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Optimization for Active Mapping with robot teams. ROAM is

a decentralized Riemannian optimization algorithm that oper-

ates on a communication graph with node variables belonging

to a Riemannian manifold and ensures consensus among the

node variables. The graph nodes correspond to different robots,

while the graph edges model the communication among the

robots. In the context of mapping, the node variables are cat-

egorical probability mass functions representing probabilistic

maps with different semantic classes (e.g., building, vegeta-

tion, terrain) at each robot. The consensus constraint requires

that the local maps of different robots agree with each other.

In the context of planning, the node variables are trajectories

of SE(3) robot poses. Each robot plans trajectories for the

whole team using its local information, while the consensus

constraint requires that the team trajectories computed by

different robots agree. See Fig. 1 for an overview of ROAM.

We demonstrate the performance of ROAM in a variety

of simulation and real-world experiments using a team of

wheeled robots with on-board sensing and processing hard-

ware. Specifically, each robot gathers range and semantic

segmentation measurements using an RGBD sensor, and incre-

mentally builds a local 3-D semantic grid map of the environ-

ment, where each map cell maintains a probability distribution

over object classes. To achieve memory and communication

efficiency, an octree data structure is employed to represent

the 3-D semantic maps [10]. The robots cooperatively find

the most informative set of SE(3) paths for the team to effi-

ciently improve the map and explore the unknown areas while

avoiding obstacle collisions. Both multi-robot mapping and

planning are performed in the absence of a central estimation

and control node and only involve peer-to-peer communication

among neighboring robots.

A. Related Work

1) Distributed Optimization: Multi-robot active mapping is

in essence an optimization problem, with the goal of finding

maximally informative robot trajectories, while simultaneously

maintaining globally consistent map estimates. Thus, we be-

gin our literature review with identifying relevant works in

distributed optimization. The algorithms introduced in [11]–

[13] provide a class of approaches for decentralized gradient-

based optimization in the Euclidean space under a variety of

constraints such as time variation or communication asymme-

try between agents in the network. The survey by Halsted et

al. [14] provides a comprehensive study of distributed opti-

mization methods for multi-robot applications. In this work,

we decompose the task of multi-robot active mapping to two

consensus-constrained Riemannian optimization problems, i.e.

distributed mapping and distributed path planning. However,

naive utilization of the Euclidean optimization techniques

in Riemannian manifolds might violate the structure of the

optimization domain, leading to infeasible solutions. There-

fore, it is required to employ a special family of distributed

optimization methods specific to Riemannian manifolds.

2) Optimization over Riemannian Manifolds: Absil et al.

[15] presents the foundations of optimization over matrix

manifolds, giving rise to many centralized and distributed

algorithms in subsequent works. As examples, Chen et al. [16]

and Wang et al. [17] devise decentralized optimization algo-

rithms for Stiefel manifolds where a Lagrangian function is

used to enforce consensus and maintain the manifold structure.

Manifold optimization also allows designing efficient learning

algorithms where model parameters can be learned using

unconstrained manifold optimization as opposed to Euclidean

space optimization with projection to the parameter manifold.

Zhang et al. [18] and Li et al. [19] introduce stochastic

learning algorithms for Riemannian manifolds in centralized

and federated formats, respectively. Related to our work, Tian

et al. [20] present a multi-robot pose-graph simultaneous

localization and mapping (SLAM) algorithm which employs

gradient-descent local to each robot directly over the SE(3)
space of poses. Our work is inspired by the distributed

Riemannian gradient optimization method introduced by Shah

[21]. We develop a distributed gradient-descent optimization

method for general Riemannian manifolds, and derive specific

instantiations for two particular cases, namely the space of

probability distributions over semantic maps and the space of

SE(3) robot pose trajectories.

3) Multi-Robot Mapping: Distributed mapping is a special

case of distributed estimation, where a model of the envi-

ronment is estimated via sensor measurements. Distributed

estimation techniques are used in multi-robot localization

[22], multi-robot mapping [23], or multi-robot SLAM [24].

Paritosh et al. [25] define Bayesian distributed estimation

as maximizing sensor data likelihood from all agents, while

enforcing consensus in the estimates. The present work follows

a similar methodology in that we achieve multi-robot Bayesian

semantic mapping via distributed maximization of local sen-

sor observation log-likelihood with a consensus constraint

on the estimated maps. Regarding collaborative mapping,

an important consideration is the communication of local

map estimates among the robots. Corah et al. [26] propose

distributed Gaussian mixture model (GMM) mapping, where

a GMM map is globally estimated, and each robot uses this

global map to extract occupancy maps for planning. The use of

GMM environment representation for multi-robot exploration

is motivated by its lower communication overhead compared

to uniform resolution occupancy grid maps. Subsequent works

in [27] and [28] have similarly used distributed GMM mapping

for place recognition and relative localization alongside ex-

ploration. Alternative techniques for communication-efficient

multi-robot mapping include sub-map-based grid mapping

[29] and distributed truncated signed distance field (TSDF)

estimation [30]. More recently, the work in [31] extends

neural implicit signed distance mapping to a distributed setting

via formulating multi-robot map learning as a consensus-

constrained minimization of the loss function. In this case,

the robots need to share the neural network parameters to

achieve consensus. In our work, we use a semantic octree

data structure introduced in our prior work [10] to alleviate the

communication burden by using a lossless octree compression.

Relevant to our work, the authors in [32] propose merging

of two binary octree maps via summing the occupancy log-

odds of corresponding octree leaves. Our work distinguishes

itself from [32] through a different formulation of multi-
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robot mapping as a consensus-based Riemannian optimization

problem, which enables a) extension to multi-class octree

representations, and b) combination of map merging with

online map updates from local observations.

4) Planning for Exploration: Similar to multi-robot map-

ping, many multi-robot planning methods utilize distributed

optimization techniques. The work in [33] outlines various

trajectory planning methods used in multi-robot systems, in-

cluding graph-based, sampling-based, model-based, and bio-

inspired approaches. In particular, graph neural networks

(GNNs) have been utilized in [34], [35] for learning to extract,

communicate, and accumulate features from local observations

in the context of collaborative multi-robot planning in a

distributed way. Coordination and plan deconfliction for multi-

robot cooperative tasks is discussed in [36], where robots are

assigned priorities in a decentralized manner in order to reach

a Pareto equilibrium. The paper by Freda et al. [37] uses a

two-level deconfliction approach for multi-robot exploration to

minimize redundant visitations (topological-level) and avoid

inter-robot collisions (metric-level). In our work, we intro-

duce a decentralized gradient-based negotiation mechanism to

resolve SE(3) path conflicts. Path planning for autonomous

exploration has been extensively studied in the field of active

SLAM. Atanasov et al. [38] propose a distributed active

SLAM method for robots with linear-Gaussian observation

models and a finite set of admissible controls. The authors

exploit the conditional entropy formula for the Gaussian noise

model to derive an open-loop control policy, called reduced

value iteration (RVI), with the same performance guarantees

as a closed-loop policy. An anytime version of RVI is proposed

in [39] using a tree search that progressively reduces the

suboptimality of the plan. In contrast to [38], [39], we use a

probabilistic range-category observation model that accounts

for occlusion in sensing. Sampling-based solutions to multi-

robot active SLAM have been presented in [40] and [41],

with asymptotic optimality guarantees. Cai et al. [42] consider

collision safety and energy as additional factors in the cost

function for active SLAM using a heterogeneous team of

robots. Zhou and Kumar [43] propose robust multi-robot

active target tracking with performance guarantees in regard to

sensing and communication attacks, however, the estimation

and control are carried out centrally. Tzes et al. [44] develop a

learning-based approach for multi-robot target estimation and

tracking, used a GNN to accumulate and process information

communicated among one-hop neighbors. The works in [45],

[46] aim to maintain multi-robot network connectivity and

collision avoidance via control barrier functions. Another

line of research [47], [48] uses decentralized Monte-Carlo

tree search for multi-robot path planning for exploration.

The interested reader is encouraged to refer to [1] for a

comprehensive survey of active SLAM methods. Our work

distinguishes itself by considering continuous-space planning

on a Riemannian manifold, generalizing the previous works

in terms of the finite number of controls and the Euclidean

robot states. Related to active SLAM with continuous-space

planning, Koga et al. [49], [50] introduce iterative covariance

regulation, an SE(3) trajectory optimization algorithm for

single-robot active SLAM with a Gaussian observation model.

