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We demonstrate a novel concept that addresses the pressing issue of Rare Earth Element (REE)
extraction from waste coal ashes through multi-task machine learning. This approach allows a
single machine learning model to simultaneously learn from test data measured for multiple
REEs in coal ash samples. As a result, the model training process becomes significantly more
efficient, even when working with a limited-sized REE dataset.

This novel multi-task machine learning framework is designed to predict REE concentrations in
coal ashes efficiently and affordably. This concept sets itself apart from existing research by
being the first to enable precise predictions of REE concentrations solely from simple X-ray
fluorescence (XRF) measurements, eliminating the need for costly and advanced material
characterizations.

Importantly, our innovation not only revolutionizes high-throughput screening for REE-bearing
coal ashes but also has broader implications for the field of materials science. It effectively
addresses the common challenge of dealing with sparse material datasets with multiple
interrelated properties, making it a versatile tool for researchers in this domain. Our work thus
contributes an additional layer of insight to the field of machine-learning-based materials
science by presenting an efficient solution to enhance modeling capabilities when working with
limited material datasets.
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Abstract: The increasing demand for rare earth elements (REEs) makes them a scarce strategic resource
for technical developments. In that regard, harvesting REEs from coal ashes—a waste byproduct from
coal power plants—offers an alternative solution to conventional ore-based extraction. However, this
approach is bottlenecked by our ability to screen coal ashes bearing large concentrations of REEs from
feedstocks—since measuring the REE content in ashes is a time-consuming and costly task requiring
advanced analytical tools. Here, we propose a machine learning approach to predict the REE contents
based on the bulk composition of coal ashes (which is easily measurable under the current testing
protocol). We introduce a multi-task neural network that simultaneously predicts the contents of
different REEs. Compared to the single-task model, this model exhibits notably improved accuracy and
reduced sensitivity to noise. Further model analyses reveal key data patterns for screening coal ashes
with high REE concentrations. Additionally, we showcase the utilization of transfer learning to improve

the adaptability of our model to coal ashes from a distinct source.

Teaser: With machine learning, high-throughput screening of REE-bearing coal ashes can be fulfilled

based on a simple measurement.

Keywords: Rare Earth Element; Machine Learning; Screening; Coal Ash

Page 2 of 37



Page 3 of 37

40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69

Materials Horizons

1. Introduction

Rare earth elements (REEs) are a collective term for 17 elements that are commonly found in a variety
of minerals, but typically in low concentrations. The members of REEs include 15 elements of the
lanthanoid series (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), yttrium (Y), and scandium
(Sc). While they are not abundantly present as compared to other elements that are commonly seen in
ore deposits (1), these elements are playing an increasingly vital role in many high-tech industries that
are closely related to clean energy (e.g. high-efficiency lighting, advanced fuel cell systems, wind energy,
and electric mobility) (2-5), along with many other key fields (e.g., permanent magnet motors and
generators, semiconductor chips, optics, catalysts, and defense technologies) (6-10). Given the rapidly
growing demand for REEs from various sectors in recent decades, the supply chain of these materials is
currently under heavy pressure, and this pressure is anticipated to continue increasing at a 5-9% annual
growth rate globally in the next three decades (3). For instance, according to the U.S. Geological Survey,
the country’s REE consumption was fully relied on imports in 2019 (3, 11); in the face of the short supply,
the White House has reiterated the strategic importance of developing REE-recovering technologies in

form of an executive order in early 2022 (12).

Given the low supply and high demand for REEs from ore deposits in the predictable future, many
recent studies have paid special attention to identifying new sources of REEs. Among the various
available sources, coal ash (the burning residue of coal from power plants) has been considered as an
important potential source of REEs (13-18). In that regard, the Department of Energy (DOE) has allocated
$140 million to recover REEs from coal ashes (19). The large global reserves of coal have attracted
numerous research efforts to extract REEs from coal ashes, whose worldwide average REE concentrations
are estimated at around 400 ppm (by mass) (18). In addition, recovering REEs from coal ashes has several
potential advantages over the ore-based extraction (14), which include obtaining higher concentrations
of heavy and critical REEs (18) (which are much lower in supply, higher in price, and projected for a
greater demand), incurring negligible mining cost (since coal ash is a byproduct from the coal
production), and precluding the need of handling radionuclide hazards form the ore deposits. In recent
years, a large number of studies have been published to promote the concept of extracting REEs from
coal ash, and the relevant topics broadly revolve around (i) geological distributions, depositional

settings, and resource characteristics of coal deposits containing REEs (17, 18, 20, 21), (ii) novel process



70
71
72
73

74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
&9
90
91
92
93
94
95
96
97
98

Materials Horizons

techniques that separate REEs from coal ashes (22-24), and (iii) advanced methods detecting the
concentration of REEs in coal ashes, such as inductively coupled plasma mass spectrometry (ICP-MS)
(25, 26), inductively coupled plasma optical emission spectrometry (ICP-OES) (27), SHRIMP-RG ion

microprobe (28), and laser-induced breakdown spectroscopy (LIBS) (29).

Historically, coal ashes have commonly been used as a cement replacement in concrete (as
supplementary cementitious material, SCM) (30-32). To minimize the negative impact of cement
replacement on concrete performance (e.g., strength reduction), certain restrictions on the physical
properties (e.g., particle fineness) and chemical composition (e.g., CaO and unburnt carbon contents) of
the coal ashes are typically imposed during recycling (33). As a consequence, this approach results in a
considerable volume of off-specification coal ashes among those that are currently deposited in
impoundments or landfills (34). Legacy coal ashes that have already been deposited in impoundments
may pose a risk of environmental damage to their surrounding groundwater system due to chemical
leaching (35, 36). In this sense, recovering REEs from legacy ashes further offers a potential environmental

benefit to mitigate the pollution issue associated with coal ashes deposition.

