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Multi-Robot Object SLAM Using Distributed
Variational Inference

Hanwen Cao, Sriram Shreedharan, Nikolay Atanasov

Abstract—Multi-robot simultaneous localization and mapping
(SLAM) enables a robot team to achieve coordinated tasks by
relying on a common map of the environment. Constructing
a map by centralized processing of the robot observations is
undesirable because it creates a single point of failure and re-
quires pre-existing infrastructure and significant communication
throughput. This paper formulates multi-robot object SLAM as
a variational inference problem over a communication graph
subject to consensus constraints on the object estimates main-
tained by different robots. To solve the problem, we develop a
distributed mirror descent algorithm with regularization enforc-
ing consensus among the communicating robots. Using Gaussian
distributions in the algorithm, we also derive a distributed multi-
state constraint Kalman filter (MSCKF) for multi-robot object
SLAM. Experiments on real and simulated data show that our
method improves the trajectory and object estimates, compared
to individual-robot SLAM, while achieving better scaling to large
robot teams, compared to centralized multi-robot SLAM.

Index Terms—Multi-Robot SLAM, Distributed Robot Systems,
Probability and Statistical Methods

I. INTRODUCTION

IMULTANEOUS localization and mapping (SLAM) [1]
S is a fundamental problem for enabling mobile robot to
operate autonomously in unknown unstructured environments.
In robotics applications, such as transportation, warehouse
automation, and environmental monitoring, a team of col-
laborating robots can be more efficient than a single robot.
However, effective coordination in robot teams requires a com-
mon frame of reference and a common understanding of the
environment [2]. Traditionally, these requirements have been
approached by relying on a central server or lead robot [3],
[4], which communicates with other robots to receive sensor
measurements and update the locations and map for the team.
However, communication with a central server requires pre-
existing infrastructure, introduces delays or potential estima-
tion inconsistency, e.g., if the server loses track of synchronous
data streams, and creates a single point of failure in the robot
team. Hence, developing distributed techniques for multi-robot
SLAM is an important and active research direction. A fully
decentralized SLAM system enables robots to communicate
opportunistically with connected peers in an ad-hoc network,
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Fig. 1: Iustration of multi-robot object SLAM via distributed multi-
state constraint Kalman filtering. The left images are inputs for the
robots, where the red are geometric features (extracted by FAST [5])
and the are object detections (by YOLOV6 [6]). The geometric
features and object bounding box centroids are used as observations.
When common objects are observed by communicating robots, a
consensus averaging step is performed to align the estimated robot
trajectories and object positions.

removing the need for multi-hop communication protocols
and centralized computation infrastructure. It allows flexible
addition or removal of robots in the team and, by extending the
scalability of the algorithm, enables coverage of larger areas

with improved localization and map accuracy.
This paper considers a multi-robot landmark-based SLAM

problem. We develop an approach for distributed Bayesian
inference over a graph by formulating a mirror descent al-
gorithm [7] in the space of probability density functions and
introducing a regularization term that couples the estimates of
neighboring nodes. Our formulation allows joint optimization
of common variables (e.g., common landmarks among the
robots) and local optimization of others (e.g., private robot
trajectories). As a result, each node keeps a distribution only
over its variables of interest, enabling both efficient storage
and communication. By using Gaussian distributions in the
mirror descent algorithm, we derive a distributed version of
the widely used multi-state constraint Kalman filter (MSCKF)
[8] with an additional averaging step to enforce consensus
for the common variables. We apply our distributed MSCKF
algorithm to collaborative object SLAM using only stereo
camera observations at each robot. In the prediction step, each
robot estimates its trajectory locally using visual odometry. In
the update step, the robots correct their trajectory estimates
using both visual features and object detections. As common
in the MSCKF, we avoid keeping visual landmarks in the state
using a null-space projection step. However, object landmarks
are kept as a map representation for each robot and are
shared among the robots during the consensus averaging step
to collaboratively estimate consistent object maps. In short,
each robot estimates its trajectory and an object map locally
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but communicates with its neighbors to reach agreement on
the object maps across the robots. Our contributions are
summarized as follows.

o We formulate multi-robot landmark SLAM as a varia-
tional inference problem over a communication graph
with a consensus constraint on the landmark variables.

e We develop a distributed mirror descent algorithm with
a regularization term that couples the marginal densities
of neighboring nodes.

o Using mirror descent with Gaussian distributions, we
obtain a distributed version of the MSCKF algorithm.