Model-based [51] and model-free [52] deep reinforcement

learning techniques have been applied to similar single-robot

active SLAM problems. Extending to a team of robots, Hu

et al. [53] propose Voronoi-based decentralized exploration

using reinforcement learning, where coordination among the

robots takes place via distributed assignment of each Voronoi

region to a robot, and the policy generates a 2-D vector of

linear and angular velocities. In our work, we formulate multi-

robot planning for exploration as a distributed optimization

problem in SE(3) space with a consensus constraint to enforce

agreement among the robot plans.

B. Contributions

Compared to the works mentioned in the previous part,

our distributed Riemannian optimization approach extends the

scope of multi-robot estimation and planning to enable con-

tinuous non-Euclidean state and control spaces and non-linear

non-Gaussian perception models. Our contributions include:

1) a distributed Riemannian optimization algorithm for

multi-robot systems using only one-hop communication,

with consensus and optimality guarantees,

2) a distributed semantic octree mapping approach utilizing

local semantic point cloud observations at each robot,

3) a distributed collaborative planning algorithm for robot

exploration, where the search domain is defined as the

continuous space of SE(3) robot pose trajectories,

4) an open-source implementation, achieving real-time per-

formance onboard resource-constrained robots in simula-

tion and real-world experiments.

We begin by formulating consensus-constrained Rieman-

nian optimization for multi-agent systems in Sec. II. Next,

in Sec. III, we introduce a distributed Riemannian optimiza-

tion algorithm with consensus and optimality guarantees. In

Sec. IV, we formulate distributed semantic octree mapping as

a special case, where the optimization variables are probabil-

ity mass functions over the set of possible semantic maps.

Sec. V formulates distributed collaborative planning for robot

exploration as another application of distributed Riemannian

optimization, where robot trajectories in the SE(3) manifold

are the optimization variables. Lastly, in Sec. VI we evalu-

ate the performance of our proposed distributed multi-robot

exploration in several simulation and real-world experiments.

II. PROBLEM STATEMENT

Consider a network of agents represented by an undirected

connected graph G(V, E), where V denotes the set of agents

and E ⊆ V ×V encodes the existence of communication links

between pairs of agents. Each agent i ∈ V has state xi which

belongs to a compact Riemannian manifold M. Let TxiM
denote the tangent space of M at xi and let 〈v, u〉xi ∈ R

with u, v ∈ TxiM be a Riemannian metric on M [54, Ch.3].

The norm of a tangent vector v ∈ TxiM is defined by the

Riemannian metric as ‖v‖xi =
√

〈v, v〉xi . Additionally, let

Expxi (·) : TxiM → M denote the exponential map on M
at xi, and denote its inverse as Exp−1

xi (·) : M → TxiM.
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We associate a local objective function f i(·) : M → R with

each agent i ∈ V . Our goal is to maximize the cumulative ob-

jective function over the joint agent state x = (x1, . . . , x|V|):

F (x) =
1

|V|
∑

i∈V

f i(xi). (1)

The global objective can be maximized using |V| indepen-

dent local optimizations. However, in many applications it is

necessary to find a common solution among all agents. For

example, in multi-robot mapping, the robots need to ensure

that their local maps are consistent and take into account

the observations from other robots. Therefore, the global

optimization problem needs to be constrained such that the

agents reach consensus on x during optimization. For this aim,

we define an aggregate distance function φ(x) : M|V| → R≥0:

φ(x) =
∑

{i,j}∈E

Aijd
2(xi, xj), (2)

where A is a symmetric weighted adjacency matrix corre-

sponding to the graph G, and d(·) : M × M → R≥0 is a

distance function on the Riemannian manifold M, i.e., com-

putes the length of the geodesic (shortest path) between pairs

of elements in M. The definition of the aggregate distance

function in (2) implies that consensus will be reached if and

only if φ(x) = 0. Hence, adding φ(x) = 0 as a constraint to

(1) would require feasible joint states x = (x1, . . . , x|V|) to

satisfy xi = xj for all i, j ∈ V .

Problem 1. Consider a connected graph G = (V, E) where

each node i ∈ V represents an agent with state xi ∈ M
and local objective function f i(xi). Find a joint state x that

maximizes the following objective function:

max
x

F (x) =
1

|V|
∑

i∈V

f i(xi),

s.t. xi ∈ M, ∀i ∈ V, and φ(x) = 0,

(3)

where φ(x) = 0 is the consensus constraint defined in (2).

As we discuss in Sec. IV and Sec. V, both multi-robot

mapping and multi-robot trajectory optimization can be for-

mulated as consensus-constrained optimization problems as in

(3). In mapping, the manifold M is the probability simplex

capturing map density functions while the local objective

f i(xi) is the log-likelihood of the observations made by robot

i. In trajectory optimization, M represents the space of 3-D

pose (rotation and translation) trajectories in SE(3), and f i(xi)
is a collision and perception-aware objective for the robot

pose trajectories. In the next section, we develop a distributed

gradient-based optimization algorithm to solve (3) using only

local computation and single-hop communication.

III. DISTRIBUTED RIEMANNIAN OPTIMIZATION

The problem in (3) has a specific structure, maximizing

a sum of local objectives subject to a consensus constraint

among all xi, i ∈ V . We develop a distributed gradient-

based algorithm to solve (3). The idea is to interleave gradient

updates for the local objectives with gradient updates for

the consensus constraint at each agent. Alg. 1 formalizes

Algorithm 1 Distributed Riemannian Optimization

Input: Network G(V, E) and initial state xi(0)

Output: Consensus optimal solution to (3)

1: for k ∈ Z≥0 do

2: for each agent i ∈ V do

3: ⊲ Promote consensus with step size ǫ:

4: x̃i(k) = Expxi(k) (−ǫ gradxi φ(x)|x=x(k))
5: ⊲ Optimize local objective with step size α(k):

6: xi(k+1)
= Expx̃i(k) (α(k) grad f i(xi)|xi=x̃i(k))

7: return xi(k)

this idea. The update step in line 4 guides the local state

xi towards satisfaction of the consensus constraint, with a

step size of ǫ. The gradient of φ(x) with respect to xi,

denoted as gradxi φ(x), lies in the tangent space TxiM.

Hence, the exponential map is used to retract the gradient

update −ǫ gradxi φ(x)|x=x(k) to the manifold M. The gradi-

ent gradxi φ(x) can be expressed as a sum of gradients with

respect to the neighbors Ni = {j|Aij > 0} of agent i:

gradxiφ(x) =
∑

j∈Ni

Aij gradxi d2(xi, xj) = −2
∑

j∈Ni

Aij Exp
−1
xi (xj).

Therefore, line 4 requires only single-hop communication

between agent i and its neighbors Ni. Line 6 carries out an

update with step size α(k) in the direction of the gradient

of the local objective f i(·), computed at the updated state

x̃i(k). Similar to the consensus update step, the exponential

map is used in to retract grad f i(xi) and apply it to the point

x̃i(k). Line 6 is local to each agent i and does not require

communication. The two update steps are continuously applied

until a maximum number of iterations is reached or the update

norm is smaller than a threshold.

