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ARTICLE INFO ABSTRACT

Keywords:

The pozzolanic reaction of fly ashes with calcium-based additives can be effectively used to solidify and
chemically stabilize (S&S process) highly concentrated brines inside a cementitious matrix. However, complex
interactions between the fly ash, the additive, and the brine typically affect the phases formed at equilibrium,
and the resulting solid capacity to successfully encapsulate the brine and its contaminants. Here, the perfor-
mances of two types of fly ash (a Class C and Class F fly ash) are assessed when combined with different additives
(two types of cement, or lime with and without NaAlOy), and two types of brine (NaCl or CaCly) over a range of
concentrations (0 < [CI7] < 2 M). The best performing matrices - i.e., the matrices with the highest Cl-
containing phases content — were identified using XRD and TGA. The experimental results were then com-
bined with thermodynamic modeling to dissociate the contribution of the fly ash from that of the additives. All
results were implemented in a machine learning model that showed good accuracy at predicting the fly ash
degree of reaction, allowing for the robust prediction of extended systems performance when combined with
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thermodynamic modeling.

1. Introduction and background

Waste management is a growing challenge for all sectors, as there is
an increasing demand for more comprehensive control of waste prod-
ucts. As an example, waste streams including (but not limited to) agri-
cultural, industrial, mining, municipal, and power plant waste waters, as
well as produced and extracted water, all require specific attention
(Borch et al., 2021; Cath et al., 2021a, 2021b; Childress et al., 2021;
Giammar et al., 2021). These waste streams (referred to as brine from
hereon due to their high salt concentrations) contain high levels of
contaminants (0-5 M of total dissolved solids), yet can be safely land-
filled, provided that the pollutants — for instance: heavy metals, alkali
and alkaline-earth cations, halide anions, etc.— are effectively immobi-
lized in a solid matrix such as a cementitious solid (Fatoba et al., 2015,

2013; Poon et al., 2004; Renew et al., 2016). This type of binder solid-
ifies and stabilizes (S&S) the contaminants within the solid — either as
insoluble species (Glasser, 1997), or by incorporation or sorption into
the hydrate phases (Gougar et al., 1996; Piekkari et al., 2020) — to
prevent mobile aqueous species release into the environment.

Among the various cementitious binders tested, the use of fly ash(es)
has been proven to be of great interest (Okoronkwo et al., 2018; Renew
et al., 2016). ASTM C618 compliant coal-fired power plant fly ashes —
typically classified either as “Class C” or “Class F” fly ash (ASTM C618,
2019, p. 618) — are commonly mixed with a Ca-containing additive. The
pozzolanic reaction between the calcium provided by the additive and
the fly ash silicate content leads to the formation of calcium-silicate-
hydrate (C-S-H) phases (Poon et al., 2003; Wang and Ishida, 2019), as
well as a range of hydrated phases of interest for contaminant binding
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such as CI-AFm (e.g., Friedel’s salt — CayAl(OH)g[Cl, OH]-2H,0) for Cl-
containing brines. Relevant calcium-based additives include quicklime
(Ca0), hydrated lime (Ca(OH)y), and/or ordinary portland cement
(OPQ) (Ellison, 2019). Increasing the Al content in the system — by using
for example a calcium aluminate cement (CAC) — could result in the
increased formation of AFm phases of interest. Uncertainties remain,
however, on the effect such additives might have on the phase assem-
blage and the fly ash degree of reaction. Additionally, brine composition
and concentration typically affect the phase assemblage and the fly ash
degree of reaction.(Poon et al., 2004; Collin et al., 2022) As a result, the
complex interaction between brine and additive may further affect the
capacity of the solid matrix to immobilize the pollutants, which requires
investigation. However, while it is important to identify the best per-
forming encapsulation systems, testing multiple systems is very time
consuming. Thermodynamic modeling is a fast and useful tool to rapidly
assess the performance of encapsulation systems (e.g., pH, brine con-
sumption, phase equilibrium, etc.) (Collin et al., 2022, 2021; Okor-
onkwo et al., 2018). Thermodynamic modeling is already well
established to predict the equilibrium phases forming from cement hy-
dration.(Lothenbach and Winnefeld, 2006; Lothenbach et al., 2008;
Damidot et al., 2011; Lothenbach et al., 2019) Similarly, fly ash
pozzolanic reaction can already be estimated as a function of time
(Glosser et al., 2020; Lothenbach and Winnefeld, 2006), but the current
models rely on empirical data gathered in a OPC and water system
where the fly ash is a supplementary cementitious material — i.e., a
system that is not representative of a brine encapsulation system where
the fly ash is the major reactive component. Gathering empirical data for
every system of interest presents significant limitations in terms of cost
and time, and severely reduces the appeal of thermodynamic modeling.
This emphasizes the necessity to develop alternatives methods to esti-
mate the fly ash degree of reaction for an encapsulation system prior to
the modeling if thermodynamic modeling is to be used as a predictive
tool for future research.