+ We demonstrate multi-robot object SLAM using stereo
camera measurements for odometry and object detection
on both real and simulated data to show that our method
improves the overall accuracy of the trajectories and
object maps of robot teams, compared to individual-
robot SLAM, while achieving better scaling to large robot
teams, compared to centralized multi-robot SLAM'.

II. RELATED WORK

SLAM is a broad research area including a variety of
estimation methods [8]-[10] as discussed in [1], [11]-[14].
Performing SLAM with multiple collaborating robots im-
proves efficiency but also introduces challenges related to
distributed storage, computation, and communication. This
section reviews recent progress in multi-robot SLAM.

A. Multi-robot factor graph optimization

Factor graph methods formulate SLAM as an optimization
problem over a bipartite graph of variables to be estimated
and factors relating variables and measurements via error
functions. Tian et al. [15] propose a certifiably correct pose
graph optimization (PGO) method with a novel Riemannian
block coordinate descent (RBCD) that operates in a distributed
setting. Cunningham et al. [16], [17] extend smoothing and
mapping (SAM) [18] by introducing a constrained factor
graph that enforces consistent estimates of common landmarks
among robots. Choudhary et al. [19] developed a two-stage
approach using successive over-relaxation and Jacobi over-
relaxation to split the computation among the robots. MR-
iISAM2 [20] extends incremental smoothing and mapping
(iSAM2) [10] by introducing a novel data structure called
mult-root Bayes tree. Tian et al. [21] investigate the relation
between Hessians of Riemannian optimization and Laplacians
of weighted graphs and design a communication-efficient
multi-robot optimization algorithm performing approximate
second-order optimization.

Recent SLAM systems utilize the theoretical results of
the above works to achieve efficient multi-robot operation.
Kimera-Multi [22], a fully distributed dense metric-semantic
SLAM system, uses a two-stage optimization method built
upon graduated non-convexity [23] and RBCD [15]. DOOR-
SLAM [24] uses [19] as a back-end and pairwise consis-
tency maximization [25] for identifying consistent measure-
ments across robots. Xu et al. [26] develop a distributed
visual-inertial SLAM combining collaborative visual-inertial

ICode is at https://github.com/ExistentialRobotics/distributed_msckf.

odometry with an alternating direction method of multipliers
(ADMM) algorithm and asynchronous distributed pose graph
optimization [27]. Andersson et al. [3] design a multi-robot
SLAM system built upon square-root SAM [18] by utilizing
rendezvous-measurements.

B. Multi-robot filtering

Filtering methods, such as the Kalman filter, offer a compu-
tationally lightweight alternative to factor graph optimization
by performing incremental prediction and update steps that
avoid a large number of iterations. Roumeliotis and Bekey
[28] showed that the Kalman filter equations can be written
in decentralized form, allowing decomposition into smaller
communicating filters at each robot. Thrun et. al [29] presented
a sparse extended information filter for multi-robot SLAM,
which actively removes information to ensure sparseness at the
cost of approximation. With nonlinear motion and observation
models, a decentralized extended Kalman filter (EKF) has
an observable subspace of higher dimension than the actual
nonlinear system and generates unjustified covariance reduc-
tion [30]. Huang et al. introduced observability constraints in
EKF [30] and unscented smoothing [31] algorithms to ensure
consistent estimation. Gao et al. [32] use random finite sets to
represent landmarks at each robot and maintain a probability
hypothesis density (PHD). The authors prove that geometric
averaging of the robot PHDs over one-hop neighbors leads to
convergence of the PHDs to a global Kullback-Leibler average,
ensuring consistent maps across the robots. Zhu et al. [33]
propose a distributed visual-inertial cooperative localization
algorithm by leveraging covariance intersection to compensate
for unknown correlations among the robots and deal with loop-
closure constraints.

Our contribution is to derive a fully distributed filter for
object SLAM from a constrained variational inference perspec-
tive. Our formulation makes a novel connection to distributed
mirror descent and enables robots to achieve landmark consen-
sus efficiently with one-hop communication only and without
sharing private trajectory information.

