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Abstract— This paper introduces a scalable distributed
probabilistic inference algorithm for intelligent sensor net-
works, tackling challenges of continuous variables, in-
tractable posteriors and large-scale real-time data. In a cen-
tralized setting, variational inference is a fundamental tool
to extend the utility of Bayesian estimation, by approximat-
ing a parametrized form of an intractable posterior density.
Our key contribution is deriving the distributed evidence
lower bound (DELBO) from the centralized estimation ob-
jective, whose separable structure enables distributed in-
ference with one-hop sensor communication. The DELBO
consists of observation likelihood and divergences to prior
estimates, and the gap to the measurement evidence is as-
cribed to consensus and modeling errors. For supervised
learning, we design a DELBO-maximizing online distributed
algorithm, and specialize it to Gaussian variational den-
sities with non-linear likelihoods. We extend the resulting
distributed Gaussian variational inference (DGVI) updates
via diagonalized and 1-rank covariance inversions for high-
dimensional estimates and apply it to multi-robot proba-
bilistic mapping using indoor LiDAR data.

I. INTRODUCTION

Modern cyber-physical networks composed of autonomous

vehicles and IoT devices generate large volumes of data

continuously. Estimating variables and parameters of inter-

est from the data efficiently and accurately subject to the

computation, communication, and storage constraints of the

networked devices is a critical problem. For instance, multi-

robot mapping [49] requires learning the map parameters by

robots collecting occupancy data online. Low onboard storage

and processing capabilities may limit the robot’s ability to

perform inference with exhaustive sampling. Networks with

limited communication bandwidth may not transmit upto a

million points generated each second by LiDARs. New meth-

ods are needed to handle the communication and processing

restrictions in distributed estimation.

Bayesian inference is a probabilistic estimation method that

accumulates observation likelihood information to compute the

(posterior) distribution of the variables of interest conditioned

on the observations. This is especially useful in prediction

problems because the uncertainty quantification provided by

the posterior distribution helps limit overconfidence about the

best estimate. Yet, the Bayesian approach comes at a cost,

which is computational intractability for general observation
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models. This has given rise to approximate inference rules,

including expectation propagation and variational inference,

which can provide more efficient posterior computations.

This work investigates the design of a distributed variational

inference algorithm that can handle continuous variables,

intractable posteriors, and large datasets in sensor networks.

Related work: Variational inference (VI), a technique out-

lined in [22], is a method to approximate intractable pos-

teriors in standard Bayesian inference. It finds application

to diverse problems such as state estimation [16], learning

from demonstrations [41], and simultaneous localization and

mapping [2]. VI has also been used to train autoencoders

and deep generative models [24], [40]. In VI [20], posterior

probability density functions (pdf) are calculated to maximize

a lower bound (ELBO) on measurement evidence containing

divergence to the true posterior pdf. See the early work

[15], which computes such updates for conjugate families

of prior and likelihood distributions. However, many appli-

cations require non-linear log-likelihood models and non-

conjugate priors. Posterior sampling techniques relying on

sequential or Hamiltonian Monte Carlo sampling [8], [43]

produce posterior approximations by collecting samples from

a Markov chain model. Recent work [10] established that VI

solutions achieve a non-asymptotic convergence rate under

conditions such as concave log-likelihoods, if the samples

represent the posterior well. However, obtaining enough rep-

resentative samples becomes computationally prohibitive in

high-dimensional problems. Instead, stochastic optimization

algorithms [17] are applied to the ELBO objective to learn

an approximate posterior density from noisy gradients. Under

some assumptions, stochastic gradient descent can even be

interpreted as a Markov chain to infer posteriors [29]. We rely

on gradient descent to derive updates specialized to a class of

parametric families for analytic computation.

A popular adaptation of stochastic optimization in VI takes

the form of Gaussian variational inference (GVI), where a

Gaussian posterior is estimated for non-linear data likelihoods.

Barfoot et al. [2] estimate blocks of a sparse information

matrix to develop an online GVI algorithm. However, none of

these inference methods yield a distributed framework, needed

to share computational load across the network, and avoid raw

data transmission. Decentralized algorithms perform better

even in practice [27] as they reduce the load on the busiest

node and avoid single point failures. In what follows, we

specialize our review in probabilistic inference to federated

learning, and distributed optimization and estimation literature.

Federated learning was originally developed for learning
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models over data repositories [23] in server-client architec-

tures, such as edge computing. Federated averaging was shown

to perform accurate inference on non-IID data distributions

over this architecture in [32], with posterior density averaging

in [1]. There have been recent extensions to fully decentralized

settings with non-IID data [4], [51], [52]. In Gaussian infer-

ence, the covariance matrix is updated from batches of data

in federated settings [35]. More recently, model aggregation

has been studied over arbitrary communication networks [46].

Their work draws from the social learning analysis to upper

bound the error in the estimated pdf but the updates rely on

sample-intensive Monte Carlo methods.

In contrast, distributed optimization problems such as dis-

tributed least squares require consistent solutions under ar-

bitrary connectivity. The algorithmic solutions minimize a

sum of separable objective functions subject to a consensus

constraint; see the recent survey on distributed learning via

parametric optimization [6]. Variants of stochastic gradient

descent are widely used to obtain consistent solutions with

inexact local gradient samples, but most are limited to finite

dimensional point estimates [48]. Additionally, the guarantees

for strongly convex objectives do not hold for the divergence

terms in a VI objective. For these divergence objectives, we

perform probabilistic inference in presence of noisy gradients

evaluated at the data streamed over a connected network. This

differs from prior work in [38], [45], that present a class of

distributed Bayesian algorithms estimating entire pdfs.

Distributed Bayesian filters have been developed as a non-

linear extension to classical estimation techniques [7], such

as the variants of extended Kalman and particle filters. Such

approaches [12] are limited to low dimensional estimates, due

to high computational cost. Distributed estimation commonly

relies on linear and geometric averaging for locally pooling

neighbor estimates [14]. The seminal work in [21] estimates

a probability mass function by averaging neighbor estimates

followed by a Bayesian update on local likelihood samples.

But even for these algorithms, efficient implementations are

restricted to conditionally conjugate families of distributions.

To relax this assumption, we combine VI methods with

such distributed Bayesian algorithms with noisy gradients for

strongly connected directed networks. An existing VI algo-

rithm [19] solves a similar distributed inference problem, but

our solution avoids the reliance on computationally expensive

sampling. We instead look at specific classification, regression,

and filtering models to obtain analytical updates.