In order to establish a matrix of well-defined encapsulation systems,
(1) two types of fly ashes (a Class C and a Class F fly ash), (2) four types
of additives (two types of cement, or lime with and without NaAlO5), (3)
two types of brines (NaCl or CaCly), and (4) various brine concentrations
(from 0 to 2 M of Cl") were investigated. The phase assemblages formed
after 10 days of hydration at 50 °C are used to infer the fly ashes degree
of reaction by comparison with thermodynamically modelled phase
assemblages. The reactivity of the fly ashes is further validated using
isothermal calorimetry, highlighting how each system reacts and their
subsequent performance in successfully (or not) encapsulating the brine.
The experimental and simulated data are then compiled in an artificial
neural network-based machine learning model to properly capture the
intricate mapping from the complex interaction within the brine/fly
ash/additive system, and their effect on the degree of reaction of the fly
ash. By taking into account the initial setup composition, the trained
model can accurately predict the fly ash degree of reaction and, more
importantly, decipher the distinct effect of fly ash/solution composition
on reactivity. As a result, future setups can be rapidly and accurately
modeled so that the best fly ash and additives mixes can be paired with
specific brine compositions and concentrations.

2. Material and methods
2.1. Raw material characterization

A Class C and a Class F fly ash were studied as representative fly
ashes. The additives studied include portlandite Ca(OH); (purity > 95%)
(abbreviated as CH from hereon), a 95 mass % Ca(OH), + 5 mass %
NaAlO; (purity 99%) mix (abbreviated as CH-NA from hereon), a type III
anhydrous ordinary portland cement (abbreviated as OPC from hereon)
and a “ciment fondu” type of low alumina calcium aluminate cement
(“Guide to the selection and use of hydraulic cements,” 2016) (abbre-
viated as CAC from hereon) whose major oxides content respect norm
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EN 14647 (Calcium aluminate cement, 2007). The Class C and Class F fly
ash, OPC, and CAC bulk oxide composition, as determined using X-ray
fluorescence (XRF), (Astm, 2004) is detailed in Table 1. The crystalline
phases and the quantity of the amorphous phase present were quantified
using Quantitative X-Ray Diffraction (QXRD) and Rietveld refinement
(Bergmann et al., 1998; Rietveld, 1969). Zincite (ZnO, purity 99.999%)
was used as an internal standard at a mass loading of 10 mass %. The
Rietveld refinement was conducted using Profex (Doebelin and Klee-
berg, 2015). The quantities and types of crystalline phases present in the
precursor materials are detailed in Table 2. The Class C fly ash, Class F
fly ash, and CAC amorphous content average composition, detailed in
Table 1, was calculated by subtracting the crystalline content contri-
bution from the XRF bulk composition. Note that, for CAC, no grossite
(CaAl;07) was detected, yet this phase can be expected in calcium
aluminate cement alongside the other calcium aluminate phases
observed and quantified here.(Mangabhai, 2019) As a result, the CAC
studied here displays a high amorphous content.

Simulated brines were prepared by dissolving NaCl (99%) or
CaCly-6H50 (99%) in deionized water (DIW) at room temperature under
agitation to obtain Cl~ concentration ([Cl1]) of 0.5, 1, and 2 mol/L.
Cementitious formulations were prepared by combining 55 mass % of
fly ash, 10 mass % of additive and 35 mass % of the brine (i.e., a liquid to
solid ratio of 0.54). The formulations were mixed for 45 s at 270 rpm and
1 min at 480 rpm at room temperature using a high-shear immersion
mixer. The pastes were poured in hermetic glass bottles and placed into
a TamAir isothermal calorimeter at 50 °C for analysis of the resulting
heat release. Heat flow and cumulative heat release were measured over
10 days of hydration to assess the rate and the extent of fly ash hydra-
tion. The cumulative heat release of the additives (CH, CH-NA, CAC, and
OPC) were measured separately in DIW and brines in a system where the
fly ash was replaced by quartz (i.e., an inert silicate). The cumulative
heat release measured from the additive reaction was subtracted from
the value measured in the mixed fly ash/additive systems (Figure S1) to
determine the heat release attributed to fly ash reactivity. In general, the
heat release showed minimal change (d Q/dt < 0.1 mW/g/s) after 10
days. The ampoules were retrieved from the calorimeter, and the solid
samples were crushed and immediately immersed in isopropanol (IPA)
for a week to cease further reaction (Oey et al., 2016). The samples were
then dried under vacuum for an additional week, following which they
were crushed, milled using an agate pestle and mortar and then sieved
through a 300 um sieve prior to additional characterization.

2.2. Cementitious material characterization

2.2.1. Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed using a Perkin
Elmer STA 8000 under a flow of nitrogen in an aluminum oxide crucible.
A heating ramp of 10 °C min~! was used between 35 and 950 °C, after 5
min equilibration at 35 °C. The mass loss (TG) and the derivative mass
loss (DTG) were both used to semi-quantify Cl-AFm hydrated phases
between ~250-t0-430 °C (Lothenbach et al., 2016; Shi et al., 2017).

