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Riemannian Optimization for Active Mapping with Robot Teams
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Abstract—Autonomous exploration of unknown environments
using a team of mobile robots demands distributed perception
and planning strategies to enable efficient and scalable perfor-
mance. Ideally, each robot should update its map and plan
its motion not only relying on its own observations, but also
considering the observations of its peers. Centralized solutions
to multi-robot coordination are susceptible to central node
failure and require a sophisticated communication infrastructure
for reliable operation. Current decentralized active mapping
methods consider simplistic robot models with linear-Gaussian
observations and Euclidean robot states. In this work, we present
a distributed multi-robot mapping and planning method, called
Riemannian Optimization for Active Mapping (ROAM). We for-
mulate an optimization problem over a graph with node variables
belonging to a Riemannian manifold and a consensus constraint
requiring feasible solutions to agree on the node variables. We
develop a distributed Riemannian optimization algorithm that
relies only on one-hop communication to solve the problem with
consensus and optimality guarantees. We show that multi-robot
active mapping can be achieved via two applications of our
distributed Riemannian optimization over different manifolds:
distributed estimation of a 3-D semantic map and distributed
planning of SE(3) trajectories that minimize map uncertainty. We
demonstrate the performance of ROAM in simulation and real-
world experiments using a team of robots with RGB-D cameras.
Open-source software and videos supplementing this paper are
available at https://existentialrobotics.org/ROAM/.

Index Terms—Distributed Robot Systems, Reactive and
Sensor-Based Planning, Mapping, Distributed Riemannian Opti-
mization

1. INTRODUCTION

The ability to explore unknown environments and discover
objects of interest is a prerequisite for autonomous execution
of complex tasks by mobile robots. Active mapping methods
[1] consider joint optimization of the motion of a robot team
and the fidelity of the map constructed by the team. The goal
is to compute maximally informative robot trajectories under
a limited exploration budget (e.g., time, energy, etc.).

Time-critical applications, such as search and rescue [2],
[3] and security and surveillance [4], as well as large-scale
operations, such as environmental monitoring [5], substantially
benefit if exploration is carried out by a team of coordinating
robots. This is traditionally done via multi-robot systems
relying on centralized estimation and control [6], [7], where
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Fig. 1: Overview of our distributed multi-robot active mapping
approach. (a) A team of robots, denoted by vertex set V,
collaboratively explores an unknown environment, such as
an impacted area during disaster response or a hostile area
during military reconnaissance. Each robot builds a local map
using onboard sensor measurements and computes a local
plan for the team, with the goal of maximizing the collective
information gathered by the team. The local maps and plans
are communicated over a peer-to-peer network whose connec-
tivity is represented by the edge set £. (b) As the robot team
continues communication, the local maps stored by different
robots become globally consistent in that they store similar
information about the environment.

each robot receives local sensor observations, builds its own
map, and sends it to a central node for map aggregation and
team trajectory computation. The availability of powerful com-
putation onboard small robot platforms makes it possible to
develop autonomous exploration algorithms without the need
for a central processing node [8]. Removing the central unit
improves the resilience of a multi-robot system with respect
to communication-based faults and central node failures [9]
but brings up new challenges related to distributed storage,
computation, and communication. How can one guarantee that
the performance of decentralized active mapping would be
on par with a centralized architecture in terms of global map
consistency and team trajectory optimality?

To address this question, we propose ROAM: Riemannian



Optimization for Active Mapping with robot teams. ROAM is
a decentralized Riemannian optimization algorithm that oper-
ates on a communication graph with node variables belonging
to a Riemannian manifold and ensures consensus among the
node variables. The graph nodes correspond to different robots,
while the graph edges model the communication among the
robots. In the context of mapping, the node variables are cat-
egorical probability mass functions representing probabilistic
maps with different semantic classes (e.g., building, vegeta-
tion, terrain) at each robot. The consensus constraint requires
that the local maps of different robots agree with each other.
In the context of planning, the node variables are trajectories
of SE(3) robot poses. Each robot plans trajectories for the
whole team using its local information, while the consensus
constraint requires that the team trajectories computed by
different robots agree. See Fig. 1 for an overview of ROAM.

We demonstrate the performance of ROAM in a variety
of simulation and real-world experiments using a team of
wheeled robots with on-board sensing and processing hard-
ware. Specifically, each robot gathers range and semantic
segmentation measurements using an RGBD sensor, and incre-
mentally builds a local 3-D semantic grid map of the environ-
ment, where each map cell maintains a probability distribution
over object classes. To achieve memory and communication
efficiency, an octree data structure is employed to represent
the 3-D semantic maps [10]. The robots cooperatively find
the most informative set of SE(3) paths for the team to effi-
ciently improve the map and explore the unknown areas while
avoiding obstacle collisions. Both multi-robot mapping and
planning are performed in the absence of a central estimation
and control node and only involve peer-to-peer communication
among neighboring robots.

A. Related Work

1) Distributed Optimization: Multi-robot active mapping is
in essence an optimization problem, with the goal of finding
maximally informative robot trajectories, while simultaneously
maintaining globally consistent map estimates. Thus, we be-
gin our literature review with identifying relevant works in
distributed optimization. The algorithms introduced in [11]-
[13] provide a class of approaches for decentralized gradient-
based optimization in the Euclidean space under a variety of
constraints such as time variation or communication asymme-
try between agents in the network. The survey by Halsted et
al. [14] provides a comprehensive study of distributed opti-
mization methods for multi-robot applications. In this work,
we decompose the task of multi-robot active mapping to two
consensus-constrained Riemannian optimization problems, i.e.
distributed mapping and distributed path planning. However,
naive utilization of the Euclidean optimization techniques
in Riemannian manifolds might violate the structure of the
optimization domain, leading to infeasible solutions. There-
fore, it is required to employ a special family of distributed
optimization methods specific to Riemannian manifolds.

2) Optimization over Riemannian Manifolds: Absil et al.
[15] presents the foundations of optimization over matrix
manifolds, giving rise to many centralized and distributed
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algorithms in subsequent works. As examples, Chen et al. [16]
and Wang et al. [17] devise decentralized optimization algo-
rithms for Stiefel manifolds where a Lagrangian function is
used to enforce consensus and maintain the manifold structure.
Manifold optimization also allows designing efficient learning
algorithms where model parameters can be learned using
unconstrained manifold optimization as opposed to Euclidean
space optimization with projection to the parameter manifold.
Zhang et al. [18] and Li et al. [19] introduce stochastic
learning algorithms for Riemannian manifolds in centralized
and federated formats, respectively. Related to our work, Tian
et al. [20] present a multi-robot pose-graph simultaneous
localization and mapping (SLAM) algorithm which employs
gradient-descent local to each robot directly over the SE(3)
space of poses. Our work is inspired by the distributed
Riemannian gradient optimization method introduced by Shah
[21]. We develop a distributed gradient-descent optimization
method for general Riemannian manifolds, and derive specific
instantiations for two particular cases, namely the space of
probability distributions over semantic maps and the space of
SE(3) robot pose trajectories.

3) Multi-Robot Mapping: Distributed mapping is a special
case of distributed estimation, where a model of the envi-
ronment is estimated via sensor measurements. Distributed
estimation techniques are used in multi-robot localization
[22], multi-robot mapping [23], or multi-robot SLAM [24].
Paritosh et al. [25] define Bayesian distributed estimation
as maximizing sensor data likelihood from all agents, while
enforcing consensus in the estimates. The present work follows
a similar methodology in that we achieve multi-robot Bayesian
semantic mapping via distributed maximization of local sen-
sor observation log-likelihood with a consensus constraint
on the estimated maps. Regarding collaborative mapping,
an important consideration is the communication of local
map estimates among the robots. Corah et al. [26] propose
distributed Gaussian mixture model (GMM) mapping, where
a GMM map is globally estimated, and each robot uses this
global map to extract occupancy maps for planning. The use of
GMM environment representation for multi-robot exploration
is motivated by its lower communication overhead compared
to uniform resolution occupancy grid maps. Subsequent works
in [27] and [28] have similarly used distributed GMM mapping
for place recognition and relative localization alongside ex-
ploration. Alternative techniques for communication-efficient
multi-robot mapping include sub-map-based grid mapping
[29] and distributed truncated signed distance field (TSDF)
estimation [30]. More recently, the work in [31] extends
neural implicit signed distance mapping to a distributed setting
via formulating multi-robot map learning as a consensus-
constrained minimization of the loss function. In this case,
the robots need to share the neural network parameters to
achieve consensus. In our work, we use a semantic octree
data structure introduced in our prior work [10] to alleviate the
communication burden by using a lossless octree compression.
Relevant to our work, the authors in [32] propose merging
of two binary octree maps via summing the occupancy log-
odds of corresponding octree leaves. Our work distinguishes
itself from [32] through a different formulation of multi-
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robot mapping as a consensus-based Riemannian optimization
problem, which enables a) extension to multi-class octree
representations, and b) combination of map merging with
online map updates from local observations.