For both freshly produced coal ashes and those deposited in impoundments, a batch-wise screening
of the coal ashes is necessary for an effective REE extraction. This is because the REE concentration from
a given coal source is affected by the combustion protocols, processing techniques, as well as storage
conditions (13, 14, 37). Thus, to enable an efficient REE extraction, it is of special significance to develop
accurate, rapid, and high-throughput screening methodologies that can identify the coal ashes presenting
the highest potential for REE extraction, that is, the ashes featuring the largest REE content. From the
production’s perspective, almost all the characterization techniques (e.g., ICP-MS or ICP-OES) for
determining the REE concentration in coal ash are time and cost-prohibitive for real-time ash screening.
In contrast, X-ray fluorescence (XRF) is a fast, convenient, and economical measurement that has been
widely adopted for testing the composition of coal ashes. However, XRF is only capable of measuring
the bulk contents of major elements (i.e., elements showing elevated concentration) and does not offer
the level of accuracy that is required to detect REEs. Nevertheless, previous studies have suggested the
existence of a certain correlation between the total REE content and the bulk composition of coal ashes
(28, 38, 39). For instance, REEs tend to concentrate more in the amorphous aluminosilicate phase in coal

ashes.
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To enable accurate, rapid, and high-throughput coal ash screening for REE extraction, it is
imperative to establish a robust mapping that bridges the easily-measurable bulk XRF measurement to
the total REE content. However, existing physical and chemical models are presently unable to support
such a compositional mapping. In that regard, data-driven machine learning analysis offers a promising
pathway to accomplish this mapping without the need for explicit knowledge regarding the nature of
the compositional mapping. A major strength of machine learning is that it can uncover complex, non-
additive, and nonlinear patterns embedded in the data, whereby the mapping function between variables
can be revealed without the presence of explicit knowledge (40). In fact, over the decade, machine
learning techniques have enabled many critical advances in materials property prediction, material
design, advanced characterization, new functional material discovery, high-efficiency computational
methods (41-49), as well as REEs-related topics (50, 51). In particular, a few recent studies have
demonstrated the feasibility of using machine learning analysis to rapidly screen fly ashes (52, 53), or
REE-bear coal material (53). However, to the best of our knowledge, no machine learning approach has

thus far been attempted for screening REE-bearing coal ashes.

In this paper, we explore the potential of using machine learning to predict the total REE content in
coal ashes based on the sole knowledge of the easily-measurable bulk oxide contents. This kind of input
information is readily available under the prevailing coal ash testing protocols, via XRF measurement.
As such, this approach enables a fast, ready-to-use screening technique for coal ashes that can be applied
at large-scale production/reclamation job sites, where batch-wise feasibility of REE extraction can be
determined in real-time, before conducting subsequent characterization at a finer level. It is worth noting
here that our data-driven approach aims to investigate the feasibility of inferring the REE content based
on the presence of the major oxides. While the modeling work takes no assumption that the REEs are
directly related to the presence of bulk oxides, they may present as two correlated consequences under
the same hidden physics law (e.g., thermal history). The machine learning model is trained upon a coal
ash REE dataset comprising 99 representative samples. To address the limited size of the dataset, a series
of data processing techniques are implemented to boost the accuracy of our machine learning models.
We adopt neural networks using as input the bulk composition of merely six oxides to predict as output

the total REE content in coal ashes.

As the key advancement of this study, we introduce multi-task neural network modeling to enable
a simultaneous prediction of the total and the individual REE contents. While multi-task machine

learning approaches have been proposed for years (54, 55), their potential for addressing material-related
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problems has not been sufficiently explored. Herein, the use of a multi-task model is well-justified
because certain REEs are known to co-occur in coal deposits (56). In addition to the reduced time and
computational demands for training multiple single-task models, multi-task modeling provides
significant merits, such as implicit data augmentation and regularization, that can enhance the accuracy
of model predictions (57). The results indicate that, as compared to all the conventional single-task
models considered in this study, our multi-task model achieves higher accuracy and lower sensitivity to
input noise in predicting the total REE content. Further, our model analyses highlight the opportunity of
extracting REEs from reclaimed coal ashes, which, on average, tend to exhibit higher REE concentrations

than raw coal ashes.

2. Experimental procedures

2.1 The coal ash dataset

The coal ash dataset adopted herein was sourced by the Electric Power Research Institute (EPRI), based
on the experimental work done at National Energy Technology Laboratory (NETL). This dataset comprises
99 entries, which include 18 coal samples and 81 coal ash samples. These samples were originally
investigated to represent the systematic variations in coal ash compositions across the United States of
America, which cover four coal ranks (i.e., bituminous, sub-bituminous, lignite, and blend), three types of
coal boilers (i.e., pulverized, cyclone, integrated coal gasification combined cycle), ten collection origins
(e.g., fly ash, bottom ash, pond ash, and landfill ash), and nine different coal basins. All the samples were
measured following the procedure described in DOE/NETL-2016/1794 report (58). In detail, for either the
raw coal or coal ash samples, the moisture and organic compounds in the sample were first removed by
calcination in a high-temperature furnace at 1100°C. After that, the burning residue was ground into fine
powders that are less than 74 um (200 mesh) in diameter, fused with lithium metaborate, and further fully
dissolved in concentrated acid solutions. The concentration of each element in the sample was then
measured using inductively coupled plasma mass spectrometry (ICP-MS), and the results were reported in
terms of the mass fraction of the individual elements in the raw sample (i.e., either coal or coal ash). For
each sample, the raw dataset reports the mass contents for a total of 51 major and trace elements, the latter
of which include all the 16 REEs except for promethium (Pm). To filter out the effect of the molar mass of
each element from the raw ICP data, we convert all the mass contents of the 51 elements measured from
the calcinated samples into the molar contents of their corresponding oxides. The molar contents of those