2.2.2. X-Ray diffraction

XRD analysis was performed using a PANalytical X Pertpro diffrac-
tometer (0-0 configuration, CuKa radiation, . = 1.54 A) on powder
samples spiked with ~10 mass % of ZnO (99.99%). The scans were ac-
quired between 5° and 70° with a step-size of 0.02° using a scientific
X’Celerator 2 detector. In general, powdered samples were placed in the
sample holder and their surfaces gently textured to minimize the po-
tential for preferred orientation related errors. Rietveld refinement of
the samples was performed using the Profex graphical user interface and
the BGMN program (Bergmann et al., 1998; Doebelin and Kleeberg,
2015; Rietveld, 1969). The following hydrated phases were identified:
ettringite (ICSD #16045), monosulfoaluminate (ICSD #100138), a
magnesium-aluminum hydrotalcite-like phase (referred to as
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Table 1
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The bulk composition and the amorphous content composition (mass %) of the Class C fly ash, Class F fly ash, OPC, and CAC, as determined by XRF (ASTM D4326-04,

2004) and XRD.

Class C Class F OPC CAC
Bulk Amorphous Bulk Amorphous Bulk Amorphous Bulk Amorphous
CaO 28.0 22.1 4.0 2.6 63.4 - 42.3 14.4
MgO 7.2 3.5 0.9 0.9 1.1 - 0.6 0.4
Al,O03 18.5 16.1 20.7 17.9 4.7 - 36.9 13.4
Si0, 32.0 26.2 52.0 45.9 20.3 - 4.4 2.2
SO3 3.0 1.9 0.8 0.5 3.0 - 0.1 0.1
Fe,03 5.3 5.2 14.6 10.7 3.7 - 15.5 11.1
Na,O 1.8 1.8 1.4 1.3 0.1 - 0.1 0.1
K,0 0.4 0.4 2.4 2.3 0.7 - 0.1 0.2
Others 3.8 3.2 3.2 1.2 3.0 - 0.0 1.6
Total 100.0 80.4 100.0 83.3 100.0 - 100.0 43.5
Table 2 1 _ *Arz?\ﬁ bl S 1
The mineralogical composition (mass %) of the Class C fly ash, Class F fly ash, O8107: = 1 + dB, NGi + byl +logy, X, M

OPC, and CAC as determined using QXRD.

Class C Class F OPC CAC
Quartz - SiO, 5.0 6.0 <1 -
Periclase — MgO 3.3 - - -
Free lime — CaO 1.4 0.4 - -
Merwinite — CagMg[SiO4] 1.7 - - -
Magnetite — Fe;04 <1.0 2.1 - <1.0
Maghemite — y-Fe;03 - 0.9 - 2.0
Hematite — a-Fe,03 - 0.9 - -
Portlandite — Ca(OH), <0.4 (TGA) <0.7 (TGA) - -
Ye’elimite - CasAlgO12504 0.5 - - -
Mullite — 3A1,052-Si0, <1.0 5.2 - -
Anhydrite — CaSO4 1.7 0.6 — -
Tricalcium aluminate — Ca3Al;Og¢ 3.3 - 5.1 5.0
Tricalcium silicate — Ca30sSi - - 739 -
Dicalcium silicate — Ca,SiO4 - - 8.0 4.3
Tetracalcium aluminoferrite — - - 13.8  10.0

CayAl;Fes019
Gypsum — CaSO4-2H,0 - - 4.4 -
Monocalcium aluminate — - - - 30.6
CaAl,04

Gibbsite — AI(OH); - - - 1.9
Mayenite — Ca;2Al;4033 - - - 2.2
Sum of crystalline phases 19.6 16.7 100 56.5
Amorphous phases 80.4 83.3 0.0 43.5

hydrotalcite from hereon, PDF #00-014-0525), katoite (ICSD #34227),
Kuzel’s salt (PDF #00-019-0203), Friedel’s salt (ICSD #62363), and
stratlingite (PDF #29-0285).

2.2.3. Infrared spectroscopy

Solid-state attenuated total reflection Fourier-transform infrared
spectroscopy (ATR-FTIR) was performed using a Spectrum Two FT-IR
Spectrometer (Perkin Elmer). The powdered samples were pressed
using around 90 N of force onto a diamond/ZnSe composite crystal to
ensure good contact and generate total internal reflection. The spectra
reported herein were obtained by averaging 4 scans over the wave-
number range of 4000-to-400 cm ™! at a resolution of 1 cm L.