4) Planning for Exploration: Similar to multi-robot map-
ping, many multi-robot planning methods utilize distributed
optimization techniques. The work in [33] outlines various
trajectory planning methods used in multi-robot systems, in-
cluding graph-based, sampling-based, model-based, and bio-
inspired approaches. In particular, graph neural networks
(GNNs5) have been utilized in [34], [35] for learning to extract,
communicate, and accumulate features from local observations
in the context of collaborative multi-robot planning in a
distributed way. Coordination and plan deconfliction for multi-
robot cooperative tasks is discussed in [36], where robots are
assigned priorities in a decentralized manner in order to reach
a Pareto equilibrium. The paper by Freda et al. [37] uses a
two-level deconfliction approach for multi-robot exploration to
minimize redundant visitations (topological-level) and avoid
inter-robot collisions (metric-level). In our work, we intro-
duce a decentralized gradient-based negotiation mechanism to
resolve SE(3) path conflicts. Path planning for autonomous
exploration has been extensively studied in the field of active
SLAM. Atanasov et al. [38] propose a distributed active
SLAM method for robots with linear-Gaussian observation
models and a finite set of admissible controls. The authors
exploit the conditional entropy formula for the Gaussian noise
model to derive an open-loop control policy, called reduced
value iteration (RVI), with the same performance guarantees
as a closed-loop policy. An anytime version of RVI is proposed
in [39] using a tree search that progressively reduces the
suboptimality of the plan. In contrast to [38], [39], we use a
probabilistic range-category observation model that accounts
for occlusion in sensing. Sampling-based solutions to multi-
robot active SLAM have been presented in [40] and [41],
with asymptotic optimality guarantees. Cai et al. [42] consider
collision safety and energy as additional factors in the cost
function for active SLAM using a heterogeneous team of
robots. Zhou and Kumar [43] propose robust multi-robot
active target tracking with performance guarantees in regard to
sensing and communication attacks, however, the estimation
and control are carried out centrally. Tzes et al. [44] develop a
learning-based approach for multi-robot target estimation and
tracking, used a GNN to accumulate and process information
communicated among one-hop neighbors. The works in [45],
[46] aim to maintain multi-robot network connectivity and
collision avoidance via control barrier functions. Another
line of research [47], [48] uses decentralized Monte-Carlo
tree search for multi-robot path planning for exploration.
The interested reader is encouraged to refer to [I] for a
comprehensive survey of active SLAM methods. Our work
distinguishes itself by considering continuous-space planning
on a Riemannian manifold, generalizing the previous works
in terms of the finite number of controls and the Euclidean
robot states. Related to active SLAM with continuous-space
planning, Koga et al. [49], [50] introduce iterative covariance
regulation, an SE(3) trajectory optimization algorithm for
single-robot active SLAM with a Gaussian observation model.

Model-based [51] and model-free [52] deep reinforcement
learning techniques have been applied to similar single-robot
active SLAM problems. Extending to a team of robots, Hu
et al. [53] propose Voronoi-based decentralized exploration
using reinforcement learning, where coordination among the
robots takes place via distributed assignment of each Voronoi
region to a robot, and the policy generates a 2-D vector of
linear and angular velocities. In our work, we formulate multi-
robot planning for exploration as a distributed optimization
problem in SE(3) space with a consensus constraint to enforce
agreement among the robot plans.

B. Contributions

Compared to the works mentioned in the previous part,
our distributed Riemannian optimization approach extends the
scope of multi-robot estimation and planning to enable con-
tinuous non-Euclidean state and control spaces and non-linear
non-Gaussian perception models. Our contributions include:

1) a distributed Riemannian optimization algorithm for
multi-robot systems using only one-hop communication,
with consensus and optimality guarantees,

2) a distributed semantic octree mapping approach utilizing
local semantic point cloud observations at each robot,

3) a distributed collaborative planning algorithm for robot
exploration, where the search domain is defined as the
continuous space of SE(3) robot pose trajectories,

4) an open-source implementation, achieving real-time per-
formance onboard resource-constrained robots in simula-
tion and real-world experiments.

We begin by formulating consensus-constrained Rieman-
nian optimization for multi-agent systems in Sec. II. Next,
in Sec. III, we introduce a distributed Riemannian optimiza-
tion algorithm with consensus and optimality guarantees. In
Sec. IV, we formulate distributed semantic octree mapping as
a special case, where the optimization variables are probabil-
ity mass functions over the set of possible semantic maps.
Sec. V formulates distributed collaborative planning for robot
exploration as another application of distributed Riemannian
optimization, where robot trajectories in the SE(3) manifold
are the optimization variables. Lastly, in Sec. VI we evalu-
ate the performance of our proposed distributed multi-robot
exploration in several simulation and real-world experiments.

II. PROBLEM STATEMENT

Consider a network of agents represented by an undirected
connected graph G(V, ), where V denotes the set of agents
and £ C V x V encodes the existence of communication links
between pairs of agents. Each agent i € V has state z° which
belongs to a compact Riemannian manifold M. Let T,: M
denote the tangent space of M at % and let (v,u),: € R
with u,v € T,: M be a Riemannian metric on M [54, Ch.3].
The norm of a tangent vector v € T,:M is defined by the
Riemannian metric as ||v||,i = +/(v,v).i. Additionally, let
Exp,: () : TpiM — M denote the exponential map on M
at 2%, and denote its inverse as Exp_;' (-) : M — Tps M.




We associate a local objective function f¢(-) : M — R with
each agent ¢ € V. Our goal is to maximize the cumulative ob-

jective function over the joint agent state x = (z!,...,z!VI):
F(x) 1
=Wl o AC )

i€V

The global objective can be maximized using |V| indepen-
dent local optimizations. However, in many applications it is
necessary to find a common solution among all agents. For
example, in multi-robot mapping, the robots need to ensure
that their local maps are consistent and take into account
the observations from other robots. Therefore, the global
optimization problem needs to be constrained such that the
agents reach consensus on x during optimization. For this aim,
we define an aggregate distance function ¢(x) : MVl — Rx:

> Aydiat,a), @

{i,j}€€
where A is a symmetric weighted adjacency matrix corre-
sponding to the graph G, and d(-) : M x M — Ry is a
distance function on the Riemannian manifold M, i.e., com-
putes the length of the geodesic (shortest path) between pairs
of elements in M. The definition of the aggregate distance
function in (2) implies that consensus will be reached if and
only if ¢(x) = 0. Hence, adding ¢(x) = 0 as a constraint to
(1) would require feasible joint states x = (z',...,z/V!) to

satisfy 2’ = 27 for all i, j € V.
Problem 1. Consider a connected graph G = (V,£) where
each node i € V represents an agent with state 2 € M

and local objective function f(z°). Find a joint state x that
maximizes the following objective function:

)=

icV 3)
st. 2" €M, Vi€V, and ¢(x) =0

where ¢(x) = 0 is the consensus constraint defined in (2).

max F

As we discuss in Sec. IV and Sec. V, both multi-robot
mapping and multi-robot trajectory optimization can be for-
mulated as consensus-constrained optimization problems as in
(3). In mapping, the manifold M is the probability simplex
capturing map density functions while the local objective
fi(x?) is the log-likelihood of the observations made by robot
i. In trajectory optimization, M represents the space of 3-D
pose (rotation and translation) trajectories in SE(3), and f%(z*)
is a collision and perception-aware objective for the robot
pose trajectories. In the next section, we develop a distributed
gradient-based optimization algorithm to solve (3) using only
local computation and single-hop communication.

III. DISTRIBUTED RIEMANNIAN OPTIMIZATION

The problem in (3) has a specific structure, maximizing
a sum of local objectives subject to a consensus constraint
among all z%, i € V. We develop a distributed gradient-
based algorithm to solve (3). The idea is to interleave gradient
updates for the local objectives with gradient updates for
the consensus constraint at each agent. Alg. 1 formalizes
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Algorithm 1 Distributed Riemannian Optimization
i(0)

Input: Network G(V,€) and initial state x
Qutput: Consensus optimal solution to (3)
1: for k € ZZO do
2:  for each agent 7 € V do
3: > Promote consensus with step size e:
4 #® = Exp, i (—egrad,: ¢(x)]c—x))
5: > Optimize local objective with step size a/(*):
6 2T = Exp,:m (a®) grad fi(z?)
7 i(k)

:Ki=i’i(k))

: return

this idea. The update step in line 4 guides the local state
x' towards satisfaction of the consensus constraint, with a
step size of e. The gradient of ¢(x) with respect to ¢,
denoted as grad,: ¢(x), lies in the tangent space T,:M.
Hence, the exponential map is used to retract the gradient
update —e grad,; ¢(x)|x—x to the manifold M. The gradi-
ent grad,: ¢(x) can be expressed as a sum of gradients with
respect to the neighbors N; = {j|A4;; > 0} of agent :
grad,ip(x) =

Z Aij gradwi d2<.’17i7 xj) = -2 Z A” EXp;il (l‘])

JEN: JEN:
Therefore, line 4 requires only single-hop communication
between agent i and its neighbors N;. Line 6 carries out an
update with step size o®) in the direction of the gradient
of the local objective f%(-), computed at the updated state
ii(k). Similar to the consensus update step, the exponential
map is used in to retract grad f?(z?) and apply it to the point
7" Line 6 is local to each agent ¢ and does not require
communication. The two update steps are continuously applied

until a maximum number of iterations is reached or the update
norm is smaller than a threshold.

Example. Consider a sensor network where several agents
gather data that is not supposed to be shared over the network,
due to either privacy reasons or bandwidth limitations. Our
Riemannian optimization algorithm enables distributed pro-
cessing of the global data, accumulated over all agents, without
actually sharing the data. As an example, Fig. 2 illustrates
applying Alg. 1 to compute the leading eigenvector of the
covariance of data. Fig. 2a depicts the global data distribution
Z = [Z{ Z3]7, such that different segments of the data Z;
and Z5 are known to agent 1 and agent 2, separately. This
problem can be formulated as:

T i
;111%3% Z (Ziz") ' Zjx"*,
ie{1,2} 4)
st. xt,2? €S and arccos(z! 2?) =0,

where the domain manifold is the unit circle S!, and cosine
distance is used as the distance function. Note that for all z?
and z? that satisfy the consensus constraint arccos(xlTxQ) =
0, the objective function is equivalent to the one for the
centralized leading eigenvector problem. Hence, we expect to
find the eigenvector for the covariance of the global data matrix
Z by employing Alg. 1 to (4). Fig. 2b shows an initialization
of x' and x? over the unit circle S'. While the Riemannian
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Fig. 2: Application of Alg. | to the leading eigenvector
problem. (a) Data distribution Z = [Z Z)|", where Z;
and Z, are separately known to agent 1 and agent 2. (b)
State initialization, limited to the unit circle S’ since we are
only interested in eigenvector directions. (c) Consensus and
local objective function updates, shown in green and teal arcs,
respectively. The exponential mapping of S! maintains the
manifold structure of the states throughout the update steps.
(d) Level-set of the covariance matrix of the global data 7 is
shown, alongside its leading eigenvector z*.

gradients of ¢(-) and f'(:) are tangent vectors to S', the
consensus and local objective function update steps keep the
state on the S' manifold thanks to the exponential map (see
the circular arcs in Fig. 2c¢):
Exp,.: (v) = cos(VoTv)z" + sin(VoTv) \/v?
vlv
Note that the consensus update (green arc) acts in the direction
of agreement between ' and 2, whereas the local objective
function gradient tries to steer the states z? towards the leading
eigenvector of their respective data Z;. Although each agent
has only partial access to Z, both z! and x? eventually con-
verge to =¥, namely the leading eigenvector of the covariance
for the global data matrix Z, as Fig. 2d suggests. )

)

Next, we study whether Alg. 1 achieves consensus and
optimality. We make several assumptions to ensure that the
problem is well-posed in accordance with prior work on
distributed optimization [ []-[13], [55].

