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Abstract—This paper introduces a scalable distributed
probabilistic inference algorithm for intelligent sensor net-
works, tackling challenges of continuous variables, in-
tractable posteriors and large-scale real-time data. In a cen-
tralized setting, variational inference is a fundamental tool
to extend the utility of Bayesian estimation, by approximat-
ing a parametrized form of an intractable posterior density.
Our key contribution is deriving the distributed evidence
lower bound (DELBO) from the centralized estimation ob-
jective, whose separable structure enables distributed in-
ference with one-hop sensor communication. The DELBO
consists of observation likelihood and divergences to prior
estimates, and the gap to the measurement evidence is as-
cribed to consensus and modeling errors. For supervised
learning, we design a DELBO-maximizing online distributed
algorithm, and specialize it to Gaussian variational den-
sities with non-linear likelihoods. We extend the resulting
distributed Gaussian variational inference (DGVI) updates
via diagonalized and 1-rank covariance inversions for high-
dimensional estimates and apply it to multi-robot proba-
bilistic mapping using indoor LiDAR data.

[. INTRODUCTION

Modern cyber-physical networks composed of autonomous
vehicles and IoT devices generate large volumes of data
continuously. Estimating variables and parameters of inter-
est from the data efficiently and accurately subject to the
computation, communication, and storage constraints of the
networked devices is a critical problem. For instance, multi-
robot mapping [49] requires learning the map parameters by
robots collecting occupancy data online. Low onboard storage
and processing capabilities may limit the robot’s ability to
perform inference with exhaustive sampling. Networks with
limited communication bandwidth may not transmit upto a
million points generated each second by LiDARs. New meth-
ods are needed to handle the communication and processing
restrictions in distributed estimation.

Bayesian inference is a probabilistic estimation method that
accumulates observation likelihood information to compute the
(posterior) distribution of the variables of interest conditioned
on the observations. This is especially useful in prediction
problems because the uncertainty quantification provided by
the posterior distribution helps limit overconfidence about the
best estimate. Yet, the Bayesian approach comes at a cost,
which is computational intractability for general observation
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models. This has given rise to approximate inference rules,
including expectation propagation and variational inference,
which can provide more efficient posterior computations.
This work investigates the design of a distributed variational
inference algorithm that can handle continuous variables,
intractable posteriors, and large datasets in sensor networks.

Related work: Variational inference (VI), a technique out-
lined in [22], is a method to approximate intractable pos-
teriors in standard Bayesian inference. It finds application
to diverse problems such as state estimation [16], learning
from demonstrations [41], and simultaneous localization and
mapping [2]. VI has also been used to train autoencoders
and deep generative models [24], [40]. In VI [20], posterior
probability density functions (pdf) are calculated to maximize
a lower bound (ELBO) on measurement evidence containing
divergence to the true posterior pdf. See the early work
[15], which computes such updates for conjugate families
of prior and likelihood distributions. However, many appli-
cations require non-linear log-likelihood models and non-
conjugate priors. Posterior sampling techniques relying on
sequential or Hamiltonian Monte Carlo sampling [8], [43]
produce posterior approximations by collecting samples from
a Markov chain model. Recent work [10] established that VI
solutions achieve a non-asymptotic convergence rate under
conditions such as concave log-likelihoods, if the samples
represent the posterior well. However, obtaining enough rep-
resentative samples becomes computationally prohibitive in
high-dimensional problems. Instead, stochastic optimization
algorithms [17] are applied to the ELBO objective to learn
an approximate posterior density from noisy gradients. Under
some assumptions, stochastic gradient descent can even be
interpreted as a Markov chain to infer posteriors [29]. We rely
on gradient descent to derive updates specialized to a class of
parametric families for analytic computation.

A popular adaptation of stochastic optimization in VI takes
the form of Gaussian variational inference (GVI), where a
Gaussian posterior is estimated for non-linear data likelihoods.
Barfoot et al. [2] estimate blocks of a sparse information
matrix to develop an online GVI algorithm. However, none of
these inference methods yield a distributed framework, needed
to share computational load across the network, and avoid raw
data transmission. Decentralized algorithms perform better
even in practice [27] as they reduce the load on the busiest
node and avoid single point failures. In what follows, we
specialize our review in probabilistic inference to federated
learning, and distributed optimization and estimation literature.

Federated learning was originally developed for learning
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models over data repositories [23] in server-client architec-
tures, such as edge computing. Federated averaging was shown
to perform accurate inference on non-IID data distributions
over this architecture in [32], with posterior density averaging
in [1]. There have been recent extensions to fully decentralized
settings with non-1ID data [4], [51], [52]. In Gaussian infer-
ence, the covariance matrix is updated from batches of data
in federated settings [35]. More recently, model aggregation
has been studied over arbitrary communication networks [46].
Their work draws from the social learning analysis to upper
bound the error in the estimated pdf but the updates rely on
sample-intensive Monte Carlo methods.

In contrast, distributed optimization problems such as dis-
tributed least squares require consistent solutions under ar-
bitrary connectivity. The algorithmic solutions minimize a
sum of separable objective functions subject to a consensus
constraint; see the recent survey on distributed learning via
parametric optimization [6]. Variants of stochastic gradient
descent are widely used to obtain consistent solutions with
inexact local gradient samples, but most are limited to finite
dimensional point estimates [48]. Additionally, the guarantees
for strongly convex objectives do not hold for the divergence
terms in a VI objective. For these divergence objectives, we
perform probabilistic inference in presence of noisy gradients
evaluated at the data streamed over a connected network. This
differs from prior work in [38], [45], that present a class of
distributed Bayesian algorithms estimating entire pdfs.

Distributed Bayesian filters have been developed as a non-
linear extension to classical estimation techniques [7], such
as the variants of extended Kalman and particle filters. Such
approaches [12] are limited to low dimensional estimates, due
to high computational cost. Distributed estimation commonly
relies on linear and geometric averaging for locally pooling
neighbor estimates [14]. The seminal work in [21] estimates
a probability mass function by averaging neighbor estimates
followed by a Bayesian update on local likelihood samples.
But even for these algorithms, efficient implementations are
restricted to conditionally conjugate families of distributions.
To relax this assumption, we combine VI methods with
such distributed Bayesian algorithms with noisy gradients for
strongly connected directed networks. An existing VI algo-
rithm [19] solves a similar distributed inference problem, but
our solution avoids the reliance on computationally expensive
sampling. We instead look at specific classification, regression,
and filtering models to obtain analytical updates.