Example. Consider a sensor network where several agents

gather data that is not supposed to be shared over the network,

due to either privacy reasons or bandwidth limitations. Our

Riemannian optimization algorithm enables distributed pro-

cessing of the global data, accumulated over all agents, without

actually sharing the data. As an example, Fig. 2 illustrates

applying Alg. 1 to compute the leading eigenvector of the

covariance of data. Fig. 2a depicts the global data distribution

Z = [Z⊤
1 Z⊤

2 ]⊤, such that different segments of the data Z1

and Z2 are known to agent 1 and agent 2, separately. This

problem can be formulated as:

max
x1,x2

∑

i∈{1,2}

(Zix
i)⊤Zix

i,

s.t. x1, x2 ∈ S
1 and arccos(x1⊤x2) = 0,

(4)

where the domain manifold is the unit circle S
1, and cosine

distance is used as the distance function. Note that for all x1

and x2 that satisfy the consensus constraint arccos(x1⊤x2) =
0, the objective function is equivalent to the one for the

centralized leading eigenvector problem. Hence, we expect to

find the eigenvector for the covariance of the global data matrix

Z by employing Alg. 1 to (4). Fig. 2b shows an initialization

of x1 and x2 over the unit circle S
1. While the Riemannian
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where PC is the space of categorical distributions over C and

qit(m) =

t
∏

τ=1

qi(m|ziτ )1/t. (13)

In order to remove the constraint pn ∈ PC , we utilize multi-

class log-odds ratio of the categorical distribution [10]:

hn :=
[

log pn(m=0)
pn(m=0) · · · log pn(m=C)

pn(m=0)

]⊤
∈ R

C+1. (14)

A PMF and its log-odds representation have a one-to-one cor-

respondence through the softmax function σ : RC+1 → R
C+1:

pn(m = c) = σc+1(hn) :=
e⊤c+1 exp(hn)

1⊤ exp(hn)
,

where ec is the standard basis vector with c-th element equal

to 1 and 0 elsewhere, 1 is the vector with all elements equal

to 1, and exp(·) is applied element-wise to the vector hn. In

order to enable distributed optimization of the objective (12)

via the framework of Sec. III, we introduce a constraint that

requires the robots to agree on a common map estimate using

only one-hop communication.

Problem 2. Let G(V, E) be a network of robots, where each

robot i ∈ V collects semantic point cloud observations zit.

Construct local estimates of the map log-odds hi at each robot

i that are consistent across V via the following optimization:

max
h1:|V|∈R(C+1)×|V|

∑

i∈V

f i(hi),

s.t. φ(h1:|V|) =
∑

{i,j}∈E

Aij‖hj − hi‖22 = 0,
(15)

where f i(hi) =
∑

c∈C

σc+1(h
i) log

qit(c)

σc+1(hi)
and qit(c) is de-

fined in (13).

The multi-robot mapping problem in (15) has the same

structure as the general distributed optimization in (3).

Therefore, the distributed Riemannian optimization algorithm

(Alg. 1) can be employed to perform multi-robot semantic

mapping. Note that φ(·) is globally convex because of the

flatness of Euclidean space. Thus, Theorem 1 guarantees that

Alg. 1 can achieve consensus in the map estimates of all

robots. The application of Alg. 1 to solve (15) in a distributed

manner is presented in Alg. 2. The update step in line 4

guides the local log-odds towards satisfaction of the consensus

constraint, which only requires single-hop communication

between neighboring robots j ∈ Ni. Line 9 incorporates the

local observations via γi and βi, where ⊙ is element-wise

multiplication. This step is local to each robot i and does

not require communication. Note that lines 4 and 11 resemble

the log-odds equivalent of Bayes rule for updating multi-class

probabilities (see (8) in [10]).

The distributed semantic mapping algorithm we developed

assumes a regular grid representation of the environment.

To reduce the storage and communication requirements, we

may utilize a semantic octree data structure which provides a

lossless compression of the original 3-D multi-class map. In

this case, the update rules in Alg. 2 should be applied to all

Algorithm 2 Distributed Semantic Mapping

Input: Local observations zi1:t and initial multi-class map

estimate hi(0)

Output: Globally consistent semantic map

1: for k ∈ Z≥0 do

2: for each cell in m do

3: ⊲ Promote consensus with step size ǫm:

4: h̃i(k) = hi(k) + ǫm
∑

j∈Ni
Aij(h

j(k) − hi(k))
5: ⊲ Local gradient computation:

6: ∆i = h̃i(k) − logqi
t ⊲ logqi

t = [log qit(c)]
C
c=0

7: γi = (exp(h̃i(k))⊤∆i)1

8: βi = (exp(h̃i(k))⊤1)∆i

9: gi = (γi − βi)⊙ exp(h̃i(k)
)

(exp(h̃i(k)
)⊤1)2

10: ⊲ Apply gradient with step size α
(k)
m :

11: hi(k+1)
= h̃i(k) + α

(k)
m gi

12: hi
1
(k+1)

= 0 ⊲ hi
1
(k+1)

= log p(m=0)
p(m=0) = 0

13: return hi(k)

leaf nodes in the semantic octree map of each robot i. Refer

to Alg. 3 in [10] for the semantic octree equivalents of the

update steps in lines 4 and 11.

In this section, we presented the mapping component of

ROAM as distributed construction of semantic octree maps

given local semantic point cloud observations at each robot.

In the next section, we introduce the multi-robot planning

component of ROAM, where robots cooperatively find trajec-

tories along which their observations are maximally informa-

tive. Employing ROAM for simultaneous distributed mapping

and planning closes the loop for autonomously exploring an

unknown environment with a team of robots.

V. MULTI-ROBOT PLANNING

We discussed the case where observations are collected

passively along the robot trajectories and used for distributed

mapping. In this section, we consider planning the motion of

the robots to collect observations that reduce map uncertainty

and uncover an unknown environment. This active mapping

process prevents redundant observations that may not improve

the map accuracy or increase the overall covered area.

Let Xi
t ∈ SE(3) be the pose of robot i ∈ V , at time t:

Xi
t =

[

Ri
t pi

t

0⊤ 1

]

,

where Ri
t ∈ SO(3) and pi

t ∈ R
3 are the robot’s orientation and

position, respectively. The Lie algebra se(3) corresponding to

the Lie group SE(3) is defined as follows:

se(3) =
{

ξ̂ :=

[

θ̂ ρ

0⊤ 0

]

∈ R
4×4

∣

∣

∣
ξ =

[

ρ

θ

]

∈ R
6
}

,

with (̂·) used to denote the mapping from a vector ξ ∈ R
6 to

a 4× 4 twist matrix in se(3). The matrix exponential exp(·) :
se(3) → SE(3) relates a twist in se(3) to a pose in SE(3) via

the Rodrigues’ formula:

exp(ξ̂) = I + ξ̂ +
(1− cos ‖θ‖)

‖θ‖2 ξ̂
2
+

(‖θ‖ − sin ‖θ‖)
‖θ‖3 ξ̂

3
.
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The exponential mapping at an arbitrary pose X ∈ SE(3) with

perturbation ξ ∈ R
6 (in the robot frame) can be expressed as:

ExpX (ξ) = X exp(ξ̂).

The distance between two poses Xi
t and X

j
t′ is defined as:

d2(Xi
t,X

j
t′) = ξ⊤

Xi
t,X

j

t′
Γξ

Xi
t,X

j

t′
, ξ

Xi
t,X

j

t′
=log(Xi−1

t X
j
t′)

∨,

where the functions log(·) : SE(3) → se(3) and (·)∨ : se(3) →
R

6 denote the inverse mappings associated with exp(·) and

(̂·), respectively. Also, Γ ∈ R
6×6 is a diagonal matrix with

positive diagonal entries that account for the difference in scale

between the linear and angular elements of ξ
Xi

t,X
j

t′
. For more

details, please refer to [59, Ch.7].

To enable gradient-based pose trajectory optimization, we

introduce differentiable cost functions to quantify the safety

and the informativeness of a pose trajectory. We use a distance

field D(Xi
t, p

i
t(m)) as a measure of path safety derived from

the map pit(m) of robot i given observations up to time t. To

obtain the distance field, we extract a maximum likelihood oc-

cupancy map from pit(m) and compute the distance transform.

Furthermore, we use semantic Shannon mutual information

(SSMI) [10, Eq.(4)] denoted by I(m; z|Xi
t, p

i
t(m)) to quantify

the informativeness of a range-category observation z made

from pose Xi
t with respect to the current multi-class map

pit(m) of robot i. Having SSMI in the objective function

allows explicit consideration of the class probabilities, stored

in the map. As detailed in our previous work [10], the planning

method can prioritize searching for specific objects of interest

by tuning the information-theoretic objective. However, in

the case of semantic octree mapping with a range sensor,

mutual information is not differentiable with respect to the

pose Xi
t. As a solution, we use the approach in [60] to

obtain a differentiable approximation of mutual information

by interpolating its values at nearby poses V ∈ SE(3).
Specifically, the collision and informativeness score of Xi

t

is expressed as a convex combination of poses V on a grid

X (Xi
t) inside a geodesic ball around Xi

t with radius ξmax:

f(Xi
t, p

i
t(m)) =

∑

V∈X (Xi
t)

λV(Xi
t)s

i(V),

si(V) = I(m; z|V, pit(m)) + γc logD(V, pit(m)),

where the safety constant γc > 0 trades off informativeness

with collision avoidance and the convex combination coeffi-

cients λV(Xi
t) adjust the influence of the terms corresponding

to V based on distance to Xi
t:

λV(Xi
t) =

1 + cos(d̄(Xi
t,V))

∑

U∈X (Xi
t)
(1 + cos(d̄(Xi

t,U)))
,

d̄(Xi
t,V) =

π

ξmax

d(Xi
t,V).