2.3. Thermodynamic modeling

Thermodynamic modeling was conducted using GEM-Selektor v.3.6
(GEMS) (Kulik et al., 2012; Wagner et al., 2012) which incorporates the
slop98.dat and Cemdatal8 thermodynamic databases (Hummel et al.,
2002; Johnson et al., 1992; Lothenbach et al., 2019, 2008; Thoenen
et al., 2014). To represent the non-ideality of the solutions, the activity
coefficients were calculated using the Truesdell-Jones extension to the
Debye-Hiickel equation (Helgeson et al., 1981, p. 198):
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where, y; is the activity coefficient and z; the charge of the i aqueous
species, A, and B, are temperature and pressure dependent coefficients,
Xjy is the molar quantity of water, X,, is the total molar amount of the
aqueous phase, and I is the molal ionic strength. A common ion size
parameter (a = 3.72 A) and a short-range interaction parameter o, =
0.64 kg mol™1) were used, treating NaCl as the background electrolyte
(Helgeson et al., 1981; Vollpracht et al., 2016). All concentrations (up to
2 mol/L of C17) were considered to conform to the limits of applicability
using Eq. (1). Of course, as water is consumed over the course of reac-
tion, the concentration sometime exceeds the 2 mol/L limit. As such,
some uncertainty is expected in the quantitative (although not qualita-
tive) analysis (Kulik et al., 2012; Langmuir, 1998). The system modeled
(55 g of FA, 10 g of portlandite, and 35 g of brine) is similar to that
studied experimentally, and follows a model previously developed for
similar Class C and Class F fly ashes (Collin et al., 2021). Briefly, the
additives are considered to be completely hydrated, except for CAC in
presence of Class F: in this system, only the CAC crystalline content
reaction is considered to accurately reproduce experimental results.
Note that this is consistent with the literature observation that CAC
typically displays sequential reactivity for both its crystalline and
amorphous content, with calcium aluminate reaction kinetics being
faster than other phases (e.g., grossite).(Sorrentino et al., 1995; Klaus
et al., 2013; Goergens et al., 2023) The fly ashes are considered to show
fractional reactivity based on: (a) the lack of reaction of the insoluble
crystalline phases (e.g., quartz), (b) incomplete reaction of some
partially soluble crystalline phases, (c) complete consumption of the
highly-reactive crystalline phases (e.g., CaSO4), and (d) the congruent
dissolution of the amorphous phase given its average composition
(Table 1) (Collin et al., 2021). The degree of fly ash reaction after 10
days of hydration at 50 °C is determined by analyzing when the ratio of
well-characterized crystalline phase masses, e.g., portlandite (CH: Ca
(OH)y), is equal to unity; i.e., when the modeled quantity of a given
phase is equivalent to its content established by experimental (TGA and/
or XRD assessments, e.g., when CHy,/CH. ~ 1, where the subscripts ‘m’
and ‘e’ indicate modeled and experimental assessments).

2.4. Machine learning modeling

An artificial-neural-network-based machine learning model was
developed to predict the fly ash degree of reaction (FA DR) from the
initial setup composition. Based on the experimental results collected
herein and from a previous study (Collin et al., 2021), a dataset of 70
samples was curated to assess the FA DR under various combinations of
fly ash type, additive type, and brine composition and concentration. For
each sample, the inputs comprise a total of nine features corresponding
to (1) the type of fly ash (i.e., Class C or Class F), (2) the type of additives
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(i.e., CH/CH-NA/OPC/CACQC), and (3) the ions molar concentrations (i.e.,
Na®/Ca%"/Cl7). To limit the dimensionality of the model (so as to avoid
the “curse of dimensionality”) (Liu et al., 2019; Ouyang et al., 2020), the
fly ash and additive inputs were set as categorical features as either
“applied” or “not applied” using the one-hot encoding approach (Par-
gent, 2019), while the brine concentrations were provided based on the
actual experimental values. The neural network and all related analyses
were built and implemented within PyTorch (an open-source machine
learning platform), with Adam as the optimizer, Rectified Linear Unit
(ReLU) as the activation function, and L2 norm as the cost function
(Paszke et al., 2019). To avoid the overfitting issue typically associated
with complex machine learning models (which usually results in a false
positive estimation of the model accuracy and poor generalizability for
predicting new samples) (Ouyang et al., 2021), the artificial neural
networks were all designed with a relatively simple structure comprising
six artificial neurons (i.e., one-tenth of the training samples) in a single
hidden layer by following commonly used guidelines (Heaton, 2008).
Following common practices in machine learning, 52 samples (i.e.,
~75% of the dataset as “training set”) were allocated for training the
neural network, while the remaining 18 samples (i.e., ~25% of the
dataset as “test set”) were kept hidden from the model during training.
Here, the test set was used to quantify the ability of the model to
generalize, that is, to accurately predict reactivity in unknown condi-
tions (that were not used to train the model). Considering the limited
size of the dataset, the train-test split was conducted using stratification
sampling to ensure that the split subsets follow the same distribution of
the original dataset—so that the train and test sets are statistically
aligned (Jablonka et al., 2020; Ouyang et al., 2021; Song et al., 2021a).
To ensure that the obtained results are not biased by the choice of the
test set, ten independent neural networks models were trained based on
ten different stratified train-test splits. The results reported herein are
based on the average of those ten neural networks. The settings of the
artificial neural networks (i.e., hyperparameters) (Demir-Kavuk et al.,
2011) were optimized by cross-validation based on a grid search within
a given reasonable range for each hyperparameter (i.e., 10 !-to-10~2 for
learning rate and 102-to-10~> for weight decay; with ten intervals on
each magnitude). Based on the average validation set accuracy, the
opti;nal learning rate and weight decay were chosen as 1072 and 2 x
107~

3. Results and discussion

3.1. Effect of additive type on phase assemblage and fly ash reactivity in
the absence of brine

The hydrated phase assemblage formed after 10 days of hydration at
50 °C of a system containing 55 mass % of fly ash (Class C or Class F),
10 mass % of additive (two types of cement, lime with and without
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NaAlO»), and 35 mass % of DIW was assessed using XRD (Fig. 1).