Contributions: This work designs a distributed variational

inference algorithm to perform probabilistic supervised learn-

ing in a network of agents collecting data independently. Our

contributions are the following. (i) We derive a distributed

version of the evidence lower bound (ELBO) to approximate

posterior densities via optimization. This approach allows

the implementation of probabilistic updates even when the

likelihoods are not conjugate to the prior densities. (ii) We

design a separable form of the distributed ELBO (DELBO)

with local objectives at each agent. This enables the design

of a fully distributed iterative inference algorithm. (iii) By

approximating posterior densities using Gaussian pdfs, we

derive an associated distributed Gaussian variational inference

(DGVI) algorithm, with an iterative update to handle any

nonlinear likelihoods. The specialization to diagonal covari-

ances improves computational efficiency to enable large-scale

inference. (iv) Finally, we apply these algorithms to achieve

distributed probabilistic classification in multi-robot mapping

problems using streaming LiDAR data.

The rest of the manuscript is organized as follows. Section II

formulates the distributed inference problem over the space of

pdfs. Section III introduces variational inference and derives

the ELBO. Section IV devises a distributed version of the

evidence lower bound which leads to distributed variational

inference. Tractable iterative update rules are presented in

Section V for Gaussian family densities. These algorithms are

demonstraed in multi-robot mapping problems in Section VI.

II. PROBLEM FORMULATION: DISTRIBUTED INFERENCE

Consider n agents V = {1, . . . , n} aiming to estimate an

unknown variable θ ∈ R
l cooperatively. The variable θ may

represent a measurement source in environmental monitoring,

relative agent positions in a localization problem, or environ-

ment occupancy in a mapping problem. The agents need to

address two main challenges: 1) observations are received

online and are noisy and 2) the observations are partially

informative about θ due to the agents’ states and limited

sensing capabilities. Therefore, the agents need to cooperate

to learn an accurate and consistent estimate of θ. Suppose

that agent i receives observation zi,t ∈ R
d, at each time t,

according to a known likelihood model ℓi(zi,t|θ). We make

the following assumptions.

Assumption 1 (Independence and differentiability). The ob-

servations zt = {zi,t}i∈V received by the agents at any

time t are independent samples of the likelihood ℓ(zt|θ) =
∏

i∈V ℓi(zi,t|θ). The log likelihood log ℓi(zi,t|θ) is twice dif-

ferentiable in terms of θ.

To account for stochastic and partially informative observa-

tions, the agents are to cooperatively agree on a probability

distribution p(θ) over the variable θ. This cooperation is

enabled by communication over a strongly connected digraph,

G = (V, E), with edge set E ⊆ V × V . The edge (i, j) ∈ E
implies that node j transmits information to node i. Recall that

a graph is strongly connected [5] if there exist a directed path

between any two nodes in the network, thus allowing flow of

information across nodes. The allowable information flow is

captured using a non-negative, irreducible weighted adjacency

matrix A, such that with Aij > 0 only if (i, j) ∈ E . Using the

Sinkhorn’s algorithm [42], the adjacency matrix can be made

doubly stochastic, i.e., A1n = A⊤
1n = 1n, where 1n is a

vector of ones. Therefore, we assume the following.

Assumption 2 (Connectivity). The weighted adjacency matrix

A representing the communication graph G is doubly stochas-

tic A1n = A⊤
1n = 1n with Aii > 0 and strongly connected.

The collaborative network thus aims to estimate the density

p(θ|z≤t) ∈ F ⊆ P(Rl) at time t, where z≤t represents

observations collected by all agents until time t, P(Rl) is

the set of all probability densities over R
l and F is some

known family of pdfs. We assume that the selected agent priors
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pi(θ|z<0) are positive over the feasible domain in θ. Based on

this, we formally state the problem.

Problem 1. Given observations {zi,t} sampled from the agent

observation models ℓi(zi,t|θ), and priors {pi(θ|z<0)} over an

unknown parameter θ, compute a posterior pdf pi(θ|z≤t) ∈
F , where F is a known pdf family and subject to consensus

constraint pi(θ|z≤t) = p(θ|z≤t), for i ∈ V and any t ≥ 0.

There are three key challenges in this problem, namely

online and private observations, consensus constraint on es-

timated densities with restricted communication and inference

constrained to a known pdf family F .

III. BACKGROUND

This section reviews the centralized variational inference

(VI) approach, that we later extend to the proposed distributed

VI setting. The classic Bayes approach calculates the posterior

distribution of a parameter θ at time t as,

p(θ|z≤t) =
ℓ(zt|θ)p(θ|z<t)

p(zt|z<t)
, (1)

by which the posterior p(θ|z≤t) is proportional to the like-

lihood ℓ(zt|θ) and the prior p(θ|z<t). The posterior in (1)

has an analytic expression only if the prior is conditionally

conjugate to the likelihood [13]. For instance, combining a

Gaussian prior with Gaussian linear likelihood results in a

standard Gaussian posterior update. Yet, the exact calculation

of (1) for general prior-likelihood pairs is not possible, as

the computation of the normalization factor p(zt|z<t) =
∫

ℓ(zt|θ)p(θ|z<t)dθ is intractable.

The Bayesian inference rule (1) can be obtained as the

solution to a maximization problem over the space P(Rl) of

probability distributions q(θ) on θ ∈ R
l. This maximization is

performed over the so-called Evidence Lower Bound (ELBO).

The VI approach specializes this problem to a family of

finite-dimensional pdfs, F ⊂ P(Rl), which often includes

exponential densities [50]. Despite ELBO’s ubiquity in the

VI literature, we briefly reproduce it here for the sake of

completeness and clarify the parallel with the proposed dis-

tributed version. To proceed, for pdfs p, q ∈ F , we define

KL-divergence KL[q(θ)||p(θ)] = Eq(θ)

[

log q(θ)
p(θ)

]

.

Lemma 1. Given a pdf q(θ), the log-normalization factor

log p(zt|z<t) in (1) is lower bounded by the ELBO,

E
q(θ)

[log ℓ(zt|θ)− log(q(θ)) + log p(θ|z<t)].