Fig. 4 illustrates the collision and informativeness score f.

Cooperative planning requires the robots to take into

account the plans of their peers in order to avoid

actions that provide redundant information. Let X =

[X1
t+1:t+T , . . . ,X

|V|
t+1:t+T ]

⊤ ∈ SE(3)|V|×T be the concate-

nated T -length trajectories of all robots in V , where T is the

planning horizon. In the remainder of this section, we use Xi,τ

Fig. 4: Collision and informativeness score for robot pose X.

Each sampled viewpoint Vl ∈ X (X) is colored differently.

For each viewpoint, the field of view and the distance from

the nearest obstacle determine the Shannon mutual information

I(m; z | Vl, pt(m)) and the log-distance logD(Vl, pt(m)),
respectively. The weight λVl

(X) dictates the contribution of

Vl to the total score function f(X, pt(m)), colored white.

as an alternative notation for Xi
t+τ , namely the SE(3) pose of

robot i at time t+τ . The function q(Xi,τ ,Xj,τ ′) quantifies the

observation redundancy as the overlap between sensor field of

views (FoVs) for two poses Xi,τ and Xj,τ ′ :

q(Xi,τ ,Xj,τ ′) = max {0, 2dq − ‖Q(Xi,τ − Xj,τ ′)e‖2}2 ,
where:

dq = |F|+ ξmax, Q =

[

I3×3 03×1

01×3 0

]

, e =

[

03×1

1

]

,

and |F| is the diameter of the sensor FoV.

The local objective function for robot i is defined using the

collision and informativeness score f and the FoV overlap q:

f i(X, pit(m)) =

T
∑

τ=1

[

f(Xi,τ , p
i
t(m))

− γq
∑

j∈V

T
∑

τ ′=1

[1− δijδττ ′ ][1− δij
2
]q(Xi,τ ,Xj,τ ′)

]

,

(16)

where δij is the Kronecker delta which takes value 1 if and

only if i = j, and 0 otherwise. Also, the constant γq > 0
trades off trajectory collision avoidance and informativeness

with sensor FoV overlap.

The goal of multi-robot planning is to maximize the sum of

local objective functions f i over V . Since we intend to perform

the maximization in a distributed manner, we consider local

plans Xi ∈ SE(3)|V|×T for each robot i ∈ V , representing an

individual robot’s plan for the collective trajectories of the

team. Eventually, these local plans should reach consensus

so that the team members act in agreement. To quantify the

disagreement among the robot plans, we define an aggregate

distance function φ(·) : SE(3)|V|×T×|V| → R≥0 that accumu-

lates the pairwise distances between all local plans Xi, i ∈ V:

φ(X1:|V|) =
∑

{i,j}∈E

Aijd
2(Xi,Xj), (17)

where d : SE(3)|V|×T×2 → R≥0 is defined via extension of

the distance in SE(3) to the product manifold SE(3)|V|×T .
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Algorithm 3 Distributed Planning for Exploration

Input: Local map pit(m) of robot i
Output: Collaborative robot team plan for exploration

1: Xi(0) = FRONTIER(pit(m)) ∀i ∈ V ⊲ Initialization

2: for k ∈ Z≥0 do

3: ⊲ Promote consensus with step size ǫp:

4: for every l ∈ V and τ ∈ {1, . . . , T} do

5: X̃i(k)

l,τ = Xi(k)

l,τ exp
(

ǫp
∑

j∈Ni

Aij

×
(

J−⊤
L (ξ

Xi(k)

l,τ
,Xj(k)

l,τ

)Γξ
Xi(k)

l,τ
,Xj(k)

l,τ

)∧
)

6: ⊲ Local gradient computation:

7: gl,τ = 0 ⊲ Initialize for all l ∈ V , τ ∈ {1, . . . , T}
8: for every τ ′ ∈ {1, . . . , T} do

9: cset = |X (X̃i(k)

i,τ ′ )|+
∑

V∈X (X̃i(k)

i,τ′ )
cos (d̄(X̃i(k)

i,τ ′ ,V))

10: gi,τ ′ +=
∑

V∈X (X̃i(k)

i,τ′ )

[(s(X)− f(X̃i(k)

i,τ ′ , pit(m)))

×
sin (d̄(X̃i(k)

i,τ ′ ,V))

csetd̄(X̃i(k)

i,τ ′ ,V)
J−⊤
L (ξ

X̃i(k)

i,τ′ ,V
)Γξ

X̃i(k)

i,τ′ ,V
]

11: for every l ∈ V and τ ∈ {1, . . . , T} do

12: pi,τ ′ = QX̃i(k)

i,τ ′e, pl,τ = QX̃i(k)

l,τ e

13: Ri,τ ′ = QX̃i(k)

i,τ ′E, Rl,τ = QX̃i(k)

l,τ E

14: cdisp = [1− δilδττ ′ ][1− δil
2 ](pi,τ ′ − pl,τ )

15: ctot = γqcdisp max
{

0,
2dq

‖pi,τ′−pl,τ‖2
− 1

}

16: gi,τ ′ +=

[

R⊤
i,τ ′ctot

03×1

]

, gl,τ −=

[

R⊤
l,τctot

03×1

]

17: ⊲ Apply gradient with step size α
(k)
p

18: for every l ∈ V and τ ∈ {1, . . . , T} do

19: Xi(k+1)

l,τ = X̃i(k)

l,τ exp(α
(k)
p ĝl,τ )

20: return Xi(k)

Problem 3. Let G(V, E) be a network of robots, where each

robot i ∈ V maintains a local map pit(m) obtained by solving

(15). Determine SE(3) pose trajectories for all robots that

maximize the cost function in (16) subject to the consensus

constraint in (17):

max
X1:|V|∈SE(3)|V|×T×|V|

∑

i∈V

f i(Xi, pit(m)),

s.t. φ(X1:|V|) = 0.

(18)

The structure of the planning problem in (18) is com-

patible with the distributed Riemannian optimization method

of Sec. III. We formulate a version of Alg. 1 specialized

for the SE(3) manifold. Due to the positive curvature of

the SE(3) manifold, the aggregate distance function φ(·) has

local minima (see Appendix A.3 in [61]). Thus, if the initial

trajectories Xi(0), i ∈ V , are not similar, the algorithm may

converge to a local optimum of the consensus constraint (17).

Furthermore, the local objective functions f i, i ∈ V , are only

locally concave [62]. Hence, Theorem 1 guarantees only a

locally optimal consensus solution.

Our distributed planning algorithm for solving (18) is pre-

sented in Alg. 3. Given its current local map pit(m), each

robot i ∈ V computes an initial plan Xi(0) for the whole

team using frontier-based exploration [63]. In line 5, each pose

in the local plan Xi(k)

is guided towards consensus with the

plans of neighboring robots j ∈ Ni. The update in this line

is carried out via a perturbation in the robot frame, where

JL(·) denotes the left Jacobian of SE(3) [59, Ch.7], and only

involves communication between neighbors. To compute the

local objective function gradients with respect to each pose

in the local plan, we first initialize the gradients with zero in

line 7, and then populate them with proper values in lines 10

and 16. The gradient of the collision and informativeness score

f(X̃i(k)

i,τ ′ , pit(m)) is computed in lines 9-10, while lines 12-16

derive the gradient of the sensor overlap q(X̃i(k)

i,τ ′ , X̃i(k)

l,τ ) with

respect to both inputs, where E = [I3×3 03×1]
⊤. Note that, for

the f terms, we only need to compute the gradient with respect

to robot i’s own trajectory X̃i(k)

i,τ ′ , τ ′ ∈ {1, . . . , T}, whereas for

the q terms, robot i should locally obtain gradients with respect

to both its own trajectory as well as the trajectories of all other

robots in V . Since each robot stores the trajectory of the whole

team, the computation for the gradients of the q terms does

not require any communication among the robots. Lastly, in

line 19, we apply the computed gradients to each pose in the

local plan, using a right perturbation in the robot frame.