oxides are then renormalized based on the total oxide quantity in each sample.
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Since the goal of this study is to predict the content of REEs in ashes based on that of the non-REEs,
the 51 oxides are divided into two groups (i.e., 35 non-REE and 16 REE oxides). With the specific aim of
rapid ash screening in mind, we limit the input information for our machine learning model (hereafter,
input feature) from the 35 non-REE oxides down to 10 major oxides. These oxides comprise more than 98%
of the oxides in each sample (see Table 1), and, importantly, they are typically measurable in coal ash XRF
characterization (31, 59). Although there is a difference between the ICP and XRF tests in that sulfur is not
reported in the former, it is reasonable to omit SO; as it has a low concentration in coal ashes. Hence, the
model inputs adopted herein can be easily obtained from the XRF measurement—whereby the screening
of high REE-bearing coal ashes can be greatly facilitated in industrial applications. A subset of 10 samples

in the curated dataset is provided in in Supplementary Materials (Table S1).

2.2 Techniques for addressing the sparse nature of the coal ash dataset

To address the sparsity of the coal ash dataset, we first implement a recursive feature elimination (RFE)
feature analysis to scrutinize the change in the accuracy of our neural network model when progressively
removing the least influential input features (60). The core idea of RFE is that, in each iteration of the feature
removal, the change in model accuracy associated with the removal of each individual left in the feature
pool is first evaluated, and then only the feature associated with the least influence on the model accuracy
(i.e., the least informative feature) is dropped. Following such a step, the feature pool can be progressively
reduced to only the most valuable features. This allows us to determine whether some of the ten input
features in the coal ash dataset can be removed from consideration. To ensure a reliable RFE analysis, we
evaluate the model accuracy based on 100 different extractions of the validation set samples in each iteration

before removing a feature (while the model is only trained with the training set samples).

We also adopt the stratified sampling technique for splitting the coal ash dataset into training,
validation, and test sets. For handling small datasets in machine learning analysis, a common yet easily
overlooked problem is that a random split of the dataset cannot guarantee a good statistical representation
of samples being extracted (41). This is because the samples in a small dataset tend to reside sparsely in
the high-dimensional space, while a random extraction often only covers part of the space. As a result,
the direction of model optimization (as guided by the training set samples) may be misled into a local
optimum in the feature space, instead of toward the direction of a global optimum. To overcome this
problem, the stratified sampling approach divides the raw dataset into several subsets based on the

distribution of the output target (i.e., total REE content) and then extracts the training samples from each
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of the subsets by proportion. Doing so helps to ensure a more robust evaluation of the true performance
of the trained model (and, in turn, higher efficiency of the subsequent model training). Following our
previous study (52), we divide the coal ash dataset into five portions and implement the stratified sample

accordingly.

2.3 Neural networks modeling

We adopt artificial neural networks for predicting the output target (i.e., the total REE content) based
on the input features (i.e., the contents of common oxides that can be easily measured by XRF). Here, we
specifically adopt neural networks as a regression model because of their good flexibility in handling
different types of datasets and interpolating complex relationships between the input features and output
target (61). This approach has been previously adopted for studying many glass-based materials (41, 43,
44, 48), including coal ashes (62, 63). Herein, the modeling process follows one of our previous studies
that also used neural networks to analyze the chemical reactivity of coal ashes (52), wherein the basics of
neural networks were thoroughly reviewed. The following contents focus on the core concepts of neural
networks and the modeling details exclusive to the investigation of REE prediction. The modeling work,
along with the analyses, in this study is conducted in Spyder IDE (version 5.4.3) with Python (version
3.10.10), and the specific program libraries are further detailed in the text. All the artificial neural
networks presented herein are implemented using the PyTorch deep learning library (version 2.0.0) (64).
The other machine learning models investigated involved in this study are built using the scikit-learn
(version 1.3.0) and XGBoost (version 1.7.6) libraries, as further detailed in Sec. 3.2 (40, 65). The core code of

the modeling work is available on GitHub (see Sec. S5).

Figure 2a depicts the architecture of one of our neural network models (in this case, a single-task
model with only one output). Within this architecture, each artificial neuron is a computational unit that
handles a basic learning task, while the whole ensemble of these computational units is capable of
mapping the complex relationship from the input to the output. Considering the limited size of the REE
dataset while ensuring sufficient learning ability of the model, we adopt a relatively simple network
structure of two layers of artificial neurons (which are known as hidden layers) for computing the
relationship between input features (i.e., XRF compositions) and the output target (i.e., total REE content).

An illustration of our selection of the two-layer model is provided in Sec. S2.

In detail, the artificial neurons in the first hidden layer are designed to extract low-level features

directly from the inputs of the XRF composition, while those in the second layer are responsible for

7
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further synthesizing the low-level features to obtain a final prediction (of the REE content in the coal ash).
After each of the two hidden layers, we further add two functional layers, namely, batch normalization and
nonlinear activation. The batch-normalization layer improves our model’s learning efficiency by avoiding
any significant elongation of the loss landscape along a given direction (note that we use a batch of ten
samples in each iteration for the model training) (66). The activation layer—here, Rectified Linear Unit
(ReLU)—enables the model to learn nonlinear relationships for mapping the inputs to the output. In
addition, we adopt the Adaptive Moment Estimation (Adam) algorithm to optimize the artificial neurons
throughout model training. To ensure sufficient model training, we further fix the training epoch number
to a relatively large value of 500 (wherein each epoch corresponds to one iteration of using all the samples
for training the model). This number of epochs is found to be large enough to ensure a convergence of the

loss function (herein, mean squared error, MSE).