Definition 1. A differentiable function f : M — R is
geodesically convex if and only if for any x,y € M:
Fl@) = f(y) + (grad f(y), Exp, " (x))y.

The function f is geodesically concave if the above inequality
is flipped.

Assumption 1. Assume the following statements hold for
Problem | and Alg. 1.

e The Riemannian manifold M is compact.

« The local objective functions f?, Vi € V, are smooth,
geodesically concave, and their Riemannian gradients are
bounded by some constant C"

| grad f*(z")||. < C, Va' € M, Vi€ V.

e The weighted adjacency matrix A of the graph G is row-
stochastic, i.e., Zjev Ay =1

o The squared distance function d? : M x M — Rsq is
geodesically convex.

o The step sizes o'*) > 0 for the update step in line 6
satisfy the Robbins-Monro conditions:

Za<k) = 00, Za<k)2 < 00, vk > 0.
k=0 k=0

In addition to the assumptions above, we require an addi-
tional condition to prove that Alg. 1 achieves consensus, i.e.,
#(x) = 0. Let 7;“3 Ty M — T M denote parallel transport
[54, Ch.10] from the tangent space at y* to the tangent space
at z’. For points z*, 27,37, y* € M, consider the geodesic
loop z* — z? — 3?7 — y* — =" with corresponding tangent
vectors v, v/, vy, , v3, defined as:

. 1 . 1
vy = Expi (27), vy, = Expi (v),

with similar definitions for v/ and v],. Let v2] € T, M be
the net tangent vector transported to 7. M:

v, = T vl — vy, — T vy (6)
Assumption 2. For a p > 0 and any 4-tuple (z?, 27,37, 4") €
M, assume the norm of the net tangent vector vy, is bounded
by the lengths of the opposite geodesics along the loop:

vit- (D

In Euclidean space, the net tangent vector v% is equivalent
to zero linear displacement; hence, the assumption holds for
any p > 0. Similarly, the manifold S' of example (4) satisfies
(7) due to zero angular displacement. For a general case,
U;Jy can be non-zero due to the curvature of the manifold.
This is dual to the fact that, for a zero net tangent vector
v%, the corresponding geodesics might not form a loop.
The assumption in (7) essentially imposes a condition over
curvature of the manifold so that the norm of v is limited
by the length of the geodesic loop. Based on the above

assumptions, we show consensus and optimality for Alg. 1.

[0 llos < proin{logy o+ 1oy llas, (105 s + [0}

Theorem 1. Consider the consensus-constrained Riemannian
optimization problem in (3) and the distributed Riemannian
optimization algorithm in Alg. 1. Suppose that Assumptions 1
and 2 hold and step size € is chosen such that € € (0,2/L)
with L = 4(1 + p). Then, Alg. I provides a solution to (3)
with the following properties.
1) The joint state x\*) converges to x> ¢ MV, where
x(%®) is a consensus configuration, i.e., $i<oo) = xj(oo)
foralli,5€V.



2) Let x* be an optimal solution to (3). The optimal value
F(x*) is a lower-bound for the maximum of F(x*))
across all iterations:

Fx")< lim max F(x%).

Emar—r00 0<k<Kpnax

(8)
Proof. See Appendix A. g

We stress that, while the optimal solution x* and the conver-
gence point x(°°) of Alg. 1 are both consensus configurations,
the optimality bound of (8) can potentially admit a solution
x#) that does not satisfy the consensus constraint. For the
Euclidean case, Nedi¢ [56, Ch.5] shows that dz(x*,x<k)) is
a Lyapunov function, and subsequently, F/(x*) = F(x(>))
holds. However, a similar derivation for d%(x*, x(*)) has not
been found for a general Riemannian manifold, due to the
complexity added by the curvature.

Alg. 1 establishes consensus and an optimality bound with-
out requiring identical initial states 2@ = xg foralli € Vor
parallel transport of the gradients between neighboring agents.
Hence, our distributed Riemannian optimization provides an
approach to solve multi-robot problems with communication
constraints. The main requirement to use Alg. 1 is to express
a multi-robot optimization problem in the form of (3), with
local objectives f?(-) and distance measure ¢(-) defined as
smooth concave and convex functions in M and MM,
respectively. In the absence of concavity for the objective
functions or convexity for the consensus constraint, Alg. 1
can still be utilized to obtain a solution with local consensus
and optimality guarantees as long as smoothness of ¢(x) and
boundedness of the objective function gradient hold.

In the next two sections, we apply Alg. 1 to achieve
simultaneous multi-robot mapping and planning. We refer to
our approach as Riemannian Optimization for Active Mapping
(ROAM). In Sec. IV, we apply Alg. | to multi-robot estimation
of semantic octree maps, while in Sec. V we use Alg. 1 to
achieve multi-robot motion planning for exploration and active
estimation of semantic octree maps.

IV. MULTI-ROBOT SEMANTIC OCTREE MAPPING

In this section, we design a decentralized multi-robot octree
mapping algorithm using the results from Sec. III. We con-
sider a team of robots gathering local sensor measurements
and communicating map estimates with one-hop neighbors
in order to build a globally consistent common map. The
robots are navigating in an environment consisting of disjoint
sets S, C R3, each associated with a semantic category
c € C = {0,1,...,C}. Let S represent the free space
and let each S, for ¢ > 0 represent a different category,
such as building, vegetation, terrain. Each robot ¢ € V is
equipped with a mounted sensor that provides a stream of
semantically-annotated point clouds in the sensor frame. Such
information may be obtained by processing the measurements
of an RGBD camera [57] or a LiDAR with a semantic
segmentation algorithm [58]. We model a point cloud as a
set z; = {(r} 4,41 )}, of B rays with known direction at
time ¢, containing the distance r;, € R>( from the sensor’s
position to the closest obstacle along the ray in addition to
object category y;b € C of the obstacle (see Fig. 3).
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Semantic
Octree Mapping|

Fig. 3: Semantically annotated point cloud, with object cate-
gories in different colors, integrated in multi-class octree map.

We represent the map m as a 3-D grid of /N independent
cells, where each individual cell m is labeled with a category
in C. To model measurement noise, we use a probability
density function (PDF) ¢'(z! | m) as the observation model
of each robot. The observation model ¢'(z: | m) depends on
the sensor pose as well but we assume that accurate sensor
poses are available from localization and calibration between
the robot body frame and the sensor frame. We intend to
perform probabilistic mapping, which requires maintaining a
PDF of the map, and updating it based on sensor observations.
For this aim, we maximize the sum of expected log-likelihood
of the measurements up to time ¢, i.e. local observations z,,
collected from each robot i € V!:

max Em~p [l0g ¢’ (2.:|m)],

1€V

®

where P is the space of all probability mass functions (PMF)
over the set of possible maps:

P = {p(-)| Zp(m) =1, p(m) >0 Ymec CV}

The map cell independence assumption allows for decompos-
ing the measurement log-likelihood as a sum over individual
map cells m, as indicated in the following lemma.

(10)

Lemma 1. The objective function in (9) can be expressed as
a sum over all map cells and all observations:

ZZ(logq +2Em~pn log L.(™12 7)]), (1)

i€V =1 pn(m)
i

where q'(zL) is the marginal density of the observation, p,,(*)
denotes the PMF of the n-th map cell, and q'(m|zl) is an
inverse observation model that represents the sensor noise
properties (see (10) in [10]).

Proof. See Appendix B. U

The log-density term log ¢*(z) in (11) does not depend on
any of the map probabilities p,(-), n € {1,...,N}; hence,
it can be removed from the objective without affecting the
solution. Moreover, each term in the innermost summation
in (11) only depends on a single map cell probability p,,(+).
Therefore, the maximization of the objective can be carried
out separately for each cell m:

g (m) ],

max
pn(m)

Epumpn [log
~Pn

L EP,

p (o4 pymy

(12)

It can be shown that maximizing the sum of expected log-likelihood of
the data is equivalent to minimizing the KL-divergence between the true and
the evaluated observation models. See [25] for more details.
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where P¢ is the space of categorical distributions over C and

t

gi(m) = [[ ¢ (mlzi)"/". (13)
T=1

In order to remove the constraint p,, € P, we utilize multi-

class log-odds ratio of the categorical distribution [10]:

h, = [log pu(m=0)

.
2a(m=0) 1ogw} e RO+ (14)

pn(m=0)

A PMF and its log-odds representation have a one-to-one cor-
respondence through the softmax function o : R+ — RE+1:

e;_1 exp(hy)
1T exp(h,) ’

where e, is the standard basis vector with c-th element equal
to 1 and 0 elsewhere, 1 is the vector with all elements equal
to 1, and exp(-) is applied element-wise to the vector h,,. In
order to enable distributed optimization of the objective (12)
via the framework of Sec. III, we introduce a constraint that
requires the robots to agree on a common map estimate using
only one-hop communication.

pn(m = C) = Uc+1(hn) =

Problem 2. Let G(V, &) be a network of robots, where each
robot i € V collects semantic point cloud observations z:.
Construct local estimates of the map log-odds h* at each robot
1 that are consistent across ) via the following optimization:

max Z i(h?
h1:|V|€R(C’+1)><\V\_ fi(n’),

(15)
st. gV = 3" AthJ h'|2 =0,
{i,j €&
7 7 7 qt( ) 3 :
where f°’(h") oetr1(h*)log ——+— and ¢}(c) is de-
f CEZC +1 ) g p +1(1,17() Qf( )

fined in (13).