Using portlandite only as an additive (i.e., CH systems) results in the
formation of amorphous C-S-H (peak around 950 cm™! in the IR spec-
trum, Fig. 1b and d) as a result of the pozzolanic reaction between
portlandite and the silicate content of the fly ashes for both Class C and
Class F fly ash. Monosulfoaluminate (main peak at 9.93° 20 in the XRD
pattern), katoite (32.61° 20), and hydrotalcite (11.63° 20) are also
observed within the Class C fly ash system (Fig. 1a), due to the joint
hydrolysis of Al and Mg during the pozzolanic reaction. Ettringite
(9.08° 20) and monosulfoaluminate only are observed within the Class F
fly ash system due to Class C fly ash lower reactivity (Fig. 1c).

Using portlandite + NaAlO; as an additive (i.e., CH-NA system) still
induce the formation of C-S-H when combined with the Class F fly ash,
but only ettringite is observed to form alongside the C-S-H. This suggests
that the Class F fly ash reactivity is limited when combined with CH-NA.
Similarly, a strong decrease in the amount of crystalline phase formation
is observed with the Class C fly ash, where the only major hydrate phases
detected are the C-S-H phases (Fig. 1b), as well as traces of katoite and
potentially stratlingite. NaAlO, dissolution (to form NaOH and Al(OH)3)
was observed to consume a significant fraction of the water initially
available and produced a strongly alkaline solution where the formation
of some crystalline phases (such as monosulfate) may be suppressed
(Collin et al., 2021).

Using OPC as an additive (i.e. OPC system) results in the formation of
C-S-H and ettringite with the Class F fly ash (Fig. 1¢), suggesting again a
lower reactivity of the fly ash compared to that observed with por-
tlandite. With the Class C fly ash, the phase assemblage is similar to that
observed in the CH system. This suggests that both fly ash pozzolanic
reaction is not strongly affected by the delayed portlandite formation
from OPC hydration.

Finally, using CAC as an additive results in the formation of C-S-H
with Class C fly ash (Fig. 1b), as well as stratlingite (7.00° 20) which
forms preferentially in this system instead of katoite (Fig. 1a). With the
Class F fly ash, stratlingite is also observed to form (Fig. 1¢) and appears
to suppress amorphous C-S-H formation (Fig. 1d). Stratlingite and
katoite or C-S-H can typically coexist in cementitious systems, although
stratlingite formation is favored in high Al-containing systems (Okor-
onkwo and Glasser, 2016). Here, the formation of stratlingite consumes
all the available Al and Si in the systems, which suppresses the formation
of other phases.

The experimental phase assemblages were all successfully repro-
duced using thermodynamic, allowing for the determination of the fly
ash degree of reaction (FA DR) after 10 days of reaction at 50 °C. A
strong difference in reactivity is observed between the Ca-rich Class C fly
ash (DR value above 10 mass % regardless of the additive used, Fig. 2a)
and the Ca-poor Class F fly ash (DR value below 6 mass % regardless of
the additive used, Fig. 2b), which is consistent with previous observa-
tions (Oey et al.,, 2017b; Song et al., 2021b). Such differences in

Class C - DIW Class C - DIW Class F - DIW Class F - DIW
XRD results IR results XRD results IR results
180l Lo Lyl 1y By ! 180l Lo Ly 11 W 3.0 P T M
—CAC —CAC C-S-H
4{— CH-NA L 4 — CH-NA L i . st E L
—CH I —CH = P -
3120 OPC - &2 3120 — OPC - 2.0 . N o
8 |— Unreacted FA P 8 — Unreacted FA 3 : o\
> o > Q ' [
z K| g z SN : N
2 s Ms c e 2 E g : N
£ o0 St N £ 60 s | Ms - 31.0- L -
M»W %\. < . RS ' I +
Y T e o WL L VY
e S I o eecaevel v S -
o.,.,.,.,....“,. 0.0 t+——T—T—T——T7— 0 ey ey 00+———T—"—T—"T—
6 7 8 9 10 1112 3233 850 950 1050 1150 1250 6 7 8 9 10 1112 3233 850 950 1050 1150 1250
(a) 20 (degree) Wavenumber (cm-') (c) 20 (degree) Wavenumber (cm)

Fig. 1. The crystalline and amorphous hydrated phases formed, as determined using XRD (with background subtraction) and IR spectroscopy. (a) XRD diffracto-
grams and (b) IR spectra obtained for the hydrated Class C fly ash with the additives in DIW. (¢) XRD diffractograms and (d) IR spectra obtained for the Class F fly ash
with the additives in DIW. E = ettringite, Ms = monosulfoaluminate, St = stratlingite, HT = hydrotalcite, K = Katoite.
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Class F - DIW
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Fig. 2. The fly ashes degree of reaction (FA DR) as determined using thermodynamic modeling for (a) the Class C fly ash with the additives in DIW, and (b) the Class

F fly ash with the additives in DIW.

reactivity are related to the amorphous content network topology: a Ca-
rich fly ash network is usually less constrained (connected) than that of a
Ca-poor Class F fly ash as per the topological constraint theory (TCT)
(Bauchy, 2019; Mauro, n.d.; Oey et al., 2017b; Song et al., 2021b). Sil-
icates with less constrained structure commonly show higher silicate
dissolution rate in aqueous medium (Oey et al., 2017a; Pignatelli et al.,
2016), and are also expected to be more reactive in cementitious systems
(Oey et al., 2017b). For both Class C and Class F fly ashes, the highest fly
ash extent of reaction is observed when combined with portlandite (i.e.,
CH system). The Class C fly ash reactivity in OPC and CAC systems is
similar to that observed in the CH system. In contrast, the Class F fly ash
reactivity in OPC and CAC is notably lower than that observed in the CH
system. This suggests that the lowly reactive Class F fly ash is more

Class C - NaCl (CI-=2 M) Class C - NaCl (CI-=2 M)

XRD results IR results
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sensitive to additive composition changes than the highly reactive Class
C fly ash, as its reactivity relies more strongly on the pozzolanic and
hydration reaction. Finally, for both Class C and Cass F fly ash, CH-NA
induces a strong decrease in fly ash reactivity, as it was observed to
limit the formation of several crystalline phases in both Class C and Class
F system.

