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A B S T R A C T   

The pozzolanic reaction of fly ashes with calcium-based additives can be effectively used to solidify and 
chemically stabilize (S&S process) highly concentrated brines inside a cementitious matrix. However, complex 
interactions between the fly ash, the additive, and the brine typically affect the phases formed at equilibrium, 
and the resulting solid capacity to successfully encapsulate the brine and its contaminants. Here, the perfor-
mances of two types of fly ash (a Class C and Class F fly ash) are assessed when combined with different additives 
(two types of cement, or lime with and without NaAlO2), and two types of brine (NaCl or CaCl2) over a range of 
concentrations (0 ≤ [Cl−] ≤ 2 M). The best performing matrices – i.e., the matrices with the highest Cl- 
containing phases content – were identified using XRD and TGA. The experimental results were then com-
bined with thermodynamic modeling to dissociate the contribution of the fly ash from that of the additives. All 
results were implemented in a machine learning model that showed good accuracy at predicting the fly ash 
degree of reaction, allowing for the robust prediction of extended systems performance when combined with 
thermodynamic modeling.   

1. Introduction and background 

Waste management is a growing challenge for all sectors, as there is 
an increasing demand for more comprehensive control of waste prod-
ucts. As an example, waste streams including (but not limited to) agri-
cultural, industrial, mining, municipal, and power plant waste waters, as 
well as produced and extracted water, all require specific attention 
(Borch et al., 2021; Cath et al., 2021a, 2021b; Childress et al., 2021; 
Giammar et al., 2021). These waste streams (referred to as brine from 
hereon due to their high salt concentrations) contain high levels of 
contaminants (0–5 M of total dissolved solids), yet can be safely land-
filled, provided that the pollutants – for instance: heavy metals, alkali 
and alkaline-earth cations, halide anions, etc.– are effectively immobi-
lized in a solid matrix such as a cementitious solid (Fatoba et al., 2015, 

2013; Poon et al., 2004; Renew et al., 2016). This type of binder solid-
ifies and stabilizes (S&S) the contaminants within the solid – either as 
insoluble species (Glasser, 1997), or by incorporation or sorption into 
the hydrate phases (Gougar et al., 1996; Piekkari et al., 2020) – to 
prevent mobile aqueous species release into the environment. 

Among the various cementitious binders tested, the use of fly ash(es) 
has been proven to be of great interest (Okoronkwo et al., 2018; Renew 
et al., 2016). ASTM C618 compliant coal-fired power plant fly ashes – 
typically classified either as “Class C” or “Class F” fly ash (ASTM C618, 
2019, p. 618) – are commonly mixed with a Ca-containing additive. The 
pozzolanic reaction between the calcium provided by the additive and 
the fly ash silicate content leads to the formation of calcium-silicate- 
hydrate (C-S-H) phases (Poon et al., 2003; Wang and Ishida, 2019), as 
well as a range of hydrated phases of interest for contaminant binding 
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such as Cl-AFm (e.g., Friedel’s salt – Ca2Al(OH)6[Cl, OH]⋅2H2O) for Cl- 
containing brines. Relevant calcium-based additives include quicklime 
(CaO), hydrated lime (Ca(OH)2), and/or ordinary portland cement 
(OPC) (Ellison, 2019). Increasing the Al content in the system – by using 
for example a calcium aluminate cement (CAC) – could result in the 
increased formation of AFm phases of interest. Uncertainties remain, 
however, on the effect such additives might have on the phase assem-
blage and the fly ash degree of reaction. Additionally, brine composition 
and concentration typically affect the phase assemblage and the fly ash 
degree of reaction.(Poon et al., 2004; Collin et al., 2022) As a result, the 
complex interaction between brine and additive may further affect the 
capacity of the solid matrix to immobilize the pollutants, which requires 
investigation. However, while it is important to identify the best per-
forming encapsulation systems, testing multiple systems is very time 
consuming. Thermodynamic modeling is a fast and useful tool to rapidly 
assess the performance of encapsulation systems (e.g., pH, brine con-
sumption, phase equilibrium, etc.) (Collin et al., 2022, 2021; Okor-
onkwo et al., 2018). Thermodynamic modeling is already well 
established to predict the equilibrium phases forming from cement hy-
dration.(Lothenbach and Winnefeld, 2006; Lothenbach et al., 2008; 
Damidot et al., 2011; Lothenbach et al., 2019) Similarly, fly ash 
pozzolanic reaction can already be estimated as a function of time 
(Glosser et al., 2020; Lothenbach and Winnefeld, 2006), but the current 
models rely on empirical data gathered in a OPC and water system 
where the fly ash is a supplementary cementitious material – i.e., a 
system that is not representative of a brine encapsulation system where 
the fly ash is the major reactive component. Gathering empirical data for 
every system of interest presents significant limitations in terms of cost 
and time, and severely reduces the appeal of thermodynamic modeling. 
This emphasizes the necessity to develop alternatives methods to esti-
mate the fly ash degree of reaction for an encapsulation system prior to 
the modeling if thermodynamic modeling is to be used as a predictive 
tool for future research. 

In order to establish a matrix of well-defined encapsulation systems, 
(1) two types of fly ashes (a Class C and a Class F fly ash), (2) four types 
of additives (two types of cement, or lime with and without NaAlO2), (3) 
two types of brines (NaCl or CaCl2), and (4) various brine concentrations 
(from 0 to 2 M of Cl−) were investigated. The phase assemblages formed 
after 10 days of hydration at 50 ◦C are used to infer the fly ashes degree 
of reaction by comparison with thermodynamically modelled phase 
assemblages. The reactivity of the fly ashes is further validated using 
isothermal calorimetry, highlighting how each system reacts and their 
subsequent performance in successfully (or not) encapsulating the brine. 
The experimental and simulated data are then compiled in an artificial 
neural network-based machine learning model to properly capture the 
intricate mapping from the complex interaction within the brine/fly 
ash/additive system, and their effect on the degree of reaction of the fly 
ash. By taking into account the initial setup composition, the trained 
model can accurately predict the fly ash degree of reaction and, more 
importantly, decipher the distinct effect of fly ash/solution composition 
on reactivity. As a result, future setups can be rapidly and accurately 
modeled so that the best fly ash and additives mixes can be paired with 
specific brine compositions and concentrations. 