Proof. Using (1), we express the log-normalization factor

in terms of the approximated posterior pdfs and drop the

non-negative variational gap term KL[q(θ)||p(θ|z≤t)] ≥ 0 to

compute its lower bound as,

log p(zt|z<t) = E
q(θ)

[

log
ℓ(zt|θ)p(θ|z<t)q(θ)

p(θ|z≤t)q(θ)

]

≥ E
q(θ)

[log ℓ(zt|θ)]−KL[q(θ)||p(θ|z<t)]

= E
q(θ)

[log ℓ(zt|θ)− log q(θ) + log p(θ|z<t)]. (2)

Since θ in q(θ) is independent of the data z≤t, the expectation

does not alter the value of the log-normalization.

To continue iteratively in VI, we approximate the posterior

p(θ|z≤t) using pdf qt(θ) in a family F for each time t. We

replace the last posterior p(θ|z<t) by its known approximator

qt−1(θ) and maximize ELBO to select the next posterior qt(θ),

qt(θ) ∈ argmax
q(θ)∈F

{Eq[log ℓ(zt|θ)]−KL[q||qt−1]} . (3)

The lower bound explains the modeling error induced by

the choice of the distributional family F . Thus, VI can be

interpreted as finding the best F-constrained optimizer [25,

Section 2.2]. Hereafter, p denotes the pdf of a random variable,

and q is a variational approximation from the family F .

IV. DISTRIBUTED EVIDENCE LOWER BOUND

In this section, we derive a distributed version of the VI

optimization problem in (3). In this setting, the n agents follow

Assumption 1 to collect data independently. Each agent i
maintains its local pdf pi(θ|z<t) estimating the centralized

density p(θ|z<t) over the parameter θ at time t. Since the

agents have their own likelihood models, their estimated

densities may not be equal. Therefore, we represent the

centralized prior as p(θ|z<t) ∝
∏n

i=1 pi(θ|z<t)
1/n, using the

geometric average of the agent pdfs. The geometric average

is chosen for its mode preserving properties [30] when com-

bining multiple pdfs. With this mean, we can rewrite Bayes’

rule with corresponding normalization factor p(zt|z<t) =
∫
∏

i∈V ℓi(zi,t|θ)pi(θ|z<t)
1/ndθ as,

p(θ|z≤t) =

∏

i∈V ℓi(zi,t|θ)pi(θ|z<t)
1/n

p(zt|z<t)
. (4)

To perform estimation using VI, we start by computing a lower

bound on the log-normalization term analogous to the ELBO

in (2). For distributed implementation, we express a separable

version of the VI objective, summing over terms containing

an agent’s likelihood and neighbor estimates. To satisfy the

consensus constraint while performing inference, we assume

that each agent i estimates pdf qi,t ∈ F that is equal to

some qt. Maximizing the separable components at each agent

yields a distributed probabilistic inference algorithm, where

each component contains the corresponding agent’s private

observations and one-hop neighbor estimates.

Theorem 1. Given agent pdfs qi,t(θ) = qt(θ) for some

pdf qt(θ) and agents i ∈ V , the log-normalization factor

log p(zt|z<t) in (4) is lower bounded by the separable dis-

tributed evidence lower bound (DELBO),
∑

i∈V

E
qi,t

[log ℓi(zi,t|θ)−
1

n
log(qi,t(θ))+

∑

j∈V

Aij

n
log pj(θ|z<t)],

where A is the adjacency matrix satisfying Assumption 2.

Proof. Given the agent pdfs pi(θ|z<t), the centralized estimate

at time t is defined as their normalized geometric aver-

age p(θ|z<t) =
1

K<t

∏

i∈V(pi(θ|z<t))
1/n. The normalization

factor K<t =
∫
∏

i∈V(pi(θ|z<t))
1/ndθ is the integral of

the geometric average. Due to the column stochasticity of

matrix A from Assumption 2, the geometric average satisfies
∏

i∈V(pi(θ|z<t))
1/n =

∏

i∈V(
∏

j∈V pj(θ|z<t)
Aij )1/n. By

definition of positive terms in A, this property relates the agent

prior densities with those of its one-hop neighbors. Analogous
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to the ELBO derivation, the normalization in (4) is expressed

in terms of the agent log likelihoods, neighbor prior estimates

and the posterior as,

p(zt|z<t) =
p(zt|θ)p(θ|z<t)

p(θ|z≤t)
=

1

K<t

∏

i∈V

ℓi(zi,t|θ)pi(θ|z<t)
1

n

p(θ|z≤t)
1

n

The geometric average of the non-negative pdfs is pointwise

upper bounded by their arithmetic average, and, hence, its

integral satisfies K<t ≤
∫
∑

i(1/n)pj(θ|z<t)dθ = 1. As a

result, logK<t ≤ 0. As in the centralized setting, since the

argument in pdf qt(θ) is independent of the observation z≤t,

the expectation of the log-normalization factor does not alter

its value. Assuming that qi,t(θ) = qt(θ), we separate the

expectation over the agent likelihoods and priors as follows,

log p(zt|z<t) = − E
qt(θ)

logK<t (5)

+ E
qt(θ)

∑

i∈V

[

log

ℓi(zi,t|θ)
∏

j∈V

pj(θ|z<t)
Aij
n qi,t(θ)

1

n

qi,t(θ)1/np(θ|z≤t)1/n

]

.

log p(zt|z<t) ≥
∑

i∈V

E
qi,t(θ)

[log ℓi(zi,t|θ)] (6)

+
1

n
KL[qi,t(θ)||p(θ|z≤t)]−

1

n
KL[qi,t(θ)||p

g
i (θ|z<t)],

≥
∑

i∈V

E
qi,t(θ)

[log ℓi(zi,t|θ)]−
1

n
KL[qi,t(θ)||p

g
i (θ|z<t)],

where pgi (θ|z<t) =
∏

j∈V pj(θ|z<t)
Aij in the weighted geo-

metric average of the agent prior pdfs. Since the KL divergence

term representing the modeling error between the approxima-

tion qi,t and the estimate p(θ|z≤t) is non-negative, we can

drop this term to obtain a separable lower bound of the log-

normalization factor as,

log p(zt|z<t) ≥
∑

i∈V

[

E
qi,t(θ)

[log ℓi(zi,t|θ)]

−
1

n

∑

j∈V

E
qi,t(θ)

Aij [log qi,t(θ)− log pj(θ|z<t)]



 (7)

The separable terms contain only the agent’s observation zi
and are thus analogous to the ELBO at each agent.

