However, we note that the data is
dominated by two dye families, the trianguleniums and rhodamines totaling
23 out of the 40 examples. These two families account for the two regions in
the plots (see Figure 12c).

For this reason, we examined these correlations by plotting the data
based on these two dye families (Figure 12d and Figure Sla, n = 14 and 9,
respectively), and observe higher correlations (R? = 0.556 and 0.773). Similar
trends can be found in the literature correlating the electrochemical and
optical gap for polyquinolines and polyanthrazolines.® This finding suggests
that higher correlations can be obtained when investigating similar
classes/families, aka, homologous series.

The poor correlation is also likely due to slight variations in data
collection methods and techniques across different laboratories. The same
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Fig. 17 Solid and open circles indicate literature and extended data,

respectively.

improvements (0.657 < R? < 0.784, see Figure S2c-e) can be seen when
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Fig. 18 All 47 unique SMILES-compliant dyes from the 13 dye families.

examining dyes from within a single paper (containing more than four dyes,
n > 4), for 3 of the 4 paper specific plots. For one of the papers (Figure S2b),
the R? = 0.040, however this is due to opposing trends in the collected data.
Nevertheless, these findings suggest that electrochemical and absorption
data are dependent on the dye family and experimental conditions, which
may not be consistent across papers.

We observe the same trends for correlations of the redox gap to the
emission maxima (Figure 12b, R = 0.329, n = 31) and E,f'o values (Figure 12c,
R? = 0.065, n = 26). We observe the plots to be bimodal and that the dye-
specific correlations separate these into distinct datasets showing clear
improvements, 0.511 < R? < 0.912 (Figure 12e and Figure S1b, n = 14 and 8),
as do paper specific correlations, 0.861 < R? < 0.926 (Figure S3b-d) and 0.800
< R% £ 0.893 (Figure S4b-d). These relations between optical and redox gaps
allow us to estimate values of missing redox potentials.

Extending the Data. A proportion of the data (133 of 206) included just one
of the two redox potentials. For example, acridiniums typically have only a
reduction or oxidation potential reported due to their use in photoredox
catalysis?> 3% 5% 8 gych that only one of these potentials is important. The
dataset can be extended® % by various means to add these missing entries.

In order to extend the data for use in data mining for SMILES compliance,
we use the correlation between the optical data and the gap (Equation 1) to
estimate the missing data, either the oxidation or reduction potential. For this
purpose, we either used the estimated Eglo when both absorption and
emission maxima are available or the absorption maximum, Eabs (€V) in its
place, and following equations:

This journal is © The Royal Society of Chemistry 20xx

E:ed = Eo,(V) — Eg'o (eV) (Eq. 3)
EZx = Ereqa(V) — Eg‘o (eV) (Eq. 4)

4 Discussion

Analysis of Electrochemical Data. An analysis of the electrochemical data
was performed to identify candidate dyes for forming SMILES materials. All
the dyes in consideration are cationic and fulfill Rule 1 (Figure 1b). The next
assessment was to fulfill Rule 2 by identifying those dyes with both reduction
and oxidation potentials sitting inside the redox window of the cyanostar
complex.

A visualization approach to assess compliance can be conducted using
violin plots (Figure 13a) where the oxidation and reduction potentials of all
dyes in a family with blue and red violins respectively. These plots were
constructed and compared to the redox potentials of the cyanostar-anion
complex. They provide valuable information on the types of dyes that are
expected to make emissive SMILES materials based on Rules 1 and 2. For
example, both the reduction and oxidation potentials for many triangulenium
dyes are within the bounds defined by the redox window of the cyanostar-
anion complex (green). Consequently, triangulenium dyes are good
candidates for SMILES materials, which has been demonstrated in previous
reports.?

Violin plots of the gap (Eq. 1) based on the redox window (Figure 13b)
show that most of the dyes in the dataset are predicted to have an optical
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transition of lower energy than cyanostar’s. Thus, the width of these windows
and alignment relative to the redox properties of the cyanostar complex could
be tuned by functional group modulation. The data suggest that some
coumarin dyes may be suitable for use in SMILES materials, however, the
AEredox is quite wide, and it approaches the width of cyanostar’s redox window
(green). Thus, any fine-tuning of the redox window of a coumarin to fit within
cyanostar’s needs to account for these small tolerances closer to the edges of
the window.

The edges of the window are subject to uncertainties. There exists
in the
measurements. If computational chemistry is used to estimate redox

experimental error (0.1 V) arising from the uncertainties
properties in the future, chemical accuracy often offers a larger error (£0.25
eV). Furthermore, while the redox window is set by the electrochemical
potentials, the possibility for “uphill” electron transfer can also occur if there
are charge-transfer (CT) products in which Coulombic interactions in the

proximal D*A™ pair provide thermodynamic stability.®

Screening of the Data for SMILES Compliance. The original and
extended dataset set of data provide the redox potentials can be combined
with estimates of dye sizes to identify the subset of dyes that are compliant
with the SMILES design rules. We can consider the compliance with the
second design rule using probability curves (Figure 14). Each curve represents
an approximation of this probability. The first (Figure 14a) includes the
possibility of Boltzmann weighted distributions of electron transfer products
and experimental error in the measurements. The second (Figure 14b)
approximates this distribution with a simple linear form. The simplest (Figure
14c) is a hard cut-off at the edge of the redox window and is the criterion we
used during screening.