III. PROBLEM STATEMENT

Consider n robots seeking to collaboratively construct a
model of their environment represented by a variable y, e.g.,
a vector of landmark positions. Each robot i also aims to
estimate its own state X; ;, €.g., pose, at time ¢. The combined
state of robot i is denoted as s;; = [x;, y']T and evolves
according to a known Markov motion model:

Sit+1 ™ fz( | Si,t7ui,t)7 (D

where u,; is a control input and f; is the probability density
function (PDF) of the next state s; ;. Each robot receives
observations z; ; according to a known observation model:

zit ~ hi(- | siz), )

where h; is the observation PDF.

The robots communicate over a network represented as a
connected undirected graph G = (V,€) with nodes V =
{1,...,n} corresponding to the robots and edges £ C V x V
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specifying robot pairs that can exchange information, e.g.
(i,7) € € indicates that robot ¢ and j can exchange informa-
tion. Let A € R™*™ be a doubly stochastic weighted adjacency
matrix of G such that A;; > 0 if (4,5) € £ and A;; = 0
otherwise. Also, let V; := {j € V|(j,4) € £} U {i} denote
the set of one-hop neighbors of robot 4. and includes node
itself. We consider the following problem.

- - — T T T
Problem 1. Given control inputs w; = [u;g,..., ;7]

and observations z; := [z;,...,2, ;| ", each robot i aims to
estimate the robot states s; := [s,,...,s, 7] collaboratively

by exchanging information only with one-hop neighbors j €
N; in the communication graph G.

IV. DISTRIBUTED VARIATIONAL INFERENCE

We approach the collaborative estimation problem using
variational inference. We develop a distributed mirror descent
algorithm to estimate a (variational) density of the states s; ¢
with regularization that enforces consensus on the estimates
of the common landmarks y among the robots.

A. Variational inference

As shown in [34], a Kalman filter/smoother can be derived
by minimizing the Kullback-Leibler (KL) divergence between
a variational density ¢;(s;) and the true Bayesian posterior
pi(si|u;, z;). Adopting a Bayesian perspective, the posterior is
proportional to the joint density, which factorizes into products
of motion and observation likelihoods due to the Markov
assumptions in the models (1), (2):

pi(si|uwi, 2;) o pi(si, w;,2;) 3)

T—1 T
x pi(8i,0) H fi(Sit41]8i, Wit) H hi(z;+
t=0 t=0

Si,t)-
The KL divergence between the variational density g;(s;) and
the true posterior p;(s;|u;,z;) can be decomposed as:

KL(gi|lpi) = Eq, [~ logpi(si, wi, z;)]
— Ey, [~ log gi(si)] + log p; (w;, z;), 4

constant

entropy
where for simplicity of notation ¢; without input arguments
refers to ¢;(s;). Dropping the constant term, leads to the
following optimization problem at robot i:

qnéigl ci(qi) = Eq, [~ logpi(si, zi, w;) +loggi(si)],  (5)

where Q; is a family of admissible variational densities.

B. Distributed mirror descent

We solve the variational inference problem in (5) using the
mirror descent algorithm [7]. We use mirror descent because
it includes an explicit (Bregman divergence) regularization
term in the objective function that can incorporate information
from one-hop neighbors [35]. This allows us to formulate
a distributed version of mirror descent that enforces agree-
ment among the landmark estimates of different robots with
convergence guarantees. Mirror descent is a generalization
of projected gradient descent that performs projection using

a generalized distance (Bregman divergence), instead of the
usual Euclidean distance, to respect the geometry of the con-
straint set Q;. Since Q; is a space of PDFs, a suitable choice
of Bregman divergence is the KL divergence. Starting with a
prior PDF qi(o) (s;), the mirror descent algorithm performs the
following iterations:

(k+1) W E d¢i (k) L alla® 6
) carg iy B, S50 + 2Kl ©

where dc; /6qi(q£k)) is the Fréchet derivative of ¢;(g;) with
respect to ¢; evaluated at qZ( and o > 0 is the step size.
Note that the optimizations (6) at each robot ¢ are com-
pletely decoupled and, hence, each robot would be estimating
its own density over the common landmarks y. To make
the estimation process collaborative, the regularization term
KL(q||¢\*) in (6) should require that the PDF g; of robot

1 is also similar to the priors qﬁk) of its neighbors N
) alone. In our case, the PDFs

rather than its own prior qi(k
qj(k)(sj) = J(-k) (x;,y) are not defined over the same set of
variables since each robot j is estimating its own private state
x; as well. Inspired by but different from [35], to enforce
consensus only on the common state y, the KL divergence
term in (6) can be decomposed as a sum of marginal and

conditional terms:

KL(g: (x5, )10 (x5, 5)) = KL(a:(3)lla (v)) (7)
+ KL(gi(xily)l 10 (xily))-

Hence, we can regularize only the marginal density ¢;(y) of
the common environment state y to remain similar to the
marginal densities qj(-k) (y) of the one-hop neighbors by using
a weighted sum of KL divergences. This leads to the following
optimization problem at robot ¢:

(k+1) .
i € i(Qi 8
4 arg min. g (a:) (8)
— ¢ (k) 1 (k)
o) = B [ 32 6] + o KLy )
1 k
+ ZN A KL(g:(y)|a" ().
J i

where Q; = {¢; | [ ¢; = 1} is the feasible set and A;; are
the elements of the adjacency matrix with Zj en; Ay = 1.
We derive a closed-form expression for the optimizer in the
following proposition.

Proposition 1. The optimizers of (8) satisfy:

k k
q§ +1)(X¢’Y) X [pz'(Xi,%Zz',ui)/qZ( )(Xi,}’)]

o xily) [[ 1. ©)
JEN;

, Appendix A]. O

[e25

Proof. See [

C. Linear Gaussian case

In this section, we consider linear Gaussian models and
obtain an explicit form of the distributed variational inference
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update in (9). Suppose each robot i has the following motion
and observation models:

Sit+1 = Fisiy + Giwgy +wiy,  wi ~N(0,W;),
Vi,t ~ N(O, ‘/;)
Let the prior density of s; o be N'(p; o, %) and considering
all timesteps, we can write the models in lifted form as

S; = Fl(éluz + Wi), W, ~ N(O7 Wl),

(10
ziy = His;t + Vi,

_ _ 11
z; = His; +v;, v; ~N(0,V), (an
with the lifted terms defined as below
Si = [SIO SIT]Ta uz—'r = [HiT,o Uio - UIT]Ta
z; = [Zz‘T,o Zz‘T,T]Ta H; =1Iry1 @ H;,
7 = |20 0
V¢IT+1®V7,7W1[O IT®W1‘]
I 0 - 0
- F I 0] 7 0
Fr pr-1 .. 7

where ® is the Kronecker product. Denoting the density and
distribution at iteration k as qfk) (s;) and N(ui’(k), ¥i,(k))» the
distributed variational inference update in (9) is computed in

the following propositions.

Proposition 2. Consider a joint Gaussian distribution

X Xy
Yy '

SR(RES

If the marginal distribution over y changes to N'(ji¥,%Y), the
new joint distribution N'(j1,%) of (x,y) will be

T4 _ YAT y
ﬁ:[Au +b],2:{A2A +P A2]7

(13)

P syAT s
A= Exyzy—17 X _ Exyzy—lﬂy
P=y*_

b=pu

XYY lyxy T (14)

Proposition 3. In the linear Gaussian case, the distributed
variational inference update in (9) can be obtained by first
averaging marginal densities of the common state y across
the neighbors N of robot i:

Z A%y (—,j),

JEN;

y-1_-y

1
=Y i (k)l"’

0(k) =D A gy

JEN;

15)
then constructing a new joint distribution N(ﬂi7(k),2i7(k))
according to Proposition 2, and finally updating the density
using the motion and observation models in (11):

1 T 1 T
Z(M) E(k)—i—ak(F W, R BV

1]';[2_ _271
Zi (k+1)l%' (k+1) = E‘ (k)P (k)
+ap(F7 "W, Gy + H V7

Proof. See [36, Appendix B].

E;(lk)l‘i,(k))- (16)
O

In the above proposition, the averaging over the marginal
densities in (15) comes from the term Hj N, [q](.k) (y)]Aia in

(9), which enforces consensus among the robots over the
common variables y. If the robots are in consensus, i.e.,

z,(k))’

Yy
% Ji(k)

Yy — Y
i, i) = K,k =i (k)
converges in just one step,
2;1 = FiiTWleiil + ﬁi—r‘_/iilﬁh
E;lui = Fi_TWi_léiui + IET;'—Vi_lzZ
As shown in [37, Ch. 3.3], considering only two consecutive
time steps in the lifted form in (11) leads to a Kalman filter.
Using the result in Proposition 3, we obtain a distributed
Kalman filter that incorporates the consensus averaging step
in (15). To allow correlation between the motion and measure-
ment noise, we follow Crassidis and Junkins [38, Ch. 5] and
obtain a correlated Kalman filter in [36, Appendix C].