2. Material and methods 

2.1. Raw material characterization 

A Class C and a Class F fly ash were studied as representative fly 
ashes. The additives studied include portlandite Ca(OH)2 (purity > 95%) 
(abbreviated as CH from hereon), a 95 mass % Ca(OH)2 + 5 mass % 
NaAlO2 (purity 99%) mix (abbreviated as CH-NA from hereon), a type III 
anhydrous ordinary portland cement (abbreviated as OPC from hereon) 
and a “ciment fondu” type of low alumina calcium aluminate cement 
(“Guide to the selection and use of hydraulic cements,” 2016) (abbre-
viated as CAC from hereon) whose major oxides content respect norm 

EN 14647 (Calcium aluminate cement, 2007). The Class C and Class F fly 
ash, OPC, and CAC bulk oxide composition, as determined using X-ray 
fluorescence (XRF), (Astm, 2004) is detailed in Table 1. The crystalline 
phases and the quantity of the amorphous phase present were quantified 
using Quantitative X-Ray Diffraction (QXRD) and Rietveld refinement 
(Bergmann et al., 1998; Rietveld, 1969). Zincite (ZnO, purity 99.999%) 
was used as an internal standard at a mass loading of 10 mass %. The 
Rietveld refinement was conducted using Profex (Doebelin and Klee-
berg, 2015). The quantities and types of crystalline phases present in the 
precursor materials are detailed in Table 2. The Class C fly ash, Class F 
fly ash, and CAC amorphous content average composition, detailed in 
Table 1, was calculated by subtracting the crystalline content contri-
bution from the XRF bulk composition. Note that, for CAC, no grossite 
(CaAl2O7) was detected, yet this phase can be expected in calcium 
aluminate cement alongside the other calcium aluminate phases 
observed and quantified here.(Mangabhai, 2019) As a result, the CAC 
studied here displays a high amorphous content. 

Simulated brines were prepared by dissolving NaCl (99%) or 
CaCl2⋅6H2O (99%) in deionized water (DIW) at room temperature under 
agitation to obtain Cl− concentration ([Cl−]) of 0.5, 1, and 2 mol/L. 
Cementitious formulations were prepared by combining 55 mass % of 
fly ash, 10 mass % of additive and 35 mass % of the brine (i.e., a liquid to 
solid ratio of 0.54). The formulations were mixed for 45 s at 270 rpm and 
1 min at 480 rpm at room temperature using a high-shear immersion 
mixer. The pastes were poured in hermetic glass bottles and placed into 
a TamAir isothermal calorimeter at 50 ◦C for analysis of the resulting 
heat release. Heat flow and cumulative heat release were measured over 
10 days of hydration to assess the rate and the extent of fly ash hydra-
tion. The cumulative heat release of the additives (CH, CH-NA, CAC, and 
OPC) were measured separately in DIW and brines in a system where the 
fly ash was replaced by quartz (i.e., an inert silicate). The cumulative 
heat release measured from the additive reaction was subtracted from 
the value measured in the mixed fly ash/additive systems (Figure S1) to 
determine the heat release attributed to fly ash reactivity. In general, the 
heat release showed minimal change (d Q̇/dt < 0.1 mW/g/s) after 10 
days. The ampoules were retrieved from the calorimeter, and the solid 
samples were crushed and immediately immersed in isopropanol (IPA) 
for a week to cease further reaction (Oey et al., 2016). The samples were 
then dried under vacuum for an additional week, following which they 
were crushed, milled using an agate pestle and mortar and then sieved 
through a 300 µm sieve prior to additional characterization. 

2.2. Cementitious material characterization 

2.2.1. Thermogravimetric analysis 
Thermogravimetric analysis (TGA) was performed using a Perkin 

Elmer STA 8000 under a flow of nitrogen in an aluminum oxide crucible. 
A heating ramp of 10 ◦C min−1 was used between 35 and 950 ◦C, after 5 
min equilibration at 35 ◦C. The mass loss (TG) and the derivative mass 
loss (DTG) were both used to semi-quantify Cl-AFm hydrated phases 
between ≈250-to-430 ◦C (Lothenbach et al., 2016; Shi et al., 2017). 

2.2.2. X-Ray diffraction 
XRD analysis was performed using a PANalytical X’Pertpro diffrac-

tometer (θ-θ configuration, CuKα radiation, λ = 1.54 Å) on powder 
samples spiked with ~10 mass % of ZnO (99.99%). The scans were ac-
quired between 5◦ and 70◦ with a step-size of 0.02◦ using a scientific 
X’Celerator 2 detector. In general, powdered samples were placed in the 
sample holder and their surfaces gently textured to minimize the po-
tential for preferred orientation related errors. Rietveld refinement of 
the samples was performed using the Profex graphical user interface and 
the BGMN program (Bergmann et al., 1998; Doebelin and Kleeberg, 
2015; Rietveld, 1969). The following hydrated phases were identified: 
ettringite (ICSD #16045), monosulfoaluminate (ICSD #100138), a 
magnesium-aluminum hydrotalcite-like phase (referred to as 
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hydrotalcite from hereon, PDF #00–014-0525), katoite (ICSD #34227), 
Kuzel’s salt (PDF #00-019-0203), Friedel’s salt (ICSD #62363), and 
strätlingite (PDF #29-0285). 

2.2.3. Infrared spectroscopy 
Solid-state attenuated total reflection Fourier-transform infrared 

spectroscopy (ATR-FTIR) was performed using a Spectrum Two FT-IR 
Spectrometer (Perkin Elmer). The powdered samples were pressed 
using around 90 N of force onto a diamond/ZnSe composite crystal to 
ensure good contact and generate total internal reflection. The spectra 
reported herein were obtained by averaging 4 scans over the wave-
number range of 4000-to-400 cm−1 at a resolution of 1 cm−1. 

2.3. Thermodynamic modeling 

Thermodynamic modeling was conducted using GEM-Selektor v.3.6 
(GEMS) (Kulik et al., 2012; Wagner et al., 2012) which incorporates the 
slop98.dat and Cemdata18 thermodynamic databases (Hummel et al., 
2002; Johnson et al., 1992; Lothenbach et al., 2019, 2008; Thoenen 
et al., 2014). To represent the non-ideality of the solutions, the activity 
coefficients were calculated using the Truesdell-Jones extension to the 
Debye-Hückel equation (Helgeson et al., 1981, p. 198): 

log10γi =
−Aγz2

i
̅̅
I

√

1 + ȧBγ
̅̅
I

√ + bγI + log10
Xjw

Xw
(1)  