Compliance with Rule 3 was determined using an estimation of molecular

size by mol-ellipsize (Figure 15).%

These data can be compared to the size of
cyanostar (2 nm diameter). This analysis was performed on each of the 170
unique dyes in the dataset, revealing 120 dyes that are smaller than
cyanostar. These 120 dyes adhere to Rule 3. This list can be compared to the
list of redox-aligned dyes to produce a collection of dyes that adhere to all

three design rules.

Testing Dyes for SMILES Compliance. Cyanines make up a large
percentage (28.4%) of the dataset and typically have both reduction and
oxidation data reported. By plotting the redox window of cyanine dyes
against the redox window of the cyanostar-anion complex, we see that 34 of
the 48 cyanine dyes fit the electrochemical design rule (Figure 16) as defined
by the simplest hard cut off.

This journal is © The Royal Society of Chemistry 20xx

Across all the 206 dye-solvent pairs, we found a total of 57 pairs (Figure
17) that were compliant with all design rules leading to 47 (Figure 18) unique
dyes. The distribution of SMILES-compliant dyes (Figure 19) shows the
prevalence of three dye families constituted byrhodamine-like dyes (40%),
cyanines (34%), and trianguleniums (15%) totaling 89%. Focusing on Rule 2,
183 of the 206 dyes are compliant and fit inside the redox window but many
are too large in size which leads to the decrease in the final number.
Considering Rule 3 alone, we find 120 dyes are of the right size to serve as
building blocks for making SMILES. When taking Rule 2 into account this
number again drops to 57 dye-solvent pairs and unique dyes.

Looking to SMILES Compliance and Beyond. The dataset shared here
provides a set of paired optical and electrochemical data for a variety of
fluorophores that can be used in various ways to advance the science,
engineering, and digital discovery of SMILES materials. Given the paucity of
electrochemical studies on fluorophores, this validated dataset can serve as
a test set for calculating redox potentials using quantum chemical methods.
These calculated potentials can then be used to estimate electrochemical
properties in future literature extraction campaigns to augment any of the
missing redox data. In addition, the workflow defined here may also be
utilized or modified toward other goals. For example, the production of redox

26,27

flow batteries requires the selection of molecules with specific oxidation

and reduction potentials as well as high reversibility, which is constituted by
the dyes tagged with the HQ signifier. Another use is for selection of
photoredox catalysts (redox potentials, optical properties). 24

5 Conclusions

A data extraction workflow has been used to generate a library of
206 dye-solvent combinations bearing both optical and electrochemical
data from which properties screening identified 47 candidates that are
predicted to form emissive SMILES materials. In these concluding
remarks, we address recommendations for electrochemical data
reporting, a summary of the key cheminformatic findings, and provide
insights as to how these data can be used for improving materials design
workflows.

The extraction of electrochemical data from the literature relied on
expert annotations, which restricted our workflow. This method was
used to circumvent a series of serious limitations to extraction that arise
because of the nonuniform reporting of electrochemical data. The
workflow used here can be improved upon by relying on data that has
been reported in a more uniform format. For example, we recommend
following the advice of American Chemical Society editors® to use
systematic procedures for reporting electrochemical data and to
promote use of natural language processing for extracting these
properties. Submission of the data to appropriate databases is also
recommended. Such databases include D3TalLES®! for experimental
electrochemical data and RedDB®’ for computational electrochemical
data. Recent papers®® 3° have highlighted the importance of domain-
specific corpuses for data extraction, thus the creation of a molecule-
centric schema for organizing the data collected herein represents the
next logical step in this work. These remedies would allow the data to
be presented in a way that is easily managed by automated tools such
as web scraping and NLP. In addition to data extraction and validation,
we used a method for estimating missing redox potentials from optical
data.

The library of 206 dyes represented 13 different dye families. Our
analyses show that the majority of cationic dyes present in the literature
we sampled are acridiniums, followed closely by cyanines. We note a
variety in the experimental conditions used to collect electrochemical
data with some commonalities. The majority of the data extracted came
from experiments run in acetonitrile, likely due to its wide solvent
window and reasonable polarity.

The set of 47 candidate dyes include six dye families that have not
previously been utilized in SMILES materials showcasing the use of
mining methods to enable digital discovery. In future screening
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campaigns, and particularly when using larger datasets, the order of the
rules can be changed to more efficiently identify SMILES dye candidates.
Finally, the dataset can be utilized by members of the scientific
community to identify candidates for a variety of applications beyond
optical materials including photoredox catalysts and redox flow
batteries. With input from others, this dataset can be expanded to be
more representative of the dyes published across the literature.

6 Data Availability

The data collected for this analysis is available at Figshare
(https://doi.org/10.6084/m9.figshare.25852909.v1). The deposited data
contains DOI information as well as all entity labels described and analysed
above.
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