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but communicates with its neighbors to reach agreement on

the object maps across the robots. Our contributions are

summarized as follows.

• We formulate multi-robot landmark SLAM as a varia-

tional inference problem over a communication graph

with a consensus constraint on the landmark variables.

• We develop a distributed mirror descent algorithm with

a regularization term that couples the marginal densities

of neighboring nodes.

• Using mirror descent with Gaussian distributions, we

obtain a distributed version of the MSCKF algorithm.

• We demonstrate multi-robot object SLAM using stereo

camera measurements for odometry and object detection

on both real and simulated data to show that our method

improves the overall accuracy of the trajectories and

object maps of robot teams, compared to individual-

robot SLAM, while achieving better scaling to large robot

teams, compared to centralized multi-robot SLAM1.

II. RELATED WORK

SLAM is a broad research area including a variety of

estimation methods [8]–[10] as discussed in [1], [11]–[14].

Performing SLAM with multiple collaborating robots im-

proves efficiency but also introduces challenges related to

distributed storage, computation, and communication. This

section reviews recent progress in multi-robot SLAM.

A. Multi-robot factor graph optimization

Factor graph methods formulate SLAM as an optimization

problem over a bipartite graph of variables to be estimated

and factors relating variables and measurements via error

functions. Tian et al. [15] propose a certifiably correct pose

graph optimization (PGO) method with a novel Riemannian

block coordinate descent (RBCD) that operates in a distributed

setting. Cunningham et al. [16], [17] extend smoothing and

mapping (SAM) [18] by introducing a constrained factor

graph that enforces consistent estimates of common landmarks

among robots. Choudhary et al. [19] developed a two-stage

approach using successive over-relaxation and Jacobi over-

relaxation to split the computation among the robots. MR-

iSAM2 [20] extends incremental smoothing and mapping

(iSAM2) [10] by introducing a novel data structure called

mult-root Bayes tree. Tian et al. [21] investigate the relation

between Hessians of Riemannian optimization and Laplacians

of weighted graphs and design a communication-efficient

multi-robot optimization algorithm performing approximate

second-order optimization.
Recent SLAM systems utilize the theoretical results of

the above works to achieve efficient multi-robot operation.

Kimera-Multi [22], a fully distributed dense metric-semantic

SLAM system, uses a two-stage optimization method built

upon graduated non-convexity [23] and RBCD [15]. DOOR-

SLAM [24] uses [19] as a back-end and pairwise consis-

tency maximization [25] for identifying consistent measure-

ments across robots. Xu et al. [26] develop a distributed

visual-inertial SLAM combining collaborative visual-inertial

1Code is at https://github.com/ExistentialRobotics/distributed msckf.

odometry with an alternating direction method of multipliers

(ADMM) algorithm and asynchronous distributed pose graph

optimization [27]. Andersson et al. [3] design a multi-robot

SLAM system built upon square-root SAM [18] by utilizing

rendezvous-measurements.

B. Multi-robot filtering

Filtering methods, such as the Kalman filter, offer a compu-

tationally lightweight alternative to factor graph optimization

by performing incremental prediction and update steps that

avoid a large number of iterations. Roumeliotis and Bekey

[28] showed that the Kalman filter equations can be written

in decentralized form, allowing decomposition into smaller

communicating filters at each robot. Thrun et. al [29] presented

a sparse extended information filter for multi-robot SLAM,

which actively removes information to ensure sparseness at the

cost of approximation. With nonlinear motion and observation

models, a decentralized extended Kalman filter (EKF) has

an observable subspace of higher dimension than the actual

nonlinear system and generates unjustified covariance reduc-

tion [30]. Huang et al. introduced observability constraints in

EKF [30] and unscented smoothing [31] algorithms to ensure

consistent estimation. Gao et al. [32] use random finite sets to

represent landmarks at each robot and maintain a probability

hypothesis density (PHD). The authors prove that geometric

averaging of the robot PHDs over one-hop neighbors leads to

convergence of the PHDs to a global Kullback-Leibler average,

ensuring consistent maps across the robots. Zhu et al. [33]

propose a distributed visual-inertial cooperative localization

algorithm by leveraging covariance intersection to compensate

for unknown correlations among the robots and deal with loop-

closure constraints.
Our contribution is to derive a fully distributed filter for

object SLAM from a constrained variational inference perspec-

tive. Our formulation makes a novel connection to distributed

mirror descent and enables robots to achieve landmark consen-

sus efficiently with one-hop communication only and without

sharing private trajectory information.

