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Abstract—In this paper, we design and analyze distributed Bayesian estimation algorithms for sensor networks. We consider

estimation problems, such as cooperative localization and federated learning, where the data collected at any agent depends on a

subset of all variables of interest. We provide a unified formulation of centralized, distributed and marginal probabilistic estimation as a

Bayesian density estimation problem using data from non-linear likelihoods at agent. We develop distributed estimation algorithms

based on stochastic mirror descent with appropriate regularization to enforce distributed or marginal density constraints. We prove

almost-sure convergence to the optimal set of probabilities at each agent in both the distributed and marginal settings. Finally, we

present Gaussian density versions of these algorithms and compare them to belief propagation variants in a node localization problem

with relative position measurements. We also demonstrate our algorithms in a multi-agent mapping problem using LiDAR data.

Index Terms—Network optimization and control, Statistical network models, Network inference.
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1 INTRODUCTION

THE advent of low-cost computing, storage and commu-
nication devices has made large sensor networks inte-

gral to urban, transportion and power-grid infrastructure.
Efficient inference algorithms are needed for automated
monitoring of the underlying processes. Any centralized
solution to this inference problem necessitates data ag-
gregation which, while potentially more accurate, incurs
prohibitive processing and communication costs, especially
in real-time settings. Real-time inference is crucial for tasks
such as indoor positioning [1], urban monitoring [2], and
path planning for robotic networks [3]. Thus, modern sen-
sor networks parallelize inference across nodes improving
communication efficiency and robustness to node failures.

However, most distributed algorithms do not account for
the relevance of the information shared among the nodes.
Motivated by this, we design algorithms to simultaneously
address the inherent commmunication network constraints
while accounting for variable relevance at each node.

Literature review: To achieve online estimation in con-
nected sensor networks, researchers have studied schemes
to combine distributed estimates [4], notably classified as
opinion pooling [5] and graph-based message-passing algo-
rithms [6]. Message-passing algorithms, such as Gaussian,
sigma-point and non-linear belief propagation (BP), are ap-
propriate when the causal relationships between variables
are known. For further insights, see [7] and references
therein. In contrast, linear and geometric averages of proba-
bilistic estimates are commonly used to pool opinions [8] in
a network with communication across one-hop neighbors.
The seminal work in [4] presents a local and computation-
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ally tractable consensus estimation algorithm as a two step
process, consisting of a non-Bayesian pooling step followed
by a Bayesian update with locally available data.

Distributed estimation algorithms can be analyzed as
steps of gradient-based optimization methods [9] that min-
imize the divergence between the data generating process
and the estimated model. This approach establishes consis-
tency of the estimation task, with estimation quality as the
objective. For the consensus step, this approach generates
algorithms beyond linear and logarithmic pooling choices,
see [10], [11]. Mirror descent methods [12], [13] generalize
the first-order gradient methods via metric-space projec-
tions to exploit the inherent problem geometry. Past research
on distributed estimation using partially informative obser-
vation models has relied on fusing observation likelihoods
with individual agent’s network sized estimates [14], [15],
[16]. Doan et al. [17] apply mirror descent to the linear
average of neighbor estimates for consistent estimation in
discrete space. Another algorithm in [15] incorporates ge-
ometric averaging with stochastic mirror descent (SMD) to
achieve consensus over the network. As centralized objec-
tive, one can select the divergence between true and esti-
mated densities to derive linear regression updates, Kalman
filter and particle filters as special cases. The work in
[13] further extends the SMD algorithm for finding opti-
mal continuous-space probability density functions (pdfs),
although in a centralized setting with a variationally co-
herent objective. More recently, [18] studied convergence
of variational estimates on compact subsets of hypotheses.
However, all of these papers assume that agents estimate a
common set of variables and neither one includes distribu-
tional convergence guarantees.

In this work, in addition to distributing the estimation
process, we focus on distributing the storage by estimating
only a subset of variables relevant to the local data gener-
ating process at each node. This significantly reduces the
storage and communication requirements for distributed
inference. One example of estimating relevant variable sub-
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sets at different nodes is a sensor network using relative
measurements for node localization [19]. In this problem,
the measurement likelihoods are determined by the position
of node i making the measurement and the positions of
the measured neighbors Vi. A practical example of relative-
measurement localization is a beacon network deployed
in underwater or indoor settings using range or acoustic
measurements to estimate the node positions [19], [20]. Since
we estimate marginal densities over the relevant variables
at different nodes, we design and analyze algorithms to
enforce consistent marginals of the network-sized joint pdf.

BP [21], [22] is a widely used algorithm for probabilistic
estimation of marginal densities in a network with ap-
plications in error-correcting codes [23], computer vision,
and robotics [24]. This method employs node-specific ob-
servation models and pairwise interaction models between
agents, utilizing messages exchanged between neighboring
nodes to compute the marginal probabilities of individual
variables at each node. The convergence of BP in generally
not guaranteed in graphs with loops [25]. Recently proposed
variants, such as α-BP [26] and circular BP [27], obtain
consistent estimates in arbitrary graphs but the convergence
guarantees are limited to binary probabilities. Instead of
learning marginals over local node variables only, we design
an algorithm estimating the marginal probability density
over a set of relevant variables at each node.

The key challenge to guarantee consistency in estimating
different variables at different agents is the incompatibility
of the variable domains due to the different number of
neighbors at each agent. This sub-problem of combining
partial estimates has been framed in terms of statistical
matching [28] and minimum entropy coupling [29], aiming
to find a joint pdf minimizing divergence to the relevant
marginal densities. A recursive optimization approach is
proposed in [30], [31] but it is computationally expensive
for real-time inference. In the presence of streaming mea-
surements, our prior work [32] addressed a discrete version
of this problem. However, in various applications it is nec-
essary to consider probability densities in continuous space.

Statement of Contributions:
This work proposes a distributed Bayesian estimation

algorithm to obtain marginal densities over relevant vari-
able subsets at each node. The contributions of this paper
are summarized as follows. (i) We formulate the estimation
problem as a stochastic optimization over the functional
space of probability density functions, presenting a unified
framework to express centralized, distributed and marginal
estimation in a network. This formulation relates their solu-
tions using gradient descent variants to Bayesian estimation
algorithms. (ii) We develop two distributed estimation al-
gorithms relying on one-hop neighbor communication, one
estimating densities over all unknown variables and the
other estimating marginal densities only over a relevant set
of variables at each agent. Our distributed marginal density
estimation algorithm reduces the storage, communication,
and computation requirements compared to consensus-
based distributed estimation algorithms [15], [33], [18], [8]
(iii) We prove novel almost-sure convergence result for our
distributed and marginal algorithms. Our results apply to
continuous probability densities and hold in any connected
network, in contrasts with message-passing and belief prop-

agation methods [34], [35] that generally cannot provide
convergence guarantees in graphs with cycles. (iv) We
demonstrate that our algorithms achieve higher estimation
accuracy than belief propagation in a distributed node local-
ization problem using relative position measurements and
significantly reduce the storage and communication load
compared to full state estimation algorithms in a distributed
mapping problem using LiDAR data.

This paper extends our prior work [36] on estimating
marginal densities over the states of an agent and its
neighbors to an arbitrary set of variables by introducing
a marginal consensus constraint. Additionally, we analyze
the convergence of the distributed and marginal algorithms
and provide a new application to distributed mapping.
We also extend a relative localization example from [36]
by comparing the performance of our algorithms to new
variants of the BP algorithm [37], [34], [38] in networks with
different connectivity and observation noise.

In Section 2, we pose the distributed estimation problem
as minimizing divergence between the data-generating den-
sity and an estimated likelihood, and recall relevant math-
ematical preliminaries in Section 3. An SMD-based solution
to this problem is presented in Section 4. Next, we solve the
distributed estimation problem in Section 5 where agents
maintain equal network-scale estimates. Section 6 extends
the estimation problem to a marginal density setting where
agents maintain estimates on variables co-estimated with
one-hop neighbors. Finally, Section 7 presents a distributed
relative localization example comparing the proposed algo-
rithms with BP variants and a distributed mapping appli-
cation using the marginal estimation in conjunction with
variational inference.

2 PROBLEM FORMULATION: DISTRIBUTED PAR-

TIAL PARAMETER ESTIMATION

We consider an estimation problem with cooperative agents
in the set V = {1, . . . , n} communicating over a static
connected network. The agents aim to infer m vector val-
ues collectively given as the d-dimensional vector X ⋆ =

[x⋆
1, . . . ,x

⋆
m]

⊤
with x

⋆
v ∈ R

dv and d =
∑

v dv . With a abuse
of notation, we overload X ⋆ to also denote the set of m-
vectors {x⋆

v}mv=1. The terms x
⋆
v may represent the value of

model parameters in a mapping problem, or the agents’
pose in a relative localization problem. Each agent receives
measurements from a local probability density function
dependent on a subset X ⋆

i ⊆ X ⋆ and shares its estimates
with one-hop neighbors. The variables in the local subset X ⋆

i

could represent model parameters relevant to the agent’s
trajectory in a mapping problem, or the agent neighbors’
poses in a localization problem. Relying on the subsets X ⋆

i

instead of X ⋆ reduces the storage and communication costs
of distributed estimation at individual agents.