3.2. Effect of brine concentration on the phase assemblage and fly ash
reactivity

The hydrated phase assemblage formed after 10 days of hydration at
50 °C of the fly ash/additive system is assessed when combined with
brine (NaCl or CaCl, with 0.5 < [C1"] < 2 M). Results obtained for [Cl ]
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Fig. 3. The crystalline and amorphous hydrated phases observed experimentally with brines ([CI"] = 2 M), for the Class F fly ash in (a) & (b) NaCl and (c) & (d)
CaCl, brine; and for the Class C fly ash in (e) & (f) NaCl and (g) & (h) CaCl, brine. E = ettringite, Si-E = Si-containing ettringite-like phase, St = stratlingite, K =

katoite, FrS = Friedel’s salt, and KzS = Kuzel’s salt.
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= 2 M are displayed in Fig. 3 as an illustration. For the Class C fly ash, a
broad range of hydrated phases is observed as a function of the type of
brine and the type of additive. In the presence of NaCl, the main hydrate
phases forming are C-S-H and Friedel’s salt (11.20° 260) in the OPC, CH,
and CH-NA systems (Fig. 3a). In the CAC system, the shift of the peak
from 9.08° 20 to 9.26° 20 in the XRD pattern, and the position of the
peak at ~980 cm ™! in the IR spectrum both suggest that the AFt phase
forming at high NaCl content may be a Si-containing ettringite-like
phase with a composition in between that of ettringite (CagA-
15(OH)12(S04)3-24H,0) (Matschei et al., 2007) and kottenheimite (CasSi
(OH)6(S04)2-12H50) (Chukanov et al., 2012). In the presence of CaCly,
mixed formation of C-S-H, stratlingite, ettringite, Kuzel’s (9.89° 26)
and/or Friedel’s salt is observed in varying quantity depending on the
additives considered (Fig. 3b). For the Class F fly ash, similar crystalline
phases — ettringite and Friedel’s salt — are observed regardless of the type
of salt or the type of additive (Fig. 3c and d). The main difference
observed as a function of the additive type is the absence of C-S-H in CAC
system, as was the case in DIW. These results highlight that, in the
presence of Cl™ ions, Cl-AFm are the predominant phases forming
regardless of the type of additive used. Cl-AFm easily destabilize other
hydrates previously observed in DIW, such as stratlingite, katoite, or
monosulfoaluminate (Birnin-Yauri and Glasser, 1998; Glasser et al.,
1999). while the amorphous C-S-H remains unchanged. The differences
observed between NaCl and CaCl, were shown in previous study to be
related to differences in the pore solution pH: Na® lower incorporation
in hydrated phases — as opposed to Cl~ and Ca?* — induces the formation
of OH™ via the dissociation of water to ensure charge neutrality of the
solution, resulting in a strong increase in the pore solution pH (Collin
et al., 2021). This, in turn, affects the phase assemblage.

Increasing Cl-AFm formation is observed with increasing Cl~ con-
centration regardless of the type of fly ash, the type of additive, and the
type of salt (Fig. 4). For the Class C fly ash, different trends of Cl-AFm
formation are observed depending on the type of salt in the brine.
With NaCl, higher content of Cl-AFm content is observed with OPC up to
[CI"] =1 M, but above that value higher formation is observed with
CAC (Fig. 4a). With CaCly, higher CI-AFm contents are observed with CH
and CH-NA at [C]"] = 2 M, while OPC display higher Cl-AFm formation
at lower concentration (Fig. 4b). However, both Kuzel’s and Friedel’s
salts form in CH and CH-NA systems, while only Friedel’s salt forms in
OPC system. This suggests that the OPC system might be able to
encapsulate more Cl™ as Friedel’s salt retains twice as much Cl™ as
Kuzel’s salt. For the Class F fly ash, the highest Cl-AFm formation
regardless of the brine type is attained in the CH-NA system (Fig. 4c and
d), although the difference with the CH system is minimal.