Contributions: This work designs a distributed variational
inference algorithm to perform probabilistic supervised learn-
ing in a network of agents collecting data independently. Our
contributions are the following. (i) We derive a distributed
version of the evidence lower bound (ELBO) to approximate
posterior densities via optimization. This approach allows
the implementation of probabilistic updates even when the
likelihoods are not conjugate to the prior densities. (ii) We
design a separable form of the distributed ELBO (DELBO)
with local objectives at each agent. This enables the design
of a fully distributed iterative inference algorithm. (iii) By
approximating posterior densities using Gaussian pdfs, we
derive an associated distributed Gaussian variational inference

(DGVI) algorithm, with an iterative update to handle any
nonlinear likelihoods. The specialization to diagonal covari-
ances improves computational efficiency to enable large-scale
inference. (iv) Finally, we apply these algorithms to achieve
distributed probabilistic classification in multi-robot mapping
problems using streaming LiDAR data.

The rest of the manuscript is organized as follows. Section II
formulates the distributed inference problem over the space of
pdfs. Section III introduces variational inference and derives
the ELBO. Section IV devises a distributed version of the
evidence lower bound which leads to distributed variational
inference. Tractable iterative update rules are presented in
Section V for Gaussian family densities. These algorithms are
demonstraed in multi-robot mapping problems in Section VI.

II. PROBLEM FORMULATION: DISTRIBUTED INFERENCE

Consider n agents V = {1,...,n} aiming to estimate an
unknown variable § € R! cooperatively. The variable 6 may
represent a measurement source in environmental monitoring,
relative agent positions in a localization problem, or environ-
ment occupancy in a mapping problem. The agents need to
address two main challenges: 1) observations are received
online and are noisy and 2) the observations are partially
informative about 6 due to the agents’ states and limited
sensing capabilities. Therefore, the agents need to cooperate
to learn an accurate and consistent estimate of 6. Suppose
that agent ¢ receives observation z;; € R<, at each time ¢,
according to a known likelihood model ¢;(z; ¢|6). We make
the following assumptions.

Assumption 1 (Independence and differentiability). The ob-
servations z, = {zi1}icy received by the agents at any
time t are independent samples of the likelihood ((z|0) =
[Licy 4i(2i,4|0). The log likelihood log £;(2;|0) is twice dif-
ferentiable in terms of 6.

To account for stochastic and partially informative observa-
tions, the agents are to cooperatively agree on a probability
distribution p(f) over the variable 6. This cooperation is
enabled by communication over a strongly connected digraph,
G =V, &), with edge set £ C V x V. The edge (i,5) € £
implies that node j transmits information to node ¢. Recall that
a graph is strongly connected [5] if there exist a directed path
between any two nodes in the network, thus allowing flow of
information across nodes. The allowable information flow is
captured using a non-negative, irreducible weighted adjacency
matrix A, such that with A;; > 0 only if (4, j) € £. Using the
Sinkhorn’s algorithm [42], the adjacency matrix can be made
doubly stochastic, ie., A1, = AT1, = 1,, where 1,, is a
vector of ones. Therefore, we assume the following.

Assumption 2 (Connectivity). The weighted adjacency matrix
A representing the communication graph G is doubly stochas-
tic Al,, = A"1,, = 1,, with Ay > 0 and strongly connected.

The collaborative network thus aims to estimate the density
p(0lz<;) € F C P(R!) at time t, where z<; represents
observations collected by all agents until time t, P(R') is
the set of all probability densities over R! and F is some
known family of pdfs. We assume that the selected agent priors
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pi(0|z<0) are positive over the feasible domain in #. Based on
this, we formally state the problem.

Problem 1. Given observations {z; ;} sampled from the agent
observation models €;(z; 1|0), and priors {p;(0|z<0)} over an
unknown parameter 6, compute a posterior pdf p;(0|z<;) €
F, where F is a known pdf family and subject to consensus
constraint p;(0|z<;) = p(0|z<y), for i € V and any t > 0.

There are three key challenges in this problem, namely
online and private observations, consensus constraint on es-
timated densities with restricted communication and inference
constrained to a known pdf family F.

I1l. BACKGROUND

This section reviews the centralized variational inference
(VI) approach, that we later extend to the proposed distributed
VI setting. The classic Bayes approach calculates the posterior
distribution of a parameter 6 at time ¢ as,

p(zt|z<t)

by which the posterior p(6|z<;) is proportional to the like-
lihood ¢(z;|f) and the prior p(f|z<:). The posterior in (1)
has an analytic expression only if the prior is conditionally
conjugate to the likelihood [13]. For instance, combining a
Gaussian prior with Gaussian linear likelihood results in a
standard Gaussian posterior update. Yet, the exact calculation
of (1) for general prior-likelihood pairs is not possible, as
the computation of the normalization factor p(z¢|z<:) =
J £(2:0)p(]z<¢)db is intractable.

The Bayesian inference rule (1) can be obtained as the
solution to a maximization problem over the space P(R!) of
probability distributions ¢(#) on 6 € R!. This maximization is
performed over the so-called Evidence Lower Bound (ELBO).
The VI approach specializes this problem to a family of
finite-dimensional pdfs, 7 C P(R!), which often includes
exponential densities [50]. Despite ELBO’s ubiquity in the
VI literature, we briefly reproduce it here for the sake of
completeness and clarify the parallel with the proposed dis-
tributed version. To proceed, for pdfs [p,q € F, we define

1

KL-divergence KL[q(0)||p(0)] = Ey() |log % :

Lemma 1. Given a pdf q(0), the log-normalization factor
log p(z¢|z<¢) in (1) is lower bounded by the ELBO,

ql(%)[log £(z]0) — log(q(0)) + log p(8]z<4)].

Proof. Using (1), we express the log-normalization factor
in terms of the approximated posterior pdfs and drop the
non-negative variational gap term KL[q(0)||p(0|z<.)] > 0 to
compute its lower bound as,

_ £(2¢|0)p(0]2<t)q(0)
ogplalzcr) = B |log GRS
> E flog £(:116)] — KL{g(6) [p(6]:<0)

= ql(%)[logﬁ(m@) —log q(0) + log p(6]z<¢)]. 2)

Since 6 in ¢(0) is independent of the data z<;, the expectation
does not alter the value of the log-normalization. O

To continue iteratively in VI, we approximate the posterior
p(0|z<¢) using pdf ¢;(0) in a family F for each time t. We
replace the last posterior p(f|z<:) by its known approximator
gi—1(0) and maximize ELBO to select the next posterior ¢;(6),

q:(0) € argmax {Ey[log £(2:|0)] — KL[g|g:—1]}.  (3)
q(0)eF
The lower bound explains the modeling error induced by
the choice of the distributional family F. Thus, VI can be
interpreted as finding the best F-constrained optimizer [25,
Section 2.2]. Hereafter, p denotes the pdf of a random variable,
and ¢ is a variational approximation from the family F.