V. DISTRIBUTED MSCKF
In this section, we use Proposition 3 to derive a distributed
version of the MSCKF algorithm [8], summarized in Al-
gorithm 1. Each step of the algorithm is described in the
following subsections.

Vi € N, (16) with ay, = 1

a7)

Algorithm 1 Distributed Multi-State Constraint Kalman Filter

Input: Prior mean and covariance (g, , 1, %; 1), control
input w; ;1, and measurements z ,, z7 ;.

Output: Posterior mean and covariance (g, 4, i t)

1: Consensus averaging: (19), (21) in Sec. V-B

2: State propagation: (22), (23) in Sec. V-C

3: State update: (26), (28) in Sec. V-D

4: Feature initialization: (30) in Sec. V-E

A. State and observation description

The state s; ; of robot 7 at time ¢ contains a sequence of ¢
historical camera poses x;; and a set of m; landmarks y; ;:

Sit = (Xi,ta}’i,t)a

Xit = (Tijt—ct1,---,Tip), Tix € SE(3), VE,

Yie=[Pi1 -+ Pim,])'s Pik € R’ VE
Besides the joint mean of the historical camera poses x; ; and
landmarks y, ;, each robot also keeps track a joint covariance
¥, ¢ € R(Ger3me)x(6e+3me) Fach robot obtains observations
zfyt of persistent features, e.g., object detections, and obser-
vations zf’t of opportunistic features, e.g., image keypoints
or visual features, as illustrated in Fig. 1. We use point
observations and the pinhole camera model for both feature
types. Only the landmarks associated with persistent features
are initialized and stored in the state while the landmarks
associated with opportunistic features are used for structureless
updates as in the MSCKEF algorithm [8].

(18)

B. Consensus averaging

Each robot 4 communicates with its neighbors A; to find
out common landmarks. Then each robot sends the mean
and covariance of the common landmarks ), ,%Y, | to
its neighbors and receives py, |,%%, ;, j € N;\{i}. The
consensus averaging step is carried out by averaging the
marginal distributions of the common landmarks:

Sy—1
E{t—l = Z AUEjt 1)
JEN;
(19)
1 —
zg’t 1”% 1= Z A”Ejt 1I‘l‘jt 1

JjEN;
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which is the same as (15) except that we only consider
one time step ¢ here. Then, we need to reconstruct the
new joint distribution N(fz;, 1,%;:-1). Since we store the
historical camera poses as SE(3) matrices, Proposition 2
can not be applied directly. Following [37, Ch. 7.3.1], we
define a Gaussian distribution over a historical camera pose
Ty, k=t—c,---,t—1 by adding a perturbation ¢; s:

T, = Tipexp(€y), €in ~N(06, 255 1),

where ()" defined in [37, Ch. 7.1.2] converts from R® to a
R**4 twist matrix. The estimated covariance X; ;1 already
takes account of both the poses and landmarks. For consistency
of notation with Proposition 2, we denote the mean of the
pose perturbation as g7, ; = Og.. After averaging and
reconstructing the new joint distribution, g, _; may be non-
zero, so we need to correct the camera poses as follows:

t—1. 21

(20)

Tik=Tirexp(%")), p5_ €RS k=t —c, -

C. State propagation

We derive a general odometry propagation step for the
MSCKEF algorithm, thus not necessarily requiring IMU mea-
surements and enabling vision-only propagation. We assume
an odometry algorithm (e.g., libviso2 [39]) provides relative
pose measurements 67; ,_; between the frame at time ¢ — 1
and that at time ¢. The state of robot ¢ is propagated as:

. _ _ _
X5y = Tit—ctts- s Lip—1, i p—10T5 4-1),

;
it (X?,_ta ﬂth)v

where the terms (-) are obtained from the consensus averaging
step. The state covariance is propagated as follows:

~

(22)

+

S

A 0] a4 o'
Ejt = Jt 0 Zi,tfl Jt 0 + diag(eGn) X WZ‘,
0 Ism, , 0 Ism, ,

A =[06(c—1)x6lLs(c—1) ] » Jt=[06x6(c—1) Ad(6T,_})], (23)

where Ad(-) is the adjoint of an SF(3) matrix [37, Chap-
ter 7.1.4], eg, € RO™3™ is a vector with the 6n-th element
as 1 and the rest as 0, and W, € R6%6 is the odometry
measurement covariance.