To set up the estimation problem formally, we define
a vector X = [x1, . . . ,xm] with xv ∈ R

dv corresponding
to the variables of interest x

⋆
v . At time step t, the known

likelihood of receiving measurement zi,t ∈ R
ℓi by agent i is

given as qi(zi,t|Xi), where Xi ⊆ X . Thus, the measurement
generation at each agent i is determined by the unknown
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variables X ⋆
i via the density model q⋆i (zi,t) = qi(zi,t|Xi =

X ⋆
i ) ∈ Fℓi , where the space Fℓ of pdfs is defined as:

Fℓ =

{

g ∈ L1(Rℓ) |
∫

g(x)dx = 1, g(x) ≥ 0, ∀x ∈ R
ℓ

}

. (1)

We assume that ∪iX ⋆
i = X ⋆ to ensure that the combined

agent network can jointly observe all variables of interest.
Let zt represent all observations zi,t collected by the multi-
agent system at time t with combined likelihood model
q(zt|X ) ∈ Fℓ, where ℓ =

∑n
i=1 ℓi.

Assumption 1 (Independence). Agent i samples observa-
tion zi,t at time t independently across time and agents as,

q(z1, . . . , zT |X ⋆) =
T
∏

t=1

q(zt|X ⋆) =
T
∏

t=1

∏

i∈V
qi(zi,t|X ⋆

i ) (2)

Since the agents need to reach consistent estimates,
any two agents observing the same variable communicate
their estimates over a connected digraph G [3], with node
set V and edge set E . The neighbors of agent i, including
itself, are denoted as Vi. The communication graph has an
associated non-negative adjacency matrix A ∈ R

n×n with
entries Aij > 0 iff (i, j) ∈ E , including self-loops. Any such
matrix A representing a connected network can be made
symmetric and doubly stochastic, e.g., via the Sinkhorn’s
algorithm [39].

Assumption 2 (Graph adjacency). The connected digraph G
is represented by a symmetric, doubly stochastic adjacency
matrix A with A1n = 1n, A = A⊤, and diagonal entries
Aii > 0 , ∀i ∈ {1, . . . , n}, where 1n ∈ R

n is a vector of ones.

Next, we express the estimation problem using a pdf
p(X ) ∈ Fd instead of a point estimate in R

d to capture the
associated epistemic uncertainty. We aim to find the pdf p ∈
Fd minimizing the objective:

min
p∈Fd

{

E
X∼p

[KL[q(·|X ⋆), q(·|X )]

}

, (3)

where the expectation is defined over the KL-divergence

term KL[q⋆, q(·|X )] =
∫

Rℓ q(z|X ⋆) log(q(z|X
⋆)

q(z|X ) )dz quantify-

ing the discrepancy between the true likelihood pdf q⋆ ,

q(·|X ⋆) and the agent likelihood models. Since the diver-
gence is zero iff q⋆ = q(·|X ) almost everywhere (a.e.) w.r.t.
the Lebesgue measure, the Dirac-delta function at X = X ⋆

lies in this objective’s minimizer set. Please note that the
equality of measures is understood in this sense through-
out the manuscript. Additional minimizers would satisfy
the property of observational equivalence; i.e., any two
values Xa,Xb ∈ R

d are observationally equivalent, if the
corresponding likelihoods satisfy q(·|Xa) = q(·|Xb). Ob-
servational equivalence relates the solutions in pdf space
to the vector space of X . Every point Xa observationally
equivalent to X ⋆ is included in the set of minimizers.

As we sequentially sample the true likelihood pdf q⋆,
we aim to find the minimizing argument p of the sam-
ple average approximation w.r.t. zt as shown next. The
optimization presented here follows stochastic program-

ming [40], and we make use of the inner product nota-
tion 〈p1, p2〉 =

∫

p1p2dz, for p1, p2 ∈ Fℓ. From (3),

p⋆ ∈ argmin
p∈Fd

{

E
X∼p

[KL[q⋆, q(·|X )]]

}

=argmin
p∈Fd

{

E
X∼p

[−〈q⋆, log(q(·|X ))〉]
}

(4)

=argmin
p∈Fd

{

E
zt∼q⋆

Ft[p]

}

≡ F⋆,

f [p] = E
zt∼q⋆

Ft[p], Ft[p] = E
X∼p

[− log(q(zt|X ))], (5)

where the first equality in (4), follows from the indepen-
dence of the entropy term

∫

q⋆ log(q⋆) w.r.t. X . The set F⋆

contains pdfs minimizing the objective function in (4). Us-
ing Fubini-Tonelli’s theorem, we switch the data and state
variable integrals to obtain the last equality of (4), defined
using (5). Since q⋆ is unknown, we approximate the expecta-
tion operator in the final equality of (4) in terms of sampled
data in {zt}, and state the estimation problem as follows.

Problem 1 (Centralized estimation). Given observations
{zi,t}ni=1 and known agent likelihoods

∏n
i=1 qi(zi,t|Xi) de-

fined over the subsets of X , find the pdf p ∈ Fd minimizing
the approximation to the objective in (3):

min
p∈Fd

{

1

T

T
∑

t=1

Ft[p]

}

, (6)

where the functional Ft is defined in (5).

Assuming that the estimate pdf p ∈ Fd lies in L1, the
inner product objective defined in (5) exists if the gradient
of the objective is defined in the dual space L∞. Given the
gradient definition δ

δpF [p] = − log(q(z|X )), the dual-space

norm is ‖ δ
δpF [p]‖∞ = supz[− log(q(z|X ))]. Therefore, the

gradient exists if the [− log(q(z|X ))] < ∞ for all choices
of z. We highlight this requirement in the next assumption1.

Assumption 3 (Bounded gradient). The gradient of the
objective functional

∣

∣

δF
δπ (π, z)

∣

∣ = | − log(qi(z|X ))| ≤ L
is uniformly bounded for all π ∈ Fm, z ∈ R

dz . This im-
plies that | log(qi(·|X ))| (resp. qi(·|X )) are uniformly upper
(resp. lower) bounded.

The uniform lower bound on the likelihood 0 < α <
qi(·|X ) has an ‘expected data’ interpretation, i.e., a strictly
positive likelihood of receiving data zi,t at agent i.

The linearity of the objective function with respect to
p and the independence assumptions on the data model
are necessary to derive the algorithms in this work. The
independence across time enables writing the sampling
average, whereas the independence across agents allows us
to obtain a distributed formulation in the following sections
so that each agent i can estimate a copy or a marginal of a
true pdf p⋆.

3 CONVEX FUNCTIONALS AND SEQUENCES

This section reviews the stochastic mirror descent (SMD)
algorithm, and relevant functional analysis and stochastic
sequence results needed to apply it to functional spaces.

1. The assumption makes use of a functional derivative defined in
the following section.
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3.1 The stochastic mirror descent algorithm

The SMD algorithm [41], [42] generalizes stochastic gradient
descent (SGD) to non-Euclidean spaces for convex opti-
mization problems via a divergence operator. Consider an
arbitrary real-valued function f(w,v) that is convex in its
first argument w ∈ R

n for v ∈ R
m in its second argument.

We define an associated stochastic optimization problem as:

min
w

E[f(w,v)] ≈ 1

T

T
∑

t=1

f(w,vt),

where {vt} is a series of independent samples from a
random variable whose distribution defines the expectation
E. Precisely computing gradient with extensive sampling
is computationally expensive. Instead, the SMD algorithm
optimizes iteratively using gradient samples ∇f(w,vt) as,

wt+1 ∈ argmin
w

{

〈∇f(wt,vt),w〉+ 1

αt
Dφ(w,wt)

}

. (7)

Here, 〈·, ·〉 is the inner product on R
n and Dφ(w,wt) is the

Bregman divergence [43] between w and wt.

Definition 1 (Bregman divergence). Consider a continu-
ously differentiable and strictly convex function φ : W ⊆
R
n → R. The Bregman divergence associated with φ for points

w, w̄ ∈ W is Dφ(w, w̄) := φ(w)−φ(w̄)−〈∇φ(w̄),w−w̄〉.
The choice φ(w) = ‖w‖22 makes Dφ the squared Eu-

clidean distance and (7) the standard SGD algorithm. The
convergence rate for the minimization of convex functions
is O( 1√

T
), independently of the problem dimension [42].

3.2 Functional Bregman divergence and derivatives

The stochastic optimization in (6) is defined over the func-
tional space of pdfs Fd. Therefore, we generalize the terms
in (7) to the pdf space Fd to apply the SMD from (6).