Solving (18) via Alg. 3 leads to two types of behaviors.

1) Locally, the robots attempt to maximize information and

distance from obstacles along their trajectories. This

encourages each robot to visit unvisited parts of the

environment, and corresponds to the f terms of (16).

2) Within each neighborhood, the robots negotiate with their

peers to minimize redundant observations. This prevents

the trajectories to amass at certain regions of the map,

and corresponds to the q terms of (16).

We emphasize that each local plan Xi stores the paths for

all robots in V , instead of only robot i’s and its immediate

neighbors. This is because storing all |V| paths in each robot

allows propagation of the mentioned behaviors on a global

scale, due to the consensus constraint of 18. Therefore, the

global solution of (18) corresponds to a Pareto optimum where

agents find an optimal trade-off between their own information

and safety maximization on one hand and avoiding observation

overlap with their peers on the other hand.

In this section, we developed the distributed planning

component of ROAM. The robot trajectories are chosen to

maximize information and safety for cooperative estimation of

a semantic octree map. Combined with the distributed mapping

method of Sec. IV, the overall system can be utilized for

efficient multi-robot exploration of an unknown environment.

In the next section, we demonstrate the performance of ROAM

in a variety of simulation and real-world experiments.

VI. EXPERIMENTS

This section describes the implementation of ROAM on

multi-robot systems. Next, we evaluate the performance of

ROAM using several measures that quantify optimality, con-

vergence to consensus, and communication overhead. The

evaluations are done in both simulation and real-world.
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Fig. 5: Software stack for multi-robot distributed active map-

ping. The blue blocks are local to each robot, whereas the

red blocks require communication with neighboring robots.

In particular, the robots broadcast their local octree map,

computed team path, and estimated pose. The communication

links between pairs of robots are represented by violet lines.

TABLE I: Parameter set for multi-robot exploration.

Planning Mapping

ǫp 0.1 α
(k)
p

0.1
k+1

ǫm 0.1

dq 20m ξmax 16m α
(k)
m

1
k+1

γc 10−3 γq 10−2 tpub
m 5

T 5 kp 20 tint
m 5

tpub
p 1sec threshp 0.4 Voxel

0.2m
Γ diag(1, 1, 1, 0.1, 0.1, 0.1) side length

A. Implementation of ROAM for Distributed Active Mapping

We deploy our approach on a team of ground wheeled

robots, each equipped with an RGB-D sensor. Fig. 5 shows

an overview of the software stack, implemented using the

Robot Operating System (ROS). The RGB-D sensor provides

synchronized RGB and depth images. The RGB image is

processed with a semantic segmentation algorithm to label

each pixel with an object category. The segmented image

is fused with the depth image to obtain a 3-D semantically

annotated point cloud in the sensor frame of robot i.
Multi-robot localization: It is required to perform multi-

robot localization in order to find the transformation a) from

robot i’s sensor frame to a static world frame Wi for point

cloud registration, and b) from Wi to Wj for distributed mul-

ti-robot mapping and planning. Our implementation of multi-

robot localization in the simulation and real-world experiments

is explained in Sec. VI-B and Sec. VI-D, respectively.

Multi-robot mapping: The semantic point cloud is used to

build and update a semantic octree map for each robot i ∈ V
via lines 6-12 of Alg. 2. The semantic map of each robot

i is broadcasted to its neighboring robots Ni once every tpub
m

seconds. Moreover, each robot pushes any newly received map

to a local buffer memory, and performs line 4 of Alg. 2 every

tint
m seconds to integrate neighbors’ maps into its local map.

The buffer is cleared after each successful iteration of Alg. 2.

Multi-robot viewpoint planning: To decouple low-

frequency informative planning from high-frequency planning

for collision-avoidance, we perform two separate planning

stages, namely on global viewpoint level and on local trajec-

tory level. On the viewpoint level, the distributed collaborative

planning in Alg. 3 is employed to find informative viewpoints

for each robot in V . To coordinate viewpoint planning across

all robots, every robot i ∈ V maintains a ledger L composed

of |V| binary values each indicating whether the corresponding

robot in the team is ready for planning. Due to the decentral-

Algorithm 4 Distributed Ledger Synchronization

Input: Incoming ledger Linc

Output: Synchronized ledger

1: Li = Linc

2: if CHECKREADY() then

3: Li[i] = 1
4: if MEAN(Li) ≥ threshp then

5: STARTPLANNING() ⊲ Viewpoint planning via Alg. 3

6: else

7: Li[i] = ISPLANNING()

8: return Li

ized nature of our method, each robot sends its own copy of

the ledger Li to its neighbors every tpub
p second, and updates

Li using the incoming ledgers, as well as its status with respect

to the current plan. Alg. 4 details the process of decentralized

ledger synchronization for each robot i. In line 1 robot i
makes a copy of the incoming ledger Linc. Then, in line 2,

the function CHECKREADY() determines whether or not the

robot is ready to compute a new plan. A robot would declare

ready to plan only when it has finished its previous plan

and also it is currently not planning. The global distributed

planning of Alg. 3 would start only after a minimum fraction

of robots, denoted by threshp, are ready to plan. Line 7 is

used to stabilize the ledger synchronization process. During the

global distributed planning of Alg. 3, each robot i broadcasts

its local plan Xi after each optimization iteration. Incoming

local plans Xj , j ∈ Ni, are pushed to a local buffer memory

to be used during the consensus step (line 5 of Alg. 3). The

buffer is cleared after each optimization iteration. Lastly, the

planning terminates after reaching kp iterations.

Local trajectory optimization: After computing a se-

quence of viewpoints X1:|V|, each robot i locally computes

a trajectory to visit its portion of the viewpoints Xi
i,1:T .

The separation of the viewpoint planning from the trajectory

optimization allows the robots to rapidly react to environ-

ment changes or mapping errors via local path re-planning,

without the need to coordinate with their peers in viewpoint

planning via Alg. 3. Furthermore, the two stage planning

allows accounting for dynamical constraints of each robot in

heterogeneous robot teams, such that the low-level trajectory

optimizer takes the viewpoint set Xi
i,1:T and computes a

dynamically feasible path. In our experiments, each robot i
projects its own semantic octree map onto a 2-D plane to

obtain an occupancy grid map of the environment. Given

its viewpoint set Xi
i,1:T , the robot computes a sequence of

collision-free positions and orientations that connect its current

pose to Xi
i,1, and each Xi

i,τ to Xi
i,τ+1 for τ ∈ {1, . . . , T − 1}.

For this purpose, the trajectory optimizer uses A∗ graph search

over the 2-D occupancy map. If a collision is detected during

execution of the path, the corresponding path segment is re-

planned using another A∗ call. The local trajectory is then used

by a low-level speed controller to generate velocity commands.

An open-source implementation of ROAM is available on

GitHub2. The rest of this section describes the simulation and

2https://github.com/ExistentialRobotics/ROAM.
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Fig. 6: Simulation environment for multi-robot distributed

active mapping: A Husky robot receiving RGB, depth, seman-

tic segmentation images. A top-down view of the simulated

environment, where the numbered circles show the starting

positions of six robots is shown on the right.

real-world experiments. Table I summarizes the parameters

used across all experiments.

B. Outdoor Simulation Experiments in Unity

We carry out experiments in a photo-realistic 3-D simulation

powered by the Unity engine. The environment resembles

an outdoor village area with various types of terrain (e.g.,

grass, dirt road, asphalt, etc.) and object classes, such as

buildings, cars, and street lighting. Our experiments utilize

|V| = 6 ClearPath Husky wheeled robots, each equipped with

an RGB-D sensor. We assume known robot poses and perfect

semantic segmentation over the RGB input in the simulation

experiments. Fig. 6 shows the simulation setup.

Each robot uses its local semantic octree map to extract

traversable regions, while other object and terrain classes are

considered as obstacles. In particular, Asphalt and Dirt road

classes are selected as traversable terrain classes. Fig. 7 visual-

izes a time lapse of the distributed multi-robot active mapping

experiment. The consistency between the local map of robot 1

and the combined map of all robots can be seen as a qualitative

example of the map consensus achieved by the distributed

mapping method in Alg. 2. Analogously, Fig. 8 illustrates

consensus achieved by the distributed multi-robot planning in

Alg. 3. As described in Sec. V, each robot computes its local

plan based on its local map. Hence, differences in the local

maps can cause variation across the local plans, as seen in

Fig. 8a. However, during each iteration of distributed planning,

line 5 in Alg.3 steers the local plans towards a consensus plan,

as is evident in Fig. 8d.