IV. DISTRIBUTED EVIDENCE LOWER BOUND

In this section, we derive a distributed version of the VI
optimization problem in (3). In this setting, the n agents follow
Assumption 1 to collect data independently. Each agent i
maintains its local pdf p;(0|z<;) estimating the centralized
density p(f|z<:) over the parameter § at time ¢. Since the
agents have their own likelihood models, their estimated
densities may not be equal. Therefore, we represent the
centralized prior as p(f]2<;) o< [[, pi(0]2<;)*/", using the
geometric average of the agent pdfs. The geometric average
is chosen for its mode preserving properties [30] when com-
bining multiple pdfs. With this mean, we can rewrite Bayes’
rule with corresponding normalization factor p(z¢|z<:) =
sz‘eV Ci(2i.410)pi (0] 2<4)"/™d0 as,

HiEV gi(zi,tla)pi(mz<t)l/n @)

p(zt]2<¢)

To perform estimation using VI, we start by computing a lower
bound on the log-normalization term analogous to the ELBO
in (2). For distributed implementation, we express a separable
version of the VI objective, summing over terms containing
an agent’s likelihood and neighbor estimates. To satisfy the
consensus constraint while performing inference, we assume
that each agent ¢ estimates pdf ¢;; € JF that is equal to
some ¢;. Maximizing the separable components at each agent
yields a distributed probabilistic inference algorithm, where
each component contains the corresponding agent’s private
observations and one-hop neighbor estimates.

p(bl2<t) =

Theorem 1. Given agent pdfs q;1(0) = q(0) for some
pdf q:(0) and agents i € YV, the log-normalization factor
log p(z¢|z<¢) in (4) is lower bounded by the separable dis-
tributed evidence lower bound (DELBO),

1
> B llog £i(z016) — - log(ai(0))+
i€V JEV
where A is the adjacency matrix satisfying Assumption 2.

Ay
2 log p; (0]2<.))

Proof. Given the agent pdfs p;(0|z<;), the centralized estimate
at time ¢ is defined as their normalized geometric aver-
age p(0|z<¢) = %« Hiev(pi(0|z<t))1/". The normalization
factor Koy = []L;cp(pi(0lz<¢))'/"d6 is the integral of
the geometric average. Due to the column stochasticity of
matrix A from Assumption 2, the geometric average satisfies
[Ty @i(0lz<))™ = TLiey(Tjey pi(0lz<)®)!/". By
definition of positive terms in A, this property relates the agent
prior densities with those of its one-hop neighbors. Analogous
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to the ELBO derivation, the normalization in (4) is expressed
in terms of the agent log likelihoods, neighbor prior estimates
and the posterior as,

p(2|0)p(0]2<t)

1

plarleca) = PEPOE) 3 T7 SO Cs)
<t) <t iy p(O]z<t)™

The geometric average of the non-negative pdfs is pointwise
upper bounded by their arithmetic average, and, hence, its
integral satisfies Koy < [>.(1/n)pj(0]z<)dd = 1. As a
result, log K4 < 0. As in the centralized setting, since the
argument in pdf ¢,(6) is independent of the observation z<,
the expectation of the log-normalization factor does not alter
its value. Assuming that ¢;(6) = ¢:(0), we separate the

expectation over the agent likelihoods and priors as follows,
log p(2t|2<t) = — E log K 5)
q:(0)

Aij 1
Ci(2it]0) 11 pj(0lz<t) ™ e (0)
+ E lo 4
o 2 [ T @ T T

E [log £;(z;.¢|0)] (6)

log p(zt|z<t) > (0

+2 KO0z - KLgoo(0)| [ 0]2<0)),

1
> E [log#;(zi|0)] — — KL[g;,:(0)[|p{ (0]2<1)],
iy 4:t(0) n

where p!(0|z<:) = Hjevpj(0\2<t)f41‘j in the weighted geo-
metric average of the agent prior pdfs. Since the KL divergence
term representing the modeling error between the approxima-
tion ¢;; and the estimate p(f|z<;) is non-negative, we can
drop this term to obtain a separable lower bound of the log-
normalization factor as,

log p(zt|z<t) > Z [ .Eg [log £;(z;,|0)]
iy Laie ()

—= Z E Aj;[log i (6) —logp;(0]z<.)] (7

jev qi, +(0)
The separable terms contain only the agent’s observation z;
and are thus analogous to the ELBO at each agent. O

While deriving the DELBO in Theorem 1, we observe
that posterior approximation contains modeling and consensus
error terms. The consensus error at time ¢ is defined in (5)
as log(1/K ;) where Ko, = [ [[, pi(0]z<¢)'/"db. Since

log(1/K<) = 1/”ZKL[P9||Pi(9|Z<t”
i€y
for py = [, pi(0)2<1)'/" /K4, this error is zero only if the
agent pdfs are equal almost everywhere. The modeling error is
defined in (6) as the divergence ), E,, , KL[qi ||pi(0]|z<¢)].
This error is zero only if the pdfs g;; are computed in
the family of accurate posterior densities. Replacing the
accurate pdfs p;(0|z<;) with their last known approxima-
tions ¢; ;—1 in family F in DELBO yields a separable func-

tional J¢[q1,¢, ..., Gn,t] =

Jitldie] = an llog (

LS ey Jilgie] with,

Ci(zi10) ] 45

Aij 1
n_ 1 _ 10 g q{:t
JEV (8)

ta” H qj

JEV

The weighted sum of KL-divergences in (8) penalizes devia-
tion from consensus of the agent pdfs g; ;. Sharing weighted
pdfs with neighbors is key to reaching consistent estimates
across the network. The positive terms in the matrix A enforce
the communication links into the separable components. The
assumption on posteriors ¢; ; = g; merely aids the design of
the DELBO, with its local solution stated next.

=n E [log[¢;(2:]0)]]
qi,t

Corollary 1. The pdf q; ((0) maximizing the DELBO compo-

nent J;; in (8) is given as,
/ / Ci(zi00) g0 (0)dO, (9

HJEV@ qj,t— 1(‘9)Aij-

Proof. We follow the proof in [37, Proposition 2] using the
Gateaux derivative 5 -KL[gillg] = 1 + log(qi/q;). The
constraint [ ¢;; = 1 is used to construct the Lagrangian
with multiplier A as £(g;+,A) = Jitlgit] + M([ g — 1).
Its variation with respect to g; ; is,

oL
o, " log[¢;(zi,t|0)] —Z(l—i—log it —Aijlog gje—1)+A.
b JEV

Qi,t(g) = 5 Zz t‘a

where the mixed pdf at agent i is ¢ (6) =

Setting the variation to zero and solving for ¢; ; leads to:

¢i1(0) = 7 4i(zi10)" T a5.e-1(0)*.

JEV;
The value of A can be obtained from the constraint [ ¢;.(6) =
1 yielding the result in (9). O
For consensus, the asymptotic averaging properties

limy_yoo At = %11—'— of matrix A generate agent estimates
eventually consistent with the centralized one ¢;(6) = ¢; +(0).
To observe the impact of matrix A on guaranteeing consensus
in distributed estimation problems, please refer to the conver-
gence analysis in [33], [36], [38].