Consider functions p, g ∈ L1(Rd). As before, the inner
product notation on L1(Rd) is defined as 〈p, g〉 :=

∫

pgdx,
assuming the existence of this integral. A subset A of L1(Rd)
is convex if and only if αp+ (1− α)g ∈ A for any p, g ∈ A
and α ∈ [0, 1]. Therefore, the set of pdfs Fd defined in (1)
is a closed convex subset of L1(Rd). To define a diver-
gence operator over Fd, we consider the entropy functional
Ψ[p] =

∫

p log(p)dµ for p ∈ Fd. Entropy is continuously
differentiable and strictly convex as (i) Fd is convex, (ii)
x log(x) is strictly convex over the positive real domain,
and (iii) the integration operator is linear, so it holds that
Ψ[αp + (1 − α)g] < αΨ[p] + (1 − α)Ψ[g] for all p, g ∈ Fd,
p 6= g a.e.. The Bregman divergence associated with Ψ is
the Kullback-Leibler divergence KL[p, g] :=

∫

p log(p/g)dµ.
The KL-divergence inherits following properties from the
Bregman divergence [43]:

• (Convexity) The functional KL[p, g] is convex w.r.t.
the first argument p ∈ Fd.

• (Generalized Pythagorean inequality) For pdf’s
p0, p1, p2 ∈ Fd, the divergence terms are related to
the directional gradients of Ψ as,

〈

δΨ

δp
[p2], p0 − p2

〉

−
〈

δΨ

δp
[p1], p0 − p2

〉

= KL[p0, p1]−KL[p0, p2]−KL[p2, p1]. (8)

The extension of SMD to pdfs in Fd requires a definition
of the functional derivative. To evaluate how a functional F
changes in the vicinity of g ∈ L1(Rd), we consider variations
of g defined as g+ǫη, where η ∈ L1(Rd) and ǫ ≥ 0 is a small
scalar. For fixed g, η, F [g + ǫη] is a function of ǫ and limits
can be evaluated in the usual sense.

Definition 2. ([44, p. 16]) Consider a functional F :
L1(Rd) → R and an arbitrary function g ∈ L1(Rd). A linear
functional δF

δg [η] is called the first variation of F at g if for all

η ∈ L1(Rd) and ǫ > 0 we have

F [g + ǫη] = F [g] + ǫ
δF

δg
[η] + o(ǫ),

where o(ǫ) satisfies limǫ→0 o(ǫ)/ǫ = 0.

The first variation of a functional is related to the
Gateaux derivative defined below.

Definition 3. ([45, p. 49]) A functional F : L1(Rd) → R is
Gateaux differentiable at g ∈ L1(Rd), if the limit

F ′[g, η] := lim
ǫ→0+

F [g + ǫη]− F [g]

ǫ
(9)

exists for any η ∈ L1(Rd) and there is an element δF
δg ∈

L1(Rd) such that
∫

δF
δg ηdµ = F ′[g; η]. The element δF

δg is the
Gateaux derivative of functional F .

proposition]theorem For p, g ∈ Fd, we have the
following:

Proposition 0. 1) If Λ[p] = 〈p, g〉, then δΛ
δp = g,

2) if Ψ[p] = 〈p, log(p)〉, then δΨ
δp = 1 + log p,

3) if KL[p, g] = 〈p, log(p/g)〉, then δKL
δp = 1+ log(p/g).

Each of the above first variations allow the computation of the
corresponding Gateaux derivatives following Definition 3.

Proof. See Appendix ??. �

Definition 4. ([46, Definition 2.4]) Let set B(Rd) be the
σ-algebra of the set R

d. The total variation distance (TV)
between two pdfs p0, p1 defined on (Rd,B(Rd)) is,

‖p0 − p1‖TV = sup
A∈B(Rd)

|p0(A)− p1(A)|.

lemma]theorem The KL-divergence between pdfs p, g ∈ Fd

satisfies KL[p, g] ≥ 2‖p− g‖2TV .

lemma]theorem Given functions Ψ0 ∈ L∞ and p, g ∈ L1, it
holds that 〈Ψ0, p− g〉 ≤ 2‖Ψ0‖∞‖p− g‖TV .

Proof. See Appendix ??. �

3.3 Convergent stochastic sequences

To aid with the convergence analysis of the proposed algo-
rithms, we next introduce known sufficient conditions for
convergence of sequences.

Definition 5. A filtration is an increasing nested sequence
of σ-algebras, Z1 ⊆ Z2 ⊆ . . . , where Zt = σ(X1, . . . , Xt).
If St is Zt-measurable, then {St} is {Zt}-adapted.

Definition 6. A {Zt}-adapted sequence {Xt} on the prob-
ability space (Ω, {Zt} ,P) is a martingale difference sequence if
E [|Xt|] < ∞ and E [Xt|Zt−1] = 0, a.s..
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lemma]theorem Let {Xt}∞t=1 be a sequence of non-
negative random variables such that E [X1] < ∞ and
E [Xt+1|X1, . . . , Xt] ≤ (1 + δt)Xt + ǫt, where δt, ǫt are non-
negative deterministic sequences with

∑∞
t=1 δt < ∞,

∑∞
t=1 ǫt <

∞. Then, Xt converges almost surely to some random variable
X∞ ≥ 0.

lemma]theorem Let St :=
∑t

τ=1 Xτ be a martingale with
respect to the filtration Zt on a probability space (Ω, {Zt} ,P).
Let {βt}∞t=1 be a non-decreasing sequence of positive numbers

with limt→∞ βt = ∞. If
∑∞

t=1 β
−p
t E [|Xt|p|Zt−1] < ∞ a.s.

for some p ∈ [1, 2], then limt→∞ β−1
t St = 0 almost surely.

4 CENTRALIZED ESTIMATION

We begin our discussion with designing and analyzing
an estimation algorithm in the centralized setting, as this
provides the necessary components for upcoming sections.
To obtain an iterative update in Fd, we apply the SMD
algorithm to minimize the objective in (6). Then, we prove
the convergence of this algorithm to the set F⋆ composed of
pdfs minimizing the objective defined in (3).

4.1 Centralized SMD algorithm

We define KL[p, pt] as the KL-divergence between p, pt ∈
Fd (c.f. Sec. 3). The generalized SMD algorithm iteratively
minimizes the objective in (6) to generate pdf pt+1 as,

pt+1 ∈ arg min
p∈Fd

{

αt

〈

δFt

δp
[pt], p

〉

+KL[p, pt]

}

. (10)

Let us define the term Jt[p, pt] = αt〈 δFt

δp [pt], p〉 + KL[p, pt]
as the shorthand for the minimization objective at each
iteration. The functional Jt[p, pt] is convex in pdf p as it
is a linear combination of a convex entropy and linear
functionals. The SMD algorithm is guaranteed to optimize
any convex functional F using noisy gradients if the steps
αt satisfy the following condition:

Assumption 4 (Robbins-Monro condition). The positive
step-size sequence {αt} is square-summable but not
summable i.e.

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞.

proposition]theorem The closed-form solution to (10) is,

pt+1 =
1

Zt
exp

(

−αt
δFt

δp
[pt]

)

pt, (11)

where Zt =
∫

exp
(

−αt
δFt

δp [pt]
)

pt.

Proof. See Appendix ??. �

For our specific choice of Ft[p] = −〈log q(zt|X ), p〉,
δFt

δp
[pt] = − log q(zt| X ).

Applying Proposition leads to the following pdf update,

pt+1 = q(zt|X )αtpt/

(
∫

q(zt|X )αtpt

)

. (12)

Assumption 5 (Positive initial probability). The prior pdf at
initial time step is strictly positive, i.e., p0 > 0, ∀X .

Assuming a positive initial pdf is sufficient to estimate
any possible pdfs. A weaker assumption would require
that the positive domain of pdf p⋆ is contained within the
positive domain of the prior p0 > 0.

4.2 Almost sure convergence with centralized SMD

In this subsection, we study the convergence properties
of the estimated pdf pt to the optimal set F⋆ under the
centralized SMD algorithm. The first theorem proves that
the KL divergence between any optimal pdf p⋆ ∈ F⋆ and pt
converges to a constant, while the second result shows that
this constant is zero. To begin, we introduce the divergence
neighborhood of a set of pdfs as,

Definition 7 (ǫ-Divergence neighborhood). The ǫ-
neighborhood B(F⋆, ǫ) of the pdf set F⋆ is given as,

B(F⋆, ǫ) =

{

p ∈ Fd| min
p⋆∈F⋆

KL[p⋆, p] ≤ ǫ

}

.

Here, we choose the order of the pdf arguments in the
divergence term to match the unknowns in the objective
function. This definition aids the upcoming analysis. The
proofs to the following claims are in Appendix ??.

proposition]theorem Let pdf pt+1 in (11) minimize the opti-
mization argument Jt[p, pt] with arbitrary pdf p ∈ Fd in (10),
then the change in divergence in each update is upper bounded as,

KL[p, pt+1]−KL[p, pt] ≤ αt〈
δFt[pt]

δp
, p− pt〉+ 2α2

tL
2.

This previous result relies on the sampled gradient of the
objective δ

δpFt[p], that we next relate to its expected value.
lemma]theorem Under Assumption 3, the gradient of the

expected value of objective functional defined in (5) is equal to
the expectation of its gradient, i.e. δf

δp [pt] = E
zt∼q⋆

δFt

δp [pt].

Next, we will employ Proposition to upper bound the
divergence from the estimate to the optimal set F⋆ to show
convergence of this divergence term.