The performance of ROAM is evaluated quantitatively under

various robot network configurations and planning parameters.

We consider 3 different network topologies: 1) Full, where all

robots can communicate with each other in a fully-connected

network, 2) Hierarchical, where robots can only communicate

with their team leaders, and 3) Ring, where each robot has

exactly 2 neighbors. Fig. 9 depicts the 3 network configura-

tions. For each network configuration, we perform exploration

under 3 variants of Alg. 3: 1) Collaborative, which is the

original version of Alg. 3, 2) Egocentric, where each robot

only maximizes its own path informativeness and safety by

choosing ǫp = γq = 0, and 3) Frontier, where robots perform

frontier-based exploration by choosing kp = 0.

Fig. 10 quantifies the coverage achieved by each network

topology and planning parameter set. For Collaborative and

Egocentric planning configurations, Full network configura-

tion leads to faster coverage while traveling less distance

compared to Hierarchical and Ring topologies. This is ex-

pected since Full is the only network topology that allows

one-hop exchange of information between any pair of robots.

On the other hand, the network configuration does not play

a significant role for Frontier exploration in terms of total

covered area, since robots usually choose a frontier that is

nearby their current position, and do not utilize information

coming from their peers’ local maps. The most interesting

takeaway from Fig. 10 is the similar performance of Col-

laborative planning with Hierarchical and Ring topologies,

compared to Egocentric planning with Full topology. This

observation suggests that effective coordination among agents

via Collaborative planning can alleviate the longer multi-hop

communication routes caused by the sparse connectivity of

Hierarchical and Ring topologies.

Similar insights can be obtained from Fig. 11, where nor-

malized map entropy is measured against elapsed time and

distance traveled, for each network topology and planning

mode. Normalized map entropy for robot i ∈ V is defined

as the sum of Shannon entropies of all map voxels divided by

the number of voxels:

Hi
norm =

−1

N i

Ni

∑

n=1

∑

c∈C

pin(m = c) log pin(m = c),

where N i denotes the number of voxels in the local map of

robot i, and C as well as pin(m) are defined in the previous

sections. Unlike total map entropy, normalized entropy can

increase as the robots register unvisited voxels into their map.

As Fig. 11 shows, for each planning mode, Full network

topology outperforms Hierarchical and Ring configurations.

Also, Collaborative planning with Hierarchical and Ring con-

figurations have similar performance to Egocentric planning

with Full network topology. The same reasoning used for

Fig. 10 can be utilized to justify these observations. However,

unlike coverage, network topology plays a more significant

role in terms of normalized map entropy for Frontier planning

mode. This is due to the relatively more distributed mapping

consensus steps for the Full topology that lead to more

certainty in the map estimation and, hence, smaller entropy

compared to Hierarchical and Ring. Since coverage does not

take map uncertainty into account, such behavior is only

noticeable in the right column of Fig. 11 but not in Fig. 10.

Additional quantitative metrics specific to multi-robot ex-

ploration are reported in Fig. 12. The first row of Fig. 12 shows

the aggregate distance φ(h1:6), which represents the total

discrepancy across all local maps. Despite robots discovering

distinct unexplored regions during exploration, which can

increase the difference among the local maps, it can be seen

that the map discrepancy tends to decrease overall. The long-

term value of the map discrepancy depends on the ratio of

exploration rate and information exchange rate. Hence, the
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the fact that the largest eigenvalue of row-stochastic matrices

is 1, we derive the following:

‖gφ(x)− T x
y gφ(y)‖x

d(x,y)
≤ 4(1 + ρ) := L. (21)

Therefore, the aggregate distance function φ(x) is geodesically

L-smooth, with L = 4(1 + ρ).

Step 2. This step proves convergence of Alg. 1 to a consensus

configuration. We use the L-smoothness of φ(·) to find a bound

for the values of φ(x). Consider two points x and y in M|V|,

and the geodesic s(·) : [0, 1] → M|V| connecting x to y, i.e.

s(0) = x and s(1) = y. Using the fundamental theorem of

calculus for line integrals we have:

φ(y)− φ(x)−〈gφ(x),Exp−1
x (y)〉x =

∫ 1

0

〈T x
s(t)gφ(s(t))− gφ(x),Exp

−1
x (y)〉x dt.

Applying the Cauchy-Schwarz inequality and using the L-

smoothness of φ(x) results in:

φ(y)− φ(x)− 〈gφ(x),Exp−1
x (y)〉x ≤

Ld2(x,y)

∫ 1

0

t dt =
L

2
d2(x,y).

(22)

The above bound helps to analyze the dynamics of the joint

state x over the iterations of Alg. 1. Consider line 4 of Alg. 1.

Using (22) leads to:

φ(x̃(k)) ≤ φ(x(k)) + 〈gφ(x(k)),−ǫgφ(x
(k))〉x(k)

+
Lǫ2

2
‖gφ(x(k))‖2

x(k) .
(23)

Similarly, for line 6 of Alg. 1 we have:

φ(x(k+1)) ≤ φ(x̃(k)) + 〈gφ(x̃(k)), α(k)gF (x̃
(k))〉x̃(k)

+
Lα(k)2

2
‖gF (x̃(k))‖2

x̃(k) ,

where, analogous to gφ(x
(k)), gF (x̃

(k)) is shorthand notation

for gradF (x)|x=x̃(k) . Using the positive definiteness of the

Riemannian metric 〈v, u〉x, we have 2〈v, u〉x ≤ η‖v‖2x +
‖u‖2x/η for any v, u ∈ TxM|V| and η > 0. Hence:

φ(x(k+1)) ≤ φ(x̃(k)) +
η

2
‖gφ(x̃(k))‖2

x̃(k)

+
α(k)2

2
(L+

1

η
)‖gF (x̃(k))‖2

x̃(k) .

By adding and subtracting T x̃(k)

x(k) gφ(x
(k)) from gφ(x̃

(k)), and

using the fact that ‖v + u‖2x/2 ≤ ‖v‖2x + ‖u‖2x, we have:

φ(x(k+1)) ≤ φ(x̃(k)) +
α(k)2

2
(L+

1

η
)‖gF (x̃(k))‖2

x̃(k)

+ η‖gφ(x̃(k))− T x̃(k)

x(k) gφ(x
(k))‖2

x̃(k) + η‖gφ(x(k))‖2
x(k) .

Using the bound for gradients of the local objective functions

f i(xi) alongside utilizing the L-smoothness of φ(x) and

plugging (23) into the above inequality, yields:

φ(x(k+1)) ≤ φ(x(k)) +
α(k)2

2|V| (L+
1

η
)C2

+ [ǫ(
Lǫ

2
− 1) + η(1 + L2ǫ2)]‖gφ(x(k))‖2

x(k) .

Choosing η = ǫ(2−Lǫ)
4(1+L2ǫ2) we have:

ǫ

2
(1− Lǫ

2
)‖gφ(x(k))‖2

x(k) ≤ φ(x(k))− φ(x(k+1))

+ α(k)2(
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
)
C2

|V| .
(24)

Summing over kmax first iterations of Alg. 1 yields:

ǫ

2
(1− Lǫ

2
)

kmax
∑

k=0

‖gφ(x(k))‖2
x(k) ≤ φ(x(0))− φ(x(kmax+1))

+
C2

|V| (
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
)

kmax
∑

k=0

α(k)2.

Because φ(x(kmax+1)) is always non-negative, we have:

ǫ

2
(1− Lǫ

2
)

kmax
∑

k=0

‖gφ(x(k))‖2
x(k) ≤ φ(x(0))

+
C2

|V| (
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
)

kmax
∑

k=0

α(k)2.

As a consequence of the compactness of M, φ(x(0)) will be

bounded for any choice of x(0). Moreover, setting kmax → ∞,

due to the convergence property for the sum of the squared

step sizes α(k)2, we have:

ǫ

2

(

1− Lǫ

2

) ∞
∑

k=0

‖gφ(x(k))‖2
x(k) ≤

φ(x(0)) +
C2

|V|

(

1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2

) ∞
∑

k=0

α(k)2 < ∞.