The fly ash reactivity as a function of the brine type was determined
experimentally (cumulative heat release) and using thermodynamic
modeling (fly ash DR). All brine systems were successfully modeled,
except for five setups showing limitation of the congruent dissolution
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model used for the Class C fly ash. The five missing setups FA DR were
calculated based on the linear correlation found between the cumulative
heat release and the successfully modeled fly ash DRs (Figure S2). All the
results are displayed in Fig. 5. The Class C fly ash reactivity decreases
regardless of the additive type in brines with [Cl"] < 2 M compared to
DIW. This is due to the preferential formation of Cl-AFm that cannot
counteract the inhibition of other hydrates formation: in DIW, the highly
reactive Class C fly ash reaction led to the formation of Ca- and Al-
containing hydrated phases such as monosulfoaluminate, katoite and/
or stratlingite. Monosulfoaluminate and katoite are shown to be unsta-
ble in Cl-containing brines due to Cl~ capacity to incorporate in AFm
phases, yet the amount of Cl-AFm forming at Cl™ concentration < 2 M
(CaCl, and NaCl both) is lower than the amount of monosulfoaluminate
and katoite formed in DIW. For [C]" ] > 2 M, several systems show an
increase in fly ash reactivity. The Class C + CAC + 2 M NaCl system
(Fig. 5a) shows the significant formation of a Si-containing ettringite-
like phase that induces a resurgence of fly ash reactivity. This phase
formation is constrained to high pH (~13) and high Si, Ca, and Al-
containing systems. In the CaCly brine systems (Fig. 5b), an increase
in reactivity is observed in the CH and CH-NA systems, but not in the
OPC and CAC systems despite both systems showing high Friedel’s salt
formation (Fig. 3b). This highlights the fact that, in the OPC and CAC
systems, Cl-AFm formation comes primarily from the additive hydra-
tion, as opposed to the CH and CH-NA systems where the Cl-AFm for-
mation requires strong fly ash reaction.

Class F fly ash reactivity (Fig. 5c and d) increases with increasing Cl™~
concentration only in the systems with high Ca and low Al content ad-
ditive (i.e., the CH or CH-NA systems). Cl-AFm formation has been
observed to be a driver of the Class F fly ash reactivity in brines (Collin
et al., 2021), as it requires Al extraction from the fly ash amorphous
content. In contrast, the Class F fly ash reactivity decreases with
increasing Cl~ concentration in a system with high Ca and Al content (i.
e., the CAC system). ClI-AFm formation appears to be detrimental to
stratlingite formation, which was shown to strongly influence the fly ash
reactivity in DIW, as it required additional Al and Si extraction from the
fly ash amorphous content. Cl-AFm phases, in contrast, can form with
the Ca and Al content directly provided by the additive. They do not
require high levels of dissolution from the amorphous content to form,
resulting in a decrease of fly ash reactivity compared to that observed in
DIW. The OPC system, with low Cl-AFm formation and high C-S-H for-
mation, is less impacted than the other systems by brine concentration.
In this system, the Class F fly ash hydration results in the further for-
mation of C-S-H, which is unaffected by CI~ concentration.

3.3. Predicting the fly ash degree of reaction

The broad range of FA DR observed in the previous section raises an
issue regarding the capacity to predict an S&S mix performance.
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Fig. 4. The Cl-AFm (Kuzel’s and Friedel’s salts) mass loss measured between ~ 270 and 400 °C using TGA for the Class C fly ash in (a) NaCl and (b) CaCl, brine, and
the Class F fly ash in (¢) NaCl and (d) CaCl, brine. Note that one aberrant datapoint (Class F fly ash + CH + 0.5 M CacCly) is excluded from the dataset.
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and the Class F fly ash with the additives in (¢) NaCl and (d) CaCl, brine. The five full symbols indicate the FA DR that were estimated from the experimental heat

release value (Figure S2) instead of directly modeled.

Thermodynamic modeling has been proven to be a fast and reliable tool
to accurately predict phase assemblage at near-equilibrium. It can
therefore be used to assess multiple S&S systems’ performance and help
reduce the number of experiments needed to develop the ideal fly ash +
additive + brine solution as a function of the materials available and the
brine produced. However, thermodynamic modeling of fly-ash-
containing systems, as used here or in previous studies (Collin et al.,
2021; Glosser et al., 2020). relies on using empirical data to perfectly
assess the phase assemblage at equilibrium. Gathering experimental
data for all systems that need to be studied is not feasible in terms of time
and cost, yet choosing the DR can be fairly arbitrary, given the strong
dependence of DR on the initial system composition as previously
demonstrated. As a result, the modeled phase assemblage obtained using
an arbitrary DR may significantly deviate from reality. This highlights
the need to develop more robust methods to determine the fly ash degree
of reaction of a specific system. In that regard, machine learning models
have been proven to be powerful in their capacity to predict physical or
chemical behaviors, even based on sparse datasets (Oey et al., 2020;
Ouyang et al., 2020; Song et al., 2021a). The total number of datapoints
— 70 datapoints — collected here (54 datapoints) and from a previous
work (Collin et al., 2021) that studied a similar type of dataset (i.e., same
fly ashes mixed with portlandite and NaCl or CaCl; brines, 16 data-
points) was deemed large enough to be implemented in an artificial
neural network-based machine learning model to predict the DR as a
function of the initial setup composition (i.e., the type of fly ash, addi-
tive, and brine). The assessment of the model prediction demonstrates a
satisfactory accuracy (Fig. 6a), as supported by the sufficiently high
coefficient of determination (R = 0.96), the low root mean square error
(RMSE = 1.8 wt%), and the low mean absolute percentage error (MAPE
= 10%) of the test set samples that are never exposed to the model

during its training. This confirms the model’s capacity to accurately
predict the fly ash DR of systems that falls within the broad range of
compositions studied herein. With this, a realistic DR can be considered
to thermodynamically model the hydrated system at near-equilibrium
and to select the best performing S&S mix.