The multi-robot mapping problem in (15) has the same
structure as the general distributed optimization in (3).
Therefore, the distributed Riemannian optimization algorithm
(Alg. 1) can be employed to perform multi-robot semantic
mapping. Note that ¢(-) is globally convex because of the
flatness of Euclidean space. Thus, Theorem | guarantees that
Alg. | can achieve consensus in the map estimates of all
robots. The application of Alg. 1 to solve (15) in a distributed
manner is presented in Alg. 2. The update step in line 4
guides the local log-odds towards satisfaction of the consensus
constraint, which only requires single-hop communication
between neighboring robots j € M Line 9 incorporates the
local observations via ’yi and 3', where © is element-wise
multiplication. This step is local to each robot ¢ and does
not require communication. Note that lines 4 and 11 resemble
the log-odds equivalent of Bayes rule for updating multi-class
probabilities (see (8) in [10]).

The distributed semantic mapping algorithm we developed
assumes a regular grid representation of the environment.
To reduce the storage and communication requirements, we
may utilize a semantic octree data structure which provides a
lossless compression of the original 3-D multi-class map. In
this case, the update rules in Alg. 2 should be applied to all

Algorithm 2 Distributed Semantic Mapping

Input: Local observations z!., and initial multi-class map

estimate hi(®

QOutput: Globally consistent semantic map
1: for k € Z>( do

2. for each cell in m do

3: > l(’r;)mote consensus with step size €,,:
k i (k) j (k) i(k)

4: hi h*"" +e nge/\f A;j(h7™ —h")

5: > Local %radlent computation:

k)

6: A = ht (i())g qi > log q! = [log gi(c)]S-
7. 4 = (exp(h® )TA

s B = (exp(™)T1)A!

. i — (mi_ i exp(h' ™)

* =00 ™y
10: > Apply gradient with step size agn).

, ~ (k

11: hi Y - hl( ) + aﬁ,’i)gz
EA > by = 1og Hm=8 — ¢
13: return h*"

leaf nodes in the semantic octree map of each robot i. Refer
to Alg. 3 in [10] for the semantic octree equivalents of the
update steps in lines 4 and 11.

In this section, we presented the mapping component of
ROAM as distributed construction of semantic octree maps
given local semantic point cloud observations at each robot.
In the next section, we introduce the multi-robot planning
component of ROAM, where robots cooperatively find trajec-
tories along which their observations are maximally informa-
tive. Employing ROAM for simultaneous distributed mapping
and planning closes the loop for autonomously exploring an
unknown environment with a team of robots.

V. MULTI-ROBOT PLANNING

We discussed the case where observations are collected
passively along the robot trajectories and used for distributed
mapping. In this section, we consider planning the motion of
the robots to collect observations that reduce map uncertainty
and uncover an unknown environment. This active mapping
process prevents redundant observations that may not improve
the map accuracy or increase the overall covered area.

Let X! € SE(3) be the pose of robot i € V, at time ¢:

K2 ?
xi=[ot 7]
where R} € SO(3) and pi € R? are the robot’s orientation and
position, respectively. The Lie algebra se(3) corresponding to
the Lie group SE(3) is defined as follows:

w) = {6 [ & gl ere=[f] ere),

with (A) used to denote the mapping from a vector £ € RS to
a 4 x 4 twist matrix in se(3). The matrix exponential exp(-) :
5¢(3) — SE(3) relates a twist in se(3) to a pose in SE(3) via
the Rodrigues’ formula:

R 1— ol -
:I+E+( If;OHSQII ) 52

RN
CE—.

exp(€)

m



The exponential mapping at an arbitrary pose X € SE(3) with
perturbation & € RS (in the robot frame) can be expressed as:

Expx (€) = X exp(€).

The distance between two poses X¢ and Xj, is defined as:
d (Xza ) £X1 XJ F&x% XJ ’ £Xl xf *log(xl X{’)Va

where the functions log(-) : SE(3) — se(3) and (-)¥ : se(3) —
I@G denote the inverse mappings associated with exp(:) and
(-), respectively. Also, I' € R5%6 is a diagonal matrix with
positive diagonal entries that account for the difference in scale
between the linear and angular elements of & X}, For more
details, please refer to [59, Ch.7].

To enable gradient-based pose trajectory optimization, we
introduce differentiable cost functions to quantify the safety
and the informativeness of a pose trajectory. We use a distance
field D(X¢, pt(m)) as a measure of path safety derived from
the map pi(m) of robot i given observations up to time ¢. To
obtain the distance field, we extract a maximum likelihood oc-
cupancy map from p:(m) and compute the distance transform.
Furthermore, we use semantic Shannon mutual information
(SSMI) [ 10, Eq.(4)] denoted by I(m; z|X:, pi(m)) to quantify
the informativeness of a range-category observation z made
from pose X! with respect to the current multi-class map
pi(m) of robot i. Having SSMI in the objective function
allows explicit consideration of the class probabilities, stored
in the map. As detailed in our previous work [10], the planning
method can prioritize searching for specific objects of interest
by tuning the information-theoretic objective. However, in
the case of semantic octree mapping with a range sensor,
mutual information is not differentiable with respect to the
pose X!. As a solution, we use the approach in [60] to
obtain a differentiable approximation of mutual information
by interpolating its values at nearby poses V € SE(3).
Specifically, the collision and informativeness score of Xi
is expressed as a convex combination of poses V on a grid
X (X%) inside a geodesic ball around X! with radius &pay:

f(Xipim) = > Av(XDs(V),
Vex(Xi)
s'(V) = I(m; 2|V, p;(m)) + 7. log D(V, pj(m)),
where the safety constant . > 0 trades off informativeness
with collision avoidance and the convex combination coeffi-

cients \v (X?) adjust the influence of the terms corresponding
to V based on distance to X3:

1+ cos(d(X%,V))
> vexxi 1+ cos(d(X},U)))’
ﬂ@wzgwmw.

max

v (X)) =

Fig. 4 illustrates the collision and informativeness score f.
Cooperative planning requires the robots to take into
account the plans of their peers in order to avoid
actions that provide redundant information. Let X =
(Xt - - XLK'I worl” € SE(3)VIXT be the concate-
nated 7T'-length trajectories of all robots in V), where T is the
planning horizon. In the remainder of this section, we use X; »
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A, (X)s(V,)

Fig. 4: Collision and informativeness score for robot pose X.
Each sampled viewpoint V; € X (X) is colored differently.
For each viewpoint, the field of view and the distance from
the nearest obstacle determine the Shannon mutual information
I(m;z | Vi, p,(m)) and the log-distance log D(Vy, p;(m)),
respectively. The weight Ay, (X) dictates the contribution of
'V, to the total score function §(X, p;(m)), colored white.

as an alternative notation for X}, , namely the SE(3) pose of
robot ¢ at time ¢+ 7. The function q(X; ;, X; -/) quantifies the
observation redundancy as the overlap between sensor field of
views (FoVs) for two poses X; - and X; :

q(xi,ﬁ %j,‘r’) = max {0, qu - ||Q(Xl,'r - %j77'/)e||2}2 )

where:
I 0 0
dq = |‘F| + fmax, Q = |:0i>:<?; 30><1:| k) e = |: 31><1:| )

and |F| is the diameter of the sensor FoV.
The local objective function for robot i is defined using the
collision and informativeness score § and the FoV overlap q:

T
7 pim) = 3 [ p )

T=1

- ’Yq Z Z 61] 57’7’ - %
JeEV /=1
where ¢;; is the Kronecker delta which takes value 1 if and
only if i = j, and O otherwise. Also, the constant vq > 0
trades off trajectory collision avoidance and informativeness
with sensor FoV overlap.

The goal of multi-robot planning is to maximize the sum of
local objective functions f? over V. Since we intend to perform
the maximization in a distributed manner, we consider local
plans X' € SE(3)/VI*T for each robot i € V, representing an
individual robot’s plan for the collective trajectories of the
team. Eventually, these local plans should reach consensus
so that the team members act in agreement. To quantify the
disagreement among the robot plans, we define an aggregate
distance function ¢(-) : SE(3)V*T*IVl — R that accumu-
lates the pairwise distances between all local plans X%, i € V:

P(XV) = N Ayd (X, x),
{i,j}e&

(16)
la(Xi,-, :{j,'r/)] ;

a7

where d : SE(3)VIXT*2 5 Ry is defined via extension of
the distance in SE(3) to the product manifold SE(3)VI*T,
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Algorithm 3 Distributed Planning for Exploration

Input: Local map pi(m) of robot i
Qutput: Collaborative robot team plan for exploration

1 x = FRONTIER(pi(m)) Vi€V > Initialization
2: for k € Z>q do
3: > Promote consensus with step size €):
4: foreveryleVand7e{l,....,T} do
~ (k ~(k
5: %;”(7) = %l‘fT> exp (ep Z Ajj
JEN;
-T N
x (7 (Sx;ff),x{ff) )FSX§ff),3€{,(f)) )
6: > Local gradient computation:
7. gr=0 > Initialize for all [ € V, 7 € {1,...,T}
8. forevery 7’ € {1,...,T} do
ik T/ 3R
o = XED) + Dycr e, 08 (@EV)
00 giet= D (X))~ H(XL pi(m))
vexxi®))
sin(cZ(?ii,v»J,T(g T ]
X + L 35 (k) 7i (k)
Coad(X15), V) X VIRV
11: for every l €V and 7 € {1,...,T} do
(0 )
12: Pir = szﬂ-/ev Pi,r = Q%;ﬂ- e
13: R, = QX E. Ry, =QX E
14: Cdisp = [1 - 61'157'7"][ - %Kpi,r’ - Pl,r)
— 2dq
15: Crot = YqCdisp max 1 0, o —pials
. o R;r + Ctot . RlTTCtot
16: g~ +t=1 o » Bir =
3x1 3x1

17: > Apply gradient with step size az(,k)

18: foreveryleVand 7€ {1,...,T} do

j(k+1) i (F) (k) o
;,T = x;,r exp(ozp gl,"’)

(k)
20: return X"

Problem 3. Let G(V, ) be a network of robots, where each
robot i € V maintains a local map p(m) obtained by solving
(15). Determine SE(3) pose trajectories for all robots that
maximize the cost function in (16) subject to the consensus
constraint in (17):

Xl:‘wesg(l?gfvwx‘w;f (X7, p}(m)),

s.t. (XM = 0.