While deriving the DELBO in Theorem 1, we observe

that posterior approximation contains modeling and consensus

error terms. The consensus error at time t is defined in (5)

as log(1/K<t) where K<t =
∫
∏

i pi(θ|z<t)
1/ndθ. Since

log(1/K<t) = 1/n
∑

i∈V

KL[pg||pi(θ|z<t)]

for pg =
∏

i pi(θ|z<t)
1/n/K<t, this error is zero only if the

agent pdfs are equal almost everywhere. The modeling error is

defined in (6) as the divergence
∑

i Eqi,t KL[qi,t||pi(θ|z≤t)].
This error is zero only if the pdfs qi,t are computed in

the family of accurate posterior densities. Replacing the

accurate pdfs pi(θ|z<t) with their last known approxima-

tions qi,t−1 in family F in DELBO yields a separable func-

tional Jt[q1,t, . . . , qn,t] =
1
n

∑

i∈V Ji,t[qi,t] with,

Ji,t[qi,t] = n E
qi,t

[

log

(

ℓi(zi,t|θ)
∏

j∈V

q
Aij
n

j,t−1

)

− log q
1

n

i,t

]

= n E
qi,t

[log[ℓi(zi,t|θ)]]−KL[qi,t||
∏

j∈V

q
Aij

j,t−1].

(8)

The weighted sum of KL-divergences in (8) penalizes devia-

tion from consensus of the agent pdfs qi,t−1. Sharing weighted

pdfs with neighbors is key to reaching consistent estimates

across the network. The positive terms in the matrix A enforce

the communication links into the separable components. The

assumption on posteriors qi,t = qt merely aids the design of

the DELBO, with its local solution stated next.

Corollary 1. The pdf qi,t(θ) maximizing the DELBO compo-

nent Ji,t in (8) is given as,

qi,t(θ) = ℓi(zi,t|θ)
nqgi (θ)

/

∫

ℓi(zi,t|θ)
nqgi (θ)dθ, (9)

where the mixed pdf at agent i is qgi (θ) =
∏

j∈Vi
qj,t−1(θ)

Aij .

Proof. We follow the proof in [37, Proposition 2] using the

Gateaux derivative δ
δqi

KL[qi||qj ] = 1 + log(qi/qj). The

constraint
∫

qi,t = 1 is used to construct the Lagrangian

with multiplier λ as L(qi,t, λ) = Ji,t[qi,t] + λ(
∫

qi,t − 1).
Its variation with respect to qi,t is,

δL

δqi,t
= n log[ℓi(zi,t|θ)]−

∑

j∈V

(1+log qi,t−Aij log qj,t−1)+λ.

Setting the variation to zero and solving for qi,t leads to:

qi,t(θ) = eλ−1 ℓi(zi,t|θ)
n
∏

j∈Vi

qj,t−1(θ)
Aij .

The value of λ can be obtained from the constraint
∫

qi,t(θ) =
1 yielding the result in (9).

For consensus, the asymptotic averaging properties

limt→∞ At = 1
n11

⊤ of matrix A generate agent estimates

eventually consistent with the centralized one qt(θ) = qi,t(θ).
To observe the impact of matrix A on guaranteeing consensus

in distributed estimation problems, please refer to the conver-

gence analysis in [33], [36], [38].

Remark 1 (Distributed estimation). With conjugate agent like-

lihoods ℓi(zi|θ) weighted by factor n, the distributed updates

in [38] match the DELBO updates, thus guaranteeing proba-

bilistic convergence for accurate posterior computations.

The posterior p(θ) in (9) can be approximated for arbitrary

likelihood pdfs using black-box VI [39] in the variational

message passing framework [47]. We employ this approach in

the next example to show the impact of sampling on accuracy.

Example 1 (Estimating geometric mixing of Gaussians). In

this example, we examine a sampled version of the update

in (9) from the perspective of agent 1 and time t = 0
with neighbor weights A1j = 1/n in a network of n =
4 agents with Gaussian priors and likelihoods. Because of

the dependence sampling, we observe that the VI solution

may not match the analytical solution. Assume that the

Gaussian prior for any agent j ∈ V at time t = 0 is

qj,0(θ) = N (µj,0, (Ωj,0)
−1) with mean µj,0, and informa-
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B. DGVI for classification

We consider a kernel-based observation likelihood model

for probabilistic classification. The kernel parameters consist

of a set of known fixed feature points and corresponding

weights. The data z = (x, y) is embedded in feature space

by a transformation Φx = [1, k1(x), . . . , kl(x)] with elements

ks(x) = γ1 exp(−γ2‖x − x(s)‖2) where x(s) are the known

kernel centers and (γ1, γ2) are kernel scaling parameters

chosen to suit the domain and regularity of the model. The

likelihood of an observation z = (x, y) with input x ∈ R
d,

feature Φx ∈ R
l+1, and label y ∈ {0, 1} is modeled as,

ℓ(z|θ) = σ(Φ⊤
x θ)

y(1− σ(Φ⊤
x θ))

1−y, (12)

defined with model parameters θ and the sigmoid function σ.

To estimate the distribution of the parameters θ using the

GVI algorithm in Proposition 1, we would need to estimate

the expectation over the log-likelihood gradient, ∇θ log p(z|θ),
and Hessian, ∇2

θ log p(z|θ). We derive an analytical approx-

imation to these terms. With ∇θσ(Φ
⊤
x θ) = σ(Φ⊤

x θ)(1 −
σ(Φ⊤

x θ))Φ
⊤
x , the log-likelihood derivatives are,

log ℓ(z|θ) = y log σ(Φ⊤
x θ) + (1− y) log(1− σ(Φ⊤

x θ)),

∇θ log ℓ(z|θ) = (y − σ(Φ⊤
x θ))Φ

⊤
x , (13)

∇2
θ log ℓ(z|θ) = −σ(Φ⊤

x θ)(1− σ(Φ⊤
x θ))ΦxΦ

⊤
x . (14)

To analytically compute the expectation of gradient, Hessian

and their derivative terms with respect to a Gaussian density,

we approximate the sigmoid function σ(x) with an inverse

probit function Γ(ξx) =
∫ ξx

−∞
φ(α|0, 1)dα for ξ = 0.61

according to [9]. Fortunately, the expectation of the inverse

probit function with respect to a Gaussian density is an

inverse probit. For the second derivative, the derivative of the

sigmoid function is approximated via a Gaussian probability

density function φ with zero mean and unit covariance. Using

σ(Φ⊤
x θ) ≈ Γ(ξΦ⊤

x θ), the Hessian becomes,

∇2
θ log ℓ(z|θ) = −∇θσ(Φ

⊤
x θ)Φ

⊤
x ≈ −∇θΓ(ξΦ

⊤
x θ)Φ

⊤
x

= −ξφ(ξΦ⊤
x θ|0, 1)ΦxΦ

⊤
x . (15)

To specialize the DGVI algorithm in Proposition 2 to the

classification objective, we next find analytic approximations

of the expectation over gradient and Hessian terms.