Theorem 1. Under Assumptions 1-5, the KL-
divergence KL[p⋆, pt] between any minimizer p⋆ ∈ F⋆

and the estimate pt generated by the SMD algorithm in (12)
converges almost surely to some finite value.

Next, we use Theorem 1 to prove almost sure conver-
gence of the divergence terms arbitrarily close to zero.

Theorem 2. Under Assumptions 1-5, the pdf sequence {pt}
generated by the SMD algorithm in (12) converges almost surely
to an ǫ-divergence neighborhood B(F⋆, ǫ) around the set of
minimizers in F⋆ for any ǫ > 0.

Theorem 2 establishes the convergence of the pdf iterates
in centralized SMD algorithm to ǫ-divergence neighborhood
of the optimal set F⋆. We have shown this result for adap-
tive learning rate αt satisfying Robbins-Monro condition.
While this is sufficient to prove almost sure convergence of
the centralized update in (12), we can leverage the existence
of an adaptive learning rate to prove that the objective
function converges at the rate O(1/

√
T ).

Theorem 3. For a natural filtration of observations Zt−1 =
σt(z1, . . . , zt−1), and the adaptive step sizes αt < (f [pt] −
f [p⋆])/2L2, the expected objective function satisfies,

f [p̄t]− f [p⋆] ≤
√

8L2 KL[p⋆, p0]

t
, (13)

where p̄t =
1
t

∑t
k=1 pk and p⋆ minimizes f [p].
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In this section, we have established the weak conver-
gence of pdf estimates in a centralized setting for the pro-
posed SMD algorithm with square summable step sizes.
Additionally, we have shown existence of a decaying step
size that achieves a O(1/

√
t) convergence rate.

5 DISTRIBUTED ESTIMATION

In this section, we present and analyze a distributed esti-
mation algorithm in which each agent updates a pdf for all
variables and shares it with one-hop neighbors. While our
proposed algorithm is similar to [18], [50], our novel analysis
demonstrates almost sure convergence to a common pdf in a
functional space. This analysis is integral for the subsequent
analysis of the marginal distributed algorithm in Section 6.

5.1 Distributed estimation problem

We start by setting up a distributed estimation problem,
noting the separability of the objective function F in (6)
across agents. Since agents sample zi independently, the
likelihood and the data-generating density are separable
across agents as,

q(z|X ) =
n
∏

i=1

qi(zi|Xi), q⋆(zt) =
∏

i∈V
q⋆i (zi,t). (14)

Thus, each component of F can be expressed in terms of
the likelihood of the agents’ private observations. That is,
the centralized objective in (5) separates across agents as
Ft[p] =

∑n
i=1 Fi,t[pi], where,

Fi,t[pi] = E
X∼pi

[− log(qi(zi,t|Xi))]. (15)

Here, the expectation is computed using the variables in Xi

even though the samples from pi contain all variables in X .

Problem 2 (Distributed Estimation). Given observations zi,t
and agent likelihoods qi(zi,t|Xi), for each i ∈ V , find the pdf
pi ∈ Fd minimizing the sample average approximation to
the agent objective defined using Fi in (15) as:

min
pi∈Fd

{

1

T

T
∑

t=1

Fi,t[pi]

}

, s.t. pi = pj , ∀i, j ∈ V, (16)

under the consensus constraint enforcing equal estimates.

5.2 Distributed SMD algorithm

For Problem 2, each agent i learns a copy pi of the pdf
solution p ∈ F⋆. Taking inspiration from the centralized
setting, we deploy the SMD algorithm at any time t to
compute pdf pi,t+1 based on agent i’s local log-likelihood
samples and a prior mixed with neighbor estimates as,

min
p∈Fd

Ji,t[p, vi,t], vi,t =
∏

j∈Vi

(pj,t)
Aij , (17)

Ji,t[p, vi,t] = −〈log qi(zi,t|X ), p〉+ 1

αt
KL[p, vi,t].

To achieve consensus, we substitute the prior pi,t with the
mixed pdf vi,t, a geometric average of neighbor estimates
pj,t weighted by terms Aij satisfying Assumption 2. Thus,
the distributed update at agent i is,

pi,t+1 = qi(zi,t|Xi)
αtvi,t/

(
∫

qi(zi,t|Xi)
αtvi,t

)

. (18)

The work in [18] makes use of geometrically averaged
neighbor estimates to achieve consensus. They analyze the
convergence of probabilities estimated by this algorithm
over compact sets in the domain of variables X . With this
consensus update, [50] shows the convergence of the modes
of estimated pdfs to the same optimizer as the centralized
case. Instead of these probability concentration results to the
optimal parameter, we prove almost sure convergence of the
KL-divergence between the estimated and an optimal pdf in
F⋆ defined over the continuous domain.

Our analysis strategy first studies the relative change
of the algorithm mixing-step with respect to the previous
algorithm iterate with respect to a reference pdf (cf. Sec-
tion 5.3), then provides summable upper-bounds for various
sequential differences (cf. Section 5.4), then uses these to
eventually prove convergence to the optimal probability
density p⋆ (cf. Section 5.5). In what follows, the expected
value of centralized and agent-specific objectives are,

f [p] = E
zt∼q⋆(zt)

Ft[p], fi[pi] = E
zi,t∼q⋆

i (zi,t)
Fi,t[pi],

and their derivatives as δf
δp and δfi

δpi
. By the linearity of the

expectation operator, it follows that f [p] =
∑n

i=1 fi[p]. The
proofs to our claims are presented in Appendix ??.

5.3 Analysis of probability-mixing steps

We first analyze the convergence characteristics of the mix-
ing step; that is the behavior of vi,t relative to pi,t for all
t and i. This analysis entails the definition of a consensus
manifold for the estimated pdfs.

Definition 8. The consensus manifold for a connected
graph G satisfying Assumption 2 is a set M of pdfs that
are a.e. equal to some pdf p̄ ∈ Fd,

M =

{

{pi,t}ni=1 |
n
∑

i=1

KL[p̄, pi,t] = 0, pi,t ∈ Fd, p̄ ∈ Fd

}

.

Note that the estimated pdfs lying on the consensus
manifold are equal a.e. Now, we show that the divergence
between any pdf p ∈ Fd to the estimated pdfs {pi,t}
decreases under the mixing step in (17), unless the pdfs lie
on the consensus manifold. This result is critical to work
with ǫ-divergence neighborhoods around optimal pdfs.

proposition]theorem The sum of divergences between an
arbitrary pdf p ∈ Fd to the estimates pi,t ∈ Fd up-
per bounds the divergence sum to the agent geometric aver-

ages vi,t = 1
Zv

i,t

∏n
j=1 p

Aij

j,t with normalization factor Zv
i,t =

∫

(

∏n
j=1 p

Aij

j,t

)

dX as,

n
∑

i=1

KL[p, vi,t] ≤
n
∑

i=1

KL[p, pi,t],

with equality holding iff pdfs {pi,t} lie on the consensus manifold.

The previous proposition establishes that the sum of di-
vergences from an arbitrary pdf to agent estimates decreases
with the mixing step. The next proposition establishes a
geometric contraction rate for the consensus step of the

algorithm to the network wide average pt ∝
∏n

i=1 p
1/n
i,t .
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proposition]theorem(See [51, Theorem 5]) Under Assump-
tion 2, we have ‖vi,t(x) − pt(x)‖TV ≤ σ(A)‖pi,t(x) −
pt(x)‖TV with σ(A) < 1.

This allows us to later prove distributed estimation guar-
antees similar to Theorem 1. Based on the consensus results,
we continue to analyzing objective functional evaluated at
probability estimates and their geometric average.

5.4 Probability-mixing and algorithm iterate gaps

In this subsection, we prove the sequence of total variation
(TV) distance between terms after likelihood updates are
summable. Summability of positive sequences [52] implies
vanishing terms, and this property aids our convergence
results in the next Subsection 5.5. More specifically, we
upper bound TV distances between the mixed pdf vi,t,
agents’ next estimate pi,t+1, and network wide-averages
pt, pt+1. Next, we upper bound the TV distance between
the mixed prior vi,t and estimate pi,t+1.

proposition]theorem Under Assumption 3, the pdf pi,t+1 min-
imizing the distributed objective Ji,t[p, vi,t] in (17) satisfies,

αtL‖vi,t − pi,t+1‖TV ≤ α2
tL

2

2
.

Note that the upper bound in Proposition relies on the
boundedness of log-likelihood from the Assumption 3. We
show that a similar bound exists for the geometric average

pt ∝
∏n

i=1 p
1/n
i,t , a proxy for centralized estimate.

proposition]theorem Let Assumptions 2-3 hold. Following
the distributed SMD algorithm in (17), the update to the ge-

ometric average pt =
∏n

i=1 p
1/n
i,t /Zt for normalization factor

Zt =
(

∫
∏n

i=1 p
1/n
i,t dX

)

satisfies ‖pt − pt+1‖TV ≤ αtL/2.