where, γi is the activity coefficient and zi the charge of the ith aqueous 
species, Aγ and Bγ are temperature and pressure dependent coefficients, 
Xjw is the molar quantity of water, Xw is the total molar amount of the 
aqueous phase, and I is the molal ionic strength. A common ion size 
parameter (a = 3.72 Å) and a short-range interaction parameter (bγ =
0.64 kg mol−1) were used, treating NaCl as the background electrolyte 
(Helgeson et al., 1981; Vollpracht et al., 2016). All concentrations (up to 
2 mol/L of Cl−) were considered to conform to the limits of applicability 
using Eq. (1). Of course, as water is consumed over the course of reac-
tion, the concentration sometime exceeds the 2 mol/L limit. As such, 
some uncertainty is expected in the quantitative (although not qualita-
tive) analysis (Kulik et al., 2012; Langmuir, 1998). The system modeled 
(55 g of FA, 10 g of portlandite, and 35 g of brine) is similar to that 
studied experimentally, and follows a model previously developed for 
similar Class C and Class F fly ashes (Collin et al., 2021). Briefly, the 
additives are considered to be completely hydrated, except for CAC in 
presence of Class F: in this system, only the CAC crystalline content 
reaction is considered to accurately reproduce experimental results. 
Note that this is consistent with the literature observation that CAC 
typically displays sequential reactivity for both its crystalline and 
amorphous content, with calcium aluminate reaction kinetics being 
faster than other phases (e.g., grossite).(Sorrentino et al., 1995; Klaus 
et al., 2013; Goergens et al., 2023) The fly ashes are considered to show 
fractional reactivity based on: (a) the lack of reaction of the insoluble 
crystalline phases (e.g., quartz), (b) incomplete reaction of some 
partially soluble crystalline phases, (c) complete consumption of the 
highly-reactive crystalline phases (e.g., CaSO4), and (d) the congruent 
dissolution of the amorphous phase given its average composition 
(Table 1) (Collin et al., 2021). The degree of fly ash reaction after 10 
days of hydration at 50 ◦C is determined by analyzing when the ratio of 
well-characterized crystalline phase masses, e.g., portlandite (CH: Ca 
(OH)2), is equal to unity; i.e., when the modeled quantity of a given 
phase is equivalent to its content established by experimental (TGA and/ 
or XRD assessments, e.g., when CHm/CHe ≈ 1, where the subscripts ‘m’ 
and ‘e’ indicate modeled and experimental assessments). 

2.4. Machine learning modeling 

An artificial-neural-network-based machine learning model was 
developed to predict the fly ash degree of reaction (FA DR) from the 
initial setup composition. Based on the experimental results collected 
herein and from a previous study (Collin et al., 2021), a dataset of 70 
samples was curated to assess the FA DR under various combinations of 
fly ash type, additive type, and brine composition and concentration. For 
each sample, the inputs comprise a total of nine features corresponding 
to (1) the type of fly ash (i.e., Class C or Class F), (2) the type of additives 

Table 1 
The bulk composition and the amorphous content composition (mass %) of the Class C fly ash, Class F fly ash, OPC, and CAC, as determined by XRF (ASTM D4326-04, 
2004) and XRD.   

Class C Class F OPC CAC  

Bulk Amorphous Bulk Amorphous Bulk Amorphous Bulk Amorphous 

CaO  28.0  22.1  4.0  2.6  63.4 –  42.3  14.4 
MgO  7.2  3.5  0.9  0.9  1.1 –  0.6  0.4 
Al2O3  18.5  16.1  20.7  17.9  4.7 –  36.9  13.4 
SiO2  32.0  26.2  52.0  45.9  20.3 –  4.4  2.2 
SO3  3.0  1.9  0.8  0.5  3.0 –  0.1  0.1 
Fe2O3  5.3  5.2  14.6  10.7  3.7 –  15.5  11.1 
Na2O  1.8  1.8  1.4  1.3  0.1 –  0.1  0.1 
K2O  0.4  0.4  2.4  2.3  0.7 –  0.1  0.2 
Others  3.8  3.2  3.2  1.2  3.0 –  0.0  1.6 
Total  100.0  80.4  100.0  83.3  100.0 –  100.0  43.5  

Table 2 
The mineralogical composition (mass %) of the Class C fly ash, Class F fly ash, 
OPC, and CAC as determined using QXRD.   

Class C Class F OPC CAC 

Quartz – SiO2  5.0  6.0 <1 – 
Periclase – MgO  3.3  – – – 
Free lime – CaO  1.4  0.4 – – 
Merwinite – Ca3Mg[SiO4]2  1.7  – – – 
Magnetite – Fe3O4  <1.0  2.1 – <1.0 
Maghemite – γ-Fe2O3  –  0.9 – 2.0 
Hematite – α-Fe2O3  –  0.9 – – 
Portlandite – Ca(OH)2  <0.4 (TGA)  <0.7 (TGA) – – 
Ye’elimite – Ca4Al6O12SO4  0.5  – – – 
Mullite – 3Al2O32⋅SiO2  <1.0  5.2 – – 
Anhydrite – CaSO4  1.7  0.6 – – 
Tricalcium aluminate – Ca3Al2O6  3.3  – 5.1 5.0 
Tricalcium silicate – Ca3O5Si  –  – 73.9 – 
Dicalcium silicate – Ca2SiO4  –  – 8.0 4.3 
Tetracalcium aluminoferrite – 

Ca4Al2Fe2O10  

–  – 13.8 10.0 

Gypsum – CaSO4⋅2H2O  –  – 4.4 – 
Monocalcium aluminate – 

CaAl2O4  

–  – – 30.6 

Gibbsite – Al(OH)3  –  – – 1.9 
Mayenite – Ca12Al14O33  –  – – 2.2 
Sum of crystalline phases  19.6  16.7 100 56.5 
Amorphous phases  80.4  83.3 0.0 43.5  
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(i.e., CH/CH-NA/OPC/CAC), and (3) the ions molar concentrations (i.e., 
Na+/Ca2+/Cl−). To limit the dimensionality of the model (so as to avoid 
the “curse of dimensionality”) (Liu et al., 2019; Ouyang et al., 2020), the 
fly ash and additive inputs were set as categorical features as either 
“applied” or “not applied” using the one-hot encoding approach (Par-
gent, 2019), while the brine concentrations were provided based on the 
actual experimental values. The neural network and all related analyses 
were built and implemented within PyTorch (an open-source machine 
learning platform), with Adam as the optimizer, Rectified Linear Unit 
(ReLU) as the activation function, and L2 norm as the cost function 
(Paszke et al., 2019). To avoid the overfitting issue typically associated 
with complex machine learning models (which usually results in a false 
positive estimation of the model accuracy and poor generalizability for 
predicting new samples) (Ouyang et al., 2021), the artificial neural 
networks were all designed with a relatively simple structure comprising 
six artificial neurons (i.e., one-tenth of the training samples) in a single 
hidden layer by following commonly used guidelines (Heaton, 2008). 
Following common practices in machine learning, 52 samples (i.e., 
~75% of the dataset as “training set”) were allocated for training the 
neural network, while the remaining 18 samples (i.e., ~25% of the 
dataset as “test set”) were kept hidden from the model during training. 
Here, the test set was used to quantify the ability of the model to 
generalize, that is, to accurately predict reactivity in unknown condi-
tions (that were not used to train the model). Considering the limited 
size of the dataset, the train-test split was conducted using stratification 
sampling to ensure that the split subsets follow the same distribution of 
the original dataset—so that the train and test sets are statistically 
aligned (Jablonka et al., 2020; Ouyang et al., 2021; Song et al., 2021a). 
To ensure that the obtained results are not biased by the choice of the 
test set, ten independent neural networks models were trained based on 
ten different stratified train-test splits. The results reported herein are 
based on the average of those ten neural networks. The settings of the 
artificial neural networks (i.e., hyperparameters) (Demir-Kavuk et al., 
2011) were optimized by cross-validation based on a grid search within 
a given reasonable range for each hyperparameter (i.e., 10−1-to-10−3 for 
learning rate and 10−2-to-10−5 for weight decay; with ten intervals on 
each magnitude). Based on the average validation set accuracy, the 
optimal learning rate and weight decay were chosen as 10−2 and 2 ×
10−2. 