Remark 1 (Distributed estimation). With conjugate agent like-
lihoods ¢;(z;|0) weighted by factor n, the distributed updates
in [38] match the DELBO updates, thus guaranteeing proba-
bilistic convergence for accurate posterior computations.

The posterior p(#) in (9) can be approximated for arbitrary
likelihood pdfs using black-box VI [39] in the variational
message passing framework [47]. We employ this approach in
the next example to show the impact of sampling on accuracy.

Example 1 (Estimating geometric mixing of Gaussians). In
this example, we examine a sampled version of the update
in (9) from the perspective of agent 1 and time ¢ = 0
with neighbor weights A;; = 1/n in a network of n =
4 agents with Gaussian priors and likelihoods. Because of
the dependence sampling, we observe that the VI solution
may not match the analytical solution. Assume that the
Gaussian prior for any agent j € )V at time ¢t = 0 is
qj.0(0) = N(pjo0,(0)"") with mean pjo, and informa-



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

tion matrix €}; . Suppose that the local observation likeli-
hoods £;(z;|0) = N(HG,(;)"") are Gaussian as well.
Since the geometric average of the priors is conditionally
conjugate to the likelihood, the posterior at agent 1 is
N(Qi%(bHTQfZLl —+ Z?:l Alej,ONj,O); Q;&), with infor-
mation matrix Q1 = nH"QFH + 37 | A1;Q;0.

To compare, we estimate this Gaussian posterior using VI
with sampling [28]. Let the agent estimate an expressive
pdf p(8) = N(0]u, Q') p,pa using observation z; 1 and
prior normal distribution p,, = N (y,, Xp,) on the mean z and
Wishart distribution pg = W (A, V') on the precision matrix.
To correctly estimate ¢y 1(6), the proposed samples must span
the support of the unknown posterior. Therefore, we consider
the component pdfs ¢; o as the proposal for generating samples
of 0 and weigh each sample with £1(21,1|0)" ][y, qj.0(0)11
from the update in (9). Upon normalization, stratified resam-
pling generates proposal samples representing the posterior
which is then used to obtain ¢(#). The number and distribution
of these posterior samples is crucial of accurate inference.

Due to the need of high number of proposal samples,
sample intensive VI approaches are computationally expensive
in high-frequency online estimation settings such as filtering.
Further, even significant number of proposal samples produce
a good estimate only if they represent the posterior well. We
see this issue with the mean and covariance of the inferred
density in Fig. 1. For the sampled particles inside a 3 unit
radius circle centered at (0,0), we observe that the estimated
mean is (.5 units away from the analytical value. Over multi-
ple time steps, the sampling error may accumulate. Therefore,
we will develop approximate analytical updates to perform
computationally efficient and accurate online inference.

Resampled data
Estimate samples
Analytical mean
Estimate mean

>u

-3 -2 -1 0 1 2 3 -0.5 0.0 0.5 10 15 20

Fig. 1. (a) Samples from Gaussian priors p; o with unit covariance and
means on a circle of radius 1. (b) Particles resampled w.r.t. probability
weights in (9) for data z1,1 = [1, 1], estimated pdf and analytical mean.

In this section, we derived a distributed variational inference
algorithm in (9) requiring costly computation of the normal-
ization factor. To enable efficient implementation, we further
develop this algorithm to use stochastic gradients of log-
likelihood terms and compute their analytical approximations.

V. DISTRIBUTED GAUSSIAN VARIATIONAL INFERENCE

This section derives agent specific iterative updates for vari-
ational inference with Gaussian variational densities and twice
differentiable log-likelihood functions. Appropriate approxi-
mations to the expected log-likelihood derivatives are devised
to generate analytical Gaussian updates for distributed clas-
sification and regression problems. Further, rank-correcting

inverse and diagonalized covariance updates are presented to
support efficient real-time implementation.

A. Distributed Gaussian variational inference (DGVI)

We assume that the agents collect observations from in-
dividual likelihoods that may not be Gaussian but estimate
variational pdfs ¢, :(#) restricted to a Gaussian pdf family F.
The solution to the ELBO optimization in (3) for a Gaussian
pdf family F is stated in the next proposition.

Proposition 1 (Gaussian variational inference). Assum-
ing that the known prior density q:—1(0) is a Gaussian
./\/'(9|/Lt,1,ﬂ;ll) with mean ps 1 and information matrix
Q; 4, the Gaussian pdf q; maximizing the ELBO in (3) is,
Q=1 — E(It—l [V?) 10g€(2t|0)]a
pe = pe—1 + "By, | [Vo log £(2]0)).

Proof. The proof is presented in Appendix A. We pose the
ELBO objective as the loss functional in [2, Eqn. 25], avoiding
the implicit expectation Ey, [Vg log £(z4|6)] as in [26]. O

(10)

Proposition 1 has an online update maximizing the ELBO
objective over the set of Gaussian densities in . The DELBO
in Theorem 1 admits separable objectives for each agent.
Each DELBO component contains only the agent’s current
observation likelihood that is based on sampled data and
the last received estimates from neighbors, in alignment with
iterative sampling and synchronous communication structure.
When the DELBO component is optimized locally at agent <,
the resulting inference update is online and distributed owing
to the access to current likelihood and last neighbor estimates
respectively. The following proposition optimizes the agent
components of the distributed objective in (8) over Gaussians.

Proposition 2 (Distributed Gaussian variational inference).
Let agent i in an n-node network observe z;, with likeli-
hood ((z;4|0) and receive neighbor estimates qj:—1(0) =
dOpj—1, Q;g,l) at time t. Weighing the neighbor estimates
with matrix A, the mean and information matrix of the pdf
A0 44,1, Q;tl) maximizing DELBO in (8) are,

O = AiQa, ol = A Qs apge
JEV JEV

Qo= — nEgs [Vilog(zi410)],

pie = pf + n(Q )T Eqge, [Volog £(z,:10)],

where qi t(ufyt, nyt) is the geometric average of prior pdfs.

1

Proof. Please refer to Appendix A. |

Both the centralized and distributed Gaussian variational
update rules in Propositions 1 and 2 contain the expected
log-likelihood gradient and Hessian terms. Estimating the
expectations using Monte Carlo methods is computationally
expensive, especially for high-dimensional parameters. There-
fore, we derive analytic approximations of the gradient and
Hessian expectations for classification and regression problems
in the next two subsections.
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B. DGVI for classification

We consider a kernel-based observation likelihood model
for probabilistic classification. The kernel parameters consist
of a set of known fixed feature points and corresponding
weights. The data z = (z,y) is embedded in feature space
by a transformation @, = [1, k1 (x),. .., k;(z)] with elements
ko(z) = v exp(—2||lz — 2)||?) where 2(*) are the known
kernel centers and (71,72) are kernel scaling parameters
chosen to suit the domain and regularity of the model. The
likelihood of an observation z = (x,y) with input x € RY,
feature ®, € R'*!, and label y € {0,1} is modeled as,

((2]0) = o (@, 0)*(1 — o(2;0)" (12)
defined with model parameters 6 and the sigmoid function o.