The structure of the planning problem in (18) is com-
patible with the distributed Riemannian optimization method
of Sec. IIIl. We formulate a version of Alg. | specialized
for the SE(3) manifold. Due to the positive curvature of
the SE(3) manifold, the aggregate distance function ¢(-) has
local minima (see Appendix A.3 in [61]). Thus, if the initial
trajectories X" i €V, are not similar, the algorithm may
converge to a local optimum of the consensus constraint (17).
Furthermore, the local objective functions f¢, i € V, are only
locally concave [62]. Hence, Theorem 1 guarantees only a
locally optimal consensus solution.

Our distributed planning algorithm for solving (18) is pre-
sented in Alg. 3. Given its current local map pi(m), each

(18)

robot ¢ € )V computes an initial plan x1"” for the whole
team using frontier-based exploration [63]. In line 5, each pose
in the local plan xi" s guided towards consensus with the
plans of neighboring robots j € N;. The update in this line
is carried out via a perturbation in the robot frame, where
J1(+) denotes the left Jacobian of SE(3) [59, Ch.7], and only
involves communication between neighbors. To compute the
local objective function gradients with respect to each pose
in the local plan, we first initialize the gradients with zero in
line 7, and then populate them with proper values in lines 10
and 16. The gradient of the collision and informativeness score
J(XZ7. pi(m)) is computed in lines 9-10, while lines 12-16
derive the gradient of the sensor overlap q(%i(iz, ~}(i>) with
respect to both inputs, where E = [I33 03] ". Note that, for
the f terms, we only need to compute the gradient with respect
to robot ¢’s own trajectory .%3(2 7' e {l,...,T}, whereas for
the q terms, robot ¢ should locally obtain gradients with respect
to both its own trajectory as well as the trajectories of all other
robots in V. Since each robot stores the trajectory of the whole
team, the computation for the gradients of the q terms does
not require any communication among the robots. Lastly, in
line 19, we apply the computed gradients to each pose in the
local plan, using a right perturbation in the robot frame.
Solving (18) via Alg. 3 leads to two types of behaviors.

1) Locally, the robots attempt to maximize information and
distance from obstacles along their trajectories. This
encourages each robot to visit unvisited parts of the
environment, and corresponds to the f terms of (16).

2) Within each neighborhood, the robots negotiate with their
peers to minimize redundant observations. This prevents
the trajectories to amass at certain regions of the map,
and corresponds to the q terms of (16).

We emphasize that each local plan X? stores the paths for
all robots in V, instead of only robot ¢’s and its immediate
neighbors. This is because storing all |V| paths in each robot
allows propagation of the mentioned behaviors on a global
scale, due to the consensus constraint of 18. Therefore, the
global solution of (18) corresponds to a Pareto optimum where
agents find an optimal trade-off between their own information
and safety maximization on one hand and avoiding observation
overlap with their peers on the other hand.

In this section, we developed the distributed planning
component of ROAM. The robot trajectories are chosen to
maximize information and safety for cooperative estimation of
a semantic octree map. Combined with the distributed mapping
method of Sec. IV, the overall system can be utilized for
efficient multi-robot exploration of an unknown environment.
In the next section, we demonstrate the performance of ROAM
in a variety of simulation and real-world experiments.

VI. EXPERIMENTS

This section describes the implementation of ROAM on
multi-robot systems. Next, we evaluate the performance of
ROAM using several measures that quantify optimality, con-
vergence to consensus, and communication overhead. The
evaluations are done in both simulation and real-world.
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Fig. 5: Software stack for multi-robot distributed active map-
ping. The blue blocks are local to each robot, whereas the
red blocks require communication with neighboring robots.
In particular, the robots broadcast their local octree map,
computed team path, and estimated pose. The communication
links between pairs of robots are represented by violet lines.

TABLE I: Parameter set for multi-robot exploration.

Planning Mapping

e 0.1 o 2L €m 0.1
dy  20m | Emax 16m otk =
ve 1073 Ya 1072 tpub 5
T 5 kp 20 it 5
" 1sec | thresh 0.4 Voxel

2 Ld .2m

r diag(1,1,1,0.1,0.1,0.1) | side length

A. Implementation of ROAM for Distributed Active Mapping

We deploy our approach on a team of ground wheeled
robots, each equipped with an RGB-D sensor. Fig. 5 shows
an overview of the software stack, implemented using the
Robot Operating System (ROS). The RGB-D sensor provides
synchronized RGB and depth images. The RGB image is
processed with a semantic segmentation algorithm to label
each pixel with an object category. The segmented image
is fused with the depth image to obtain a 3-D semantically
annotated point cloud in the sensor frame of robot <.

Multi-robot localization: 1Tt is required to perform multi-
robot localization in order to find the transformation a) from
robot ¢’s sensor frame to a static world frame W; for point
cloud registration, and b) from W; to W; for distributed mul-
ti-robot mapping and planning. Our implementation of multi-
robot localization in the simulation and real-world experiments
is explained in Sec. VI-B and Sec. VI-D, respectively.

Multi-robot mapping: The semantic point cloud is used to
build and update a semantic octree map for each robot i € V
via lines 6-12 of Alg. 2. The semantic map of each robot
i is broadcasted to its neighboring robots A; once every t24
seconds. Moreover, each robot pushes any newly received map
to a local buffer memory, and performs line 4 of Alg. 2 every
" seconds to integrate neighbors’ maps into its local map.
The buffer is cleared after each successful iteration of Alg. 2.

Multi-robot viewpoint planning: To decouple low-
frequency informative planning from high-frequency planning
for collision-avoidance, we perform two separate planning
stages, namely on global viewpoint level and on local trajec-
tory level. On the viewpoint level, the distributed collaborative
planning in Alg. 3 is employed to find informative viewpoints
for each robot in V. To coordinate viewpoint planning across
all robots, every robot ¢ € V maintains a ledger £ composed
of [V| binary values each indicating whether the corresponding
robot in the team is ready for planning. Due to the decentral-

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH 20XX

Algorithm 4 Distributed Ledger Synchronization

Input: Incoming ledger L;,.
Output: Synchronized ledger
I: £i = £inc
2: if CHECKREADY() then
4:  if MEAN(L;) > thresh,, then
5: STARTPLANNING() > Viewpoint planning via Alg. 3
6: else
7. L;[i] = ISPLANNING()
8

: return L;

ized nature of our method, each robot sends its own copy of
the ledger L; to its neighbors every t’;”b second, and updates
L; using the incoming ledgers, as well as its status with respect
to the current plan. Alg. 4 details the process of decentralized
ledger synchronization for each robot 7. In line 1 robot @
makes a copy of the incoming ledger L;,.. Then, in line 2,
the function CHECKREADY() determines whether or not the
robot is ready to compute a new plan. A robot would declare
ready to plan only when it has finished its previous plan
and also it is currently not planning. The global distributed
planning of Alg. 3 would start only after a minimum fraction
of robots, denoted by thresh,,, are ready to plan. Line 7 is
used to stabilize the ledger synchronization process. During the
global distributed planning of Alg. 3, each robot ¢ broadcasts
its local plan X! after each optimization iteration. Incoming
local plans X7, j € A;, are pushed to a local buffer memory
to be used during the consensus step (line 5 of Alg. 3). The
buffer is cleared after each optimization iteration. Lastly, the
planning terminates after reaching k,, iterations.

Local trajectory optimization: After computing a se-
quence of viewpoints X%Vl each robot i locally computes
a trajectory to visit its portion of the viewpoints %;LT.
The separation of the viewpoint planning from the trajectory
optimization allows the robots to rapidly react to environ-
ment changes or mapping errors via local path re-planning,
without the need to coordinate with their peers in viewpoint
planning via Alg. 3. Furthermore, the two stage planning
allows accounting for dynamical constraints of each robot in
heterogeneous robot teams, such that the low-level trajectory
optimizer takes the viewpoint set xﬁ,l:T and computes a
dynamically feasible path. In our experiments, each robot @
projects its own semantic octree map onto a 2-D plane to
obtain an occupancy grid map of the environment. Given
its viewpoint set %il:T, the robot computes a sequence of
collision-free positions and orientations that connect its current
pose to X} |, and each X} _ to X}, forT e {1,...,T—1}.
For this purpose, the trajectory optimizer uses A* graph search
over the 2-D occupancy map. If a collision is detected during
execution of the path, the corresponding path segment is re-
planned using another A* call. The local trajectory is then used
by a low-level speed controller to generate velocity commands.

An open-source implementation of ROAM is available on
GitHub?. The rest of this section describes the simulation and

Zhttps://github.com/ExistentialRobotics/ROAM.
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Fig. 6: Simulation environment for multi-robot distributed
active mapping: A Husky robot receiving RGB, depth, seman-
tic segmentation images. A top-down view of the simulated
environment, where the numbered circles show the starting
positions of six robots is shown on the right.

real-world experiments. Table I summarizes the parameters
used across all experiments.