3. Results and discussion 

3.1. Effect of additive type on phase assemblage and fly ash reactivity in 
the absence of brine 

The hydrated phase assemblage formed after 10 days of hydration at 
50 ◦C of a system containing 55 mass % of fly ash (Class C or Class F), 
10 mass % of additive (two types of cement, lime with and without 

NaAlO2), and 35 mass % of DIW was assessed using XRD (Fig. 1). 
Using portlandite only as an additive (i.e., CH systems) results in the 

formation of amorphous C-S-H (peak around 950 cm−1 in the IR spec-
trum, Fig. 1b and d) as a result of the pozzolanic reaction between 
portlandite and the silicate content of the fly ashes for both Class C and 
Class F fly ash. Monosulfoaluminate (main peak at 9.93◦ 2θ in the XRD 
pattern), katoite (32.61◦ 2θ), and hydrotalcite (11.63◦ 2θ) are also 
observed within the Class C fly ash system (Fig. 1a), due to the joint 
hydrolysis of Al and Mg during the pozzolanic reaction. Ettringite 
(9.08◦ 2θ) and monosulfoaluminate only are observed within the Class F 
fly ash system due to Class C fly ash lower reactivity (Fig. 1c). 

Using portlandite + NaAlO2 as an additive (i.e., CH-NA system) still 
induce the formation of C-S-H when combined with the Class F fly ash, 
but only ettringite is observed to form alongside the C-S-H. This suggests 
that the Class F fly ash reactivity is limited when combined with CH-NA. 
Similarly, a strong decrease in the amount of crystalline phase formation 
is observed with the Class C fly ash, where the only major hydrate phases 
detected are the C-S-H phases (Fig. 1b), as well as traces of katoite and 
potentially strätlingite. NaAlO2 dissolution (to form NaOH and Al(OH)3) 
was observed to consume a significant fraction of the water initially 
available and produced a strongly alkaline solution where the formation 
of some crystalline phases (such as monosulfate) may be suppressed 
(Collin et al., 2021). 

Using OPC as an additive (i.e. OPC system) results in the formation of 
C-S-H and ettringite with the Class F fly ash (Fig. 1c), suggesting again a 
lower reactivity of the fly ash compared to that observed with por-
tlandite. With the Class C fly ash, the phase assemblage is similar to that 
observed in the CH system. This suggests that both fly ash pozzolanic 
reaction is not strongly affected by the delayed portlandite formation 
from OPC hydration. 

Finally, using CAC as an additive results in the formation of C-S-H 
with Class C fly ash (Fig. 1b), as well as strätlingite (7.00◦ 2θ) which 
forms preferentially in this system instead of katoite (Fig. 1a). With the 
Class F fly ash, strätlingite is also observed to form (Fig. 1c) and appears 
to suppress amorphous C-S-H formation (Fig. 1d). Strätlingite and 
katoite or C-S-H can typically coexist in cementitious systems, although 
strätlingite formation is favored in high Al-containing systems (Okor-
onkwo and Glasser, 2016). Here, the formation of strätlingite consumes 
all the available Al and Si in the systems, which suppresses the formation 
of other phases. 

The experimental phase assemblages were all successfully repro-
duced using thermodynamic, allowing for the determination of the fly 
ash degree of reaction (FA DR) after 10 days of reaction at 50 ◦C. A 
strong difference in reactivity is observed between the Ca-rich Class C fly 
ash (DR value above 10 mass % regardless of the additive used, Fig. 2a) 
and the Ca-poor Class F fly ash (DR value below 6 mass % regardless of 
the additive used, Fig. 2b), which is consistent with previous observa-
tions (Oey et al., 2017b; Song et al., 2021b). Such differences in 

Fig. 1. The crystalline and amorphous hydrated phases formed, as determined using XRD (with background subtraction) and IR spectroscopy. (a) XRD diffracto-
grams and (b) IR spectra obtained for the hydrated Class C fly ash with the additives in DIW. (c) XRD diffractograms and (d) IR spectra obtained for the Class F fly ash 
with the additives in DIW. E = ettringite, Ms = monosulfoaluminate, St = strätlingite, HT = hydrotalcite, K = Katoite. 
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reactivity are related to the amorphous content network topology: a Ca- 
rich fly ash network is usually less constrained (connected) than that of a 
Ca-poor Class F fly ash as per the topological constraint theory (TCT) 
(Bauchy, 2019; Mauro, n.d.; Oey et al., 2017b; Song et al., 2021b). Sil-
icates with less constrained structure commonly show higher silicate 
dissolution rate in aqueous medium (Oey et al., 2017a; Pignatelli et al., 
2016), and are also expected to be more reactive in cementitious systems 
(Oey et al., 2017b). For both Class C and Class F fly ashes, the highest fly 
ash extent of reaction is observed when combined with portlandite (i.e., 
CH system). The Class C fly ash reactivity in OPC and CAC systems is 
similar to that observed in the CH system. In contrast, the Class F fly ash 
reactivity in OPC and CAC is notably lower than that observed in the CH 
system. This suggests that the lowly reactive Class F fly ash is more 

sensitive to additive composition changes than the highly reactive Class 
C fly ash, as its reactivity relies more strongly on the pozzolanic and 
hydration reaction. Finally, for both Class C and Cass F fly ash, CH-NA 
induces a strong decrease in fly ash reactivity, as it was observed to 
limit the formation of several crystalline phases in both Class C and Class 
F system. 