III. PROBLEM STATEMENT

Consider n robots seeking to collaboratively construct a

model of their environment represented by a variable y, e.g.,

a vector of landmark positions. Each robot i also aims to

estimate its own state xi,t, e.g., pose, at time t. The combined

state of robot i is denoted as si,t = [x⊤
i,t y⊤]⊤ and evolves

according to a known Markov motion model:

si,t+1 ∼ fi(· | si,t,ui,t), (1)

where ui,t is a control input and fi is the probability density

function (PDF) of the next state si,t+1. Each robot receives

observations zi,t according to a known observation model:

zi,t ∼ hi(· | si,t), (2)

where hi is the observation PDF.
The robots communicate over a network represented as a

connected undirected graph G = (V, E) with nodes V =
{1, . . . , n} corresponding to the robots and edges E ⊆ V × V
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specifying robot pairs that can exchange information, e.g.

(i, j) ∈ E indicates that robot i and j can exchange informa-

tion. Let A ∈ R
n×n be a doubly stochastic weighted adjacency

matrix of G such that Aij > 0 if (i, j) ∈ E and Aij = 0
otherwise. Also, let Ni := {j ∈ V|(j, i) ∈ E} ∪ {i} denote

the set of one-hop neighbors of robot i. and includes node i
itself. We consider the following problem.

Problem 1. Given control inputs ui = [u⊤
i,0, . . . ,u

⊤
i,T−1]

⊤

and observations zi := [z⊤i,0, . . . , z
⊤
i,T ]

⊤, each robot i aims to

estimate the robot states si := [s⊤i,0, . . . , s
⊤
i,T ]

⊤ collaboratively

by exchanging information only with one-hop neighbors j ∈
Ni in the communication graph G.

IV. DISTRIBUTED VARIATIONAL INFERENCE

We approach the collaborative estimation problem using

variational inference. We develop a distributed mirror descent

algorithm to estimate a (variational) density of the states si,t
with regularization that enforces consensus on the estimates

of the common landmarks y among the robots.

A. Variational inference

As shown in [34], a Kalman filter/smoother can be derived

by minimizing the Kullback-Leibler (KL) divergence between

a variational density qi(si) and the true Bayesian posterior

pi(si|ui, zi). Adopting a Bayesian perspective, the posterior is

proportional to the joint density, which factorizes into products

of motion and observation likelihoods due to the Markov

assumptions in the models (1), (2):

pi(si|ui, zi) ∝ pi(si,ui, zi) (3)

∝ pi(si,0)

T−1∏

t=0

fi(si,t+1|si,t,ui,t)

T∏

t=0

hi(zi,t|si,t).

The KL divergence between the variational density qi(si) and

the true posterior pi(si|ui, zi) can be decomposed as:

KL(qi||pi) = Eqi [− log pi(si,ui, zi)]

− Eqi [− log qi(si)]
︸ ︷︷ ︸

entropy

+ log pi(ui, zi)
︸ ︷︷ ︸

constant

, (4)

where for simplicity of notation qi without input arguments

refers to qi(si). Dropping the constant term, leads to the

following optimization problem at robot i:

min
qi∈Qi

ci(qi) := Eqi [− log pi(si, zi,ui) + log qi(si)], (5)

where Qi is a family of admissible variational densities.