In detail, the entire modeling work is divided into two phases, namely, model training and testing.
The training phase consists in optimizing the parameters of the neural network model to improve its
prediction accuracy on a subset of samples in the coal ash dataset (i.e., training set), while the testing
phase is used to evaluate the actual performance of the trained model on the other subset of samples that
are kept hidden to the model during the training phase (i.e., test set). Herein, we allocate 80% of the
samples to the training set (wherein 20% of these samples are used as the validation set) and the
remaining 20% to the test set. We primarily use the coefficient of determination (R?) to evaluate the model’s

accuracy and further consider MAPE.

In the model training phase, we compare the model performance under the choices of three
hyperparameters, namely, (i) number of artificial neurons, (ii) learning rate, which controls the rate for
updating the parameters of the artificial neurons in each training iteration, and (iii) weight decay, which
adjusts the level of model fitting based on L, regularization. The hyperparameter selection is a critical step
to determine the optimal complexity of the neural network model, so that it is neither too complex for
the present coal ash dataset (to mitigate the risk of overfitting for such a small dataset), nor too simple to
capture the true mapping function involved with the REE prediction (to avoid underfitting). Note that
those hyperparameters need to be predetermined before the training of the machine learning model and,
thereafter, are kept unchanged during model training and testing. For technical details about those
hyperparameters, the reader is invited to refer to the webpage of the PyTorch library and other sources

such as Ref. (67).
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We carry out the hyperparameter selection based on a grid search, by systematically varying the
three hyperparameters within their respective reasonable ranges. The number of artificial neurons is
varied from 2 to 32 (with an incremental factor of 2) in each layer; learning rate is varied from 10~ to 10°
(with an incremental factor of 10°33); and weight decay is varied from 10 to 10! (with an incremental factor
of 10°33). Following common practices in training machine learning models (43, 68), we split a small
portion (20%) from the training set to validate the model performance based on the selected
hyperparameters. Based on the model accuracy observed from the validation samples, we determine the
optimal hyperparameters as (i) 20 and 6 neurons in the two hidden layers, (2) 1033 for learning rate, and
102 for the weight decay. Based on additional model comparisons, further increasing the model complexity,
such as using more hidden layers, artificial neurons, or additional functional layers, does not result in
notable improvements in the model performance. As a demonstration, the variation of model accuracy with

different hidden layers is shown in Supplementary Materials (Sec. S2).

Once the hyperparameters are optimized and fixed, we move on to the testing phase to evaluate the
actual prediction accuracy of the fully-trained model. To this end, we first retrain the neural network
model using all the 80% training samples (including the validation samples) with the optimal
hyperparameters—which further boosts the model accuracy. We then evaluate the prediction accuracy
of the retrained model by using the testing samples that are never exposed to model training. To avoid
the randomness associated with neural networks, the evaluation is conducted based on 30 repetitions of

the model training.

2.4 Multi-task neural networks

Since, in the present case, several outputs are simultaneously available (i.e., the content of each type
of REE) and these outputs exhibit some level of correlation, we then investigate whether using a multi-
task neural network model could enhance the accuracy of the prediction of total REE content—as
compared to a traditional single-task neural network that only predicts one output at a time. Multi-task,
or multi-output, learning is an emerging approach in the field of machine learning (69, 55, 54), which has
been drawing increasing attention in recent years (70, 71). The basic idea of this approach is to use a single
machine learning model to simultaneously predict multiple targets that share the same input features.
By ingesting the entire dataset, the multi-task model can transfer the feature mapping learned from one
target to the others. Such a synergic approach has been recently demonstrated to be highly effective in

studying polymers, wherein the different material properties are also highly correlated (72).
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For the present coal ash dataset, the rationale for applying multi-output learning lies in the facts that
(i) the total REE content is the sum of the 16 individual ones and (ii) due to the presence of REE-bearing
phases in coal ashes, a higher content of a single REE tends to suggest high contents of other REEs (and
the total REE content thereof) (56). Figure 2b illustrates the architecture of the multi-task neural network
model that is adopted in this study. To allow a fair comparison, this multi-task model is designed to have
the same structure as the single-task model (Fig. 2a), with the only difference being the size of the output
layer. Herein the output layer consists of a total of 17 targets, which include the total REE content and
the individual contents of the 16 REEs (in their oxide forms). During the modeling process, the artificial
neurons in this architecture are trained to attain the highest average accuracy over all 17 targets. To
bolster the prediction of the total REE content, we further optimize the multi-task model by adjusting the
weights associated with each target in the cost function, wherein we use the mean value of each target as

weight.

2.5 Evaluation of noise sensitivity of the single and multi-task neural networks

After investigating the model accuracy, we further compare the influence of input noise on the single
and multi-task neural networks. This comparison is carried out on the entire dataset and for each of the 30
model repetitions. Herein, we add two levels of Gaussian noise to each input feature. Based on the typical
uncertainty of the XRF measurement (73, 74), the standard deviation of the individual input is set to 2%
and 4% of the original value, respectively. The added noise is intended to simulate the uncertainty of the
XRF measurement for the major elements in the high-throughput screening of coal ashes. For both the
optimized single and multi-task neural network models, we record the change in the model prediction for
the total REE content when subjected to the noisy inputs. This allows us to investigate the distribution of
the variation of the model predictions between those two models. To facilitate the comparison of the two

models, the resultant distributions are further fitted with normal distributions (see Fig. 3).

2.6 Interpretation of the trained machine learning model

To interpret the patterns that are learned by the optimized multi-task model, we implement two
independent model analyses, namely, a SHapley Additive exPlanations (SHAP) analysis (75) and a feature
effect analysis. The SHAP analysis evaluates the trained model based on the Shapley value (this is, the
marginal contribution of each input feature to the output target) (52, 76). In particular, a major advantage

of the SHAP analysis is that this approach considers the global influence of multiple input features as a

10
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whole. As such, the SHAP analysis helps to capture the features associated with a significant joint impact,

while those features may appear weakly influential when being evaluated individually.