To estimate the distribution of the parameters 6 using the
GVI algorithm in Proposition 1, we would need to estimate
the expectation over the log-likelihood gradient, Vy log p(z|6),
and Hessian, V3 log p(z|0). We derive an analytical approx-
imation to these terms. With Voo (®60) = o(®0)(1 —

a(®]0))®], the log-likelihood derivatives are,
log £(2]0) = ylogo(®; 0) + (1 — y) log(1 — o (®, 0)),
Volog(z]0) = (y — o(®,0)®,, (13)
Vilogl(z|0) = —o(®]0)(1 —o(®]0)®,d).  (14)

To analytically compute the expectation of gradient, Hessian
and their derivative terms with respect to a Gaussian density,
we approximate the sigmoid function o(z) with an inverse
probit function T'(¢x) = [ ¢(a]0,1)da for & = 0.61
according to [9]. Fortunately, the expectation of the inverse
probit function with respect to a Gaussian density is an
inverse probit. For the second derivative, the derivative of the
sigmoid function is approximated via a Gaussian probability
density function ¢ with zero mean and unit covariance. Using
o(®]0) ~T(£®] 6), the Hessian becomes,

V2logl(z|0) = —Veo (P 0)®) ~ —V,I'(£D,) 0)D]
= —£(£0,0]0,1)0, D, . (15)

To specialize the DGVI algorithm in Proposition 2 to the
classification objective, we next find analytic approximations
of the expectation over gradient and Hessian terms.

Proposition 3 (Expected log-likelihood gradient and Hessian).
For probabilisitic classification with a kernel-based obser-
vation likelihood model in (12), the expected gradient and
Hessian of the log-likelihood in (13) with respect to a Gaussian

density q;(0) = ¢(0|ue, Q) satisfy,

E,, [Vo log £(2]0)] ~ (y T (@T#t/\[)) o7
~~(¢/vamp)

where f =1+ §2<I>IQt lo,.

E[Vjlog((z (Sl @t lil) g o

Proof. Please refer to Appendix B. O

Methods to estimate Gaussian variational posteriors are
surveyed in [34], and the expectation propagation method is
recommended for its accuracy. However, the associated com-
putational complexity may not allow real-time implementation.
Our approximations of the log-likelihood gradient and Hessian

expectations can be substituted in Proposition 2 to obtain
analytical updates for approximate distributed Gaussian VI.
In the distributed setting, each agent knows the fixed kernel
centers {2(*)} and scale parameters 71,72, receives private
observations z;;, and estimates a pdf over the weights 6.

Proposition 4 (DGVI for kernel classification). For observa-
tion z = (x,y) received at agent i in an n node network,
the classification likelihood defined in (12), and neighbor es-
timates ¢(0|1;1—1, Q;tlfl) the DELBO maximizing Gaussian

N (Olpi, 7)) is,

O = A1, Ul =D A ape,

JjEV JEV
Qip =0, + 7.9, (16)
Q;fl = (ngf)_l — e/, t(fo)_ch) (I)T(fo)_l (17)

Mt :uzt +n (y r (E‘I)Tl% t/f)) 1(1)96 (18)

with B =1+ 201 (0 )71(1):13, Ye =1+ %(I)T(ng,t)flq)
and 7 :n@exp( 0515 (1f ) 70,07 uf)-

Proof. The mean i, and information matrix €, describe
the weighted geometric average of prior Gaussians. Then,
the steps for Proposition 1 lead to the Gaussian maximizing
the agent separable DELBO. The expected log-likelihood
derivatives in in Proposition 2 are substituted with the analytic
approximations in Proposition 3. This is followed by the steps
reducing matrix inversion computations in Appendix B. [

The DGVI updates in Proposition 4 include two lin-
ear system solutions (7, )1 (X jev Aije—1pj4-1) and
(Qfﬁ )" 1®,.Ina centralized setting, the matrix inversion needs
to be performed only at the first step to compute ', and any
following inverses may be computed iteratively via (17). The
costly matrix inversion can be avoided by using Gaussian pdfs
with diagonal covariances, discussed next.

Proposition 5 (Diagonalized GVI for kernel classification).
For observation z = (x,y) received at agent i in an n node
network, classification likelihood defined in (12), and neigh-
bor estimates ¢(9|uj7t—17Dj_,t171) with diagonal information
matrices D] b the DGVI update to Gaussian pdf q.(0) =
&(0|pie, D ) with diagonal information matrix D; , is,

D, = Z AijDjsv, DYypd, = AijDje1pje,
jev Jjev
Diy = D], +~v/&?/27f diag(® 01,
pig = pfy + (D)7 (Z/ r (f‘I)TNT t/f))
where v = nexp (70.5[%(u1t)T<I> ! t]), and f =1+
o] (DY) 10,

19)

Proof. Please refer to Appendix C. O

For the classification likelihood introduced in (12), we have
presented approximate analytic updates for inferring Gaussian
densities over the unknown parameters. The updates consist
of geometric average of Gaussian pdfs and likelihood updates
with efficient inverse and diagonal covariance computations.
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C. Distributed Gaussian variational inference for
regression

In this section, we derive distributed Gaussian VI updates
for regression. Consider a linear model y = @, 6 defined using
a feature vector ®, = [1,ki(x),...,k(x)] with elements
km(z) defined as in Sec. V-B and parameters . Assume
that agent ¢ receives observation z; = (x,y) sampled from
£;(20) < exp(—0.5(y— @) 0) T S;(y— @, 0)) with symmetric
and positive definite S; = 5.

Proposition 6 (DGVI for kernel regression). For data (x,y)
and neighbor estimates ¢(0|p;:—1, jStlfl) received by agent i
at time t in an n node network, the Gaussian density g; +(0) =
A0 i, Q;tl) maximizing DELBO for regression is,

O = A, ¥l = A Qs apye
JjeEV JEV
Qs = Qf, + 10,5, , 5, = (7)™ (20)
Q;tl - Ezg,t o 2g7t¢x((n5i)fl =+ (I)Izzg,tq)x)ilq);:rzzg,t
pig = pd, + Qi) (S y — 2.8, pl,) 2D
Proof. Please refer to Appendix D. |

This section derives distributed variational inference algo-
rithms to estimate optimal Gaussian densities using derivatives
of the sampled log-likelihoods. For specific classification and
regression likelihoods, we present an efficient version of the
Gaussian inference algorithm that approximates the expected
values of these sampled log-likelihood derivatives.

VI. RESULTS

In this section, we evaluate our distributed inference algo-
rithms on classification and mapping datasets. For mapping,
the functions ®,. in (12) are kernel functions rooted around the
spatial point 2", and corresponding ; represent the weight on
the corresponding occupancy kernel. We explain the inference
model setup for centralized binary classification on a toy
dataset, followed by distributed inference over synthetic and
real LIDAR data to generate probabilistic occupancy maps !.