B. Distributed mirror descent

We solve the variational inference problem in (5) using the

mirror descent algorithm [7]. We use mirror descent because

it includes an explicit (Bregman divergence) regularization

term in the objective function that can incorporate information

from one-hop neighbors [35]. This allows us to formulate

a distributed version of mirror descent that enforces agree-

ment among the landmark estimates of different robots with

convergence guarantees. Mirror descent is a generalization

of projected gradient descent that performs projection using

a generalized distance (Bregman divergence), instead of the

usual Euclidean distance, to respect the geometry of the con-

straint set Qi. Since Qi is a space of PDFs, a suitable choice

of Bregman divergence is the KL divergence. Starting with a

prior PDF q
(0)
i (si), the mirror descent algorithm performs the

following iterations:

q
(k+1)
i ∈ arg min

qi∈Qi

Eqi

[
δci
δqi

(q
(k)
i )

]

+
1

αk

KL(qi||q
(k)
i ), (6)

where δci/δqi(q
(k)
i ) is the Fréchet derivative of ci(qi) with

respect to qi evaluated at q
(k)
i and αk > 0 is the step size.

Note that the optimizations (6) at each robot i are com-

pletely decoupled and, hence, each robot would be estimating

its own density over the common landmarks y. To make

the estimation process collaborative, the regularization term

KL(qi||q
(k)
i ) in (6) should require that the PDF qi of robot

i is also similar to the priors q
(k)
j of its neighbors Ni

rather than its own prior q
(k)
i alone. In our case, the PDFs

q
(k)
j (sj) = q

(k)
j (xj ,y) are not defined over the same set of

variables since each robot j is estimating its own private state

xj as well. Inspired by but different from [35], to enforce

consensus only on the common state y, the KL divergence

term in (6) can be decomposed as a sum of marginal and

conditional terms:

KL(qi(xi,y)||q
(k)
i (xi,y)) = KL(qi(y)||q

(k)
i (y)) (7)

+KL(qi(xi|y)||q
(k)
i (xi|y)).

Hence, we can regularize only the marginal density qi(y) of

the common environment state y to remain similar to the

marginal densities q
(k)
j (y) of the one-hop neighbors by using

a weighted sum of KL divergences. This leads to the following

optimization problem at robot i:

q
(k+1)
i ∈ arg min

qi∈Qi

gi(qi) (8)

gi(qi) := Eqi

[
δci
δqi

(q
(k)
i )

]

+
1

α(k)
KL(qi(xi|y)||q

(k)
i (xi|y))

+
1

α(k)

∑

j∈Ni

Aij KL(qi(y)||q
(k)
j (y)),

where Qi = {qi |
∫
qi = 1} is the feasible set and Aij are

the elements of the adjacency matrix with
∑

j∈Ni
Aij = 1.

We derive a closed-form expression for the optimizer in the

following proposition.

Proposition 1. The optimizers of (8) satisfy:

q
(k+1)
i (xi,y) ∝ [pi(xi,y, zi,ui)/q

(k)
i (xi,y)]

αk

q
(k)
i (xi|y)

∏

j∈Ni

[q
(k)
j (y)]Aij . (9)

Proof. See [36, Appendix A].

C. Linear Gaussian case

In this section, we consider linear Gaussian models and

obtain an explicit form of the distributed variational inference



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

update in (9). Suppose each robot i has the following motion

and observation models:

si,t+1 = Fisi,t +Giui,t +wi,t, wi,t ∼ N (0,Wi),

zi,t = Hisi,t + vi,t, vi,t ∼ N (0, Vi).
(10)

Let the prior density of si,0 be N (µi,0,Σi,0) and considering

all timesteps, we can write the models in lifted form as

si = F̄i(Ḡiui + w̄i), w̄i ∼ N (0, W̄i),

zi = H̄isi + v̄i, vi ∼ N (0, V̄i),
(11)

with the lifted terms defined as below

si = [s⊤i,0 · · · s⊤i,T ]
⊤, u⊤

i = [µ⊤
i,0 ui,0 · · · u⊤

i,T ]
⊤,

zi = [z⊤i,0 · · · z⊤i,T ]
⊤, H̄i = IT+1 ⊗Hi,

V̄i = IT+1 ⊗ Vi, W̄i =

[
Σi,0 0
0 IT ⊗Wi

]

,

F̄i =








I 0 · · · 0
F I · · · 0
...