Proposition 3 (Expected log-likelihood gradient and Hessian).

For probabilisitic classification with a kernel-based obser-

vation likelihood model in (12), the expected gradient and

Hessian of the log-likelihood in (13) with respect to a Gaussian

density qt(θ) = φ(θ|µt,Ω
−1
t ) satisfy,

Eqt [∇θ log ℓ(z|θ)] ≈
(

y − Γ
(

ξΦ⊤
x µt

/

√

β
))

Φ⊤
x ,

E
qt
[∇2

θ log ℓ(z|θ)] ≈ −
(

ξ
/

√

2πβ
)

e

(

− 1

2
[ ξ

2

β
µ⊤

t ΦxΦ
⊤

x µt]
)

ΦxΦ
⊤
x ,

where β = 1 + ξ2Φ⊤
x Ω

−1
t Φx.

Proof. Please refer to Appendix B.

Methods to estimate Gaussian variational posteriors are

surveyed in [34], and the expectation propagation method is

recommended for its accuracy. However, the associated com-

putational complexity may not allow real-time implementation.

Our approximations of the log-likelihood gradient and Hessian

expectations can be substituted in Proposition 2 to obtain

analytical updates for approximate distributed Gaussian VI.

In the distributed setting, each agent knows the fixed kernel

centers {x(s)} and scale parameters γ1, γ2, receives private

observations zi,t, and estimates a pdf over the weights θ.

Proposition 4 (DGVI for kernel classification). For observa-

tion z = (x, y) received at agent i in an n node network,

the classification likelihood defined in (12), and neighbor es-

timates φ(θ|µj,t−1,Ω
−1
j,t−1), the DELBO maximizing Gaussian

N (θ|µi,t,Ω
−1
i,t ) is,

Ωg
i,t =

∑

j∈V

AijΩj,t−1, Ω
g
i,tµ

g
i,t =

∑

j∈V

AijΩj,t−1µj,t−1,

Ωi,t = Ωg
i,t + γtΦxΦ

⊤
x , (16)

Ω−1
i,t = (Ωg

i,t)
−1 − γt/γ1,t(Ω

g
i,t)

−1ΦxΦ
⊤
x (Ω

g
i,t)

−1 (17)

µi,t = µg
i,t + n

(

y − Γ
(

ξΦ⊤
x µ

g
i,t

/

√

β
))

Ω−1
i,t Φx (18)

with β = 1 + ξ2Φ⊤
x (Ω

g
i,t)

−1Φx, γ1,t = 1 + γtΦ
⊤
x (Ω

g
i,t)

−1Φx

and γt = n
√

ξ2

2πβ exp
(

−0.5[ ξ
2

β (µg
i,t)

⊤ΦxΦ
⊤
x µ

g
i,t]
)

.

Proof. The mean µg
i,t and information matrix Ωg

i,t describe

the weighted geometric average of prior Gaussians. Then,

the steps for Proposition 1 lead to the Gaussian maximizing

the agent separable DELBO. The expected log-likelihood

derivatives in in Proposition 2 are substituted with the analytic

approximations in Proposition 3. This is followed by the steps

reducing matrix inversion computations in Appendix B.

The DGVI updates in Proposition 4 include two lin-

ear system solutions (Ωg
i,t)

−1(
∑

j∈V AijΩj,t−1µj,t−1) and

(Ωg
i,t)

−1Φx. In a centralized setting, the matrix inversion needs

to be performed only at the first step to compute Ω−1
0 , and any

following inverses may be computed iteratively via (17). The

costly matrix inversion can be avoided by using Gaussian pdfs

with diagonal covariances, discussed next.

Proposition 5 (Diagonalized GVI for kernel classification).

For observation z = (x, y) received at agent i in an n node

network, classification likelihood defined in (12), and neigh-

bor estimates φ(θ|µj,t−1, D
−1
j,t−1) with diagonal information

matrices Dj,t, the DGVI update to Gaussian pdf qt(θ) =
φ(θ|µi,t, D

−1
i,t ) with diagonal information matrix Di,t is,

Dg
i,t =

∑

j∈V

AijDj,t−1, D
g
i,tµ

g
i,t =

∑

j∈V

AijDj,t−1µj,t−1,

Di,t = Dg
i,t + γ

√

ξ2/2πβ diag(ΦxΦ
⊤
x ), (19)

µi,t = µg
i,t + n(Dg

i,t)
−1
(

y − Γ
(

ξΦ⊤
x µ

g
i,t

/

√

β
))

Φ⊤
x ,

where γ = n exp
(

−0.5[ ξ
2

β (µg
i,t)

⊤ΦxΦ
⊤
x µ

g
i,t]
)

, and β = 1 +

ξ2Φ⊤
x (D

g
i,t)

−1Φx.

Proof. Please refer to Appendix C.

For the classification likelihood introduced in (12), we have

presented approximate analytic updates for inferring Gaussian

densities over the unknown parameters. The updates consist

of geometric average of Gaussian pdfs and likelihood updates

with efficient inverse and diagonal covariance computations.
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measurements, one should balance the points in each class

while covering the entire space. We maintain a 80− 20 ratio

for the DiNNO dataset, more skewed than the Intel dataset.

Another key to building a good map is appropriate selection

of feature points and lengthscales. The order of selected

lengthscales should match the represented features. For in-

stance, the occupied spaces in the map should be represented

with lengthscales matching the expected obstacle width. In

maps with several obstacle sizes, one could choose multiple

kernels with varying lengthscales at the same feature points.