B. Outdoor Simulation Experiments in Unity

We carry out experiments in a photo-realistic 3-D simulation
powered by the Unity engine. The environment resembles
an outdoor village area with various types of terrain (e.g.,
grass, dirt road, asphalt, etc.) and object classes, such as
buildings, cars, and street lighting. Our experiments utilize
|[V| = 6 ClearPath Husky wheeled robots, each equipped with
an RGB-D sensor. We assume known robot poses and perfect
semantic segmentation over the RGB input in the simulation
experiments. Fig. 6 shows the simulation setup.

Each robot uses its local semantic octree map to extract
traversable regions, while other object and terrain classes are
considered as obstacles. In particular, Asphalt and Dirt road
classes are selected as traversable terrain classes. Fig. 7 visual-
izes a time lapse of the distributed multi-robot active mapping
experiment. The consistency between the local map of robot 1
and the combined map of all robots can be seen as a qualitative
example of the map consensus achieved by the distributed
mapping method in Alg. 2. Analogously, Fig. 8 illustrates
consensus achieved by the distributed multi-robot planning in
Alg. 3. As described in Sec. V, each robot computes its local
plan based on its local map. Hence, differences in the local
maps can cause variation across the local plans, as seen in
Fig. 8a. However, during each iteration of distributed planning,
line 5 in Alg.3 steers the local plans towards a consensus plan,
as is evident in Fig. 8d.

The performance of ROAM is evaluated quantitatively under
various robot network configurations and planning parameters.
We consider 3 different network topologies: 1) Full, where all
robots can communicate with each other in a fully-connected
network, 2) Hierarchical, where robots can only communicate
with their team leaders, and 3) Ring, where each robot has
exactly 2 neighbors. Fig. 9 depicts the 3 network configura-
tions. For each network configuration, we perform exploration
under 3 variants of Alg. 3: 1) Collaborative, which is the
original version of Alg. 3, 2) Egocentric, where each robot
only maximizes its own path informativeness and safety by

choosing €, = v4 = 0, and 3) Frontier, where robots perform
frontier-based exploration by choosing k, = 0.

Fig. 10 quantifies the coverage achieved by each network
topology and planning parameter set. For Collaborative and
Egocentric planning configurations, Full network configura-
tion leads to faster coverage while traveling less distance
compared to Hierarchical and Ring topologies. This is ex-
pected since Full is the only network topology that allows
one-hop exchange of information between any pair of robots.
On the other hand, the network configuration does not play
a significant role for Frontier exploration in terms of total
covered area, since robots usually choose a frontier that is
nearby their current position, and do not utilize information
coming from their peers’ local maps. The most interesting
takeaway from Fig. 10 is the similar performance of Col-
laborative planning with Hierarchical and Ring topologies,
compared to Egocentric planning with Full topology. This
observation suggests that effective coordination among agents
via Collaborative planning can alleviate the longer multi-hop
communication routes caused by the sparse connectivity of
Hierarchical and Ring topologies.

Similar insights can be obtained from Fig. 11, where nor-
malized map entropy is measured against elapsed time and
distance traveled, for each network topology and planning
mode. Normalized map entropy for robot ¢ € V is defined
as the sum of Shannon entropies of all map voxels divided by
the number of voxels:

N
. -1 ) )
HZorm = ﬁ Z Zp}n(m = C) 1ng}n(m = C)v

n=1 ceC

where N* denotes the number of voxels in the local map of
robot i, and C as well as p!,(m) are defined in the previous
sections. Unlike total map entropy, normalized entropy can
increase as the robots register unvisited voxels into their map.
As Fig. 11 shows, for each planning mode, Full network
topology outperforms Hierarchical and Ring configurations.
Also, Collaborative planning with Hierarchical and Ring con-
figurations have similar performance to Egocentric planning
with Full network topology. The same reasoning used for
Fig. 10 can be utilized to justify these observations. However,
unlike coverage, network topology plays a more significant
role in terms of normalized map entropy for Frontier planning
mode. This is due to the relatively more distributed mapping
consensus steps for the Full topology that lead to more
certainty in the map estimation and, hence, smaller entropy
compared to Hierarchical and Ring. Since coverage does not
take map uncertainty into account, such behavior is only
noticeable in the right column of Fig. 11 but not in Fig. 10.
Additional quantitative metrics specific to multi-robot ex-
ploration are reported in Fig. 12. The first row of Fig. 12 shows
the aggregate distance ¢(h':%), which represents the total
discrepancy across all local maps. Despite robots discovering
distinct unexplored regions during exploration, which can
increase the difference among the local maps, it can be seen
that the map discrepancy tends to decrease overall. The long-
term value of the map discrepancy depends on the ratio of
exploration rate and information exchange rate. Hence, the
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Fig. 7: Time lapse of the multi-robot active mapping experiment. The local map of robot 1 (in Fig. 6) is compared against
the combined maps of all robots. The right sub-figure shows the estimated semantic octree map of robot 1 overlayed on the
ground-truth simulation environment. The exploration is carried out using a fully-connected network of robots.

(a) Initial local plans
3 §

(c) 15" iteration (d) 20™ iteration

Fig. 8: Time lapse of viewpoint planning for robot 1 from
Fig. 6. Each color corresponds to a robot j € V computing a
local plan X{ ., for robot 1. The planned trajectories contain
both positionyand orientation, however only the positions are
visualized for clarity. The planning is carried out over a fully-
connected network of robots.
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Fig. 9: Network topologies used in the simulation experiments.

Full topology yields the closest performance to map consensus
due to its relatively faster rate of exchanging the local maps
amongst the robots. The second row of Fig. 12 displays the
bandwidth required for communicating the local maps within
the robot network. Since the simulation environment uses a
centralized network scheme to register the broadcasted local
maps, there is no significant variation in terms of bandwidth
use across different network topologies and planning modes.
Nevertheless, the results show scalability of the semantic

octree mapping for multi-robot applications, where an average
97 Bytes/sec of bandwidth is needed for each 1 m? of covered
area for voxel dimensions of 0.2 x 0.2 x 0.2 m3.

The quantitative results of Fig. 10 and Fig. 11 demonstrate
the effective performance of ROAM, while Fig. 12 showcases
the consensus and communication properties of our method.
In the next subsection, we evaluate the distributed multi-robot
active mapping in real-world experiments.

C. Indoor Simulation Experiments in Gazebo

We also evaluated ROAM in a Gazebo simulation of an
office environment with corridors and dead-ends, shown in
Fig. 13. A team of |V| = 4 ClearPath Jackal robots was used
for multi-robot active mapping. We compared ROAM versus
the 3D Multi-Robot (3DMR) exploration method [37]. Multi-
robot planning in 3DMR is carried out using a two-level next-
best-view approach, where redundant visitations and inter-
robot collisions are handled in separate stages. The multi-robot
mapping in 3DMR is based on occupancy octree mapping
[64], and synchronization is done by sending missing sensor
observations between robots when local map estimates diverge
more than a pre-defined threshold.

A comparison of exploration trajectories is shown in Fig. 14,
where both methods use Full network configuration, and
Collaborative planning parameters are used for ROAM. In
terms of exploration performance, we observe that ROAM
tends to provide more sophisticated trajectories with diverging
paths among the robots, ensuring every unexplored region of
the environment is visited once. On the other hand, the paths
taken by 3DMR are smoother, primarily oriented towards the
frontiers of the known regions, and have more overlapping
observations among the robots. These differences can be ex-
plained by the fact that ROAM is a continuous-space trajectory
optimization method capable of optimizing small trajectory
perturbations to maximize coverage, while 3DMR selects the
best viewpoints using a discrete-space sampling method.

Quantitative evaluation of ROAM and 3DMR is reported
in Fig. 15. In terms of coverage, ROAM achieves the same
level of exploration by traversing relatively shorter distances.
Similar to the analysis above, this can be attributed to the
high information gain of ROAM paths in which each view-
point along the trajectory is optimized for maximal cover-
age, whereas in 3DMR only the end pose of the trajectory
maximizes visibility. Moreover, as seen in the bottom row
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Fig. 10: Coverage versus time (top row) and distance traveled (bottom row) for the simulation experiments. In each plot, lines
with the same color correspond to robots participating in the same multi-robot exploration experiment, while the experiments
are separated by the type of network topology in Fig. 9.
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Fig. 11: Normalized map entropy versus time (top row) and distance traveled (bottom row) for the simulation experiments. In
each plot, lines with the same color correspond to robots participating in the same multi-robot exploration experiment, while
the experiments are separated by the type of network topology in Fig. 9.
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Fig. 12: Multi-robot exploration performance metrics in the simulation experiments. The top row shows evolution of the map
discrepancy ¢(h':%) across the robot networks G in Fig. 9 over time, and the bottom row displays bandwidth requirements for
the distributed mapping with respect to average coverage. The average coverage is computed by averaging the area covered at
each timestamp over all robots participating in an experiment.

of Fig. 15, the threshold-based map synchronization rule D. Real-World Experiments
of 3DMR leads to a large initial map discrepancy among
the robots. With regards to bandwidth requirements, 3DMR
utilizes a consistent level of usage, which is at the beginning
significantly larger than ROAM, but is eventually surpassed by
ROAM’s bandwidth usage. This is due to the fact that 3DMR
directly broadcasts sensor measurements, which have large
but near constant memory footprint. Conversely, in ROAM
each robot broadcasts its local octree map, which has small
memory footprint but grows with the covered area. Using
event-triggered and difference-based map synchronization can
alleviate the almost linear bandwidth utilization of ROAM but
this is outside the scope of this work.