The presence of αt in the upper bound limits the relative
error between network estimates at each time step. Now,
we study the convergence of the TV distances between the
agent estimates pi,t to the geometric average pt and the
true pdf p⋆. To establish vanishing distances, we bypass the
need for a geometric rate of contraction like Proposition by
showing the summability of this sequence with distance
terms. The following technical result relates the difference
between objective functions at these pdfs to the TV distance.

proposition]theorem For the pdf estimates in (18), the sum
of objectives is upper bounded as αt

∑n
i=1(fi[p

⋆] − fi[vi,t]) ≤
2σαtL

∑n
i=1 ‖pt − pi,t‖TV for σ < 1.

Now, we show that the upper bounding distance be-
tween the average pt and estimate pi,t in Proposition is
summable. With decaying step-size αt, this implies that
the individual estimates would converge to their geometric
average. In comparison to the last subsection, here the
averages include the likelihood updates across time.

proposition]theorem Under Assumptions 2-3, the updates
in (17) lead to a summable sequence of distance terms
αtL

∑n
i=1 ‖pt − pi,t‖TV between the geometric average pt and

agent estimates.

5.5 Almost sure convergence with distributed SMD

Aided by the preliminary results, we prove the convergence
of the distributed estimation algorithm with the next two
theorems. The first theorem shows almost sure convergence

of the KL-divergence between the estimated and true pdf to
a finite positive value, and the next one proves existence of
a subsequence of pdf estimates to the optimal set.

Theorem 4. Under Assumptions 1-5, the divergence func-
tional

∑n
i=1 KL[p⋆, vi,t] of the mixed pdf sequence {vi,t}i∈V

generated via distributed SMD algorithm in (17) almost surely
converges to some non-negative value.

Next, we show that the divergence sum in Theorem 4
converges arbitrarily close to zero.

Theorem 5. Under Assumptions 1-5, the sequence {vi,t} gener-
ated by applying distributed SMD algorithm in (17) converges
almost surely to ǫ-divergence neighborhood B(F⋆, ǫ) around
optimal pdf set F⋆ for any ǫ > 0.

This proves that the pdf estimates generated by the
proposed algorithm in a connected network almost surely
converge to the set of optimal pdfs. Based on the proposed
distributed estimation algorithm and its analysis, we will
extend our discussion to estimating marginal pdfs over
subset of variables X in connected networks.

6 DISTRIBUTED MARGINAL ESTIMATION

In several inference problems over networks, the data likeli-
hood at a node depends on the state of that node and its one-
hop neighbors, rather than the entire network. Motivated
by this, this section extends the distributed SMD algorithm
to find marginal densities defined over a relevant subset
of variables at each node. First, we derive a distributed
estimation objective, then modify the algorithm to store
and update pdf over node-specific variable sets, and finally
discuss the convergence properties.

6.1 Distributed Marginal Estimation Problem

We aim to estimate the marginal density of local subsets of
variables Xi at each agent i. This is enabled by Assumption 1
that establishes the independence among the observations
zi,t generated using likelihoods qi(zi,t|Xi) at agents i ∈ V .
Let us denote the set of variables common to agents i, j as
Xij = Xi ∩ Xj . For a well-posed estimation problem, we
assume the existence of a communication pathway between
agents i, j estimating any common variables in Xij .

Assumption 6 (Marginal consensus). The set of agents
V(xi) ⊆ V estimating the same variable xi ∈ R

di in-
duces a connected subgraph G(xi) of G with edge set
E(xi) = {(j, k) ∈ E|∀j, k ∈ V(xi)}.

For a given communication network, the problem of
assigning connected subgraphs to estimate particular vari-
ables is NP-hard, with a feasible solution presented in [32].
We will leverage this assumption to design our marginal
estimation algorithm, and show that it achieves consistent
estimates on the relevant subspaces.

We follow the distributed SMD derivation in Section 5 to
distribute the centralized estimation objective in (3) along
the agents’ independent observations. We first drop the
entropy term unrelated to the optimization argument of
the objective in (3). Then, the observational independence
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in (14) allows us to define objective functionals of marginal
pdfs pi(Xi) integrated along individual observations as,

min
p

E
X∼p

[KL[q⋆(z1:n), q(z1:n|X )]]

= min
p

E
X∼p

∑

i∈V

[
∫

z1:n

− q⋆(z1:n) log(qi(zi|Xi))

]

= min
p

∑

i∈V
E

Xi∼pi

[
∫

zi

− q⋆i (zi) log(qi(zi|Xi))

]

=
∑

i∈V
min
pi

E
Xi∼pi

E
zi∼q⋆i

[− log(qi(zi|Xi))] = min
p

f [p],

where each pdf pi(Xi) ∈ Fdi
is a marginal of the joint

pdf p(X ) ∈ Fd and di is the dimension of Xi. Making the
objective f [p] distributed along marginals pi(Xi) is possible
with additional equality constraints on the shared states Xij .
These constraints are represented as agreement on marginal
pdfs pi, ∀i ∈ V over shared variables as,
∫

pi(Xi)dx|x∈Xi\Xij
=

∫

pj(Xj)dx|x∈Xj\Xij
, ∀(i, j) ∈ E ,

where
∫

pjdx|x∈Xj\Xij
defines an integral over all variables

in the set Xj\Xij . As before, a finite objective allows using
Fubini-Tonelli’s theorem to switch the order of expectations.
Along with a sample-average approximation of the integral
over data in {zi,t}, the online objective is expressed as,

min
p

f [p] =
∑

i∈V
min
pi

fi[pi],

fi[pi] = E
zi∼q⋆i

E
Xi∼pi

[− log(qi(zi|Xi))]

≈
∑

i∈V
min
pi

T
∑

t=1

E
Xi∼pi

[− log(qi(zi,t|Xi))].

Thus, the distributed objective at time t becomes,

Fi,t[pi] = E
Xi∼pi

[− log(qi(zi,t|Xi))]. (19)

Problem 3 (Distributed marginal estimation). Given obser-
vations zi,t and agent likelihoods qi(zi,t|Xi) at any agent
i ∈ V , find pdf pi ∈ Fdi

minimizing:

min
pi∈Fdi

{

1

T

T
∑

t=1

Fi,t[pi]

}

, s.t. pi(Xij) = pj(Xij), (20)

for all agents i, j ∈ V over the marginal pdfs pi(Xij) =
∫

pi(Xi)dx|x∈Xi\Xij
.

6.2 Distributed Marginal SMD Algorithm (DMSMD)

Similar to Sec. V, each agent i applies the SMD algorithm
to its local objective in (20), with two exceptions. Firstly, the
agents locally estimate a pdf over relevant variables pi,t(Xi),
and secondly, they enforce marginal consensus constraint
equating agent i’s marginal pij =

∫

Xi\Xij
pi to agent j’s

marginal pji. As before, the likelihood update follows from
the Gateaux derivative δ

δpi
Fi,t[pi] = − log(qi(zi,t|Xi)) as

computed for linear functional in Proposition [ 0 .
Each agent i co-estimates some variables with its one-

hop neighbors. Therefore, it merges neighbor j’s informa-
tion over shared variables Xij to own estimate on distinct
variables Xi\Xij . The incoming density over the shared
variables is pji,t(Xij) and the self-conditional density at

agent i over distinct variables w.r.t. neighbor j is given
by pi,t(Xi\Xij |Xij). The marginal agreement is enforced
with geometric averaging on self-conditional and neighbor-
marginals product p̃ji,t as,

vi,t =
1

Zv
i,t

∏

j∈Vi

(p̃ji,t)
Aij , Zv

i,t =

∫

∏

j∈Vi

(p̃ji,t)
Aij , (21)

p̃ji,t = pi,t(Xi\Xij |Xij)pji,t(Xij), (22)

pji,t(Xij) =

∫

pj,t(Xj)dx|x∈Xj\Xij
.

Now, applying the SMD algorithm with the gradient de-
fined as negative log-likelihood sample in Section 5, and the
mixed pdf vi,t in (21), the marginal consensus estimation is
performed as follows,

pi,t+1(Xi) ∈ argmin
p∈Fdi

Ji,t[p, vi,t], (23)

Ji,t[p, vi,t] =

{

αt

〈

δFi,t

δp
[pi,t], p

〉

+KL[p, vi,t]

}

.

We summarize the updates for agent i at time t in Algo-
rithm 1. The algorithm consists of edge merging, geomet-
ric pooling, likelihood update and message generation.
At each agent, these steps correspond to self-conditional
and neighbor-marginal products, their weighted average,
Bayesian likelihood update, and generation of marginal
densities for its neighbors.

In comparison to the distributed algorithm in Section 5,
estimating the marginals reduces the set of stored variables
at agent i to Xi with dimensions di < d. The size of the
communicated messages reduces from a pdf in Fd over
all network variables to a partial set Xij shared between
sensors i, j. Although, each node additionally computes
the conditional density. The trade-off between memory and
computation depends on the average degree in the network.