Greater density of feature points allow a detailed represen-

tation of geometric map features. Selecting them from both

occupied and free spaces allows better representation of each

set. We selected 40% of feature points in the occupied set to

afford a better predictive resolution for DiNNO dataset.

VII. CONCLUSION

Analogous to the evidence lower bound (ELBO) in vari-

ational inference, this paper derived a distributed evidence

lower bound (DELBO) on the observation evidence in multi-

agent estimation problems. Gaussian constrained optimization

of the DELBO components across the agents led to a dis-

tributed variational inference algorithm. We derived a version

of the algorithm with Gaussian variational distributions and

applied it to multi-robot mapping problems using streaming

range measurements. Our distributed VI algorithm handles

any differentiable non-linear log-likelihoods modeling agent

observations, making it a promising efficient approach to

solving networked estimation problems with various machine

learning models. A potential avenue for future work is to

improve the communication efficiency of the algorithm by

limiting the number of communication rounds and the number

of actively communicating agents or by allowing agents to

share relevant subsets of their local parameter estimates.
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APPENDIX

A. Gaussian variational inference

Proposition 1. First, we discuss the derivation of the varia-

tional inference algorithm from the gradient descent steps in

[2]. We start by defining the objective function τ based on the

known Gaussian pdf qt−1(θ) = φ(θ|µt−1,Ω
−1
t−1) as,

τ(θ) = − log ℓ(zt|θ)− log(qt−1(θ)).

Thus, the variational objective V (q) = E
q
[τ(θ) + log q(θ)] is

the negative of the ELBO defined in (2). Enforcing the first

order optimality condition in [2, Eqn. (25)] to minimize V (q),

Ωt = E
qt−1

[

∂

∂θ⊤∂θ
τ(θ)

]

, δµ = −Ω−1
t E

qt−1

[

∂

∂θ⊤
τ(θ)

]

, (22)

where δµ = µ − µt−1. The derivative w.r.t. θ and their

expectations w.r.t. the prior qt−1 becomes,

∂

∂θ⊤
τ(θ) = −

∂

∂θ⊤
[log ℓ(zt|θ)] + (θ − µt−1)

⊤Ωt−1,

E
qt−1

[

∂

∂θ⊤
τ(θ)

]

= − E
qt−1

∂

∂θ⊤
[log ℓ(zt|θ)]. (23)

∂

∂θ⊤∂θ
τ(θ) = −

∂

∂θ⊤∂θ
[log ℓ(zt|θ)] + Ωt−1, (24)

E
qt−1

[

∂

∂θ⊤∂θ
τ(θ)

]

= Ωt−1 − E
qt−1

∂

∂θ⊤∂θ
[log ℓ(zt|θ)].

Thus, the updated mean and information matrix are given as,

µt = µt−1 +Ω−1
t E

qt−1

[

∂

∂θ⊤
[log ℓ(zt|θ)]

]

,

Ωt = Ωt−1 − E
qt−1

[

∂

∂θ⊤∂θ
[log ℓ(zt|θ)]

]

.

(25)

This relates mean and covariance updates to the gradient and

Hessian of the log-likelihood samples.

Proposition 2. The proof to DGVI algorithm proceeds as

Proposition 1, but derives the optimal variations in the agent

hyperparameters. Our presentation begins with a concise de-

scription of the relevant results in [2], which apply to a

centralized setting. We first define the function τi(θ) based

on the sampled likelihood and known neighbor prior pdfs

qj,t−1(θ) = φ(θ|µj,t−1,Ω
−1
j,t−1) available at agent i as,

τi(θ) = −n log ℓi(zi,t|θ)−log qgi,t(θ), q
g
i,t =

n
∏

j=1

q
Aij

j,t−1. (26)

Agent i minimizes the variational objective Vi(q) = E
q
[τi(θ)+

log q(θ)], that matches its negative DELBO component −Ji,t
defined in (8), to compute the optimal pdf qi,t at time t. The

geometric average qgi,t has mean and information matrix,

µg
i,t = (Ωg

i,t)
−1(
∑

j∈V

AijΩj,t−1µj,t−1), Ω
g
i,t =

∑

j∈V

AijΩj,t−1.

Next, we compute the derivatives of the variational objective

to identify its optimizers. For any integrable function τi(θ), the

derivatives of Vi(q) in terms of the mean in q(θ|µ,Ω−1) are,

∂Vi(q)

∂µT
= ΩEq[(θ − µ)τi(θ)], (27)

∂2Vi(q)

∂µT∂µ
= ΩEq[(θ − µ)(θ − µ)T τi(θ)]Ω− ΩEq[τi(θ)].

The information matrix derivative
∂Vi(q)
∂Ω = − 1

2Eq[(θ−µ)(θ−
µ)T τi(θ)]Ω+ 1

2Ω
−1

Eq[τi(θ)]+
1
2Ω

−1 is given in terms of the

second order mean derivative as,

∂2Vi(q)

∂µT∂µ
= Ω− 2Ω

∂Vi(q)

∂Ω
Ω. (28)

Since setting these derivatives to zero does not yield closed

form solutions for (µ,Ω), [2] performs a Taylor expansion of

the variational objective at the prior and selects non-trivial

variations δµ, δΩ to ensure a locally decreasing objective.

Similarly, we perform the approximation at the geometric

average qgi,t(θ) of the neighbor priors, leading to,

Vi(q) ≈ Vi(q
g
i,t) +

(

∂Vi(q)

∂µT

∣

∣

∣

∣

qgi,t

)

δµ (29)

+
1

2
δµT

(

∂2Vi(q)

∂µT∂µ

∣

∣

∣

∣

qgi,t

)

δµ+ tr

(

∂Vi(q)

∂Ω

∣

∣

∣

∣

qgi,t

δΩ

)

,

for δµ = µ− µg
i,t, δΩ = Ω−Ωg

i,t. Setting the derivative w.r.t.

Ω in (28) to zero, and solving the quadratic for δµ in (29)

generates explicit values,

Ωi,t =
∂2Vi(q)

∂µT∂µ

∣

∣

∣

∣

∣

qgi,t

,

(

∂2Vi(q)

∂µT∂µ

∣

∣

∣

∣

∣

qgi,t

)

δµ = −
∂Vi(q)

∂µT

∣

∣

∣

∣

∣

qgi,t

. (30)

Finally, we transform the gradients in terms of (µ,Ω) in

(27) into those w.r.t. variables θ using Stein’s lemma [44] as,

E
q
[(θ − µ)τi(θ)] ≡ ΩE

q

[

∂τi(θ)

∂θ⊤

]

= Ω
∂

∂µ⊤
Vi(q), (31)

E
q
[(θ − µ)(θ − µ)⊤τi(θ)] ≡ ΩE

q

[

∂2τi(θ)

∂θ⊤∂θ

]

Ω+ ΩE
q
[τi(θ)] .