We deployed ROAM on a team of ground robots to achieve
autonomous exploration and mapping of an unknown indoor
area. The robot team was comprised of two ClearPath Jackal
robots (robot 1 and robot 2), and an F1/10 race car robot
(robot 3). The Jackals were each equipped with an Ouster
(0S1-32 3D LiDAR, an Intel RealSense D455 RGB-D camera,
and an NVIDIA GTX 1650 GPU. The F1/10 race car was
equipped with a Hokuyo UST-10LX 2D LiDAR, an Intel
RealSense D455 RGB-D camera, and an NVIDIA Xavier
NX computer. Fig. 16 shows the three robots participating
in the experiment. We utilize a ResNetl8 [65] neural network
architecture pre-trained on the SUN RGB-D dataset [66] for
semantic segmentation. To achieve real-time segmentation, we



Fig. 13: Indoor office environment in the Gazebo simulator
used in our comparative analysis.
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(b) Occupancy octree map estimated by 3DMR

Fig. 14: Estimated map and exploration paths taken by each
robot for ROAM (top) and 3DMR (bottom). For both methods,
multi-robot exploration was run for ¢t = 300s.

employed the deep learning inference ROS nodes provided
by NVIDIA [67], which are optimized for NVIDIA GPUs
via TensorRT acceleration. The semantic segmentation module
processes the RGB image stream from the D455 camera, and
fuses the segmentation results with the depth image stream,
to publish semantic point cloud ROS topics. For localization,
the Jackal robots used the direct LIDAR odometry of [68],
while the F1/10 race car used iterative closest point (ICP)
scan matching [69]. In order to align the world frames W;,
i€ {1,2,3}, we used AprilTag detection [70], where the es-
timated SE(3) transformation between the RGB sensor frame
of a robot and the detected tag is defined as the world-to-
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Fig. 15: Quantitative evaluation of multi-robot exploration for
ROAM and 3DMR in the simulated office environment in
Fig. 13. The top row show map coverage versus time and
distance traveled, while the bottom row shows map discrep-
ancy ¢(h'*) and bandwidth utilization.

(a) Robot 1 (b) Robot 2

(c) Robot 3

Fig. 16: Ground robot team used in our real-world multi-robot
active mapping experiments.

sensor transformation. Communication was handled via a Wi-
Fi network and multi-master ROS architecture, such that each
robot ¢ runs its own ROS master, and shares its planning ledger
L;, local plan X;, local semantic octree map m?, and estimated
pose with respect to W;. With all the mapping and planning
computations carried out using the on-board robot computers,
we obtain an average frame rate of 2.61Hz, 2.58Hz, and
2.13Hz for robots 1-3, respectively, for distributed semantic
octree mapping. We observed an average distributed planning
iteration time of 0.009s, 0.009s, and 0.024s for robots 1-3.

Our experiments took place in a basement area, consisting
of a lobby room connected to a corridor and a large laboratory,
shown in Fig. 17. Similar to the simulation experiments,
the local semantic octree maps were utilized to analyze the
terrain traversability, where in this case the Ground object
class was selected as the traversable region. Exploration was
performed using the Collaborative planning parameter set. The
communication network topology was Full, however, there
were intermittent disconnections due to signal attenuation and
occlusion by the walls. Fig. 18 shows a time lapse of the
real-world multi-robot active mapping experiment. The robots
started at nearby positions, all facing the same AprilTag to
align their world frames. During the first 400s of exploration,
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(b) Corridor

(a) Lobby (c) Laboratory

Fig. 17: Indoor environment used in our real-world multi-robot
active mapping experiments.

the robots mostly explored the same areas in their immediate
vicinity. Each robot gradually separated from the others after
t = 400s, and focused on a specific part of the environment,
as it can be seen in Fig. 18a. In particular, robot 1 explored the
corridor area, while robot 2 and robot 3 visited the laboratory
and the lobby, respectively. Around ¢t = 500s, as the robots
got farther away from each other, they temporarily lost com-
munication. During the disconnection period, the robots could
not plan collaboratively and relied only on their local maps for
planning. Such cutoffs caused delayed consensus steps, leading
to deviation of the map estimations and the planned paths
across the robot team. Extended periods of communication
interruption could lead to inefficient exploration because the
robots may re-visit already explored areas when they are
unaware of their peers’ map estimates. Nonetheless, this did
not deteriorate the exploration performance in our case since
the robots were so far away from each other that they would
not revisit regions already explored by a peer. Fig. 18b is
a good example of such situations. At ¢ = 1200s, the team
was ordered to return to base, where the robots individually
planned paths from their current positions back to their initial
positions. Communication was automatically re-established as
soon as the robots arrived near the starting locations, and
distributed mapping was resumed leading to agreement in the
semantic octree maps, as shown in Fig. 18c. First-person views
of the semantic octree map of robot 1 overlaid on the real-
world environment is illustrated in Fig. 18d.

Fig. 19 and Fig. 20 show the quantitative results of the
same real-world experiment. Note the sudden jump in the
map coverage plot of Fig. 19, corresponding to reaching map
consensus amongst the robots when network connection was
re-established. This can be clearly observed in Fig. 20 where
the map discrepancy ¢(h'*) shrinks to zero as the robots reach
consensus. Unlike the simulation experiments, the bandwidth
use of the robots can be measured separately by probing the
communication packages sent to/from each robot, reported in
Fig. 20. The flat lines represent the jump in map coverage
due to the eventual connection after a period of intermittent
disconnections during the exploration. Overall, the real-world
experiments show the practicality of ROAM for autonomous
mapping of large unstructured areas using a team of robots
and consumer-grade communication infrastructure.

VII. CONCLUSIONS

We developed a distributed Riemannian optimization
method that achieves consensus among the variables estimated

(a) At t = 400s, the robots effectively choose different sections of
the environment to explore.

Laboratory

(c) At t = 1450s, the robots are back to their initial locations and
perform a final map exchange to ensure consensus.

(d) First-person view of the semantic octree map of robot 1.

Fig. 18: Qualitative results from a real-world multi-robot active
mapping experiment. (a)-(b): Snapshots of exploration at ¢ =
400s and t = 900s. The explored region and the path of each
robot are identified by a distinct color (legend at the top left).
(c): The final semantic octree map of robot 1 at ¢ = 1450s.
The three sections of the environment (i.e. lobby, laboratory,
and corridor) have been marked on the map. (d) First-person
views of the map overlaying the ground-truth environment.

by different nodes in a communication graph. We used this
method to formulate distributed techniques for multi-robot se-
mantic mapping and information-theoretic viewpoint planning.
The resulting Riemannian Optimization for Active Mapping
(ROAM) enables fully distributed collaborative active mapping
of an unknown environment without the need for central esti-
mation and control. Our experiments demonstrated scalability
and efficient performance even with sparse communication,
and corroborated the theoretical guarantees of ROAM to
achieve consensus and convergence to an optimal solution.
ROAM offers the possibility to generalize many single-robot
non-Euclidean problems to distributed multi-robot applica-



600
)
g 400
©
-
o)
B
8 200

OO 200 400 600 800 1000 1200 1400

ELC
5
0.8
[y
5
<06
= 0.
=
go.4
N
E = =1
£ 0.2
2
ZO 0.0

' 200 400 600 800 1000 1200 1400

Time [sec]

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH 20XX

600
400
—— Robot 1
200 —— Robot 2
—— Robot 3
OO 25 50 75 100 125 150 175 200
1.0
0.8
0.6
0.4
0.2
0.0
25 50 75 100 125 150 175 200

Distance traveled [m]

Fig. 19: Coverage (top row) and normalized map entropy (bottom row) versus time (left column) and distance traveled (right
column) for the real-world multi-robot active mapping experiment. Each color corresponds to one robot in the team.
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Fig. 20: Multi-robot exploration performance metrics for the
real-world experiment. Top: Evolution of the map discrepancy
#(h':3) across the robot network G over time. Bottom: Band-
width requirement of each robot for the distributed mapping
with respect to coverage.

tions, for example formulating multi-robot control for SE(3)
robot dynamics [71]. An important future research direction
involves analyzing the distance to consensus as well as the
sub-optimality bounds for ROAM in the case of non-convex
distance measures and non-concave objective functions. Other
important future research directions include using Nesterov
accelerated [72] and second-order [73] gradient methods in
ROAM, extending ROAM to handle time-varying communi-
cation [12] and unknown robot localization, and handling cases
where some robots act adversarially by intentionally sharing
incorrect maps and plans.

APPENDIX A PROOF OF THEOREM 1

We organize the proof into three main steps. First, we show
that the aggregate distance function ¢(-) is geodesically L-
smooth. Second, we show that Alg. | converges to a consensus
configuration. Last, optimality properties of Alg. 1 are derived.

Step 1. We begin the proof by showing that the aggregate
distance function ¢(-) is geodesically L-smooth. Namely, for
any pair of joint states x,y ¢ MVl we prove:

96 (%) = Ty*g6(¥)x < Ld(x,y),

with g4(x) as a shorthand notation for grad ¢(x).
For two joint states X,y € MVl we have:

grad,: ¢(x) — T grad,: (y) = ~2> _ Ay(vd — TEvl),
Jev
where the vectors v/ and v}/ follow the notation in Assump-

tion 2. Using row-stochasticity of A and the fact that MV is
the product manifold of M leads to:

lgo(x) ~Tggs Wz <4 Y Ayl =T o |3, (19)
(1,5)eV?
Adding and subtracting tangent terms v;y and vg;,y as well as

utilizing the Cauchy-Schwarz inequality in 7,: M results in
the following decomposition:

[og! — T vy |

2 < gy — T35 vl 5 tHvg,

2Hv;y - 7;?;1 vi’y

2
2t

(20)

x xts

such that the vector v% € T,iM is defined in (6). The
vector U;Jy contains sum of 4 vectors corresponding to a
geodesic loop. Assumption 2, in addition to applying the
triangle inequality, allows finding an upper bound for (20) that

does not involve v%/ and v}/ terms:

[0 — T2 i)

20 < (p+1)%(llog,]
Plugging into (19) and summing over (i, ) € V? yields:
196(x)~ Ty g6 (¥)lx <

B+ DX (@ y) + > Ayl
A%

zi T va:yHa:J)z

i

oy lles )

The summation term in the above inequality is upper-bounded
by the induced norm of A, i.e. its largest eigenvalue. Using
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the fact that the largest eigenvalue of row-stochastic matrices
is 1, we derive the following:

ll96(x) — Ty 906 ()l
d(x,y)
Therefore, the aggregate distance function ¢(x) is geodesically
L-smooth, with L = 4(1 + p).