Following the previous section on distributed algorithm,
our analysis strategy first discusses the monotonic con-
vergence of estimates under marginal mixing step to an
invariant consensus manifold defined later (cf. Section 6.3). ,
and then presents a specific independent variable setting for
similar results in terms of total variation distances (cf. Sec-
tion 6.4). We use them to establish summable upper-bounds
for sequential differences between marginal estimates, and
eventually prove convergence to the marginals of the opti-
mal probability density p⋆ (cf. Section 6.5). All proofs to the
claims in this section are in Appendix ??.

6.3 Marginal Consensus Analysis

In this subsection, we establish the invariance and conver-
gence properties of the marginal consensus steps defined
in (21). We define a marginal consensus manifold and ana-
lyze convergence of the consensus steps to this manifold.

Definition 9. The marginal consensus manifold for
a graph G that satisfies Assumption 6 is a set
M =

{

{pi,t}ni=1 |
∑n

i=1 KL[p̄i, pi,t] = 0, pi,t ∈ Fdi
, p̄ ∈ F

}

of marginal pdfs consistent with some joint pdf p̄ ∈ F .

The manifold consists of coherent marginals of some
joint pdf p̄ with pi,t = p̄i ∈ Fdi

for all agents. The following
technical result shows that the product of normalization
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Inputs: estimate pi,t(Xi), weights {Aij}j∈Vi , neighbor
messages pji,t(Xij), measurement zi,t,
measurement model qi(zi,t|Xi)

// Receive neighbor messages.

for j ∈ Vi do
Common marginals at neighbors
pji,t(Xij) =

∫
Xj\Xij

pj,t(Xj)

// Combine neighbor estimates.

for j ∈ Vi do
Product of j’s marginal and i’s conditional:
p̃ji,t = pi,t(Xi\Xij |Xij)pji,t(Xij)

Weighted average: vi,t(Xi) :=
∏

j∈Vi
p̃ji,t(Xi)

Aij

// Bayesian update.

pi,t+1(Xi) = qi(zi,t+1|Xi)vi,t(Xi)
Algorithm 1: Marginal density averaging at agent i

factors of mixed pdfs obtained after applying (21) to pdfs
in the marginal consensus manifold M is 1.

proposition]theorem The product of normalization factors
of mixed marginals satisfies

∏n
i=1 Z

v
i,t = 1, where Zv

i,t =
∫
∏n

j=1 (p̃ji,t)
Aij dXi, if and only if the original pdfs {pi,t} lie

on the marginal consensus manifold M.

Next, we establish that the sum of KL divergences de-
creases strictly due to marginal mixing step if the agent pdfs
are not on the marginal consensus manifold.

proposition]theorem For any pdf p ∈ F , the mixed and
original pdfs {vi,t}, {pi,t}, defined in the mixing step (23), satisfy

n
∑

i=1

KL[pi, vi,t] ≤
n
∑

i=1

KL[pi, pi,t],

with equality if and only if the original pdfs {pi,t} lie on the
marginal consensus manifold M in Definition 9.

To study convergence properties of marginal consensus

manifold, denote p
(k)
i,t as the pdf computed at agent i after

the k-step marginal mixing from (21) on estimated pdfs

{pi,t}. For instance, mixed pdf vi,t = p
(1)
i,t . Based on the

consensus properties established in Propositions -, we show

that the pdfs p
(k)
i,t converge to the marginal pdfs p̄i,t in the

marginal consensus manifold M of Definition 9.
proposition]theorem Repeated application of the marginal

consensus steps in (21) to pdfs {pi,t} leads to a limit pdf

limk→∞ p
(k)
i,t that lies in the marginal consensus manifold in

Definition 9.

As a consequence of Proposition , the estimates after
marginal mixing converge to marginals p̄i,t on the manifold
M consistent with some joint pdf p̄t,

p̄i,t(Xi) =

∫

X\Xi

p̄t(X ), ∀i ∈ V. (24)

Since we do not have an explicit form for the pdf p̄t, we
study its properties in a specific case, where the pdf is
independent w.r.t. the variables in X .

6.4 Marginal Consensus with Independent Variables

We begin by recalling the mixing properties established for
the distributed setting in Propositions -. We list the desired
properties for p̄t in the following conjecture and prove them
for a special case with independence over the variables in
X .

Conjecture 1. For vi,t defined in (23) and arbitrary joint pdf
p̄t, ‖vi,t − p̄i,t‖TV ≤ σ(A)‖pi,t − p̄i,t‖TV for σ(A) ∈ (0, 1)
and ‖p̄t − p̄t+1‖TV ≤ (c− 1)αtL/2 for some c > 1.

We consider the following special case where the esti-
mated probabilities pi,t are independent w.r.t. each variable
x ∈ Xi, the set of variables estimated by agent i as,

pi,t(Xi) =
∏

x∈Xi

pi,t(x). (25)

Since Assumption 6 assigns a connected subgraph G(x) to
any variable x, the resulting mixed pdf is expressed in terms
of independent pdf components at x as,

vi,t(x) ∝
∏

j∈V\V(x)

pi,t(x)
Aij

∏

j∈V(x)

pj,t(x)
Aij .

Next, we will use this form to show that computing an in-
dependent component of agent estimates pi,t+1(x) involves
multiplying the mixed pdf component with a bounded
likelihood similar to the Assumption 3.

lemma]theorem Assuming that the mixed pdfs vi,t are inde-
pendent w.r.t. variable x ∈ Xi, we can represent agent i’s update
w.r.t. any variable at time t as,

pi,t+1(x) ∝ qi(zi,t|x)αtvi,t(x),

with the agent-variable likelihood,

qi,t(zi,t|x)αt =

∫

qi(zi,t|Xi)
αt

∏

y∈Xi\x
vi,t(y)dXi\x

satisfying qi,t(zi,t|x)αt ∈ [e−αtL, eαtL].

Since the estimates pi,t converge to consensus manifold
M, we now prove a geometric convergence bound for the
independent form of p̄t specified as follows,

p̄t(X ) =
∏

x∈X
p̄t(x), p̄t(x) ∝

∏

j∈V(x)

pj,t(x)
1

|V(x)| .

lemma]theorem For vi,t defined in (23) with connectivity
requirements in Assumption 2, additional variable independence
assumption, and geometric average p̄t in (25), we have the TV dis-
tance ‖vi,t(x)−p̄t(x)‖TV ≤ σ‖pi,t(x)−p̄t(x)‖TV with σ < 1
and ‖p̄t − p̄t+1‖TV ≤ (c− 1)αtL/2 with c = 1 + 2m.

6.5 Almost Sure Convergence of DMSMD

Using the upper bounds computed for independent densi-
ties, we guarantee almost-sure convergence of the iterates
to the marginal pdfs. The presentation here borrows from
the distributed SMD algorithm analysis, with the following
propositions establishing bounded iterate gaps similar to
Section 5.4 and the final two theorems proving almost sure
convergence as Section 5.5.

As discussed in Section 5.4, summability of positive
upper bounds on the iterate gaps implies their asymptotic
convergence to zero. To this end, the next proposition up-
per bounds the TV distance between estimates across the
likelihood update.

proposition]theorem The pdf pi,t+1 minimizing Ji,t[p, vi,t]
defined in (23) satisfies, ‖vi,t − pi,t+1‖TV ≤ αtL/2.
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For the following analysis, we consider the marginals of
the optimal pdf p⋆(X ) defined as,

p⋆i (Xi) =

∫

Xi\Xi

p⋆(X ). (26)

We next produce an upper bound similar to Proposition ,
but for the gap between the objective function evaluated at
mixed estimate to true marginal.

proposition]theorem The term
∑n

i=1(fi[p
⋆
i ]−fi[vi,t]) is upper

bounded by the distances σ(A)
∑n

i=1 L‖p̄i,t − pi,t‖TV .

Now, we show summability of the upper bound in
Proposition containing the TV distance between marginal
average p̄i,t to the agent estimate pi,t. With square
summable αt [52], this implies asymptotic convergence of
the two pdfs.

proposition]theorem With Proposition and Conjecture 1, the
sequence with terms at = σ(A)αtL

∑n
i=1 ‖p̄i,t − pi,t‖TV is

summable.

proposition]theorem Assuming Conjecture 1 holds, the se-
quence αtL‖p̄t − p̄t(X|Xi)vi,t‖TV is summable for any i ∈ V .

Since the estimated pdfs are defined over distinct spaces,
we define a neighborhood-based divergence metric relating
marginal densities at any agent to the complete pdf.

Definition 10. Define the ǫ-neighborhood of a marginal p⋆i
of p⋆ ∈ F⋆ as:

Bi(F⋆, ǫ) =

{

pi ∈ Fdi
| min
p⋆∈F⋆

KL[p⋆i , pi] ≤ ǫ, p⋆i =

∫

X\Xi

p⋆
}

.

As seen in prior sections, we employ the preliminary
results to prove the convergence of the DMSMD algorithm
with the next two theorems. The first theorem shows al-
most sure convergence of the KL-divergence between the
estimated and marginals of the true pdf to a finite positive
value, and the next one proves that the finite value is
arbitrarily close to zero.

Theorem 6. Under Assumptions 1-6 and Conjecture 1, the di-
vergence functional

∑n
i=1 KL[p⋆i , vi,t] of pdf sequences {vi,t}i∈V

generated by applying the distributed SMD algorithm in (23)
almost surely converges to some finite value.