...
. . .

...

FT FT−1 · · · I







, Ḡi =

[
I 0
0 IT ⊗Gi

]

, (12)

where ⊗ is the Kronecker product. Denoting the density and

distribution at iteration k as q
(k)
i (si) and N (µi,(k),Σi,(k)), the

distributed variational inference update in (9) is computed in

the following propositions.

Proposition 2. Consider a joint Gaussian distribution
[
x

y

]

∼ N

([
µ

x

µ
y

]

,

[
Σx Σxy

Σxy⊤ Σy

])

. (13)

If the marginal distribution over y changes to N (µ̄y, Σ̄y), the

new joint distribution N (µ̄, Σ̄) of (x,y) will be

µ̄ =

[
Aµ̄

y + b

µ̄
y

]

, Σ̄ =

[
AΣ̄yA⊤ + P AΣ̄y

Σ̄yA⊤ Σ̄y

]

,

A = ΣxyΣy−1, b = µ
x − ΣxyΣy−1

µ
y,

P = Σx − ΣxΣy−1Σxy⊤. (14)

Proposition 3. In the linear Gaussian case, the distributed

variational inference update in (9) can be obtained by first

averaging marginal densities of the common state y across

the neighbors Ni of robot i:

Σ̄y−1
i,(k) =

∑

j∈Ni

AijΣ
y−1
j,(k), Σ̄y−1

i,(k)µ̄
y

i,(k) =
∑

j∈Ni

AijΣ
y−1
j,(k)µ

y

j,(k),

(15)

then constructing a new joint distribution N (µ̄i,(k), Σ̄i,(k))
according to Proposition 2, and finally updating the density

using the motion and observation models in (11):

Σ−1
i,(k+1)= Σ̄−1

i,(k)+ αk(F̄
−⊤
i W̄−1

i F̄−1
i + H̄⊤

i V̄ −1
i H̄i −Σ−1

i,(k)),

Σ−1
i,(k+1)µi,(k+1) = Σ̄−1

i,(k)µ̄i,(k)

+ αk(F̄
−⊤
i W̄−1

i Ḡiui + H̄⊤
i V̄ −1

i zi − Σ−1
i,(k)µi,(k)). (16)

Proof. See [36, Appendix B].

In the above proposition, the averaging over the marginal

densities in (15) comes from the term
∏

j∈Ni
[q

(k)
j (y)]Aij in

(9), which enforces consensus among the robots over the

common variables y. If the robots are in consensus, i.e.,

µ
y

i,(k) = µ
y

j,(k),Σ
y

i,(k) = Σy

j,(k), ∀j ∈ Ni, (16) with αk = 1
converges in just one step,

Σ−1
i = F̄−⊤

i W̄−1
i F̄−1

i + H̄⊤
i V̄ −1

i H̄i,

Σ−1
i µi = F̄−⊤

i W̄−1
i Ḡiui + H̄⊤

i V̄ −1
i zi.

(17)

As shown in [37, Ch. 3.3], considering only two consecutive

time steps in the lifted form in (11) leads to a Kalman filter.

Using the result in Proposition 3, we obtain a distributed

Kalman filter that incorporates the consensus averaging step

in (15). To allow correlation between the motion and measure-

ment noise, we follow Crassidis and Junkins [38, Ch. 5] and

obtain a correlated Kalman filter in [36, Appendix C].

V. DISTRIBUTED MSCKF

In this section, we use Proposition 3 to derive a distributed

version of the MSCKF algorithm [8], summarized in Al-

gorithm 1. Each step of the algorithm is described in the

following subsections.

Algorithm 1 Distributed Multi-State Constraint Kalman Filter

Input: Prior mean and covariance (µi,t−1,Σi,t−1), control

input ui,t−1, and measurements z
g
i,t, z

o
i,t.