<4(1+p):= L. 1)

Step 2. This step proves convergence of Alg. | to a consensus
configuration. We use the L-smoothness of ¢(-) to find a bound
for the values of ¢(x). Consider two points x and y in M1,
and the geodesic s(-) : [0,1] — M!VI connecting x to y, i.e.
s(0) = x and s(1) = y. Using the fundamental theorem of
calculus for line integrals we have:

d(y) — (%) —(g4(x), Expy ' (y))x =

1
/0 (T2 06 (5(0)) — 96/(x), Expz® (y))w dt.

Applying the Cauchy-Schwarz inequality and using the L-
smoothness of ¢(x) results in:

d(y) — d(x) = (go(x), Expi ! (y))x <
1 22
Ld2(x,y)/0 tdt = £dz(x y)- 22

The above bound helps to analyze the dynamics of the joint
state x over the iterations of Alg. 1. Consider line 4 of Alg. 1.
Using (22) leads to:

S(x ")) < o (x ™)) + (g5 (")), —egs (x*)) )
Le? (k)N (2
+74§*Hg¢(x M-

Similarly, for line 6 of Alg. 1 we have:

P(xF ) < (%M + (g4 (%)), ol
La(kﬂ
+

(23)

)gF(i(k)»ic(k)

llgr (X120,

where, analogous to g, (x(*)), gF(x(’“)) is shorthand notation
for grad F(x)|x—xx . Using the positive definiteness of the
Riemannian metric (v,u)y, we have 2(v,u)x < 7|v[2 +

l|lu||2 /5 for any v, u € Ty MV and 7 > 0. Hence:

- n
P(x* ) < ¢(x™) + §||g¢(x(’“))\|x<k>
(k)?

2

«
+

1 -
(L + 5)||9F(X(k))ll,2~<<k>-
By adding and subtracting T(k) g¢(x(k)) from g4(x (k)) and
using the fact that ||v + u||2/2 < ||v||2 + ||u||2, we have:
2

alF) *)
)+T(L+ lgr(x Mzw

+1llgo (X®) = T3 90 (<) Bews + llgs (<) v
Using the bound for gradients of the local objective functions
fi(x%) alongside utilizing the L-smoothness of ¢(x) and
plugging (23) into the above inequality, yields:

P(xF ) < p(x ¥
i(k)) _

alk 1? 1
L C

€
+le( — 1) +n+ L2€2)]||g¢(x(k))||i<k>-

P(x* ) < p(xW) + ——

e(2—Le)

Choosing n = a5z e have:
€ Le
£ (0= 2 g6 (xM)20 < H(xM)) — ok +D)
L (k)z( 1+ €L . L)C’2 (24)
c1-Lo  2'pr
Summing over ky,.x first iterations of Alg. | yields:
1 - Z lgo (x™ N2 < ¢(x @) — g(xFmtD)
C? 1+ €2L2 ey )2
(——— a®)”
VIte(1 - Z
Because qﬁ(x(kmxﬂ)) is always non-negative, we have:
== Z lgo (x* )13 < o(x)
c2 1+ e2L2 S22
BT Z o

As a consequence of the compactness of M, (b(x(o)) will be
bounded for any choice of x(0), Moreover, setting km,x — 00,
due to the convergence property for the sum of the squared

step sizes ™, we have:

s(1- ) > s <)l <

2 212
€

Therefore, for € € (0,2/L), g¢(x(k)) shrinks to zero as
k goes to infinity. Since a® is a decaying sequence and

llgr(Z*) |z < ﬁ for all £ > 0, Alg. 1 converges to
a first-order critical point of ¢(x).

Let x(>) be the joint state that Alg. 1 converges to. Also, let
X. be a consensus state, which can be constructed by setting
all 2%, i € V, to an arbitrary state z. € M. Since the squared
distance d?(-) is geodesically convex, and the adjacency matrix
A is symmetric and row stochastic, it is possible to show that
¢(+) is also geodesically convex. Thus, we have:

p(xc) > p(x(*)) +

Since ¢(x.) is zero, ¢(x(°)) is non-negative, and (25) indi-
cates that x(>) is a first-order critical point of ¢(-), we arrive
at ¢(x(>)) = 0 for Alg. 1. Note that (25) and ¢(x(>)) =0
hold even for a disconnected graph G. However, for the
global asymptotic consensus, G should be a connected graph;
otherwise, consensus occurs separately for each connected
component of G.

(25)
o) +

<g¢(X(OO)), Exp;(Iw) (XC)>X(°°) .

Step 3. In the last step, we show the optimality properties
of Alg. 1. We utilize the Riemannian manifold version of the
law of cosines, which can be expressed for a geodesic triangle
with side lengths a, b, and c as follows (Lemma 5, [74]):

a2 < Cy/ | Kmin|
~ tanh (¢v/|Kmin])

b% + % — 2bc cos (Lbe), (26)



where K, 1S a lower bound on the sectional curvature of
the manifold. Now, consider a geodesic triangle specified by
xi(kH), ii(k), and z*, where * € M is an element of the
centralized optimal solution of (3), denoted by x* € MVl

Jkt1) ~i(k =i (k)
d*(x o) < dP(E )+C0é(k) g ()20
-—2awwgﬁ< M) Exp b (%)) 5000,
where ¢ = _mac/lrmin] Amax > Maxy yem d(z,y).

tanh (dmdx\/ ‘Kmm )

Since M is compact, dp,, is well-defined. Also, the law
of cosines still holds using d.x instead of side length
dg(i‘i(]C x*) due to the strict monotonicity of the function
m for y € R>¢. As aresult of the local objective function
concavity and gradient boundedness, we have:

20 (fi(a") -

_ d2($i(k+1)

+CC2a(k)2.

Summing over all agents in V yields:

aMV|(F(x
d2( (k) ,X )

) - FEW)) <
&2 (x (kD)

x*) + ¢|V|C2a®)?, @D

Now, we repeat the same steps for the geodesic triangle
specified by x*), x(®)and x*:

d*(xW x*) < d®(x), x*) + ¢ )1gs (x| 20
+ 2€(go (x*), Exp_ (x*))setr-

Using the convexity of ¢(-), the fact that ¢(x*) is zero by
definition, and Qﬁ(x(k)) is always non-negative, we have:

d2 (i(k) , X*) < d2 (X(k)7

x*) + 462||9¢(X(k))”,2(<k)-

Plugging (24) into the above inequality yields:

5 [0 — g
2

a(k)202 1+ €212 L}
€ + 5l
VI Ce(1— %) 2

d2()~((k)’x*) < dz(X(k),X*) +

Plugging once more into (27) leads to:

MIVI(P() ~ FERN)) < @0, x) -
2 o) -

d2 (X(k+1), X*)
¢(X(k+1))
7

a(k)202 1+ €212 Lﬂ

+¢V|C2a®? o

_|_
VI Ce(1—L) 2

Summing over knax first iterations of Alg. 1 yields:

Kmax o . 4 d) X(O)
mw§kﬂ> F@W»sﬁ@@x>+§ﬁ_ﬁ

2¢ 1+ €2 L L may
+¢C? S+ v E (k)2
¢ [W‘(l Lze)[ | l} “
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It is straightforward to show:

Kmax
; * (k") (k)
oI, (F0C) = PEEN) ) o <
k=0
kmax
aB(F(x) — PE))
k=0
Therefore, we have:
*) < ~(k/)
1 4¢p(x©
o [ Ox) o)
2[V| >y al®) 2fe—L
2 1+ 2L2 L kmax 2
+<02( ; e ( : o to)t |V|) a® }
V[(1 - 7) (1 - 7) 2 k=0

Since d?(x(, x*), ¢(x(?), and 72, a®? are bounded and
Z;O:o a®) = oo, the term inside the brackets in the right
hand side of the above inequality vanishes as kp,x — ©00.
Therefore, maxo<p <, {F(X*))} will be asymptotically
lower-bounded by F(x*). Moreover, since ||gg(x))||,) and
a'®) both shrink to zero as k — 00, we derive the same
asymptotic lower bound for F'(x(¥)):

F(x*) < F(x®)}.

In summary, (25) with step size ¢ € (0,2/L) leads to
convergence to a consensus configuration ¢(x(>)) = 0, where
L = 4(1 + p). Furthermore, (28) expresses the optimality of
Alg. 1 with respect to a centralized solution. O

(28)

lim max
Kmax—00  0<k <kmax

APPENDIX B PROOF OF LEMMA 1

The conditional independence of observations given the
map m allows decomposing the observation model ¢*(z}.,|m)
into a product of single observation models ¢‘(z%|m), 7 €
{1,...,t}. By applying Bayes rule to the decomposed obser-
vation model, the objective function in (9) can be written as:

3 (logqi(z )+E

i€V =1

mr~p | 10

‘(m|z})
: p(m) ])'

Using the map independence assumption, the log term inside
the expectation can be expressed as the sum of log terms with
respect to single cells. The additivity of expected value yields:

ZZ(logq +ZEm~P

€Y 7=1
Since every term inside the expectation only depends on a
single cell m,, ~ p,, n € {1,..., N}, the expectation can thus
be simplified to only incorporate one cell instead of the joint
distribution m ~ p. This leads to the expression in (11). [

(Llmale))

n (M)
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