Theorem 7. Under Assumptions 1-6 and Conjecture 1, the
marginal pdfs vi,t generated by the distributed marginal algorithm
in (23) for any agent i ∈ V converge almost surely to the partial
neighborhood Bi(F⋆, ǫ) around optimal set F⋆ for any ǫ > 0.

7 DISTRIBUTED MARGINAL GAUSSIAN VARIA-

TIONAL INFERENCE

In this section, we specialize the distributed algorithms in
Sections 5 and 6 for Gaussian estimates. At each agent, im-
plementing the proposed algorithms is a two-step process:
mixing the neighbor priors, and updating the likelihood.

Marginal mixing requires computing the Gaussian con-
ditionals and marginals, and their product and geometric
averages. Algorithm 2 computes this mixed Gaussian pdf
vi,t(Xi) using the derivations in our prior work [36]. This
algorithm trivially holds for the standard distributed setting
with conditional-marginal product equal to the neighbor
estimate, i.e. p̃ji,t = pj,t. Here, we represent a Gaussian

random variable with mean µ and information matrix Ω
as N (µ,Ω−1), and its density function as φ(·|µ,Ω−1).

Inputs: estimate pi,t = φ(Xi|µ,Ω
−1), weights

{Aij}j∈Vi , neighbor estimates pj,t(Xj)
// Receive marginals from neighbors.

for j ∈ Vi do
Compute marginal pji,t using [36, Lemma 1] over
Vij

// Combine neighbor estimates.

for j ∈ Vi do
Use [36, Lemma 2] to compute conditional pdf
pi,t(X1|X2) with separate variables X1 = Xi\Xij

and shared variables X2 = Xij

Compute p̃ji,t(Xi) by multiplying i’s conditional
with marginal pji,t using [36, Proposition 3]

Compute mixed pdf vi,t(Xi) using [36, Lemma 3] over
p̃ji,t(Xi)

Algorithm 2: Marginal density mixing at agent i

Next, we express an analytic form of the likelihood
update step in Algorithm 1 assuming that the prior mixed
pdf vi,t and posterior pi,t+1 are Gaussian. The analytic
updates associated with the linear log-likelihood setting was
presented in [36] is given as,

lemma]theorem Let the likelihood density be qi(zi,t|Xi) =
φ(zi,t|HiXi, Vi). Then, the posterior obtained as the product
of the likelihood and prior φ(zi,t|HiXi, Vi)φ(Xi;µ,Ω

−1
i ) is a

Gaussian distribution:

N
(

(HT
i ViHi +Ωi)

−1(HT
i Vizi,t +Ωiµi), (H

T
i ViHi +Ωi)

−1
)

.

For the non-linear log-likelihood qi(zi,t+1|Xi) that does
not yield an analytic update, one can approximate the
likelihood update using distributed Gaussian variational
inference [53] on the mixed pdf pvi,t = φ(·|µv

i,t,Ω
v
i,t) as,

Ωi,t+1 = Ωv
i,t − Epv

i,t
[∇2

Xi
log qi(zi,t+1|Xi)],

µi,t+1 = µv
i,t + (Ωv

i,t)
−1

Epv
i,t
[∇Xi

log qi(zi,t+1|Xi)].

In the partial distributed mapping example explained
later, we implement this algorithm to estimate Gaussians
with diagonal covariance matrices. Therefore, we present a
modified mixing step for the marginal distributed estima-
tion algorithm in the following lemma.

lemma]theorem Assume that agent i receives observation
zi,t+1 with likelihood qi(zi,t+1|Xi) and neighbor estimates
pj,t(Xj) = N (Xj |µj,t,Ω

−1
j,t ) at time t. Upon weighing neigh-

bor opinions with elements of matrix A, the mean µi,t+1 and
information matrix Ωi,t+1 of the pdf pi,t+1 is,

Ω̃ji,t = RijΩj,t + SijΩi,t, µ̃ji,t = Rijµj,t + Sijµi,t (27)

Ωv
i,t =

∑

j∈V
AijΩ̃ji,t,Ω

v
i,tµ

v
i,t =

∑

j∈V
AijΩ̃ji,tµ̃ji,t

Ωi,t+1 = Ωv
i,t − Evi,t

[∇2
X log qi(zi,t+1|Xi)],

µi,t+1 = µv
i,t + (Ωv

i,t)
−1

Evi,t
[∇X log qi(zi,t+1|Xi)],

where mixed pdf vi,t = φ(Xi|µv
i,t,Ω

v
i,t), and matrices Rij ∈

{0, 1}di×dj and Sij ∈ {0, 1}di×di . Here, Rij [si, sj ] = 1
where si, sj are indices in agents i, j corresponding to a common
variable. The matrix Sij is a diagonal matrix with 1 at variable
index distinct from agent j.

Proof. The updates on marginals and distributed
consensus follow from prior discussion. The matrices S,R
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match the indices between the agents and hypotheses to
compute the diagonal information matrices. �

Distributed Relative Localization: An Example

We consider a network of n = 8 agents aiming to esti-
mate their positions xi ∈ R

2 using noisy relative position
measurements. To ensure a unique solution, we assume the
presence of an anchor agent with known position at (0, 0).
Each agent i observes the relative position of its neighbor
j sampled as zij ∼ N (xi − xj ,Ω

−1
ij ). The relevant set of

variables at agent i is thus given by Xi = {xj}j∈Vi
. The

combined observation model at agent i for the observations
relative to its neighbors zi = {zij}j∈Vi

is,

qi(zi|Xi) =
∏

j∈Vi

qi(zij |xi,xj). (28)

The doubly stochastic matrix A represents agent communi-
cation as described in Assumption 2. We first mention the
application of our distributed and marginal estimation algo-
rithms, followed by standard and circular BP algorithms.

In the distributed setting, each agent i maintains a
Gaussian distribution N (µi,t,Ω

−1
i,t ) with pdf pi,t(X ) at time

step t over all unknown variables X = [x⊤
1 , . . . ,x

⊤
n ]

⊤. The
corresponding observation model in (28) is expressed in

terms of the variable X as qi(zi,t|X ) = N (zi,t|H(d)
i X , V

(d)
i )

where H
(d)
i ∈ R

d×nd. Each step in the distributed SMD
algorithm in (18) at agent i uses data likelihood qi(zi,t|X ),
and neighbor pdfs pj,t(X ) and weights Aij for neighbors
j ∈ Vi, to obtain the mixed pdf vi,t(X ) as:

N ((Ωg
i,t+1)

−1(
∑

j∈Vi

AijΩj,tµj,t), (Ω
g
i,t+1)

−1),

where Ωg
i,t+1 =

∑

j∈Vi
AijΩj,t. This is followed by the

Gaussian likelihood update in Lemma using the mixed pdf

vi,t(X ) and the Gaussian likelihood N (zi,t|H(d)
i X , V

(d)
i ).

Next, we consider the marginal estimation setting, where
each agent i estimates a pdf over the set of relevant variables
Xi, given by the vectorized version of {xj}j∈Vi

. For this
setting, we express the observation model given in (28) as

qi(zi,t|Xi) = N (H
(m)
i Xi, V

(m)
i ). We implement the Gaus-

sian version of the marginal estimation using the mixed pdf
update in Algorithm 2 followed by the likelihood update
defined via the update in Lemma .

Next, we will describe the BP algorithm and a recent
circular BP version [38], with further details in [27]. The
BP algorithm allows the network to estimate a density of
the form

∏

i∈V pi,t(xi), such that agent i estimates the pdf
pi,t(xi). In an undirected network, each agent i generates
a message mij,t(xj) for its neighbor j at time t, and vice-
versa. Then, agent i merges the neighbor messages to form
its own belief, and computes their marginal to generate the
next set of messages as follows,

mij,t+1(xj) =

∫

xi

qi(zij |xi,xj)pi,t(xi)
∏

k∈Vi\{j}
mki,t(xi)

pi,t+1(xi) ∝ pi,t(xi)
∏

k∈Vi

mki,t(xi) (29)

A recent version named circular BP [38] relies on scaling
the message mji,t−1(xj) with a symmetric pair-specific
coefficients dependent on (j, i):

mij,t+1(xj) ∝
∫

xi

qi(zij |xi,xj)
βij (30)

(

pi,t(xi)
γimji,t(xi)

1−αij
κi

∏

k∈Vi\{j}
mki,t(xi)

)κi

.