3.2. Effect of brine concentration on the phase assemblage and fly ash 
reactivity 

The hydrated phase assemblage formed after 10 days of hydration at 
50 ◦C of the fly ash/additive system is assessed when combined with 
brine (NaCl or CaCl2 with 0.5 ≤ [Cl−] ≤ 2 M). Results obtained for [Cl−] 

Fig. 2. The fly ashes degree of reaction (FA DR) as determined using thermodynamic modeling for (a) the Class C fly ash with the additives in DIW, and (b) the Class 
F fly ash with the additives in DIW. 

Fig. 3. The crystalline and amorphous hydrated phases observed experimentally with brines ([Cl−] = 2 M), for the Class F fly ash in (a) & (b) NaCl and (c) & (d) 
CaCl2 brine; and for the Class C fly ash in (e) & (f) NaCl and (g) & (h) CaCl2 brine. E = ettringite, Si-E = Si-containing ettringite-like phase, St = strätlingite, K =
katoite, FrS = Friedel’s salt, and KzS = Kuzel’s salt. 
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= 2 M are displayed in Fig. 3 as an illustration. For the Class C fly ash, a 
broad range of hydrated phases is observed as a function of the type of 
brine and the type of additive. In the presence of NaCl, the main hydrate 
phases forming are C-S-H and Friedel’s salt (11.20◦ 2θ) in the OPC, CH, 
and CH-NA systems (Fig. 3a). In the CAC system, the shift of the peak 
from 9.08◦ 2θ to 9.26◦ 2θ in the XRD pattern, and the position of the 
peak at ~980 cm−1 in the IR spectrum both suggest that the AFt phase 
forming at high NaCl content may be a Si-containing ettringite-like 
phase with a composition in between that of ettringite (Ca6A-
l2(OH)12(SO4)3⋅24H2O) (Matschei et al., 2007) and kottenheimite (Ca3Si 
(OH)6(SO4)2⋅12H2O) (Chukanov et al., 2012). In the presence of CaCl2, 
mixed formation of C-S-H, strätlingite, ettringite, Kuzel’s (9.89◦ 2θ) 
and/or Friedel’s salt is observed in varying quantity depending on the 
additives considered (Fig. 3b). For the Class F fly ash, similar crystalline 
phases – ettringite and Friedel’s salt – are observed regardless of the type 
of salt or the type of additive (Fig. 3c and d). The main difference 
observed as a function of the additive type is the absence of C-S-H in CAC 
system, as was the case in DIW. These results highlight that, in the 
presence of Cl− ions, Cl-AFm are the predominant phases forming 
regardless of the type of additive used. Cl-AFm easily destabilize other 
hydrates previously observed in DIW, such as strätlingite, katoite, or 
monosulfoaluminate (Birnin-Yauri and Glasser, 1998; Glasser et al., 
1999). while the amorphous C-S-H remains unchanged. The differences 
observed between NaCl and CaCl2 were shown in previous study to be 
related to differences in the pore solution pH: Na+ lower incorporation 
in hydrated phases – as opposed to Cl− and Ca2+ – induces the formation 
of OH– via the dissociation of water to ensure charge neutrality of the 
solution, resulting in a strong increase in the pore solution pH (Collin 
et al., 2021). This, in turn, affects the phase assemblage. 

Increasing Cl-AFm formation is observed with increasing Cl− con-
centration regardless of the type of fly ash, the type of additive, and the 
type of salt (Fig. 4). For the Class C fly ash, different trends of Cl-AFm 
formation are observed depending on the type of salt in the brine. 
With NaCl, higher content of Cl-AFm content is observed with OPC up to 
[Cl−] = 1 M, but above that value higher formation is observed with 
CAC (Fig. 4a). With CaCl2, higher Cl-AFm contents are observed with CH 
and CH-NA at [Cl−] = 2 M, while OPC display higher Cl-AFm formation 
at lower concentration (Fig. 4b). However, both Kuzel’s and Friedel’s 
salts form in CH and CH-NA systems, while only Friedel’s salt forms in 
OPC system. This suggests that the OPC system might be able to 
encapsulate more Cl− as Friedel’s salt retains twice as much Cl− as 
Kuzel’s salt. For the Class F fly ash, the highest Cl-AFm formation 
regardless of the brine type is attained in the CH-NA system (Fig. 4c and 
d), although the difference with the CH system is minimal. 

The fly ash reactivity as a function of the brine type was determined 
experimentally (cumulative heat release) and using thermodynamic 
modeling (fly ash DR). All brine systems were successfully modeled, 
except for five setups showing limitation of the congruent dissolution 

model used for the Class C fly ash. The five missing setups FA DR were 
calculated based on the linear correlation found between the cumulative 
heat release and the successfully modeled fly ash DRs (Figure S2). All the 
results are displayed in Fig. 5. The Class C fly ash reactivity decreases 
regardless of the additive type in brines with [Cl−] < 2 M compared to 
DIW. This is due to the preferential formation of Cl-AFm that cannot 
counteract the inhibition of other hydrates formation: in DIW, the highly 
reactive Class C fly ash reaction led to the formation of Ca- and Al- 
containing hydrated phases such as monosulfoaluminate, katoite and/ 
or strätlingite. Monosulfoaluminate and katoite are shown to be unsta-
ble in Cl-containing brines due to Cl− capacity to incorporate in AFm 
phases, yet the amount of Cl-AFm forming at Cl− concentration < 2 M 
(CaCl2 and NaCl both) is lower than the amount of monosulfoaluminate 
and katoite formed in DIW. For [Cl−] > 2 M, several systems show an 
increase in fly ash reactivity. The Class C + CAC + 2 M NaCl system 
(Fig. 5a) shows the significant formation of a Si-containing ettringite- 
like phase that induces a resurgence of fly ash reactivity. This phase 
formation is constrained to high pH (~13) and high Si, Ca, and Al- 
containing systems. In the CaCl2 brine systems (Fig. 5b), an increase 
in reactivity is observed in the CH and CH-NA systems, but not in the 
OPC and CAC systems despite both systems showing high Friedel’s salt 
formation (Fig. 3b). This highlights the fact that, in the OPC and CAC 
systems, Cl-AFm formation comes primarily from the additive hydra-
tion, as opposed to the CH and CH-NA systems where the Cl-AFm for-
mation requires strong fly ash reaction. 