In comparison, the feature effect analysis focuses on quantifying the change of the model prediction
upon the variation of single input features (i.e., only one feature is jittered each time) (77). To perform the
feature effect analysis, we first identify a reference composition based on the median value of each input
feature, which serves as a representative baseline for the different samples in the coal ash dataset. Starting
with this reference composition, we investigate the effect of each XRF content input on the total REE content.
To avoid interrogating the response of the model to unrealistic coal ash compositions, we only jitter the
feature of interest within its 20th-to-80th percentile range in the coal ash dataset (see Table 1) and maintain
all the other features fixed. We then track the evolution of the output(s) predicted as a function of the value
of the varying feature. After looping through all the input features, we compare their effects collectively in

a single plot.

3. Results

3.1 Features selection

To investigate the REE concentration in coal ashes, we curate a dataset comprising representative
99 coal ash samples, as detailed in Sec. 2.1. We select 10 major oxides to represent the bulk composition
of each sample (i.e.,, model inputs), while the target of the model prediction is the molar contents of 16
REEs (i.e.,, model outputs; note that Pm is not considered as this element is practically non-existent in
nature). We further use their sum as the ultimate prediction target (i.e., total REE content). The statistics of
this dataset are summarized in Table 1, and the correlation between the 16 individual REEs and the total
REE content is displayed in Fig. 1a. Here, we observe some strong correlations between the contents of
different REEs, which agree with the general idea that different types of REEs tend to be found within
same chemical phases in coal ashes (56). More importantly, several experimental studies observed certain
correlations between the presence of REEs in coal ashes and the bulk composition of some major elements
(29, 39, 40). These observations provide a ground for mapping the bulk chemical composition of coal
ashes to REE contents with machine learning, which is known to excel in capturing implicit data patterns

without explicit knowledge (41).
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337 Table 1: Statistical distribution of the coal ash samples considered by the present machine learning
338 analysis. Note that the content of each oxide presented here is normalized based on those of all oxides
339 measured using inductively coupled plasma mass spectrometry (ICP-MS, see text).
Oxide fraction [molar%] Total REE
Statistics
SiO, | ALO; | CaO | Fe,05 | MgO | Na,O | K,0 | TiO, | P,Os | MnO | Sum | [ppm, by molar]
0 33.3 8.0 1.2 15 0.6 0.2 0.1 0.5 0.0 0.0 98.3 80
g 20 444 | 109 2.1 2.6 2.1 0.3 0.4 0.9 0.1 0.0 99.5 117
g 50 63.0 | 137 6.0 49 2.7 0.7 1.2 1.1 0.2 0.0 99.6 157
& 80 679 | 185 | 272 8.2 7.4 13 1.7 13 0.4 0.0 99.8 246
100 793 | 213 | 377 | 128 14.1 13.3 2.3 2.6 0.9 0.8 99.9 293
Mean 58.1 | 143 | 13.7 5.5 4.5 1.0 1.1 1.1 0.2 0.1 99.6 170
Standard deviation | 11.6 3.7 12.5 3.0 3.0 14 0.6 0.3 0.2 0.1 0.2 60
340 A major challenge of the machine learning analysis conducted in this study arises from the fact that

341  the curated coal ash dataset has a relatively high dimensionality of input features (i.e., 10 by default; see
342 Table 1) as compared to its small number of datapoints (99 samples), thereby resulting in a very sparse
343  dataset. This issue makes it difficult to train a machine learning model efficiently —typically refers to as the
344  “curse of dimensionality” (78). In that regard, the main concern arises from the fact that some of the ten
345  input features may exhibit a weak correlation to the RRE content, thereby causing their contributions to the
346  model prediction to be overwhelmed by noise (e.g.,, due to the systematic or random errors of the
347  measurement on the oxide contents). As such, some of the weak features may actually impede the learning
348  process of the machine learning model and, consequently, result in lower prediction accuracy and/or a

349  higher instability for the trained neural network model.

350 To address the data sparsity challenge, we first focus on reducing the dimensionality of the input
351  features (i.e., the major oxides summarized in Table 1). To this end, we implement a recursive feature
352  elimination (RFE) analysis that aims at determining the optimal combination of the input features by
353  progressively removing the least influential ones to the model prediction (see Sec. 2.2) (60). This analysis
354  allows us to analyze the contribution of each feature to the prediction accuracy of our neural network model
355  and gradually exclude the non-informative oxides from the consideration. To carry out this analysis, we
356  use a two-layer neural network as the base model, which takes as input the concentrations of the major
357  oxides and predicts as an output the total REE content. This base model is described in Sec. 2.3. The features
358  are recursively selected based on the model accuracy on the validation samples, with 100 random
359  repetitions. Note that, different from some other unsupervised approaches that simply aim to reduce the

360  feature dimensionality such as principal component analysis (PCA), RFE is a supervised approach since
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this approach specifically selects the features that are the most informative to predict the output target

(herein, the REE content).

The results of the RFE analysis are given in Figs. 1b and 1c. To ease the discussion, the prediction error
displayed in Fig. 1b is normalized based on the mean absolute percentage error (MAPE) value achieved
when all the ten features are used for training the model (i.e., when the model is trained with the maximum
amount of information). With the features being iteratively added to the model, we initially observe a
decline in the prediction error (and, hence, an improvement of the model accuracy) up to using six features.
However, the error then flattens out when more than six features are used in the model. Eventually, we
observe a slight increase in the prediction error. This suggests that these additional features do not provide
meaningful information for improving the model accuracy and, rather, unnecessarily increase the risk of
overfitting by increasing the model complexity and level of noise that the model is exposed to. By repeating
the RFE analysis 100 times, we then determine the probability for each input feature (i.e., each oxide) to be
selected as a function of the number of features being considered, that is, as a function of the RFE iteration
step (see Fig. 1c). We observe that the oxides that are selected early on (i.e., even when the number of
considered inputs is small) tend to continue to be selected after adding more features. This suggests that
this feature selection analysis yields a stable selection of the oxides that are the most informative to the
model. Based on Fig. 1c, the molar contents of ALOs, Fe,O5;, CaO, P,Os, TiO,, and MgO are determined to
be more influential than the remaining four ones to infer the presence (or absence) of the REE-bearing
phases. However, the results in Fig. 1c should not be interpreted in a way such that the unselected features
are insignificant—rather, they are simply not contributing to further boost the prediction accuracy (e.g., due

to a high correlation with the selected features).