With αij = βij = κi = γi = 1, this algorithm re-
duces to the standard BP. There exists a sufficiently small
αij = αji = α ∈ (0, 1) and the rest of the terms equal to
one satisfying the convergence criterion in [38, Theorem 5.2],
and further details in [27]. The theoretical fixed-point anal-
ysis in this work, however, remains limited to estimating
binary probabilities. The Gaussian version of the update rule
is derived in the following lemma.

lemma]theoremGiven data zij sampled by agent i from the
likelihood φ(zij |xj −xi,Ω

−1
ij ), prior self and neighbor messages

φ(xi;µ
(m)
ji,t , (Ω

(m)
ji,t )

−1) for j ∈ Vi, the circular BP message with
αij = α ∈ (0, 1) and βij = γi = κi = 1 to agent j is,

Ω
(m)
ij,t+1 = Ωij − Ωij(Ω

g
ij,t +Ωij)

−1Ωij

µ
(m)
ij,t+1 = zij + (Ω

(m)
ij,t+1)

−1Ωij(Ω
g
ij,t +Ωij)

−1Ωg
ij,tµ

g
ij,t

where the information matrix is Ωg
ij,t+1 = Ωi,t +

(1 − α)Ω
(m)
ji,t +

∑

k∈Vi\{j} Ω
(m)
ki,t and the mean is

µg
ij,t+1 = (Ωg

ij,t+1)
−1(Ωi,tµi,t + (1 − α)Ω

(m)
ji,t µ

(m)
ji,t +

∑

k∈Vi\{j} Ω
(m)
ki,tµ

(m)
ki,t ).

Proof. We start by noting that for αij = α, the product

of the densities
(

pi,t(xi)mji,t(xi)
1−α

∏

k∈Vi\{j} mki,t(xi)
)

is given by the Gaussian with parameters pgij,t(xi) =
φ(µg

ij,t+1,Ω
g
ij,t+1). Next, we define x̄j = xj − zij and start

with expressing the integral coefficient in terms of xi as,
∫

qi(zij |xi,xj)p
g
ij,t(xi)dxi

∝
∫

exp

(

−1

2
[x⊤

i (Ω
g
ij,t +Ωij)xi − 2x⊤

i (Ω
g
ij,tµ

g
ij,t +Ωijx̄j)

+(µg
ij,t)

⊤Ωg
ij,tµ

g
ij,t + x̄

⊤
j Ωijx̄j ]

)

dxi.

Next, we recall from [54, Fact 14.12.1]
∫

exp(− 1
2x

⊤Ax +

c
⊤
x + a) =

√
2πA−1 exp

[

1
2c

⊤A−1
c+ a

]

for a symmetric
matrix A ∈ R

d×d, c ∈ R
d, a ∈ R. We can compute the

mean and information matrix of the marginal by setting A =
Ωg

ij,t+Ωij , c = Ωg
ij,tµ

g
ij,t+Ωijx̄j and a = (µg

ij,t)
⊤Ωg

ij,tµ
g
ij,t+

x̄
⊤
j Ωijx̄j . The terms containing x̄j in c

⊤A−1
c+ a are,

−x̄
⊤
j (Ωij − Ωij(Ω

g
ij,t +Ωij)

−1Ωij)x̄j

+ 2x̄⊤
j Ωij(Ω

g
ij,t +Ωij)

−1Ωg
ij,tµ

g
ij,t,

which yields the final result. �

We compared the distributed, marginal, BP, and circular
BP algorithms in estimating the agent positions in an 8-
agent network. Each agent collects data from the model
with Ωij = I2 and initializes their mean µi,0 at (0, 0).
The evolution of position means µi,t and their error with
respect to the true positions xi are shown in Fig. 1. The BP
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Figure 1. Trajectories of estimated node positions µi,t in an 8 agent ring network with true positions shown as blue squares (top). Estimation error
‖µi,t − xi‖ over 1600 time steps (bottom).

Figure 2. Plots of the 500-step average localization error, given by 1/n
∑

i∈V ‖µi,t − xi‖, using belief propagation, circular belief propagation, the
proposed marginal estimation, and full state estimation algorithms in an 8 node network. The comparisons span measurement noise variances
Σij = bI2 for b ∈ {1, 2, 5, 10} and network connectivities ranging from a line graph with 7-edges to a 27-edge fully connected one.

algorithms converge slower than the proposed distributed
and marginal SMD algorithms.

Fig. 2 compares the performance of various algorithms
as the noise levels and graph connectivity vary. The chosen
performance metric is the estimation error of each algorithm
at time step T = 500, after all algorithms have converged.
Each of the six subplots represents a different graph with 8
nodes, ranging from a line graph (7 edges, leftmost subplot)
to a fully connected graph (27 edges, rightmost subplot).
In each subplot, estimation error (y axis) is plotted for
algorithms implemented using noisy data sampled with
information matrix value (x axis) , bI2, with magnitudes
b = 1, 2, 5, 10. We present the circular BP algorithm results
with αij = 0.8 for all i, j ∈ V .

From the plots, we note that the best performing algo-
rithm across the board is the full state estimation algorithm,

showing negligible error for all graphs and error levels.
This is ascribed to the tracking and sharing of individual
agent probabilities defined over all unknown variables.
Taking this as a baseline, we can observe that the proposed
algorithm follows closely to this, and provides lower error
values over sparser graphs (3 left subplots) than other
algorithms for all noise levels. The error of the proposed
algorithm increases as the graph becomes more dense and
the noise increases (values for b = 10 on the 3 right sub-
plots.) In this case the performance of the belief propagation
algorithm surpasses the proposed algorithm’s; however, this
performance difference is small and comparable.

Further, we see that circular BP is the least accurate on
sparse graphs as we increase observation noise magnitude,
owing to insufficient countering of the loop effects in cir-
cular BP algorithm. In denser graphs, the errors remain too
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close to compare.

Distributed Mapping: An Example

In this section, we apply the marginal estimation algorithm
to distributed mapping. Please see [36] for a simpler exam-
ple solving relative localization problem with linear obser-
vation model, where both the agent observation models and
their estimates depend on self and neighbor states. In this
multi-robot setting, each robot follows their own trajectory
allowing them to gather data describing a portion of the
map. Here, the challenge arises from the ability to achieve
consensus over common areas by sharing partial informa-
tion relevant to another robot’s map. With the knowledge
of observation models describing gathered data, the agents
thus share a subset of the model parameters to collectively
create a map of the entire space. Here, we use LiDAR post-
processed distance data to obstacles for generating points in
the free and occupied spaces.

Consider n = 7 robots collecting data of the form
z = (x, y) where x is a point in the observed space and
y is a binary variable indicating free or occupied status.
The point x can be embedded into the feature space using
kernel functions ks(x) = γ1 exp(−γ2‖x − x(s)‖2) centered
at x(s) and rescaled with parameters γ1, γ2 > 0 chosen
to suit the domain and regularity of the model. In the
partial distributed setting, this vector embedding at agent i
is Φi(x) = [1, ki1(x), . . . , kif (x)] ∈ R

mi+1. Since some of
the kernel functions are shared with neighboring agents, the
number of kernels is m <

∑

i mi. The modeled likelihood
of an observation z = (x, y) at agent i with input x ∈ R

ℓi−1,
feature Φi(x), and label y ∈ {0, 1} is,

q(z|Xi) = σ(Φi(x)
⊤Xi)

y(1− σ(Φi(x)
⊤Xi))

1−y, (31)

where Xi are the agent relevant weights and σ is the sig-
moid function. The consensus constraint enforces equality
of the weights assigned to common kernel functions in the
agent models. To understand the role of any element iℓ in
parameter Xi for constructing a map, note that its positivity
emphasizes the confidence in occupancy prediction around
feature point xiℓ and vice-versa.

In a marginal distributed setting, agent i models the
spatial occupancy in terms of kernels centered at relevant

feature points
{

x(s)
}if

s=i1
out of a fixed set of 1000 such

points across the entire map. We construct these subsets by
selecting feature points whose distance to agent i’s trajectory
are under a threshold. For a distance threshold of 50-units,
the number of parameters observed by the seven agents is
(208, 195, 247, 188, 180, 224, 216), thus bringing the number
of variables across agents down from 7K to 1458 parameters.
Out of the 216 parameters at the last agent, the number
of parameters common with others is (62, 66, 88, 41, 11, 42).
The agent training datasets at each agent contain 80K-100K
points and the verification sets consist of 3K-3.7K points
approximately. If any two agent likelihood models contain
the same feature point x(s), then they communicate through
the network A to consent over common weight parameters.

In Figure 3, we present the robot trajectories for data col-
lection, the training set, and the distinct and shared feature
points embedded in the relevant space at two of the robots.

For generating the map, we use Lemma in conjunction with
[53, Lemma 4] to simplify the expected gradient and Hessian
terms. The predictions on the verification set is presented
in Figure 4, with maps estimated by individual agents in
center figure, with error on agent-specific verification sets
on the right of Figure 4.

8 CONCLUSION

This work designs and analyzes a novel distributed esti-
mation algorithm for estimating marginal densities over
relevant variables at each agent in an inference network.
The Bayes-like distributed algorithm is designed from a
stochastic mirror descent perspective, with almost sure
convergence guarantees. Based on our analysis, we claim
that any consensus rule with a geometric convergence rate
can be coupled to stochastic mirror descent to convergence
almost surely to the optimal pdf. This insight has far-
reaching implications for developing distributed estimation
algorithms in several metric spaces. The distributed map-
ping implementation demonstrates the vast storage savings
due to the proposed algorithm. This algorithm can reduce
storage and communication costs in networked estimation
problems, based on computation-communication trade-offs.
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