D. State update

The MSCKF update step follows prior work [40]. The
camera pose residual is a perturbation ¢, ; that transforms
the estimated pose T;j to the true pose 1) ;, ie. T, , =
T; 1, exp (gi\ &) The landmark residual is the difference between
true position p and the estimated position p, i.e., p =p — p,
where p is the position mean if the landmark is in the state or
the result of triangulation if it is not. When robot ¢ receives the
k-th geometric feature observation at time ¢, denoted as z , ,,
we linearize the observation model around the current error
state S, ;  (composed of both pose and landmark residuals)
and the feature position residual py:

g _ 9 59— 59
v] =2 2 = H S+ HE D e + Vg
where 2], is the predicted observation, H;/, and H}}’ are

J acoblans and v/ itk ™ N(0,V7) is the geometnc observatlon

noise. Then, we left- multlply by the nullspace N; ¢ of H ftgk
to remove the effect of p? X

gO

— g
itk = i,t,kri,t,k_N tkHztkSltk+N th sk (24

Since we allow general odometry in the propagation step,
potentially obtained from visual features, there may be cor-
relation between the motion noise and the observation noise.
The correlation is denoted as

.
Siak =EWi -1Vl Wi—1 ~ N(0,W;). (25)
Concatenating rg’tok, NG HY e N VN g, and

Si .5 Ni ¢, for all k approprlately, we get an overall geometric
feature residual r? it Jacobian H gt, noise covariance Vgt and
correlation .S; ;. Slmllarly, we linearize the observation model
for the object z7; ;:

) __ .0 ~0 _ $,0 % o o o
0k = Tk~ Zie g = HpSi H Ve Vi ~ N(0,V7),

and concatenate ry, ., H; ’Ok and V;° for all k to get an
overall object obsefvatlon residual ry,, Jacobian H?,, and
noise covariance V2.

Finally, by concatenating the residuals and Jacobians of both
geometric and object features, we get the overall residual r; ; =
r?] r¢T]T and Jacobian H;,=[H{, H?[]T. As shown in
[36, Appendix C], [38, Ch. 5], the Kalman gain is:

Kiy = (S H, + Si0) (HioSHH + Vi)™,
Vie = blkdiag(Vy, + HY, St + S, HY |, V),

(26)
27)

where S;; only appears for the geometric features, E+t is
from the prediction step, and K can be split to K7, and
K ly , related to x; ; and y; ; respectively. The landmark mean,
camera poses, and the entire covariance are updated as:

Nl)':t Nlt +K Yt
Ti =T exp(KFriy), Kifrip € RO, k=t—c+1,--- ,t,
Sip = — KiHit)¥], (28)

where the terms (-)T are from the propagation step.

E. Feature initialization

The feature initialization is the same as [41]. To initialize
an object landmark, we first linearize the observation model

~ N(O’ Vio)?

~0 . s o, P o o o
Zi g = Hip1Sie + Hi b Pk + Viek Viek

where z¢ ke S;¢ and p? ) are the residuals of the obser-
vation, current state, and new landmark respectively. Then,
QR decomposition is performed to separate the linearized
observation model into two parts: one that depends on the
new landmark and another that does not:

~o,1 s,1 p,l ~ o,1
Zz tk| _ i, t k H’L t,k Sit + V'L,t k (29)
70 )3 g 3 0 f)(_) 0,3
z t,k itk i,k Vl,th
Thus, we can augment the current state and covariance:

o __ =« s,1—1~ 0 1

Pik =Pik + Hiy o 2

sp s, 1T r7p,1—T

Eztkiiz Hztk itk (30)

P _ p,1—1 s,1 ) s, 1T 0,1 p,1-T
Ei tk — Hi,t,k (Hi,t,kzz,tHi,t,k + Vv )Hz ko

s
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1. . . 1 .
where V" is the covariance of noise v, ., X% , is the cross-

correlation term between the current state and new landmark,
and Eft i 18 the covariance of the new landmark.