In addition to offering predictions of fly ash DR that can be used to
pinpoint optimal S&S mixtures, the machine learning model makes it
possible to robustly isolate and quantify the influence of each variable
on fly ash reactivity in accordance to experimental observations (refer to
supplementary information and Figure S3 for the rank of impact on DR
from the different features). Herein, the model offers realistic extrapo-
lations, that is, can predict the DR beyond the setup compositions
involved in the experiments, for example at higher brine concentrations.
The relevant predictions are illustrated based on the feature effect
analysis (refer to supplementary information for more information on
the analytical technique), an example of which is presented in Fig. 6b
and c. Here, the sole effect of CI~ concentration is studied, so as to
further isolate the effect of Cl™ concentration from that of the counter-
ions. Isolating the effect of Cl™ is not easily done from experimental
observations, the model thus offers further knowledge regarding the
brine composition and concentration effect on fly ash reactivity.
Continuous predictions are made as a function of Cl™ concentration
under the various combinations of fly ashes and additives. The predicted
DR values are shown to encompass all the experimental values within
error. This suggests that the predicted value outside of the dataset range,
though they are displaying increased uncertainties (see supplementary
information for details), should also be able to capture the various ef-
fects of each feature and predict an appropriate FA DR for further
thermodynamic modeling of the system.
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Fig. 6. The neural-network-based machine learning analysis. (a) The comparison between predicted vs. “true” fly ash degree of reaction (FA DR) obtained from
thermodynamic modeling. The feature effect analysis focusing on Cl~ concentration effect for (b) the Class C and (c) the Class F fly ash; the results are obtained from
averaging ten individually trained models, with the mean and standard deviation displayed as the solid line and shadow, respectively.
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3.4. Additional considerations and final recommendations

All the results compiled here show that, as expected (Song et al.,
2021b), the Class C fly ash will always be more reactive than the Class F
fly ash regardless of the type of brine or the additive with which it is
combined. Higher reactivity usually implicates higher phase formation,
and as a result higher brine consumption and lower porosity, all of
which are beneficial for S&S systems (Okoronkwo et al., 2018). Indeed,
all these parameters ensure good performances for encapsulation/
immobilization of pollutants that can either be incorporated or sorbed in
hydrated phases (e.g., alkali ions and halide anions), or can precipitate
as insoluble species whose migration is constrained by the low porosity
(e.g., heavy metals). However, when studying various additive effects,
the system performance is assessed based on the degree of Cl-AFm for-
mation (i.e., the amount of Cl~ effectively retained within the solid).
Indeed, while portlandite is typically observed to be the best additive to
promote fly ash reactivity, it does not necessarily induce the highest CI-
AFm formation compared to other additives. In general, the Class C fly
ash combined with high NaCl concentration brines (above 1 M of Cl7)
showed the best performances when combined with CAC. At lower
concentration (below 1 M of C17), OPC provided the best performance.
For CaCl; brines, combining a Class C fly ash with OPC also offers the
best performance regardless of the brine concentration. When using a
class F fly ash, a mix of portlandite and NaAlO, as an additive is shown to
slightly decrease the fly ash reactivity compared to portlandite only yet
allows for a low increase in hydrated phase formation. The choice of
using NaAlO; or not is therefore a cost-effective one, as portlandite
provides near-similar performances regardless of the brine type (NaCl or
CaClp) and concentration. Finally, at higher concentrations than the one
studied here, it is recommended to evaluate the various setup using
thermodynamic modeling and considering the predicted FA DR range
depicted in Fig. 6¢ and d.

4. Summary and conclusion

This study demonstrates the combined effect of the fly ash type and
the additive composition on (1) the fly ash reactivity, and (2) the final
solid capacity to successfully encapsulate the chloride-contaminant from
two types of brine (NaCl and CaCly). Increasing Ca content (either from
the fly ash or the brine) induces an increase in the fly ash reactivity —
Class C and Class F both. Utilizing OPC, CAC, or mixed Portlandite-
NaAlOs as additives results in a decrease of both Class C and Class F fly
ashes reactivity in Cl-containing systems. In contrast, portlandite com-
bined with high Cl™ concentration (i.e., >1 M) generally induces an
increase in fly ash reactivity. An important observation is that higher fly
ash reactivity is not necessarily correlated with the highest preferred
hydrate phase formation (i.e., CI-AFm). Some additives (e.g., OPC) may
hinder the fly ash reactivity, yet produce hydrate phases independent of
fly ash hydration. As a result, choosing the appropriate fly ash + addi-
tive + brine mix is not trivial. While choosing a Class C over a Class F fly
ash is always the better option, the choice of the additive type is
extremely sensitive to the brine composition and concentration. The
experimental work done here proposes some recommendation within
the range of composition studied experimentally, and the machine
learning model can be applied in the future to select appropriate mixture
proportions outside of the range studied (e.g., higher brine concentra-
tion) by predicting the fly ash degree of reaction that can then be used to
refine thermodynamic modeling predictions of S&S performance.
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