Output: Posterior mean and covariance (µi,t,Σi,t)
1: Consensus averaging: (19), (21) in Sec. V-B

2: State propagation: (22), (23) in Sec. V-C

3: State update: (26), (28) in Sec. V-D

4: Feature initialization: (30) in Sec. V-E

A. State and observation description

The state si,t of robot i at time t contains a sequence of c
historical camera poses xi,t and a set of mt landmarks yi,t:

si,t = (xi,t,yi,t),

xi,t = (Ti,t−c+1, . . . , Ti,t), Ti,k ∈ SE(3), ∀k,

yi,t = [p⊤
i,1 . . . p⊤

i,mt
]⊤, pi,k ∈ R

3, ∀k.

(18)

Besides the joint mean of the historical camera poses xi,t and

landmarks yi,t, each robot also keeps track a joint covariance

Σi,t ∈ R
(6c+3mt)×(6c+3mt). Each robot obtains observations

zoi,t of persistent features, e.g., object detections, and obser-

vations z
g
i,t of opportunistic features, e.g., image keypoints

or visual features, as illustrated in Fig. 1. We use point

observations and the pinhole camera model for both feature

types. Only the landmarks associated with persistent features

are initialized and stored in the state while the landmarks

associated with opportunistic features are used for structureless

updates as in the MSCKF algorithm [8].

B. Consensus averaging

Each robot i communicates with its neighbors Ni to find

out common landmarks. Then each robot sends the mean

and covariance of the common landmarks µ
y

i,t−1,Σ
y

i,t−1 to

its neighbors and receives µ
y

j,t−1,Σ
y

j,t−1, j ∈ Ni\{i}. The

consensus averaging step is carried out by averaging the

marginal distributions of the common landmarks:

Σ̄y−1
i,t−1 =

∑

j∈Ni

AijΣ
y−1
j,t−1,

Σ̄y−1
i,t−1µ̄

y

i,t−1 =
∑

j∈Ni

AijΣ
y−1
j,t−1µ

y

j,t−1,
(19)
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which is the same as (15) except that we only consider

one time step t here. Then, we need to reconstruct the

new joint distribution N (µ̄i,t−1, Σ̄i,t−1). Since we store the

historical camera poses as SE(3) matrices, Proposition 2

can not be applied directly. Following [37, Ch. 7.3.1], we

define a Gaussian distribution over a historical camera pose

T i,k, k = t− c, · · · , t− 1 by adding a perturbation ǫi,k:

T i,k = Ti,k exp(ǫ
∧
i,k), ǫi,k ∼ N (06,Σ

xk

i,t−1), (20)

where (·)∧ defined in [37, Ch. 7.1.2] converts from R
6 to a

R
4×4 twist matrix. The estimated covariance Σi,t−1 already

takes account of both the poses and landmarks. For consistency

of notation with Proposition 2, we denote the mean of the

pose perturbation as µ
x

i,t−1 = 06c. After averaging and

reconstructing the new joint distribution, µ̄x

i,t−1 may be non-

zero, so we need to correct the camera poses as follows:

T̄i,k=Ti,kexp(µ̄
xk∧
i,t−1), µ̄

xk

i,t−1∈R
6, k= t− c,· · ·,t− 1. (21)

C. State propagation

We derive a general odometry propagation step for the

MSCKF algorithm, thus not necessarily requiring IMU mea-

surements and enabling vision-only propagation. We assume

an odometry algorithm (e.g., libviso2 [39]) provides relative

pose measurements δTi,t−1 between the frame at time t − 1
and that at time t. The state of robot i is propagated as:

x+
i,t = (T̄i,t−c+1, . . . , T̄i,t−1, T̄i,t−1δTi,t−1),

s+i,t = (x+
i,t, µ̄

y

i,t−1),
(22)

where the terms (̄·) are obtained from the consensus averaging

step. The state covariance is propagated as follows:

Σ+
i,t=





A 0
Jt 0
0 I3mt−1



Σ̄i,t−1





A 0
Jt 0
0 I3mt−1





⊤

+ diag(e6n)⊗Wi,

A =
[
06(c−1)×6|I6(c−1)

]
, Jt=

[
06×6(c−1) Ad(δT−1

t−1)
]
, (23)

where Ad(·) is the adjoint of an SE(3) matrix [37, Chap-

ter 7.1.4], e6n ∈ R
6n+3mt is a vector with the 6n-th element

as 1 and the rest as 0, and Wi ∈ R
6×6 is the odometry

measurement covariance.