Therefore, these six oxides are selected as input features for training the machine learning models
presented in this study. For additional insight, the correlation between the contents of the six oxides and
individual REEs is detailed in Supplementary Materials (Sec. S3). It is apparent that the presence of REEs
exhibits a degree of alignment with Al,O;, although the correlations with the other oxides are notably non-
linear. Additionally, the correlation to an REE can vary across the oxides. These factors are expected to

introduce certain complexities for predicting REE content based on oxide content.
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A. REE correlation B. prediction error C. feature selection
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Figure 1: Feature selection for the coal ash dataset. (A) Correlation heat map for the molar contents of
the REEs (based on their corresponding oxide forms). Results of the recursive feature elimination (RFE)
analysis: (B) variation of the model prediction error as a function of the number of considered input
features, and (C) probability for each input feature (i.e., major oxides in coal ashes) to be selected at
each step of the RFE analysis. For (B), the prediction error is normalized based on the mean absolute
percentage error (MAPE) when all ten features are used, and the shadow indicates the standard
deviation from 100 repetitions (see Sec. 2.2). For (C), the cross marks indicate the optimal set of the six

features to be used as model inputs.

3.2 Single-task vs. multi-task neural network models

Using the six oxide features selected from the RFE analysis, we then evaluate the accuracy of our
single-task neural network model (see Fig. 2a) in predicting the total REE content. This neural network
model is further detailed in Sec. 2.3. As a benchmark, we also investigate the prediction accuracy obtained
by a multivariate linear regression model, which is arguably the most basic machine learning model (42).
The training and test accuracy of the two models are compared in Table 2. Note that, other single-task
machine learning models (i.e., random forest, SVM, XGboost) have also been compared during our
experiential work; however, those models did not exhibit superior performance than the single-task neural
network model discussed herein. As a reference, a comparison of the different single-task models is

available in Supplementary Materials (Sec. 54).

To ensure a fair comparison, identical train-test splits are used for the neural network and multivariate
linear regression models—see Figs. 2c and 2d for a visual comparison of the two models. From Table 2, we
first observe that stratification —a sampling technique implemented herein to address the data sparsity (see
Sec. 2.2)—offers an evident improvement in the accuracy of the single-task neural network, as well as a
reduction in the associated standard deviation. As expected, stratification meaningfully improves the

robustness of the train-test split for this small coal ash dataset, in line with our previous results (52, 79).
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Importantly, we find that, with the test set MAPE being lower than 10%, the single-task neural network
model outperforms the linear model by a considerable margin, both in terms of model accuracy and
stability (i.e., low standard deviation). Altogether, it is remarkable that the model achieves this accuracy
based on the sole knowledge of the contents of the six major oxides. This confirms the potential of using the
knowledge of the bulk oxide contents (e.g., via XRF) to conduct the rapid and high-throughput screening

of REE content in coal ashes.

Table 2: Comparison of the accuracy in predicting the total REE content for the two machine learning
models considered herein. The results are reported based on the coefficient of determination, R?, and
mean absolute percentage error, MAPE; and the mean and standard deviation are obtained from 30

repetitions of the model training.

Multivariate linear regression Single-task neural net

Stratification No Yes No Yes
R? 0.880+0.014 | 0.876+0.010 | 0.904 +0.041 | 0.940+0.019
Training set
MAPE [%] 9.6+0.1 9.8+0.5 85+1.7 6.7+1.1
T R? 0.804 +0.087 | 0.847 +0.060 | 0.819+0.119 | 0.875+0.037
est set
MAPE [%] 11.1+2.1 10.2+2.0 10.8 +3.6 9.5+1.3

Given the high correlations between the individual REEs (Fig. 1a), we further explore the potential
of using a multiple-task neural network (see. Fig. 2b) for simultaneously predicting the total REE content
and the contents of the 16 individual REEs (i.e., with a total of 17 distinct outputs). The rationale and
additional details about this multi-task model are provided in Sec. 2.4. To ensure a fair comparison
between the single- and multi-task neural networks, we maintain the same network structure (except for
the output layer) that is used for the optimized single-task neural network. For multi-task neural
networks, a key parameter is the weights that are attributed to the prediction loss terms associated with
each output target, which carry the attention that a multi-task model pays to optimize the different
targets. By default, all these weights are equal to each other. However, it is often preferable to assign
larger weights to the most important output targets (such that they can be given more attention during
the model training) (55, 80). In detail, the optimal weight assignment is contingent on the specific nature

of the dataset and the goal of the machine learning analysis (70, 71).