VI. EVALUATION

We implemented the distributed MSCKF using only stereo
camera observations and evaluated it on the KITTI dataset
[42] and on a simulated dataset with a larger number of
robots. All experiments were carried out on a laptop with i9-
11980HK @2.60 CPU, 16 GB RAM, and RTX 3080 GPU.

A. KITTI dataset

The KITTI dataset [42] is an autonomous driving dataset
that provides stereo images, LiDAR point clouds, and anno-
tated ground-truth robot trajectories. We provide details about
the data processing and evaluation results below.

1) Sequences and splits: We chose long sequences in the
KITTI odometry dataset with loop closures and a sufficient
number of cars, used as object landmarks, namely, sequences
00, 05, 06, and 08. Each sequence is split into 3 sub-sequences
representing 3 different robots. The sequence splits are as
follows: sequence 00: [0,2000], [1500,3500], [2500,4540];
sequence 05: [0,1200], [800,2000], [1560,2760]; sequence
06: [0,700], [200,900], [400,1100]; sequence 08: [0,2000],
[1000, 3000], [2000,4070]. We used a fully connected graph
and the adjacency matrix A € R3*3 has all elements as %

2) Geometric features: We extract geometric features using
the FAST corner detector [5]. The KLT optical flow algorithm
[43] is used to track the features across stereo images. Outlier
rejection is performed using 2-point RANSAC for temporal
tracking and the known essential matrix for stereo matching.
Finally, circular matching similar to [44] is performed to
further remove outliers.

3) Object features: We utilize YOLOV6 [6] to detect object
bounding boxes and compute the centers as our object obser-
vations. Since our work does not focus on object tracking, we
directly use the instance ID annotations in SemanticKITTI [45]
for data association. The instance annotations are provided for
LiDAR point clouds and we associate them with the bounding
boxes by projecting the LiDAR point clouds onto the image
plane and checking the dominant instance points inside each
bounding box.

4) Odometry: The relative pose 675 ; between consecutive
camera frames is obtained by libviso2 [39].

5) Results and analysis: We found empirically that setting
the correlation matrix (25) to zero gives the best results. We
assume that this is because libviso2 [39] uses SURF features
[46], while the update step is performed using FAST features
[5] and the correlation is negligible. Qualitative results from
three-robot collaborative object SLAM on the KITTI dataset
are shown in Fig. 2a. We show the root mean square error
(RMSE) of the robot trajectory estimates in Table I and the
mean distances between estimated object positions and the
ground truth in Table II. We do not use alignment for the
trajectory RMSE [47] because trajectory transformations affect
the object mapping errors. Some ways to mitigate the effect
of bad estimates include resilient consensus [48] or adaptive

TABLE I: Trajectory RMSE in meters on KITTI sequences. Separate
and consensus correspond to without/with the consensus averaging
step in Sec. V-B.

Robot 1  Robot 2 Robot 3  Avg Max
libviso2 [39] 14.30 13.73 12.65 13.56 1430
00 Separate 12.47 7.55 12.42 10.81 1247
00 Consensus 12.51 7.13 8.73 945 12.51
05 libviso2 [39]  5.36 6.42 11.57 7.78 11.57
05 Separate 7.18 10.03 7.87 8.36 10.03
05 Consensus 4.69 7.75 9.56 7.33 9.56
06 libviso2 [39]  5.45 6.89 5.21 5.85 6.89
06 Separate 4.23 5.60 4.86 4.90 5.60
06 Consensus 4.23 5.61 4.76 4.87 5.61
08 libviso2 [39]  9.17 21.05 11.37 13.86  21.05
08 Separate 15.08 24.28 9.18 16.18  24.28
08 Consensus 13.89 12.71 9.18 11.93  13.89

TABLE II: Object estimation errors in meters on KITTI sequences.
Separate and consensus correspond to without/with the consensus
averaging step in Sec. V-B.

Robot 1 ~ Robot 2  Robot 3 Avg Max
00 Separate 8.76 7.61 8.70 8.36 8.76
00 Consensus  9.30 6.74 7.16 7.73 9.30
05 Separate 6.08 8.40 6.92 7.14 8.40
05 Consensus  4.56 7.51 8.54 6.87 8.54
06 Separate 343 5.92 4.64 4.66 5.92
06 Consensus  3.78 5.63 4.37 4.59 5.63
08 Separate 12.14 21.91 8.19 14.08 2191
08 Consensus  12.11 13.71 9.21 11.68 13.71

TABLE III: Object position differences in meters across different
robots on KITTI sequences. Separate and consensus correspond to
without/with the consensus averaging step in Sec. V-B.