Based on their relation to gradients w.r.t. the mean µ in (27),

we substitute them into (30) to obtain the optimal (µi,t,Ωi,t)
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locally minimizing Vi(q) for δµ = µi,t − µg
i,t as,

µi,t−µg
i,t = −Ω−1

t E
qgi,t

[

∂

∂θ⊤
τi(θ)

]

,Ωi,t = E
qgi,t

[

∂

∂θ⊤∂θ
τi(θ)

]

.

Since these equations mirror (22) in the proof to Proposition 1,

the rest of the proof follows exactly with prior qgi,t to yield,

µi,t = µg
i,t + nΩ−1

i,t E
qgi,t

[

∂

∂θ⊤
[log ℓ(zi,t|θ)]

]

,

Ωi,t = Ωg
i,t − n E

qgi,t

[

∂

∂θ⊤∂θ
[log ℓ(zi,t|θ)]

]

,

with additional multiple n on the log-likelihood.

B. Gaussian Expectation of classification Model

Expected gradient in Proposition 3. From (13), the gradient

of sigmoid function is, ∇θ log ℓ(z|θ) = (y − σ(Φ⊤
x θ))Φ

⊤
x .

Its expected value with q(θ) ∼ N (µ,Σ) follows from the

expectation of the term σ(Φ⊤
x θ). For this computation, we

recall that the inverse probit function, or a cumulative dis-

tribution function defined as Γ(θ) =
∫ θ

α=−∞
φ(α)dα. The

cdf approximates the sigmoid function with the relationship

σ(θ) = Γ(ξθ) for ξ = 0.61 [9]. To compute the approximation

Eq(θ)[Γ(ξΦ
⊤
x θ)], we substitute u = ξΦ⊤

x θ and express the

cdf at u in terms of standard normal random variable Z as

Γ(u) = P(Z ≤ U |U = u). Therefore,

E
q(θ)

[Γ(U)] = E
q(θ)

[P(Z ≤ U |U = u)] = P(Z − U ≤ 0).

Since the variables Z,U are jointly Gaussian, and U is an

affine transformation of θ, their pdf can be expressed as Z −
U = φ(·| − ξΦ⊤

x µ, 1 + ξ2Φ⊤
x ΣΦx),

P(Z − U ≤ 0) = Γ

(

(ξΦ⊤
x µ)

/

√

1 + ξ2Φ⊤
x ΣΦx

)

With β = 1 + ξ2Φ⊤
x ΣΦx, the approximate expected value of

the sigmoid function in the gradient defined in (13) is,

E
qt(θ)

[σ(Φ⊤
x θ)] ≈

∫

Γ(ξΦ⊤
x θ)qt(θ)dθ = Γ

(

ξΦ⊤
x µt

/

√

β
)

.

Thus, the expected gradient of the log-likelihood is,

E
qt
[(y − σ(Φ⊤

x θ))Φ
⊤
x ] =

(

y − Γ
(

ξΦ⊤
x µt

/

√

β
))

Φ⊤
x .

Expected Hessian in Proposition 3. To find a tractable analyt-

ical expression for the new covariance matrix Ω−1
t+1, We start

by computing the expectation from (15),

Eqt [φ(ξΦ
⊤
x θ|0, 1)] =

√

|Ωt|/(2π)l+1 exp(−0.5µ⊤
t Ωtµt)

∫

θ

exp(−0.5[θ⊤(Ωt + ξ2ΦxΦ
⊤
x )θ − 2θ⊤Ωtµt])dθ.

Proceeding with the sum of squares technique on the

quadratic exponential argument,

Eqt [φ(ξΦ
⊤
x θ|0, 1)] =

√

|Ωt|/(2π|Ωt + ξ2ΦxΦ⊤
x |)

exp

(

−
1

2
[−µ⊤

t Ω
⊤
t (Ωt + ξ2ΦxΦ

⊤
x )

−1Ωtµt + µ⊤
t Ωtµt]

)

.

Since computing the determinant and the inverse in the pre-

vious formula is expensive, we employ the matrix determinant

lemma stating that |Ωt + ξ2ΦxΦ
⊤
x | = (1+ ξ2Φ⊤

x Ω
−1
t Φx)|Ωt|.

√

|Ωt|/(2π|Ωt + ξ2ΦxΦ⊤
x |) = (2π(1+ξ2Φ⊤

x Ω
−1
t Φx))

−0.5.

The inverse of the dense matrix (Ωt + ξ2ΦxΦ
⊤
x )

−1 can be

simplified using Woodbury’s formula [31] such that we use

the precomputed covariance matrix Ω−1
t along with a scalar

inverse. In batch settings, this inverse is over low dimensions

in comparison to number of feature points l.

(Ωt + ξ2ΦxΦ
⊤
x )

−1

= Ω−1
t − ξ2Ω−1

t Φx(1 + ξ2Φ⊤
x Ω

−1
t Φx)

−1Φ⊤
x Ω

−1
t .

Substituting β = 1+ ξ2Φ⊤
x Ω

−1
t Φx, the expected second order

derivative is thus simplified as,

E
qt
[∇2

θ log p(zt|θ)] = −
√

ξ2/(2πβ)e

(

− 1

2
[ ξ

2

β
µ⊤

t ΦxΦ
⊤

x µt]
)

ΦxΦ
⊤
x .

Thus, the information matrix update will be linear.

Proposition 4. The mean and covariance updates at any agent

i follow from gradient and Hessians of the likelihood w.r.t.

the mixed pdf qgi,t =
∏

j q
Aij

j,t−1. A computationally cheap

method to compute the inverse of information matrix Ωt in

the expression of the next mean value in (25) is derived from

the matrix inversion lemma [31] as,

Ω−1
t = Ω−1

t−1 − γΩ−1
t−1Φx(I + γΦ⊤

x Ω
−1
t−1Φx)

−1Φ⊤
x Ω

−1
t−1.