(25)

Therefore, for ǫ ∈ (0, 2/L), gφ(x
(k)) shrinks to zero as

k goes to infinity. Since α(k) is a decaying sequence and

‖gF (x̃(k))‖x̃(k) ≤ C√
|V|

for all k ≥ 0, Alg. 1 converges to

a first-order critical point of φ(x).
Let x(∞) be the joint state that Alg. 1 converges to. Also, let

xc be a consensus state, which can be constructed by setting

all xi, i ∈ V , to an arbitrary state xc ∈ M. Since the squared

distance d2(·) is geodesically convex, and the adjacency matrix

A is symmetric and row stochastic, it is possible to show that

φ(·) is also geodesically convex. Thus, we have:

φ(xc) ≥ φ(x(∞)) + 〈gφ(x(∞)),Exp−1
x(∞) (xc)〉x(∞) .

Since φ(xc) is zero, φ(x(∞)) is non-negative, and (25) indi-

cates that x(∞) is a first-order critical point of φ(·), we arrive

at φ(x(∞)) = 0 for Alg. 1. Note that (25) and φ(x(∞)) = 0
hold even for a disconnected graph G. However, for the

global asymptotic consensus, G should be a connected graph;

otherwise, consensus occurs separately for each connected

component of G.

Step 3. In the last step, we show the optimality properties

of Alg. 1. We utilize the Riemannian manifold version of the

law of cosines, which can be expressed for a geodesic triangle

with side lengths a, b, and c as follows (Lemma 5, [74]):

a2 ≤ c
√

|κmin|
tanh (c

√

|κmin|)
b2 + c2 − 2bc cos (∠bc), (26)
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where κmin is a lower bound on the sectional curvature of

the manifold. Now, consider a geodesic triangle specified by

xi(k+1)
, x̃i(k), and x∗, where x∗ ∈ M is an element of the

centralized optimal solution of (3), denoted by x∗ ∈ M|V|:

d2(xi(k+1)
, x∗) ≤ d2(x̃i(k), x∗) + ζα(k)2‖gfi(x̃i(k))‖2

x̃i(k)

− 2α(k)〈gfi(x̃i(k)),Exp−1

x̃i(k) (x
∗)〉x̃i(k) ,

where ζ =
dmax

√
|κmin|

tanh (dmax

√
|κmin|)

with dmax ≥ maxx,y∈M d(x, y).

Since M is compact, dmax is well-defined. Also, the law

of cosines still holds using dmax instead of side length

d2(x̃i(k), x∗) due to the strict monotonicity of the function
y

tanh (y) for y ∈ R≥0. As a result of the local objective function

concavity and gradient boundedness, we have:

2α(k)(f i(x∗)− f i(x̃i(k))) ≤ d2(x̃i(k), x∗)− d2(xi(k+1)
, x∗)

+ ζC2α(k)2.

Summing over all agents in V yields:

2α(k)|V|(F (x∗)− F (x̃(k))) ≤
d2(x̃(k),x∗)− d2(x(k+1),x∗) + ζ|V|C2α(k)2.

(27)

Now, we repeat the same steps for the geodesic triangle

specified by x̃(k), x(k), and x∗:

d2(x̃(k),x∗) ≤ d2(x(k),x∗) + ζǫ2‖gφ(x(k))‖2
x(k)

+ 2ǫ〈gφ(x(k)),Exp−1
x(k) (x

∗)〉x(k) .

Using the convexity of φ(·), the fact that φ(x∗) is zero by

definition, and φ(x(k)) is always non-negative, we have:

d2(x̃(k),x∗) ≤ d2(x(k),x∗) + ζǫ2‖gφ(x(k))‖2
x(k) .

Plugging (24) into the above inequality yields:

d2(x̃(k),x∗) ≤ d2(x(k),x∗) +
2ζǫ

1− Lǫ
2

[

φ(x(k))− φ(x(k+1))

+
α(k)2C2

|V| [
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
]
]

.

Plugging once more into (27) leads to:

2α(k)|V|(F (x∗)− F (x̃(k))) ≤ d2(x(k),x∗)− d2(x(k+1),x∗)

+ζ|V|C2α(k)2 +
2ζǫ

1− Lǫ
2

[

φ(x(k))− φ(x(k+1))

+
α(k)2C2

|V| [
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
]
]

.

Summing over kmax first iterations of Alg. 1 yields:

2|V|
kmax
∑

k=0

α(k)(F (x∗)− F (x̃(k))) ≤ d2(x(0),x∗) +
4ζφ(x(0))

2/ǫ− L

+ ζC2
[ 2ǫ

|V|(1− Lǫ
2 )

[
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
] + |V|

]

kmax
∑

k=0

α(k)2.

It is straightforward to show:

min
0≤k′≤kmax

{F (x∗)− F (x̃(k′))}
kmax
∑

k=0

α(k) ≤

kmax
∑

k=0

α(k)(F (x∗)− F (x̃(k))).

Therefore, we have:

F (x∗) ≤ max
0≤k′≤kmax

{F (x̃(k′))}

+
1

2|V|∑kmax

k=0 α
(k)

[

d2(x(0),x∗) +
4ζφ(x(0))

2/ǫ− L

+ ζC2
( 2ǫ

|V|(1− Lǫ
2 )

(
1 + ǫ2L2

ǫ(1− Lǫ
2 )

+
L

2
) + |V|

)

kmax
∑

k=0

α(k)2
]

.

Since d2(x(0),x∗), φ(x(0)), and
∑∞

k=0 α
(k)2 are bounded and

∑∞
k=0 α

(k) = ∞, the term inside the brackets in the right

hand side of the above inequality vanishes as kmax → ∞.

Therefore, max0≤k′≤kmax
{F (x̃(k′))} will be asymptotically

lower-bounded by F (x∗). Moreover, since ‖gφ(x(k))‖x(k) and

α(k) both shrink to zero as k → ∞, we derive the same

asymptotic lower bound for F (x(k)):

F (x∗) ≤ lim
kmax→∞

max
0≤k≤kmax

{F (x(k))}. (28)

In summary, (25) with step size ǫ ∈ (0, 2/L) leads to

convergence to a consensus configuration φ(x(∞)) = 0, where

L = 4(1 + ρ). Furthermore, (28) expresses the optimality of

Alg. 1 with respect to a centralized solution.

APPENDIX B PROOF OF LEMMA 1

The conditional independence of observations given the

map m allows decomposing the observation model qi(zi1:t|m)
into a product of single observation models qi(ziτ |m), τ ∈
{1, . . . , t}. By applying Bayes rule to the decomposed obser-

vation model, the objective function in (9) can be written as:

∑

i∈V

t
∑

τ=1

(

log qi(ziτ ) + Em∼p

[

log
qi(m|ziτ )
p(m)

]

)

.

Using the map independence assumption, the log term inside

the expectation can be expressed as the sum of log terms with

respect to single cells. The additivity of expected value yields:

∑

i∈V

t
∑

τ=1

(

log qi(ziτ ) +

N
∑

n=1

Em∼p

[

log
qi(mn|ziτ )
pn(mn)

]

)

.

Since every term inside the expectation only depends on a

single cell mn ∼ pn, n ∈ {1, . . . , N}, the expectation can thus

be simplified to only incorporate one cell instead of the joint

distribution m ∼ p. This leads to the expression in (11).
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[13] S. S. Ram, A. Nedić, and V. V. Veeravalli, “A new class of distributed
optimization algorithms: application to regression of distributed data,”
Optimization Methods and Software, vol. 27, no. 1, pp. 71–88, 2012.

[14] T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of dis-
tributed optimization methods for multi-robot systems,” arXiv preprint

arXiv:2103.12840, 2021.

[15] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on

Matrix Manifold. Princeton University Press, 2008.

[16] S. Chen, A. Garcia, M. Hong, and S. Shahrampour, “Decentralized
Riemannian gradient descent on the Stiefel manifold,” in International

Conference on Machine Learning, 2021, pp. 1594–1605.

[17] L. Wang and X. Liu, “Decentralized optimization over the Stiefel
manifold by an approximate augmented Lagrangian function,” IEEE

Transactions on Signal Processing, vol. 70, pp. 3029–3041, 2022.