Toy data: We consider the Banana dataset [3], which
consists of 5300 points with binary labels, visualized in Fig. 2.
The probability of each point belonging to the first class,
estimated by centralized version of our VI algorithm with
matrix A = 1 in Proposition 4, is visualized in Fig. 2. We
pick 50 feature points at random, with scale v; = 1 and
lengthscale v» = 0.3 to construct feature functions ®, as
defined prior to (12). We select 50% data for training, and
run the single-agent version of the algorithm in Proposition 2
updating the mean and covariance of the weights 6 over the
feature points. With 20k steps, the algorithm achieves 88%
classification accuracy on test set.

Intel LiDAR dataset [18]: In a cooperative mapping prob-
lem, robots follow their own trajectories and cooperate to infer
a common map of the environment. A LiDAR sensor uses time
of flight information to compute the distance to obstacles in
each direction. To construct an occupancy dataset, the points

'Source  code available at
distributed-mapping.

https://github.com/pptx/

Fig. 2. True classes in Banana dataset (left) and predicted probability
Eqo)p(z, y10) of point (2, y) belonging to the red class (right).

along the rays connecting the robot to obstacles are sorted into
free and occupied points [11]. We assume that each networked
robot extracts binary occupancy data from the LiDAR scans
along its trajectory. To reduce the mapping effort, the robot
trajectories may cover disjoint sections of the observed space,
generating local data with different distributions.

Fig. 3 presents the results for single agent version of the
algorithm in Proposition 4. We use 90% of the dataset for
training. The remainder forms the test set with a small subset
of 1000 samples forming the verification set for calculating
the runtime error. The model is generated using 1200 feature
points selected randomly from the testing set, with scale v, =
1 and lengthscale s = 0.5. The diagonalized version of the
algorithm in Proposition 5 runs for 400k steps to achieve 87%
accuracy on the test set.

10 10

Fig. 3. True point classes from LiDAR scans with occupied spaces
in orange (left). Predicted occupancy probability Eq e, yp(x, y|0) at
position (x,y) in the test set. The darker red colors represent high
occupancy probability, whereas blue represents the free space.

Fig. 4 presents the mean and diagonal covariance value at
the individual feature points selected in the map, indicating
uncertainty at the boundary of the free and occupied spaces.

Fig. 4.  Estimated mean pr and variance X7 of the parameter 6
on 1200 feature points, representing the predictive impact of the kernel
rooted at the spatial point.

Fig. 5 compares the accuracy achieved with the full and
diagonalized covariance estimates for varied feature point
counts. With the same feature points, the full covariance
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updates are more accurate than the diagonalized ones. But, the
computational time with full covariance updates is an order
of magnitude longer. Therefore, we recommend increasing
the number of feature points over performing full covariance
estimates for increasing predictive accuracy.

900 — nf=200 —— nf=1500
—— nf=400 700
i 800 —— nf=600 §
H —— nf=800 < 600
g0 — nf=1200 g
B =
5 600 § 500
g 2
Es00 5 400
z ol
5
540 & 300
300
200

o 100001

# Irerations # Iterations

Fig. 5. Verification error during training process for increasing number
of feature points with centralized full and diagonalized implementations.
represented using solid and dashed lines respectively. Verification error
in distributed diagonalized algorithm with 1500 feature points.

As seen in Fig. 6, we distribute a reduced dataset with 290k
(out of 380k) sequential points across four agents, such that
only their combined dataset has the complete map information.
The agents communicate over a static connected graph in
bottom-left of Fig. 6. The 1500 feature points and lengthscales
v2 = 0.5 are selected at random from the test set as in the
centralized setting, and these points are common across the
agents. We achieve approximately 87% predictive accuracy
on the same test set. Due to the presence of several agents,
a quarter of iterations were sufficient to achieve this binary
cross-entropy error as the centralized setting. The agents
estimate similar mean values but their variances are lower for
points close to the data collected.

-10 0 10 20

Fig. 6. Training data distributed among 4 agents sharing their infer-
ences (top), Communication network, Occupancy probability indicating
free and occupied spaces in blue and orange color respectively with a
1500 feature point model.

DINNO dataser [49]: This dataset simulates LiDAR sam-
ples collected by multiple robots following independent trajec-
tories with some overlap in observed environment. In contrast
to Intel dataset where we separated the data into four sets,
here the robots have pre-determined trajectories with minimal
overlap in indoor space. The LiDAR distance data is converted
to five free and occupied points as shown at the top of

Fig. 7. The training set consists of a third of the dataset, an-
eleventh for test set and an-eightieth for verification, chosen
by slicing them along the trajectory. Each of the seven robots
has roughly 90k training points, with 175k points in the test
set. This dataset is challenging due to the low number of
occupied points (10%) in comparison to the ones in free space.
Therefore, we choose 300 feature points from the occupied
space and remaining 700 randomly. Each kernel is defined
with lengthscales 2 in {0.3,3.} depending on whether the
data was chosen from occupied or free spaces respectively.
The reconstruction of the indoor space using the diagonalized
version of GVI from Proposition 5 is shown in Fig. 7.

The consensus error on the mean value of the parame-
ters is computed as the deviation of the means |p;¢(0) —
LS at(0)]. We can see that this error decreases with
the number of iterations, implying that agents learn a com-
mon estimate. During the training phase, prediction error is
computed every 500 iterations on the verification set with 23k
instances. The prediction error reaches a floor value over the
100% iterations for all agents.

~1000 -500 o 500 1000 —1000 -500 o 500 1000

700
« — g0
g a0 g 16000 — ::"2
14000 —— Agent3
2 s00 2 — Agentt
2 © 12000 — Agent.
@ M E Agent§
2 © 100001 |
R § a0
-g 200 o s000 l
s 5 )
2 s w{ |
< l“ut kel el bl L ] \L&_.AA N
o 20000 40000 60000 80000 100000 e 0 20000 40000 60000 80000 100000
Fig. 7. Data obtained from the work in [49]. Top left: Communication

network laid over the trajectories of 7 robots. Top right: Agent 1’s LiDAR
data with free and occupied point measurements highlighted in blue and
yellow, respectively. Middle row: True and predicted point classes with a
1000 feature point model, with blue and orange dots corresponding to
free and occupied spaces. Bottom left: Consensus error summed over
parameters for each agent. Bottom right: Verification set error for each
agent during training.