Here, we compare two multi-task neural network models. The first one is trained using equal
weights. For the second one, we weigh the 17 targets based on their respective mean contents in the coal
ash dataset, as a way to place more emphasis on the REEs that are the most predominant in the ashes

and, a fortiori, on the total REE content. Figure 2e summarizes the prediction accuracy on all 17 targets,
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as achieved by the two multi-task models, based on the same train-test splits as those used for the single-
task neural network. As a key result, we find that the two multi-task models both exhibit a notably
enhanced accuracy as compared to that achieved by the single-task model (see the accuracy comparison
between all the models in Figs. 2f and 2g). In detail, we then note that the model with equal weights tends
to accurately predict all the targets, with an average MAPE of approximately 10%. In particular, it
achieves a higher test accuracy and a lower standard deviation in predicting the total REE content than
the single-task models (see Table 2), where the average MAPE decreases from 9.5% to 9.0%. Remarkably,
the prediction accuracy scores shown in Fig. 2e are achieved by a single model, whereas predicting these
17 outputs would have required 17 distinct neural networks if using conventional single-task models.
Importantly, even when using the same weight for all the input features, the multi-task approach
outperforms the single-task approach in predicting the total REE content. This broadly highlights the

advantages of the multi-task approach (57), as further discussed in Sec. 4.1.

Next, as also seen in Fig. 2e, the weight-optimized multi-task model achieves even higher accuracy
and smaller deviation in predicting the total REE as compared with the equal-weight model. However,
this comes at the expense of a lower accuracy in predicting a few individual REEs, such as Ho, Hg, Tb,
and Tm. This is not surprising since these REEs show the lowest average contents in the ashes considered
herein (see Table 1) and, hence, have the lowest contribution to the loss function used in the weight-
optimized model (which is accessible on GitHub as a reference, see Sec. S5). It should also be noted that,
due to their lower concentration, these oxides contents are more challenging to quantify using ICP —their
measurements are expected to be noisier than the oxides that exhibit higher concentrations. Nevertheless,
we observe that the standard deviations associated with each target are consistently smaller when
compared with the equal-weight model, which suggests that the weight-optimized model is intrinsically
more stable. Overall, these results suggest that tuning the weight associated with each input feature can

effectively increase the robustness of the multi-task model.
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464 Figure 2: Comparison of the prediction accuracy of the different models. [llustration of the
465 architecture of (A) the single-task neural network, and (B) the multi-task neural network, wherein both
466 models contain the same structure of two hidden layers, while the output layer of the multi-task model

467 simultaneously predicts the contents of 16 individual REEs and the total REE content (see Sec. 2.4 for

468 details). Predicted versus measured total REE content, as obtained by (C) the multivariate linear
469 regression model, and (D) the single-task neural network model, wherein the y = x dashed line
470 indicates the perfect agreement. (E) Comparison of the test accuracy between the two multi-task neural
471 network models. Overall comparison of the test accuracy of the four major models in predicting the
472 total REE content in coal ash, based on (F) coefficient of determination, R?, and (G) mean absolute
473 percentage error, MAPE. For (E) to (G), the results are averaged over the 30 model repetitions of
474 training.
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The results above suggest that, by leveraging the information from multiple prediction targets, the
multi-task model exhibits not only higher accuracy but also less variation than the single-task model in
predicting the total REE content. A follow-up investigation is carried out to assess the sensitivity of the
multi-task model to the noise from the model input. This is pertinent to the high-throughput screening
of coal ashes, as XRF measurements are usually subject to variations (e.g. relative standard deviations of
1 to 5% for major elements in coal ashes) (73, 74). Here, we introduce 2% and 4% Gaussian noise into each
of the model inputs (see details in Sec. 2.5). The variations of the total REE prediction are shown in Fig.
3. While the variations of the model prediction are normally distributed, the multi-task model yields
notably higher peaks and narrower spreads of the prediction variations at both the noise levels. These
results demonstrate that the multi-task model does exhibit improved resistance to the input noise.

Further discussion about this improvement is provided in Sec. 4.1.
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Figure 3: Comparison of sensitivity to input noise between single- and multi-task neural networks
for predicting the total REE content under different levels of noise. Input noise levels are set at (A)
2%, and (B) 4%. The curves represent the normal distributions that are fitted based on the prediction

variation caused by jittering all the samples in each of the 30 model repetitions.

3.3 Model interpretation

Finally, we focus on interpreting the optimal model (i.e., the weight-optimized multi-task neural
network), which allows us to better understand the nature of the relationship between the total REE
content (i.e., output of the model) and the contents of the six selected major oxides (i.e., AL,Os, Fe;Os, CaO,
P,0s, TiO,, and MgO). To this end, we conduct SHAP analysis (see details in Sec. 2.6), which is designed
to interpret the latent data patterns learned by a “black box” machine learning model (75, 76). In brief,
the SHAP analysis quantifies the marginal contribution of the individual input features to the prediction

target (based on the actual samples in the dataset), so as to capture the importance of each input.

Figure 4a displays a summary of the SHAP analysis for each input oxide in predicting the total REE

content (ranked in terms of descending influence from top to bottom). Here, a positive marginal
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contribution corresponds to an increase in the total REE content, and vice versa. The horizontal
dispersion associated with each input in Fig. 4a captures the range of the marginal contribution values,
their vertical width reflects the distribution of each feature in the coal ash dataset, and their colors
indicate the normalized value of each input feature (increasing from blue to red). Based on this summary
plot, we further extract the relative importance of each oxide in predicting the total REE content, as shown
in Fig. 4b. In detail, the importance of each feature here is calculated by summing the marginal
contribution of each oxide (over all the samples) and then normalizing the absolute value of the results
so that the most important feature has an importance of 1. Overall, we find that ALO; is the most
important feature and exhibits a positive influence on the total REE content. In contrast, the SHAP
analysis highlights that CaO shows a negative influence on the total REE content. Although the other

four oxides all exhibit some positive influences, they are notably less influential than the first two oxides.

To further interpret our multi-task neural network, we track the one-dimensional effect of each of the
input oxides on the predicted total REE content. To this end, one at a time, we jitter the value of each input
feature within its 20th-to-80th percentile in the coal ash dataset while fixing the other features to their
median values (see further details in Sec. 2.6). This allows us to evaluate how the variation of each feature
alters the model prediction. Based on the 30 repetitions, the results of the feature effect analysis are

collectively displayed in Fig. 4c.