[18] H. Zhang, S. J Reddi, and S. Sra, “Riemannian SVRG: Fast stochastic
optimization on Riemannian manifolds,” Advances in Neural Informa-

tion Processing Systems, vol. 29, 2016.

[19] J. Li and S. Ma, “Federated learning on Riemannian manifolds,” arXiv

preprint arXiv:2206.05668, 2022.

[20] Y. Tian, A. Koppel, A. S. Bedi, and J. P. How, “Asynchronous and paral-
lel distributed pose graph optimization,” IEEE Robotics and Automation

Letters, vol. 5, no. 4, pp. 5819–5826, 2020.

[21] S. M. Shah, “Distributed optimization on Riemannian manifolds for
multi-agent networks,” arXiv preprint arXiv:1711.11196, 2017.

[22] N. Atanasov, R. Tron, V. M. Preciado, and G. J. Pappas, “Joint estimation
and localization in sensor networks,” in IEEE Conference on Decision

and Control, 2014, pp. 6875–6882.

[23] E. Zobeidi, A. Koppel, and N. Atanasov, “Dense incremental metric-
semantic mapping for multiagent systems via sparse Gaussian process
regression,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 3133–
3153, 2022.

[24] Y. Tian, Y. Chang, F. H. Arias, C. Nieto-Granda, J. P. How, and
L. Carlone, “Kimera-multi: Robust, distributed, dense metric-semantic
slam for multi-robot systems,” IEEE Transactions on Robotics, vol. 38,
no. 4, 2022.

[25] P. Paritosh, N. Atanasov, and S. Martinez, “Distributed Bayesian estima-
tion of continuous variables over time-varying directed networks,” IEEE

Control Systems Letters, vol. 6, pp. 2545–2550, 2022.
[26] M. Corah, C. O’Meadhra, K. Goel, and N. Michael, “Communication-

efficient planning and mapping for multi-robot exploration in large
environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1715–1721, 2019.

[27] H. Dong, J. Yu, Y. Xu, Z. Xu, Z. Shen, J. Tang, Y. Shen, and Y. Wang,
“MR-GMMapping: Communication efficient multi-robot mapping sys-
tem via Gaussian mixture model,” IEEE Robotics and Automation

Letters, vol. 7, no. 2, pp. 3294–3301, 2022.
[28] Y. Wu, Q. Gu, J. Yu, G. Ge, J. Wang, Q. Liao, C. Zhang, and Y. Wang,

“MR-GMMExplore: Multi-robot exploration system in unknown envi-
ronments based on Gaussian mixture model,” in IEEE International

Conference on Robotics and Biomimetics, 2022, pp. 1198–1203.
[29] J. Yu, J. Tong, Y. Xu, Z. Xu, H. Dong, T. Yang, and Y. Wang, “SMMR-

Explore: Submap-based multi-robot exploration system with multi-robot
multi-target potential field exploration method,” in IEEE International

Conference on Robotics and Automation (ICRA), 2021, pp. 8779–8785.
[30] T. Duhautbout, J. Moras, and J. Marzat, “Distributed 3D TSDF manifold

mapping for multi-robot systems,” in European Conference on Mobile

Robots (ECMR), 2019, pp. 1–8.
[31] Y. Deng, Y. Tang, Y. Yang, D. Wang, and Y. Yue, “MACIM: Multi-agent

collaborative implicit mapping,” IEEE Robotics and Automation Letters,
vol. 9, no. 5, pp. 4369–4376, 2024.

[32] J. Jessup, S. N. Givigi, and A. Beaulieu, “Merging of octree based 3D
occupancy grid maps,” in IEEE International Systems Conference, 2014,
pp. 371–377.

[33] A. Madridano, A. Al-Kaff, D. Martı́n, and A. De La Escalera, “Tra-
jectory planning for multi-robot systems: Methods and applications,”
Expert Systems with Applications, vol. 173, p. 114660, 2021.

[34] W. Gosrich, S. Mayya, R. Li, J. Paulos, M. Yim, A. Ribeiro, and
V. Kumar, “Coverage control in multi-robot systems via graph neural
networks,” in IEEE International Conference on Robotics and Automa-

tion (ICRA), 2022, pp. 8787–8793.
[35] L. Zhou, V. D. Sharma, Q. Li, A. Prorok, A. Ribeiro, P. Tokekar, and

V. Kumar, “Graph neural networks for decentralized multi-robot target
tracking,” in IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR), 2022, pp. 195–202.
[36] W. Wu, S. Bhattacharya, and A. Prorok, “Multi-robot path deconfliction

through prioritization by path prospects,” in IEEE International Confer-

ence on Robotics and Automation (ICRA), 2020, pp. 9809–9815.
[37] L. Freda, T. Novo, D. Portugal, and R. P. Rocha, “3d multi-robot

exploration with a two-level coordination strategy and prioritization,”
arXiv preprint arXiv:2307.02417, 2023.

[38] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
SLAM,” in IEEE International Conference on Robotics and Automation

(ICRA), 2015, pp. 4775–4782.
[39] B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas,

“Anytime planning for decentralized multirobot active information gath-
ering,” IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 2, pp.
1025–1032, 2018.

[40] Y. Kantaros, B. Schlotfeldt, N. Atanasov, and G. J. Pappas, “Asymptot-
ically optimal planning for non-myopic multi-robot information gather-
ing.” in Robotics: Science and Systems, 2019, pp. 22–26.

[41] M. Tzes, Y. Kantaros, and G. J. Pappas, “Distributed sampling-based
planning for non-myopic active information gathering,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 5872–5877.

[42] X. Cai, B. Schlotfeldt, K. Khosoussi, N. Atanasov, G. J. Pappas,
and J. P. How, “Energy-aware, collision-free information gathering for
heterogeneous robot teams,” IEEE Transactions on Robotics, vol. 39,
no. 4, pp. 2585–2602, 2023.

[43] L. Zhou and V. Kumar, “Robust multi-robot active target tracking against
sensing and communication attacks,” IEEE Transactions on Robotics,
vol. 39, no. 3, pp. 1768–1780, 2023.

[44] M. Tzes, N. Bousias, E. Chatzipantazis, and G. J. Pappas, “Graph
neural networks for multi-robot active information acquisition,” in IEEE

International Conference on Robotics and Automation (ICRA), 2023, pp.
3497–3503.

[45] J. Liu, L. Zhou, R. Ramachandran, G. S. Sukhatme, and V. Kumar,
“Decentralized risk-aware tracking of multiple targets,” in Distributed

Autonomous Robotic Systems (DARS), 2024, pp. 408–423.
[46] R. Zahroof, J. Liu, L. Zhou, and V. Kumar, “Multi-robot localization and

target tracking with connectivity maintenance and collision avoidance,”
in 2023 American Control Conference (ACC), 2023, pp. 1331–1338.



20 IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH 20XX

[47] M. Corah and N. Michael, “Distributed matroid-constrained submod-
ular maximization for multi-robot exploration: Theory and practice,”
Autonomous Robots, vol. 43, pp. 485–501, 2019.

[48] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
MCTS: Decentralized planning for multi-robot active perception,” The

International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–
337, 2019.

[49] S. Koga, A. Asgharivaskasi, and N. Atanasov, “Active exploration
and mapping via iterative covariance regulation over continuous SE(3)
trajectories,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2021, pp. 2735–2741.

[50] S. Koga, A. Asgharivaskasi, and N. Atanasov, “Active SLAM over
continuous trajectory and control: A covariance-feedback approach,” in
American Control Conference (ACC), 2022, pp. 5062–5068.

[51] P. Yang, S. Koga, A. Asgharivaskasi, and N. Atanasov, “Policy learning
for active target tracking over continuous SE(3) trajectories,” in Learning

for Dynamics and Control Conference, 2023, pp. 64–75.

[52] P. Yang, Y. Liu, S. Koga, A. Asgharivaskasi, and N. Atanasov, “Learning
continuous control policies for information-theoretic active perception,”
in IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 2098–2104.

[53] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 14 413–14 423, 2020.

[54] N. Boumal, An introduction to optimization on smooth manifolds.
Cambridge University Press, 2023.

[55] R. Sepulchre, “Consensus on nonlinear spaces,” Annual Reviews in

Control, vol. 35, no. 1, pp. 56–64, 2011.
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