Successful training and deployment: The theoretical deriva-
tion of DELBO assumes independent observations at each
agent. This does not hold for mapping data generated from
robot trajectories. Therefore, we use independent samples
from a replay buffer storing data over a short window. When
generating points in free and occupied space from distance
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measurements, one should balance the points in each class
while covering the entire space. We maintain a 80 — 20 ratio
for the DiINNO dataset, more skewed than the Intel dataset.
Another key to building a good map is appropriate selection
of feature points and lengthscales. The order of selected
lengthscales should match the represented features. For in-
stance, the occupied spaces in the map should be represented
with lengthscales matching the expected obstacle width. In
maps with several obstacle sizes, one could choose multiple
kernels with varying lengthscales at the same feature points.
Greater density of feature points allow a detailed represen-
tation of geometric map features. Selecting them from both
occupied and free spaces allows better representation of each
set. We selected 40% of feature points in the occupied set to
afford a better predictive resolution for DINNO dataset.

VIlI. CONCLUSION

Analogous to the evidence lower bound (ELBO) in vari-
ational inference, this paper derived a distributed evidence
lower bound (DELBO) on the observation evidence in multi-
agent estimation problems. Gaussian constrained optimization
of the DELBO components across the agents led to a dis-
tributed variational inference algorithm. We derived a version
of the algorithm with Gaussian variational distributions and
applied it to multi-robot mapping problems using streaming
range measurements. Our distributed VI algorithm handles
any differentiable non-linear log-likelihoods modeling agent
observations, making it a promising efficient approach to
solving networked estimation problems with various machine
learning models. A potential avenue for future work is to
improve the communication efficiency of the algorithm by
limiting the number of communication rounds and the number
of actively communicating agents or by allowing agents to
share relevant subsets of their local parameter estimates.
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APPENDIX
A. Gaussian variational inference

Proposition 1. First, we discuss the derivation of the varia-
tional inference algorithm from the gradient descent steps in
[2]. We start by defining the objective function 7 based on the
known Gaussian pdf ¢;_1(0) = ¢(0|u—1,9; ) as,

7(0) = —log £(z|0) — log(g:—1(0))-
Thus, the variational objective V' (¢) = E[r(0) + log ¢(0)] is
q

the negative of the ELBO defined in (2). Enforcing the first
order optimality condition in [2, Eqn. (25)] to minimize V' (g),

B 0 1 0
Q= E {MT(G)],M Q" E [amT( )}, (22)
where 0y = pu — py—1. The derivatlve w.rt. 6 and their

expectations w.r.t. the prior ¢;_; becomes,

) B

8971—7'(9) = T 307 [log £(2:/0)] + (0 — p1—1) " -1,
[0 B

E |57 70)] = - B, selon o). 3)

o 0

mﬂa) = %708 [log €(z¢[60)] + €21, (24)
) B

s _aeTaeT(e)] = Q1= B o s H=l0)]

Thus, the updated mean and information matrix are given as,

0
=i+ 07 B[ o llog ().

[ o ggllon )]

This relates mean and covariance updates to the gradient and
Hessian of the log-likelihood samples. [

(25)
Q=1 —

Proposition 2. The proof to DGVI algorithm proceeds as
Proposition 1, but derives the optimal variations in the agent
hyperparameters. Our presentation begins with a concise de-
scription of the relevant results in [2], which apply to a
centralized setting. We first define the function 7;(6) based
on the sampled likelihood and known neighbor prior pdfs

¢jt—1(0) = &(0| 1541, Q;t1_1) available at agent ¢ as,
7i(0) = —nlogl;(zi|0)—logqf ,(0), ¢, = H i1 (26)
Agent 7 minimizes the variational objective Vi( ) =E[r;(0)+
q

log ¢(8)], that matches its negative DELBO component —.J; ;
defined in (8), to compute the optimal pdf g; ; at time ¢. The
geometric average qg . has mean and information matrix,

qt:(th ZA’LJQJt 1H,t—1) ZA”QN 1.
JjeEV jEV

Next, we compute the derivatives of the variational objective
to identify its optimizers. For any integrable function 7;(6), the

derivatives of V;(q) in terms of the mean in q(6|u, 2~1) are,
IVi(q
(O] @)
9*Vi(q) T
S = Q[0 = 1)(0 = 10T (O]9 = OF, [ (0)].
The information matrix derivative 244 — —3E[(0—p)(0—

)T 7(0)]Q+ Q7 E,[7;(0)] + 2Q~ 1 is given in terms of the
second order mean derivative as,

0*Viq) _ 9Vi(q)

onTou o0
Since setting these derivatives to zero does not yield closed
form solutions for (u,€2), [2] performs a Taylor expansion of
the variational objective at the prior and selects non-trivial
variations du, 02 to ensure a locally decreasing objective.
Similarly, we perform the approximation at the geometric
average ¢/, (0) of the neighbor priors, leading to,

IVi(q) ) 5
qig,t,

Q. (28)

Vilq) = Vilq],) + < T (29)

1o [ 9°Vilg) Vi(q)
+§5u <3#T3H N op + tr ) qgt(m ,

for p = p— p 1,00 = Q — Q. Setting the derivative w.r.t.
Q in (28) to zero, and solving the quadratic for §u in (29)

generates explicit values,
27/ 2/, .
Vi) 9*Vi(q) 51 = _V)| 50
' ouTopu ouTop | , ot |,
it 93t 9i¢

Finally, we transform the gradients in terms of (u,{2) in
(27) into those w.r.t. variables 6 using Stein’s lemma [44] as,

Vi(q),

E[(6 — u)7:(6)] = OF [87"( )] _o 9 31)

07 T
2Ti
B[ - )6 - 1) )] = 9 | SH0 | 0+ 92 [ 0]

Based on their relation to gradients w.r.t. the mean g in (27),
we substitute them into (30) to obtain the optimal (g ¢, 2;¢)
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locally minimizing V;(q) for op = p; 4
0 0
0., = F | —=
a7 )] T {amae
Since these equations mirror (22) in the proof to Proposition 1,
the rest of the proof follows exactly with prior qz , to yield,

e llon o).

g
— M5t as,

pig—pf, = —Q ' E {
q; ¢

Mzt*:uzt+ant IgE

q; ¢
0
Q’ht Q'L,t nq{_g’t |:89T89 [logz(z%tla)]:l ’

with additional multiple n on the log-likelihood. O

B. Gaussian Expectation of classification Model

Expected gradient in Proposition 3. From (13), the gradient
of sigmoid function is, Vglog/(z|0) = (y — o(®}0))®, .
Its expected value with ¢(f) ~ N (u,X) follows from the
expectation of the term o(®,#). For this computation, we
recall that the inverse probit function, or a cumulative dis-
tribution function defined as I'(d) = | 9:700 ¢(a)da. The
cdf approximates the sigmoid function with the relationship
o(0) = (59) for £ = 0.61 [9]. To compute the approximation
Eq0) (P 0)], we substitute u = P60 and express the
cdf at » in terms of standard normal random variable Z as
I'(u) =P(Z < U|U = u). Therefore,
O] = EP(Z < UV =u)
Since the variables Z,U are jointly Gaussian, and U is an
affine transformation of 6, their pdf can be expressed as Z —
U=o(| 0 u,1+E0]50,),

—r ((celn) //1+ eorxe, )

With 3 = 1+ ¢2®] %@, the approximate expected value of
the sigmoid function in the gradient defined in (13) is,

B [0(270)] ~ [ T(ce]0)a0)0 =T (<0l [ V5).

q:(6)
Thus, the expected gradient of the log-likelihood is,

El(y - o(@]0)®]] = (y=T (¢0lm/V5)) @]

O

=P(Z-U <0).