D. State update

The MSCKF update step follows prior work [40]. The

camera pose residual is a perturbation ǫi,k that transforms

the estimated pose Ti,k to the true pose T i,k, i.e. T i,k =
Ti,k exp(ǫ

∧
i,k). The landmark residual is the difference between

true position p and the estimated position p, i.e., p̃ = p− p,

where p is the position mean if the landmark is in the state or

the result of triangulation if it is not. When robot i receives the

k-th geometric feature observation at time t, denoted as z
g
i,t,k,

we linearize the observation model around the current error

state s̃i,t,k (composed of both pose and landmark residuals)

and the feature position residual p̃
g
i,k:

r
g
i,t,k = z

g
i,t,k − ẑ

g
i,t,k = Hs,g

i,t,ks̃i,t,k +Hp,g
i,t,kp̃

g
i,k + v

g
i,t,k,

where ẑ
g
i,t,k is the predicted observation, Hs,g

i,t,k and Hp,g
i,t,k are

Jacobians, and v
g
i,t,k ∼ N (0, V g

i ) is the geometric observation

noise. Then, we left-multiply by the nullspace Ni,t,k of Hp,g
i,t,k

to remove the effect of p̃
g
i,k:

r
g,0
i,t,k = N⊤

i,t,kr
g
i,t,k = N⊤

i,t,kH
s,g
i,t,ks̃i,t,k +N⊤

i,t,kv
g
i,t,k. (24)

Since we allow general odometry in the propagation step,

potentially obtained from visual features, there may be cor-

relation between the motion noise and the observation noise.

The correlation is denoted as

Si,t,k = E[wi,t−1v
⊤
i,t,k], wi,t−1 ∼ N (0,Wi). (25)

Concatenating r
g,0
i,t,k, N⊤

i,t,kH
s,g
i,t,k, N⊤

i,t,kV
g
i Ni,t,k, and

Si,t,kNi,t,k for all k appropriately, we get an overall geometric

feature residual r
g
i,t, Jacobian Hg

i,t, noise covariance V g
i,t and

correlation Si,t. Similarly, we linearize the observation model

for the object zoi,t,k:

roi,t,k = zoi,t,k− ẑoi,t,k = Hs,o
i,t,ks̃i,t+vo

i,t,k, v
o
i,t,k ∼ N (0, V o

i ),

and concatenate roi,t,k, Hs,o
i,t,k and V o

i for all k to get an

overall object observation residual roi,t, Jacobian Ho
i,t, and

noise covariance V o
i,t.

Finally, by concatenating the residuals and Jacobians of both

geometric and object features, we get the overall residual ri,t=

[rg⊤i,t ro⊤i,t ]
⊤ and Jacobian Hi,t = [Hg⊤

i,t Ho⊤
i,t ]

⊤. As shown in

[36, Appendix C], [38, Ch. 5], the Kalman gain is:

Ki,t = (Σ+
i,tH

⊤
i,t + Si,t)(Hi,tΣ

+
i,tH

⊤
i,t + Vi,t)

−1, (26)

Vi,t = blkdiag(V g
i,t +Hg

i,tSi,t + S⊤
i,tH

g⊤
i,t , V

o
i,t), (27)

where Si,t only appears for the geometric features, Σ+
i,t is

from the prediction step, and Ki,t can be split to Kx

i,t and

Ky

i,t related to xi,t and yi,t respectively. The landmark mean,

camera poses, and the entire covariance are updated as:

µ
y

i,t = µ
y+
i,t +Ky

i,tri,t,

Ti,k = T+
i,k exp(K

xk

i,t ri,t), Kxk

i,t ri,t ∈ R
6, k= t−c+1, · · · , t,

Σi,t = (I −Ki,tHi,t)Σ
+
i,t (28)

where the terms (·)+ are from the propagation step.