Class F fly ash reactivity (Fig. 5c and d) increases with increasing Cl−

concentration only in the systems with high Ca and low Al content ad-
ditive (i.e., the CH or CH-NA systems). Cl-AFm formation has been 
observed to be a driver of the Class F fly ash reactivity in brines (Collin 
et al., 2021), as it requires Al extraction from the fly ash amorphous 
content. In contrast, the Class F fly ash reactivity decreases with 
increasing Cl− concentration in a system with high Ca and Al content (i. 
e., the CAC system). Cl-AFm formation appears to be detrimental to 
strätlingite formation, which was shown to strongly influence the fly ash 
reactivity in DIW, as it required additional Al and Si extraction from the 
fly ash amorphous content. Cl-AFm phases, in contrast, can form with 
the Ca and Al content directly provided by the additive. They do not 
require high levels of dissolution from the amorphous content to form, 
resulting in a decrease of fly ash reactivity compared to that observed in 
DIW. The OPC system, with low Cl-AFm formation and high C-S-H for-
mation, is less impacted than the other systems by brine concentration. 
In this system, the Class F fly ash hydration results in the further for-
mation of C-S-H, which is unaffected by Cl− concentration. 

3.3. Predicting the fly ash degree of reaction 

The broad range of FA DR observed in the previous section raises an 
issue regarding the capacity to predict an S&S mix performance. 

Fig. 4. The Cl-AFm (Kuzel’s and Friedel’s salts) mass loss measured between ~ 270 and 400 ◦C using TGA for the Class C fly ash in (a) NaCl and (b) CaCl2 brine, and 
the Class F fly ash in (c) NaCl and (d) CaCl2 brine. Note that one aberrant datapoint (Class F fly ash + CH + 0.5 M CaCl2) is excluded from the dataset. 
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Thermodynamic modeling has been proven to be a fast and reliable tool 
to accurately predict phase assemblage at near-equilibrium. It can 
therefore be used to assess multiple S&S systems’ performance and help 
reduce the number of experiments needed to develop the ideal fly ash +
additive + brine solution as a function of the materials available and the 
brine produced. However, thermodynamic modeling of fly-ash- 
containing systems, as used here or in previous studies (Collin et al., 
2021; Glosser et al., 2020). relies on using empirical data to perfectly 
assess the phase assemblage at equilibrium. Gathering experimental 
data for all systems that need to be studied is not feasible in terms of time 
and cost, yet choosing the DR can be fairly arbitrary, given the strong 
dependence of DR on the initial system composition as previously 
demonstrated. As a result, the modeled phase assemblage obtained using 
an arbitrary DR may significantly deviate from reality. This highlights 
the need to develop more robust methods to determine the fly ash degree 
of reaction of a specific system. In that regard, machine learning models 
have been proven to be powerful in their capacity to predict physical or 
chemical behaviors, even based on sparse datasets (Oey et al., 2020; 
Ouyang et al., 2020; Song et al., 2021a). The total number of datapoints 
– 70 datapoints – collected here (54 datapoints) and from a previous 
work (Collin et al., 2021) that studied a similar type of dataset (i.e., same 
fly ashes mixed with portlandite and NaCl or CaCl2 brines, 16 data-
points) was deemed large enough to be implemented in an artificial 
neural network-based machine learning model to predict the DR as a 
function of the initial setup composition (i.e., the type of fly ash, addi-
tive, and brine). The assessment of the model prediction demonstrates a 
satisfactory accuracy (Fig. 6a), as supported by the sufficiently high 
coefficient of determination (R2 = 0.96), the low root mean square error 
(RMSE = 1.8 wt%), and the low mean absolute percentage error (MAPE 
= 10%) of the test set samples that are never exposed to the model 

during its training. This confirms the model’s capacity to accurately 
predict the fly ash DR of systems that falls within the broad range of 
compositions studied herein. With this, a realistic DR can be considered 
to thermodynamically model the hydrated system at near-equilibrium 
and to select the best performing S&S mix. 

In addition to offering predictions of fly ash DR that can be used to 
pinpoint optimal S&S mixtures, the machine learning model makes it 
possible to robustly isolate and quantify the influence of each variable 
on fly ash reactivity in accordance to experimental observations (refer to 
supplementary information and Figure S3 for the rank of impact on DR 
from the different features). Herein, the model offers realistic extrapo-
lations, that is, can predict the DR beyond the setup compositions 
involved in the experiments, for example at higher brine concentrations. 
The relevant predictions are illustrated based on the feature effect 
analysis (refer to supplementary information for more information on 
the analytical technique), an example of which is presented in Fig. 6b 
and c. Here, the sole effect of Cl− concentration is studied, so as to 
further isolate the effect of Cl− concentration from that of the counter-
ions. Isolating the effect of Cl− is not easily done from experimental 
observations, the model thus offers further knowledge regarding the 
brine composition and concentration effect on fly ash reactivity. 
Continuous predictions are made as a function of Cl− concentration 
under the various combinations of fly ashes and additives. The predicted 
DR values are shown to encompass all the experimental values within 
error. This suggests that the predicted value outside of the dataset range, 
though they are displaying increased uncertainties (see supplementary 
information for details), should also be able to capture the various ef-
fects of each feature and predict an appropriate FA DR for further 
thermodynamic modeling of the system. 

Fig. 5. The fly ash degree of reaction (FA DR) as determined from thermodynamic modeling for the Class C fly ash with the additives in (a) NaCl and (b) CaCl2 brine, 
and the Class F fly ash with the additives in (c) NaCl and (d) CaCl2 brine. The five full symbols indicate the FA DR that were estimated from the experimental heat 
release value (Figure S2) instead of directly modeled. 

Fig. 6. The neural-network-based machine learning analysis. (a) The comparison between predicted vs. “true” fly ash degree of reaction (FA DR) obtained from 
thermodynamic modeling. The feature effect analysis focusing on Cl− concentration effect for (b) the Class C and (c) the Class F fly ash; the results are obtained from 
averaging ten individually trained models, with the mean and standard deviation displayed as the solid line and shadow, respectively. 
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3.4. Additional considerations and final recommendations 

All the results compiled here show that, as expected (Song et al., 
2021b), the Class C fly ash will always be more reactive than the Class F 
fly ash regardless of the type of brine or the additive with which it is 
combined. Higher reactivity usually implicates higher phase formation, 
and as a result higher brine consumption and lower porosity, all of 
which are beneficial for S&S systems (Okoronkwo et al., 2018). Indeed, 
all these parameters ensure good performances for encapsulation/ 
immobilization of pollutants that can either be incorporated or sorbed in 
hydrated phases (e.g., alkali ions and halide anions), or can precipitate 
as insoluble species whose migration is constrained by the low porosity 
(e.g., heavy metals). However, when studying various additive effects, 
the system performance is assessed based on the degree of Cl-AFm for-
mation (i.e., the amount of Cl− effectively retained within the solid). 
Indeed, while portlandite is typically observed to be the best additive to 
promote fly ash reactivity, it does not necessarily induce the highest Cl- 
AFm formation compared to other additives. In general, the Class C fly 
ash combined with high NaCl concentration brines (above 1 M of Cl−) 
showed the best performances when combined with CAC. At lower 
concentration (below 1 M of Cl−), OPC provided the best performance. 
For CaCl2 brines, combining a Class C fly ash with OPC also offers the 
best performance regardless of the brine concentration. When using a 
class F fly ash, a mix of portlandite and NaAlO2 as an additive is shown to 
slightly decrease the fly ash reactivity compared to portlandite only yet 
allows for a low increase in hydrated phase formation. The choice of 
using NaAlO2 or not is therefore a cost-effective one, as portlandite 
provides near-similar performances regardless of the brine type (NaCl or 
CaCl2) and concentration. Finally, at higher concentrations than the one 
studied here, it is recommended to evaluate the various setup using 
thermodynamic modeling and considering the predicted FA DR range 
depicted in Fig. 6c and d. 