P(Z - U <0)

Expected Hessian in Proposition 3. To find a tractable analyt-
ical expression for the new covariance matrix 2, +11, We start
by computing the expectation from (15),

E,, [6(€27010, 1] = \/10]/(2m)" 1 exp(~0.5] Qupu)

/exp(—O.B[QT(Qt + 20,010 — 207 Qyp4])d6.
0
Proceeding with the sum of squares technique on the

quadratic exponential argument,

E,,[6(€2700, 1) = \/|ul/(2r]Q + £2@,9]])

1
exp (Q[MZQZ(S% + 20,9, ) Qg + ufﬂtut]) :

Since computing the determinant and the inverse in the pre-
vious formula is expensive, we employ the matrix determinant

Ti(e)] .

lemma stating that |Q; 4+ &2®,® | = (1 4+ &2®,] Q71 ,)[Q|.
VIul/@xl0 + 20,87 = @2r(1+ 0] 071 8,)

The inverse of the dense matrix (Q; + £2®,®])~! can be
simplified using Woodbury’s formula [31] such that we use
the precomputed covariance matrix 2, ! along with a scalar
inverse. In batch settings, this inverse is over low dimensions
in comparison to number of feature points .

(Q +E2,07) 7

=07 20710, (1+ 200, '0,) 1o 0
Substituting 8 = 1+ £2®]Q, 1, the expected second order
derivative is thus simplified as,

}E[V? log p(2:]0)] =

Thus, the information matrix update will be linear. [

1

&2/(2mB)e ( 515 u,ub 3 “‘])q) <I>T

Proposition 4. The mean and covariance updates at any agent
1 follow from gradlent and Hessmns of the likelihood w.r.t.
the mixed pdf qm H qj . A computationally cheap
method to compute the inverse of information matrix €2; in
the expression of the next mean value in (25) is derived from
the matrix inversion lemma [31] as,

Ot =00 - 0, (1 + 90, 9, 0,) 10, O
In a single agent setting, this avoids performing any matrix
inverse after the initial step. O

C. Diagonal Gaussian derivation

Proof for Proposition 5. This proof mirrors the optimization
of the agent-objective outlined in Proposition 2, with two key
differences: (i) the derivatives are expressed in terms of the di-
agonal elements of the information matrix, and, (ii) a diagonal
approximation is applied to the second-order Taylor expansion
of the objective. Assume that the Gaussians ¢(u, D) and
q; (1, D) have diagonalized information matrices with di-
agonal vectors A, A, whose k-th elements are A[k], A?, [k].
The geometric average ¢;, is expressed in terms of prior
neighbor estimates qj7t_1(7uj7t_1, Dj;—1) with elements of
the mean pf K] = (A, [K) (5 cp iy e Kty 11 K]
and covariance AY, = >7.,, Az‘jAJ,t—ﬂk] With ,(9) =
—nlog;(z]0) — 1ogq .(0), the variational objective is,

l
1
3 Z log A[k]
! 2T
(0) TT (=)= Alk K)? ) .
+ o g™ exp< Z []))
The elementwise derivatives of DELBO w.r.t. the mean and
information matrix follow from (27), which relates the terms
in Hessian w.r.t. the mean to that of the information matrix as,
02 0
——V;(q) = —2(A[K])? 5= Vi Alk].
g (@) = 2B 5 Vila) + ALK
Since 6%[1@%((]) = 0 for all k at the local optimum, the
optimal information matrix D;;’s elements are,
62

A (k] = WVi(Q)

Vilg) = Ig[n(@ +logq(0)] =

, Ve {1,...,1}.

g
it

(32)
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As shown in [2], we express the Taylor approximation of
function V; at the geometric average qi , in terms of vector
differentials on mean du = p — ufvt and information diagonal
0A =A - AY, as,

0 0
V(git) =~ Vi(q? —Vi b+ =Vi YAN
(git) = Vilad,) + o i(q) " pt FxVila) N
& | |
+ 6,qu1ag o on Vilg)| op, (Diagonal Hessian)
qz'g,t,
where we  approximate the quadratic coefficient

PnTon with its diagonal matrix. The diagonal

approximationmof the Hessian matrix is appropriate if
the underlying log-likelihood model log¢;(z|f) is almost
linear in terms of parameters . Since the approximation is
locally quadratic in dp, we find the optimal mean pu;; by

setting its derivative in terms of du to zero. Recalling that
1(Q)

Pvia)|
q

D, = d1ag i y in (32), we obtain the linear system,
'L,t,
—1,90V;

op = Hit — H?,t = Uit ( 3#(‘2) o )

Similar to (31), we apply Stein’s lemma [44] for the
diagonalized covariance Guassian ¢(6) to relate derivatives in
terms of p, ) to that of 6, yielding the update rules,

0%7;(0) _ ot (0)
D;, = di B |t ii—pd, =D }E | =52

Using the simplification in Appendix A followed by ex-
pectation of the classification model in Appendix B and
diagonalized Dﬁ ,» we obtain the updates,

D, = diag (DY, + 7®,®, ) = DY, + ydiag (<I>$<I>I) ,

(¢Tu /\f)

) 9~ -1
it — My =~ nDi,t (y —

2 2 .
where, 7 = 2§TB exp 1[%(u§,t)T<I>I®Ipfyt]), with 3 =
1+&°®,(DY,)"'®, over data z = (z,y). O

D. Distributed regression in Gaussian models

Let the linear regression model with parameters 6 describe
the relationship between input-output pairs z = (z,y) at agent
i be specified as the likelihood ¢;(z|0) o exp(—0.5(y —
®10)7S;(y—®,]0)), where S; is positive definite. Following
the steps for the classification problem, the log likelihood
gradient and Hessian terms are,

Vologp(zi|0) = ®,.5:(y—®, 0), Vg log p(z0) =

The mixed Gaussian pdf ¢f, = N (0|u],, ;) for regression

follows from Proposition 4 with Zl (Qf t)_ ,
O, => AyQa,pl, = )7 A1
Jjev JEV

Then, we can follow (25) and Woodbury’s matrix inversion
lemma [31] w.r.t. ¢},

Qir =97, — nEqit[Vg log £;(2]0)] = QY , + n®, ;@ ,
Q) =37, - 27,0, ((nSi) " + 2, %, @)@, Y,

it = @, + n(Qi) (PS5 y — ©.9®, 1 1)

~0,5,d].

Thus, we have distributed probabilistic updates on the param-
eters of the linear regression model.
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