E. Feature initialization

The feature initialization is the same as [41]. To initialize

an object landmark, we first linearize the observation model

z̃oi,t,k = Hs

i,t,ks̃i,t +Hp

i,t,kp̃
o
i,k + vo

i,t,k, vo
i,t,k ∼ N (0, V o

i ),

where z̃oi,t,k, s̃i,t and p̃o
i,k are the residuals of the obser-

vation, current state, and new landmark respectively. Then,

QR decomposition is performed to separate the linearized

observation model into two parts: one that depends on the

new landmark and another that does not:
[

z̃
o,1
i,t,k

z̃
o,2
i,t,k

]

=

[

Hs,1
i,t,k Hp,1

i,t,k

Hs,2
i,t,k 0

] [
s̃i,t
p̃o
i,k

]

+

[

v
o,1
i,t,k

v
o,2
i,t,k

]

. (29)

Thus, we can augment the current state and covariance:

po
i,k = p̂o

i,k +Hs,1−1
i,t,k z̃

o,1
i,t,k,

Σsp

i,t,k = −Σi,tH
s,1⊤
i,t,k H

p,1−⊤
i,t,k ,

Σp

i,t,k = Hp,1−1
i,t,k (Hs,1

i,t,kΣi,tH
s,1⊤
i,t,k + V o,1

i )Hp,1−⊤
i,t,k ,

(30)
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where V o,1
i is the covariance of noise v

o,1
i,t,k, Σsp

i,t,k is the cross-

correlation term between the current state and new landmark,

and Σp

i,t,k is the covariance of the new landmark.

VI. EVALUATION

We implemented the distributed MSCKF using only stereo

camera observations and evaluated it on the KITTI dataset

[42] and on a simulated dataset with a larger number of

robots. All experiments were carried out on a laptop with i9-

11980HK@2.60 CPU, 16 GB RAM, and RTX 3080 GPU.

A. KITTI dataset

The KITTI dataset [42] is an autonomous driving dataset

that provides stereo images, LiDAR point clouds, and anno-

tated ground-truth robot trajectories. We provide details about

the data processing and evaluation results below.

1) Sequences and splits: We chose long sequences in the

KITTI odometry dataset with loop closures and a sufficient

number of cars, used as object landmarks, namely, sequences

00, 05, 06, and 08. Each sequence is split into 3 sub-sequences

representing 3 different robots. The sequence splits are as

follows: sequence 00: [0, 2000], [1500, 3500], [2500, 4540];
sequence 05: [0, 1200], [800, 2000], [1560, 2760]; sequence

06: [0, 700], [200, 900], [400, 1100]; sequence 08: [0, 2000],
[1000, 3000], [2000, 4070]. We used a fully connected graph

and the adjacency matrix A ∈ R
3×3 has all elements as 1

3 .

2) Geometric features: We extract geometric features using

the FAST corner detector [5]. The KLT optical flow algorithm

[43] is used to track the features across stereo images. Outlier

rejection is performed using 2-point RANSAC for temporal

tracking and the known essential matrix for stereo matching.

Finally, circular matching similar to [44] is performed to

further remove outliers.

3) Object features: We utilize YOLOv6 [6] to detect object

bounding boxes and compute the centers as our object obser-

vations. Since our work does not focus on object tracking, we

directly use the instance ID annotations in SemanticKITTI [45]

for data association. The instance annotations are provided for

LiDAR point clouds and we associate them with the bounding

boxes by projecting the LiDAR point clouds onto the image

plane and checking the dominant instance points inside each

bounding box.

4) Odometry: The relative pose δTi,t between consecutive

camera frames is obtained by libviso2 [39].

