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ABSTRACT

Priority queues are well understood in queueing theory. How-
ever, they are somewhat restrictive in that the low-priority
customers suffer far greater waiting times than the high-
priority customers. In this short paper, we introduce a novel
generalization of a two-class priority queue, which we call
Hybrid. We prove that Hybrid has a much broader achiev-
ability region than strict priority, allowing for a much greater
range of waiting time pairs. We demonstrate settings where
this new flexibility can increase the revenue obtained by a
service system (like airport TSA) selling priority.

1. INTRODUCTION
1.1 Non-Preemptive Priority Queue

This paper focuses on non-preemptive priority in a two-
class system, where class 1 has priority over class 2, and
the waiting times are denoted by random variables W1 and
W2. It is well understood that E rW2s ° E rW1s and in fact
it is often the case that E rW2s " E rW1s. This fact has
been exploited to charge class 1 customers more money in
exchange for offering them lower waiting time([8]).

1.2 Achievability Region of Priority Queue
We define the achievability region of two-class priority

as the set of expected waiting time pairs pE rW1s ,E rW2sq
which can be achieved as we consider all feasible arrival rates
pλ1,λ2q of class 1 and 2. Note that this definition differs
slightly from that in [3], because we allow for different ar-
rival rates. In this way, we extend a stream of previous
works using Achievability Region for optimal queue control
(see [2] for a survey) to cases when arrival rates can also be
controlled, e.g. by setting prices.

Figure 1 shows that the achievability region for strict non-
preemptive priority consists of two narrow green “tornado”-
shaped regions. This fact holds for any service time distribu-
tions of class 1 and class 2 customers, although in this work
we only focus on the special case when both classes have
service time drawn from the same distribution. While this
fact is easy to prove, it is not prominent in the literature.

Figure 1 highlights the significant separation between the
achievable waiting times in class 1 versus class 2. However
what if one doesn’t want such large separation? Consider
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Figure 1: Achievability region of Strict Priority. Under
PRIO(1;2), class 1 customers have stict priority. Under
PRIO(2;1), class 2 customers have priority.

a setting where a service provider charges customers to join
queue 1. Could reducing the separation between E rW1s and
E rW2s enable the service provider to make a larger profit?
We next introduce a generalization of the strict priority set-
ting which allows this to happen.

1.3 Hybrid Priority Queue
We introduce Hybrid Priority. Under Hybrid Priority (or

Hybrid for short), there are still two queues, but whenever
there are customers in both queues, the server serves a cus-
tomer in queue 1 with probability q, say 70%, and serves a
customer from queue 2 otherwise (see Figure 2). Obviously,
Strict Priority is a special case of Hybrid where q “ 1.
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Figure 2: Hybrid queue system.

Under Hybrid, the service provider can adjust the level
of priority of queue 1 customers over queue 2 customers.
This allows for a much greater achievability region. In fact,
Hybrid’s achievability region includes the entire region be-
tween the achievability regions of Prio(1;2) and Prio(2;1),
as shown in Figure 3 (proof omitted for lack of space). This
gives the service provider much more flexibility in choosing
the expected waiting times provided to customers.

1.4 A Simple Example: TSA Precheck

We now demonstrate the power of Hybrid in revenue max-
imization.





denote the waiting time of class 1 customers, namely the
time from when a customer joins queue 1 until they get
served. Likewise r.v. W2 will denote the waiting time of
class 2 customers.

Type A customers are willing to pay for priority if and if
only if the expected value of the reduction in their waiting
time from buying priority is at least $. Mathematically, a
type A customer is willing to buy priority iff

cpE rW2s ´ E rW1sq • $. (1)

We assume that the government has placed a restriction
of at most ÑW on the mean waiting time of any customer.
Thus we are restricted to:

E rW1s † E rW2s § ÑW. (2)

Revenue: The revenue that the TSA brings in per unit
time is defined as

Revenue :“ λ1 ¨ $.

There are some limitations on the revenue that the TSA
can make. First, we assume the government has capped the
price ($) that we can charge at s$, i.e.,

$ § s$. (3)

Second, because of the existence of (2), the TSA may limit
the rate of sale of priority tickets (hence limiting the possi-
ble λ1). Thus even if a type A customer is willing to buy
priority, the TSA may not allow it.

Optimization Problem: The TSA’s aim is to maxi-
mize its revenue. There are three variables that the TSA can
optimize. First, TSA can choose a price $ § s$. Second, the
TSA can set the rate of sale of queue 1 tickets λ1. Finally,
the TSA can choose its queueing policy, namely choose the
parameter q of the Hybridpqq policy.

However, the TSA is constrained in choosing parameters
that satisfy all of the aforementioned constraints: (1),(2),
(3). Thus in short, the TSA’s optimization problem can be
formulated as follows:

maximize
λ1,q,$

$ ¨ λ1

s.t. λ1 ` λ2 “ sλ,
cpE rW2 | λ1,λ2, qs ´ E rW1 | λ1,λ2, qsq • $,

E rW2 | λ1,λ2, qs § ÑW,

$ § s$,
λA • λ1 • 0,

1 • q ° 0.

To eliminate uninteresting cases, we assume that ÑW is
small enough that not all type A customers can be admitted
to queue 1 (if this were not true, then Strict Priority is
optimal). Likewise, we assume that ÑW is large enough that
there is a feasible solution to the optimization problem.

4. OUR RESULTS

Our paper derives the necessary and sufficient condition
under which Hybrid outperforms Strict Priority. In short,
when the cap on the price s$ is high, Hybrid does not increase
revenue over Strict Priority. However when the price cap, s$,
is low, Hybrid can increase revenue significantly compared
to Strict Priority.

Theorem 1 (Strict Priority Wins). If s$ • sλ¨ ÑW ¨c,
Prio(1;2) maximizes the revenue.

Theorem 2. If s$ † sλ ¨ ÑW ¨ c, Hybrid increases revenue
compared with Strict Priority. Moreover, the ratio of the
optimal revenue, RevHybrid, earned by Hybrid to the optimal
revenue, RevPrio, earned by Strict Priority is:

RevHybrid

RevPrio
“ min
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Note that the ratio given in Theorem 2 can approach infin-
ity under some specific parameters. As a practical example,
suppose that ÑW “ 30 minutes, the price cap s$ “ 15 dollars,
the impatience factor is c “ 1, λA “ 0.6, λB “ 0.35, and the
customer service times are exponentially distributed with
rate 1. Then the improvement factor of Hybrid over Strict
Priority is about 60%.

5. RELATED WORK

The book [4] thoroughly surveys how to maximize revenue
in queueing systems. For this short paper, we focus on just
prior work related to “partial” (hybrid-like) priority.

While we believe that the concept of Hybrid priority as
we’ve defined it is novel, there are other related notions of
priority in the literature. One example is Discriminatory
Processor Sharing (DPS), where the server is time-shared
between the two queues preemptively, with each queue get-
ting some fraction of the server, see [6, 7]. DPS is different
from Hybrid because it is preemptive. The one paper that
we’ve found that uses DPS to maximize revenue is [5]. The
authors provide numerical examples showing that DPS can
be helpful in maximizing revenue.

There are also a few papers looking at using some kind of
partial priority to obtain closer waiting times between two
classes ([1, 9]). These papers deal only with waiting time
targets and do not talk about explicit queueing policies to
achieve them.
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