Robot 1  Robot 2  Robot 3 Avg Max
00 Separate 9.69 10.35 8.35 9.46 10.35
00 Consensus  5.95 8.62 5.11 6.56 8.62
05 Separate 7.25 10.20 15.74 11.06 15.74
05 Consensus  1.50 5.15 10.17 5.61 10.17
06 Separate 5.56 4.97 4.79 5.12 5.56
06 Consensus  5.01 4.68 443 4.71 5.01
08 Separate 14.61 20.24 23.81 19.55 23.81
08 Consensus  6.50 9.48 11.36 9.12 11.36

adjacency weights A;; depending on the robots’ measure-
ment accuracy. Although consensus averaging can harm the
estimation accuracy for some robots compared to running
individual MSCKEF algorithms for each robot, it helps improve
the overall team performance in both localization and object
mapping. The separate MSCKF sometimes perform worse
than libviso2 [39]. This is because the object observation is
too noisy. Updating with only object features can give an
error up to 10 times as in Table I. The distributed MSCKF
achieves better agreement in the map estimates among the
robots. We compare the object position differences with and
without averaging in Table III to quantify the reduction in
disagreement. We also claim that the consensus averaging
step does not add much time overhead because the robots
communicate only common landmarks, meaning that the cor-
responding covariance XY, in (19) is small, and only perform
averaging with one-hop neighbors. The computation time used
by different components in the algorithm is shown in Fig. 3.
Consensus averaging takes a small portion of time compared
with the MSCKF update.
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Fig. 2: Trajectory and object estimates of (a) 3 robots on KITTI sequences 00, 05, 06 and 08, (b) 15 robots in simulation.
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Fig. 4: Analysis of the effect of the robot network connectivity. The
dashed lines show RMSE without averaging.

B. Simulated data

To test our algorithm with increasing numbers of robots, we
generated simulated data for 3-15 robots.

1) Data generation: Each robot moves along a Lissajous
curve and odometry measurements are generated by adding
perturbations to the relative transformation between consec-
utive poses. The landmarks, both geometric and objects, are
generated by randomly sampling from Gaussian distributions
centered at each trajectory point. There are 210 objects in the
scene with different numbers of robots. The observations are
then generated by projecting the corresponding landmarks onto
the image plane and adding noise.

2) Results: The results are visualized in Fig. 2b. The
quantitative results from the simulations with a fully connected
graph are shown in Table IV. Our algorithm scales efficiently
with an increasing number of robots while continuing to out-
perform decoupled MSCKF algorithms for each robot. We also
analyze the effect of connectivity in Fig. 4. In the experiment,

TABLE IV: Trajectory, object errors in meters and consensus av-
eraging time per robot per timestep in seconds in simulation with
different numbers of robots. Separate and consensus correspond to
without/with the consensus averaging step in Sec. V-B.

Number of robots 3 5 10 15

Separate trajectory RMSE (m) 1.318 1452 1464 1385
Consensus trajectory RMSE (m) 0.605  0.748 0.941 0.933
Separate object error (m) 1402 1.604 1.605 1.573
Consensus object error (m) 0.514 0.536 0.752 0.737
Consensus averaging time (s) 0.021 0.022 0.026 0.028

each robot loses communication with each neighbor according
to rate r, i.e., each edge in the graph at each time step is
removed independently with probability r. We see that our
algorithm is robust to communication loss rate up to r = 0.9.
With small numbers of robots (3 and 5), the errors oscillate
as the loss rate increases but with relatively large numbers of
robots (10 and 15), the errors seem to decrease as the loss rate
increases. Analyzing the effect of randomly connected graphs,
e.g., broad gossip [49], will be considered in future work.

VII. CONCLUSION

We developed a distributed vision-only filtering approach
for multi-robot object SLAM. Our experiments demonstrate
that the method improves both localization and mapping
accuracy while achieving agreement among the robots on a
common object map. Since the algorithm is fully distributed,
it allows efficient scaling of the number of robots in the team.
Having a common object map is useful for collaborative task
planning, which we plan to explore in future work.
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