In a single agent setting, this avoids performing any matrix

inverse after the initial step.

C. Diagonal Gaussian derivation

Proof for Proposition 5. This proof mirrors the optimization

of the agent-objective outlined in Proposition 2, with two key

differences: (i) the derivatives are expressed in terms of the di-

agonal elements of the information matrix, and, (ii) a diagonal

approximation is applied to the second-order Taylor expansion

of the objective. Assume that the Gaussians q(µ,D) and

qgi,t(µ
g
i,t, D

g
i,t) have diagonalized information matrices with di-

agonal vectors ∆,∆g
i,t whose k-th elements are ∆[k],∆g

i,t[k].
The geometric average qgi,t is expressed in terms of prior

neighbor estimates qj,t−1(µj,t−1, Dj,t−1) with elements of

the mean µg
i,t[k] = (∆g

i,t[k])
−1(
∑

j∈V Aij∆j,t−1[k]µj,t−1[k])
and covariance ∆g

i,t =
∑

j∈V Aij∆j,t−1[k]. With τi(θ) =
−n log ℓi(z|θ)− log qgi,t(θ), the variational objective is,

Vi(q) = E
q
[τi(θ) + log q(θ)] =

1

2

l
∑

k=1

log∆[k]

+

∫

θ

τi(θ)

l
∏

k=1

(
2π

∆[k]
)−

l
2 exp

(

−
1

2

l
∑

k=1

∆[k](θ[k]− µ[k])2

)

.

The elementwise derivatives of DELBO w.r.t. the mean and

information matrix follow from (27), which relates the terms

in Hessian w.r.t. the mean to that of the information matrix as,

∂2

∂µ[k]2
Vi(q) = −2(∆[k])2

∂

∂∆[k]
Vi(q) + ∆[k].

Since ∂
∂∆[k]Vi(q) = 0 for all k at the local optimum, the

optimal information matrix Di.t’s elements are,

∆i,t[k] =
∂2

∂µ[k]2
Vi(q)

∣

∣

∣

∣

qgi,t

, ∀k ∈ {1, . . . , l}. (32)
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As shown in [2], we express the Taylor approximation of

function Vi at the geometric average qgi,t in terms of vector

differentials on mean δµ = µ− µg
i,t and information diagonal

δ∆ = ∆−∆g
i,t as,

V (qi,t) ≈ Vi(q
g
i,t) +

∂

∂µ
Vi(q)

∣

∣

∣

∣

qgi,t

δµ+
∂

∂∆
Vi(q)

∣

∣

∣

∣

qgi,t

δ∆

+
1

2
δµ⊤diag

∂2

∂µ⊤∂µ
Vi(q)

∣

∣

∣

∣

qgi,t

δµ, (Diagonal Hessian)

where we approximate the quadratic coefficient
∂2

∂µ⊤∂µ
Vi(q)

∣

∣

∣

qgi,t

with its diagonal matrix. The diagonal

approximation of the Hessian matrix is appropriate if

the underlying log-likelihood model log ℓi(z|θ) is almost

linear in terms of parameters θ. Since the approximation is

locally quadratic in δµ, we find the optimal mean µi,t by

setting its derivative in terms of δµ to zero. Recalling that

Di,t = diag ∂2Vi(q)
∂µ⊤∂µ

∣

∣

∣

qgi,t

in (32), we obtain the linear system,

δµ = µi,t − µg
i,t = D−1

i,t (
∂Vi(q)
∂µ⊤

∣

∣

∣

qgi,t

).

Similar to (31), we apply Stein’s lemma [44] for the

diagonalized covariance Guassian q(θ) to relate derivatives in

terms of µ,Ω to that of θ, yielding the update rules,

Di,t = diag

(

E
qgi,t

[

∂2τi(θ)

∂θ⊤∂θ

]

)

, µi,t−µg
i,t = D−1

i,t E
qgi,t

[

∂τi(θ)

∂θ⊤

]

.

Using the simplification in Appendix A followed by ex-

pectation of the classification model in Appendix B and

diagonalized Dg
i,t, we obtain the updates,

Di,t = diag
(

Dg
i,t + γΦxΦ

⊤
x

)

= Dg
i,t + γdiag

(

ΦxΦ
⊤
x

)

,

µi,t − µg
i,t ≈ nD−1

i,t (y − Γ
(

ξΦ⊤
x µ

g
i,t

/
√

β
)

)Φ⊤
x ,

where, γ =
√

ξ2

2πβ exp
(

− 1
2 [

ξ2

β (µg
i,t)

⊤ΦxΦ
⊤
x µ

g
i,t]
)

, with β =

1 + ξ2Φ⊤
x (D

g
i,t)

−1Φx over data z = (x, y).

D. Distributed regression in Gaussian models

Let the linear regression model with parameters θ describe

the relationship between input-output pairs z = (x, y) at agent

i be specified as the likelihood ℓi(z|θ) ∝ exp(−0.5(y −
Φ⊤

x θ)
⊤Si(y−Φ⊤

x θ)), where Si is positive definite. Following

the steps for the classification problem, the log likelihood

gradient and Hessian terms are,

∇θ log p(zi|θ) = ΦxSi(y−Φ⊤
x θ),∇

2
θ log p(zi|θ) = −ΦxSiΦ

⊤
x .

The mixed Gaussian pdf qgi,t = N (θ|µg
i,t,Σ

g
i,t) for regression

follows from Proposition 4 with Σg
i,t = (Ωg

i,t)
−1,

Ωg
i,t =

∑

j∈V

AijΩj,t−1, µ
g
i,t = (Ωg

i,t)
−1
∑

j∈V

AijΩj,t−1µj,t−1.

Then, we can follow (25) and Woodbury’s matrix inversion

lemma [31] w.r.t. qgi,t,

Ωi,t = Ωg
i,t − nEqgi,t

[∇2
θ log ℓi(z|θ)] = Ωg

i,t + nΦxSiΦ
⊤
x ,

Ω−1
i,t = Σg

i,t − Σg
i,tΦx((nSi)

−1 +Φ⊤
x Σ

g
i,tΦx)

−1Φ⊤
x Σ

g
i,t,

µi,t = µg
i,t + n(Ωi,t)

−1(ΦxS
⊤
i y − ΦxSiΦ

⊤
x µ

g
i,t).

Thus, we have distributed probabilistic updates on the param-

eters of the linear regression model.
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