5) Results and analysis: We found empirically that setting

the correlation matrix (25) to zero gives the best results. We

assume that this is because libviso2 [39] uses SURF features

[46], while the update step is performed using FAST features

[5] and the correlation is negligible. Qualitative results from

three-robot collaborative object SLAM on the KITTI dataset

are shown in Fig. 2a. We show the root mean square error

(RMSE) of the robot trajectory estimates in Table I and the

mean distances between estimated object positions and the

ground truth in Table II. We do not use alignment for the

trajectory RMSE [47] because trajectory transformations affect

the object mapping errors. Some ways to mitigate the effect

of bad estimates include resilient consensus [48] or adaptive

TABLE I: Trajectory RMSE in meters on KITTI sequences. Separate
and consensus correspond to without/with the consensus averaging
step in Sec. V-B.

Robot 1 Robot 2 Robot 3 Avg Max

libviso2 [39] 14.30 13.73 12.65 13.56 14.30
00 Separate 12.47 7.55 12.42 10.81 12.47

00 Consensus 12.51 7.13 8.73 9.45 12.51

05 libviso2 [39] 5.36 6.42 11.57 7.78 11.57
05 Separate 7.18 10.03 7.87 8.36 10.03
05 Consensus 4.69 7.75 9.56 7.33 9.56

06 libviso2 [39] 5.45 6.89 5.21 5.85 6.89
06 Separate 4.23 5.60 4.86 4.90 5.60

06 Consensus 4.23 5.61 4.76 4.87 5.61

08 libviso2 [39] 9.17 21.05 11.37 13.86 21.05
08 Separate 15.08 24.28 9.18 16.18 24.28
08 Consensus 13.89 12.71 9.18 11.93 13.89

TABLE II: Object estimation errors in meters on KITTI sequences.
Separate and consensus correspond to without/with the consensus
averaging step in Sec. V-B.

Robot 1 Robot 2 Robot 3 Avg Max

00 Separate 8.76 7.61 8.70 8.36 8.76

00 Consensus 9.30 6.74 7.16 7.73 9.30

05 Separate 6.08 8.40 6.92 7.14 8.40

05 Consensus 4.56 7.51 8.54 6.87 8.54

06 Separate 3.43 5.92 4.64 4.66 5.92
06 Consensus 3.78 5.63 4.37 4.59 5.63

08 Separate 12.14 21.91 8.19 14.08 21.91
08 Consensus 12.11 13.71 9.21 11.68 13.71

TABLE III: Object position differences in meters across different
robots on KITTI sequences. Separate and consensus correspond to
without/with the consensus averaging step in Sec. V-B.

Robot 1 Robot 2 Robot 3 Avg Max

00 Separate 9.69 10.35 8.35 9.46 10.35
00 Consensus 5.95 8.62 5.11 6.56 8.62

05 Separate 7.25 10.20 15.74 11.06 15.74
05 Consensus 1.50 5.15 10.17 5.61 10.17

06 Separate 5.56 4.97 4.79 5.12 5.56
06 Consensus 5.01 4.68 4.43 4.71 5.01

08 Separate 14.61 20.24 23.81 19.55 23.81
08 Consensus 6.50 9.48 11.36 9.12 11.36

adjacency weights Aij depending on the robots’ measure-

ment accuracy. Although consensus averaging can harm the

estimation accuracy for some robots compared to running

individual MSCKF algorithms for each robot, it helps improve

the overall team performance in both localization and object

mapping. The separate MSCKF sometimes perform worse

than libviso2 [39]. This is because the object observation is

too noisy. Updating with only object features can give an

error up to 10 times as in Table I. The distributed MSCKF

achieves better agreement in the map estimates among the

robots. We compare the object position differences with and

without averaging in Table III to quantify the reduction in

disagreement. We also claim that the consensus averaging

step does not add much time overhead because the robots

communicate only common landmarks, meaning that the cor-

responding covariance Σy

i,t in (19) is small, and only perform

averaging with one-hop neighbors. The computation time used

by different components in the algorithm is shown in Fig. 3.

Consensus averaging takes a small portion of time compared

with the MSCKF update.
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