4. Summary and conclusion 

This study demonstrates the combined effect of the fly ash type and 
the additive composition on (1) the fly ash reactivity, and (2) the final 
solid capacity to successfully encapsulate the chloride-contaminant from 
two types of brine (NaCl and CaCl2). Increasing Ca content (either from 
the fly ash or the brine) induces an increase in the fly ash reactivity – 
Class C and Class F both. Utilizing OPC, CAC, or mixed Portlandite- 
NaAlO2 as additives results in a decrease of both Class C and Class F fly 
ashes reactivity in Cl-containing systems. In contrast, portlandite com-
bined with high Cl− concentration (i.e., >1 M) generally induces an 
increase in fly ash reactivity. An important observation is that higher fly 
ash reactivity is not necessarily correlated with the highest preferred 
hydrate phase formation (i.e., Cl-AFm). Some additives (e.g., OPC) may 
hinder the fly ash reactivity, yet produce hydrate phases independent of 
fly ash hydration. As a result, choosing the appropriate fly ash + addi-
tive + brine mix is not trivial. While choosing a Class C over a Class F fly 
ash is always the better option, the choice of the additive type is 
extremely sensitive to the brine composition and concentration. The 
experimental work done here proposes some recommendation within 
the range of composition studied experimentally, and the machine 
learning model can be applied in the future to select appropriate mixture 
proportions outside of the range studied (e.g., higher brine concentra-
tion) by predicting the fly ash degree of reaction that can then be used to 
refine thermodynamic modeling predictions of S&S performance. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgment 

The authors acknowledge financial support for this research pro-
vided by the Electric Power Research Institute (EPRI), the U.S. Depart-
ment of Transportation through the Federal Highway Administration 
(grant no. 693JJ31950021), and the U.S. National Science Foundation 
(DMREF: 1922167). The contents of this paper reflect the views and 
opinions of the authors, who are responsible for the accuracy of data 
presented herein. This research was conducted in the Laboratory for the 
Chemistry of Construction Materials (LC2) and the Molecular Instru-
mentation Center (MIC) at the University of California, Los Angeles 
(UCLA). As such, the authors acknowledge the support that has made 
these laboratories and their operations possible. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.wasman.2023.08.002. 

References 

ASTM D4326-04, 2004. Standard test method for major and minor elements in coal and 
coke ash by X-ray fluorescence. ASTM International, West Conshohocken, PA. 

ASTM C618, 2019. Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan 
for Use in Concrete. ASTM International, West Conshohocken, PA. https://doi.org/ 
10.1520/C0618-17A. 

Bauchy, M., 2019. Topological Constraint Theory and Rigidity of Glasses, in: Sattler, K.D. 
(Ed.), 21st Century Nanoscience – A Handbook. CRC Press, Boca Raton, Florida : CRC 
Press, [2020], pp. 13-1-13–20. https://doi.org/10.1201/9780367333003-13. 

Bergmann, J., Friedel, P., Kleeberg, R., 1998. BGMN - a new fundamental parameters 
based Rietveld program for laboratory X-ray sources, it’s use in quantitative analysis 
and structure investigations. Commission on Powder Diffraction (IUCr) 20, 5–8. 

Birnin-Yauri, U.A., Glasser, F.P., 1998. Friedel’s salt, Ca2Al(OH)6(Cl,OH)⋅2H2O: its solid 
solutions and their role in chloride binding. Cement and Concrete Research 28, 
1713–1723. https://doi.org/10.1016/S0008-8846(98)00162-8. 

Borch, T., Dionysiou, D., Katz, L., Xu, P., Breckenridge, R., Ellison, K., Fox, J., Macknick, 
J., Sedlak, D., Stokes-Draut, J., 2021. National Alliance for Water Innovation (NAWI) 
Technology Roadmap: Agriculture Sector. 

Calcium aluminate cement.: Composition, specifications and conformity criteria, 2007. 
BSI, London. 

Cath, T., Chellam, S., Katz, L., Breckenridge, R., Cooper, C.A., Ellison, K., Macknick, J., 
McKay, C., Miller, K., Monnell, J., Rao, N., Rosenblum, J., Sedlak, D., Stokes-Draut, 
J., 2021a. 

Cath, T., Chellam, S., Katz, L., Kim, J., Breckenridge, R., Macknick, J., Meese, A., 
Monnell, J., Rogers, T., Sedlak, D., Seetharaman, S., Stokes-Draut, J., 2021b. 
National Alliance for Water Innovation (NAWI) Technology Roadmap: Industrial 
Sector. 

Childress, A., Giammar, D., Jiang, S., Macknick, J., Plata, S., Sedlak, D., Stokes-Draut, J., 
Breckenridge, R., Howell, A., 2021. National Alliance for Water Innovation (NAWI) 
Technology Roadmap: Power Sector. 

Chukanov, N.V., Britvin, S.N., Van, K.V., Mockel, S., Zadov, A.E., 2012. Kottenheimite, 
Ca3Si(oh)6(SO4)2.12H2O, a new member of the ettringite group from the Eifel area, 
Germany. Canadian Mineralogist 50, 55–63. https://doi.org/10.3749/ 
canmin.50.1.55. 

Collin, M., Prentice, D.P., Arnold, R.A., Ellison, K., Simonetti, D.A., Sant, G.N., 2021. Fly 
Ash–Ca(OH)2 Reactivity in Hypersaline NaCl and CaCl2 Brines. ACS Sustainable 
Chem. Eng. 9, 8561–8571. https://doi.org/10.1021/acssuschemeng.1c01884. 

Collin, M., Prentice, D.P., Arnold, R.A., Ellison, K., Simonetti, D.A., Sant, G.N., 2022. 
How Brine Composition Affects Fly Ash Reactions: The Influence of (Cat-, An-)ion 
Type. Adv. Civ. Eng. Matls. 11, 20210155. https://doi.org/10.1520/ 
ACEM20210155. 

Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P., 2011. Thermodynamics and 
cement science. Cem. Concr. Res. 41, 679–695. https://doi.org/10.1016/j. 
cemconres.2011.03.018. 

Demir-Kavuk, O., Kamada, M., Akutsu, T., Knapp, E.-W., 2011. Prediction using step- 
wise L1, L2 regularization and feature selection for small data sets with large number 
of features. BMC Bioinf. 12, 412. https://doi.org/10.1186/1471-2105-12-412. 

Doebelin, N., Kleeberg, R., 2015. Profex: a graphical user interface for the Rietveld 
refinement program BGMN. J. Appl. Crystallogr. 48, 1573–1580. https://doi.org/ 
10.1107/S1600576715014685. 

Ellison, K., 2019. Landfill Sequestration of Brine: Research Updates 15. 
Fatoba, O.O., Petrik, L.F., Akinyeye, R.O., Gitari, W.M., Iwuoha, E.I., 2013. Laboratory 

Study on the Mobility of Major Species in Fly Ash-Brine Co-disposal Systems: Up- 

M. Collin et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.wasman.2023.08.002
https://doi.org/10.1016/j.wasman.2023.08.002
https://doi.org/10.1201/9780367333003-13
http://refhub.elsevier.com/S0956-053X(23)00510-X/h0020
http://refhub.elsevier.com/S0956-053X(23)00510-X/h0020
http://refhub.elsevier.com/S0956-053X(23)00510-X/h0020
https://doi.org/10.1016/S0008-8846(98)00162-8
https://doi.org/10.3749/canmin.50.1.55
https://doi.org/10.3749/canmin.50.1.55
https://doi.org/10.1021/acssuschemeng.1c01884
https://doi.org/10.1520/ACEM20210155
https://doi.org/10.1520/ACEM20210155
https://doi.org/10.1016/j.cemconres.2011.03.018
https://doi.org/10.1016/j.cemconres.2011.03.018
https://doi.org/10.1186/1471-2105-12-412
https://doi.org/10.1107/S1600576715014685
https://doi.org/10.1107/S1600576715014685


Waste Management 170 (2023) 103–111

111

flow Percolation Test. Water Air Soil Pollut. 224, 1724. https://doi.org/10.1007/ 
s11270-013-1724-9. 

Fatoba, O.O., Petrik, L.F., Akinyeye, R.O., Gitari, W.M., Iwuoha, E.I., 2015. Long-term 
brine impacted fly ash. Part 1: chemical and mineralogical composition of the ash 
residues. Int. J. Environ. Sci. Technol. 12, 551–562. https://doi.org/10.1007/ 
s13762-013-0439-1. 

Giammar, D., Jiang, S., Xu, P., Breckenridge, R., Edirisooriya, T., Jiang, W., Lin, L., 
Macknick, J., Rao, N., Sedlak, D., Stokes-Draut, J., Xu, X., 2021. National Alliance for 
Water Innovation (NAWI) Technology Roadmap: Municipal Sector. 

Glasser, F.P., 1997. Fundamental aspects of cement solidification and stabilisation. 
J. Hazard. Mater. 52, 151–170. https://doi.org/10.1016/S0304-3894(96)01805-5. 

Glasser, F.P., Kindness, A., Stronach, S.A., 1999. Stability and solubility relationships in 
AFm phases Part I. Chloride, sulfate and hydroxide. Cem. Concr. Res. 29, 861–866. 
https://doi.org/10.1016/S0008-8846(99)00055-1. 

Glosser, D., Suraneni, P., Isgor, O.B., Weiss, W.J., 2020. Estimating reaction kinetics of 
cementitious pastes containing fly ash. Cem. Concr. Compos. 112, 103655 https:// 
doi.org/10.1016/j.cemconcomp.2020.103655. 

Goergens, J., Belli, R., Schulbert, C., Goetz-Neunhoeffer, F., 2023. Influence of different 
CA2/CA-ratios on hydration degree, AH3 content and flexural strength investigated 
for a binder formulation of calcium aluminate cement with calcite. Cem. Concr. Res. 
165, 107090 https://doi.org/10.1016/j.cemconres.2023.107090. 

Gougar, M.L.D., Scheetz, B.E., Roy, D.M., 1996. Ettringite and C-S-H Portland cement 
phases for waste ion immobilization: A review. Waste Manag. 16, 295–303. https:// 
doi.org/10.1016/S0956-053X(96)00072-4. 

Guide to the selection and use of hydraulic cements, 2016. 
Heaton, J., 2008. Introduction to Neural Networks with Java. Heaton Research Inc. 
Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction of the 

thermodynamic behavior of aqueous electrolytes by high pressures and 
temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and 
apparent molal and standard and relative partial molal properties to 600 degrees C 
and 5kb. Am. J. Sci. 281, 1249–1516. https://doi.org/10.2475/ajs.281.10.1249. 

Hummel, W., Berner, U., Curti, E., Pearson, F.J., Thoenen, T., 2002. Nagra/PSI Chemical 
Thermodynamic Data Base 01/01. Radiochim. Acta 90. https://doi.org/10.1524/ 
ract.2002.90.9-11_2002.805. 

Jablonka, K.M., Ongari, D., Moosavi, S.M., Smit, B., 2020. Big-Data Science in Porous 
Materials: Materials Genomics and Machine Learning. Chem. Rev. acs. 
chemrev.0c00004. https://doi.org/10.1021/acs.chemrev.0c00004. 

Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92: A software package for 
calculating the standard molal thermodynamic properties of minerals, gases, 
aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ◦C. Comput. Geosci. 
18, 899–947. https://doi.org/10.1016/0098-3004(92)90029-Q. 

Klaus, S.R., Neubauer, J., Goetz-Neunhoeffer, F., 2013. Hydration kinetics of CA2 and 
CA—Investigations performed on a synthetic calcium aluminate cement. Cem. 
Concr. Res. 43, 62–69. https://doi.org/10.1016/j.cemconres.2012.09.005. 

Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., 
Berner, U.R., 2012. GEM-Selektor geochemical modeling package: revised algorithm 
and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci. 
https://doi.org/10.1007/s10596-012-9310-6. 

Langmuir, D., 1998. Aqueous environmental geochemistry. 
Liu, H., Fu, Z., Yang, K., Xu, X., Bauchy, M., 2019. Machine learning for glass science and 

engineering: A review. J. Non-Crystalline Solids: X 4, 100036. https://doi.org/ 
10.1016/j.nocx.2019.100036. 
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