Here, we first observe that Al,O; shows a strong quasi-linear positive contribution to the total REE
content. This observation echoes the correlation analyses (see Figs. 1a and S2a) and the SHAP analysis (see
Fig. 4a). This linear mapping also partially explains why the linear regression model considered herein (see
Fig. 2c) is capable of achieving a decent prediction accuracy. In agreement with the SHAP analysis, a
consistent negative correlation is observed between CaO and the total REE contents. Interestingly, we
observe the existence of a discrepancy between the SHAP and feature effect analyses in the case of Fe,Os,
wherein SHAP suggests a positive influence, but its feature effect curve has a negative slope. This may arise
from the fact that, in contrast to SHAP, the outcome of the present one-dimensional feature effect analysis
depends on the choice of the reference ash composition and does not capture potential coupling effects
between the input features—so that Fe,O; may exhibit either a positive or negative influence based on the

specific ash that is considered.
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Figure 4: Model interpretations. (A) SHAP summary plot showing the marginal contribution of the
input features (i.e., contents of the six major oxides) to the output (i.e., total REE content) for each
sample in the coal ash dataset. (B) Normalized importance of the individual oxides based on the SHAP
analysis. (C) Feature effect analysis, wherein each curve represents the mean prediction of the model
after varying each oxide within its 20th-to-80th percentile in the coal ash dataset, and the shadowed

region corresponds to the standard deviation (based on 30 repetitions of the model training).

4. Discussion

4.1 Improvement of the model prediction associated with the multi-task learning

We first discuss the origin of the boost in model performance associated with the multi-task
approach. As compared to a conventional single-task paradigm that requires training 17 individual
single-task models, our multi-task approach allows us to predict the 17 REE targets within a single model,
which significantly reduces the time and effort for the model training. The results presented in Sec. 3.2
have important implications for both the effectiveness of the adopted dataset in training models and the
improvement of model performance for high-throughput REE screening. Despite the limited size of the
training data and the sole input of six oxides, our different models demonstrate comparably good testing
accuracy, suggesting that the adopted dataset is sufficiently large for training decent models for high-
throughput REE screening. The multi-task modeling approach directly increases the number of data
points utilized during model training, thereby alleviating the overall level of scarcity. This increase in
training data further contributes to enhanced model accuracy and suppressed noise sensitivity of the
multi-task model. This can be attributed to the unique advantage of multi-task models, wherein sharing
of artificial neurons in the hidden layers enables refining the noise sensitivity of a prediction task with
the other prediction tasks that are less noise sensitive. Consequently, the multi-task model effectively

achieves more reliable and accurate predictions.
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Based on the correlation analysis (see Fig. 1a), we observe strong correlations among the contents of
the individual REEs. This echoes the fact that different REE-bearing minerals are often embedded within
the same glassy phase in coal ashes (56). This observation provides a theoretical basis for using a machine
learning analysis to explore the prediction of REE contents—the individual REE contents lie within a
well-defined low-dimensional manifold within the high-dimensional compositional space. (81). In
comparison with knowledge-based approaches, machine learning models can exhibit superior
performance in uncovering such low-dimensional folds and, therefore, can offer accurate predictions by
only considering a small set of input features. This is generally a consequence of the fact that machine
learning models excel at unveiling subtle patterns within datasets, that are otherwise invisible to humans.
The above observation also indicates that the task of learning the mapping between the input primary
oxide concentrations and the content of an individual REE can facilitate the task of predicting the content
of another individual REE—which echoes the core concept of multi-task learning. In addition, we note
that each REE comes with its noise, which can result in overfitting when a model is independently trained
to predict the content of each REE. However, since the noise patterns associated with each REE are
independent from each other, simultaneously predicting all the REE contents makes it possible for the
multi-task model to filter out these individual noise contributions—since each REE output offers a

baseline that presents the model from overfitting the noise associated with the other REEs.

Overall, the advantages of the multi-task approach can be summarized as follows (57): (i) implicit
data augmentation: the multi-task model is trained with more samples, associated with diverse noise
patterns; (ii) attention focusing: this approach helps the neural network to mitigate the influence
associated with the limited size of the coal ash dataset and its high dimensionality of the input features;
(iii) eavesdropping: some useful features for predicting the total REE content may be difficult to extract
by the single-task model but easily uncovered from predicting the individual REE targets; (iv)
regularization: the additional noise introduced by the 17 targets reduces the proclivity of overfitting for
the neural network model, as some noise patterns are more detectable. These observations echo many
material-related problems, wherein material properties often exhibit some partial level of correlation, but
are associated with distinct noise (due to different measurements and test protocols, as well as

randomness).

4.2 Correlation between bulk XRF oxides and the presence of REEs
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The model interrogations reveal that data patterns learned by our model echo related knowledge
established from previous research, which supports that the characteristic patterns learned by our model
are indicative of coal ashes bearing elevated REE contents for the potential application of high-
throughput screening. Recently, Chatterjee et al. also identified influential features to predict the total
REE content in raw coals (53). Despite the differences in the target material (raw coal vs. coal ash here)
and the selection of input features (here, we focus on the oxides that can be measured by XRF), we note
that ALLO; and Fe,O; were also selected as being influential in that study. This suggests that those two
oxides can indeed be influential in predicting the REE content in coal-related materials. Comparing those
two oxides, Chatterjee et al. also observed that Al,O; shows a larger influence than Fe,Os, which is in line

with our findings from the SHAP analysis (see Fig. 4b).

Regarding feature-property mapping, our model reveals insightful patterns regarding the nature of
the correlation between bulk XRF oxides and REEs. Previous studies suggested the existence of three
sources of REEs in coal, namely, pyroclastic minerals, diagenetic minerals, and organics (18). Based on
the model interpretation in Sec. 3.3, we find that ALL,O; features a positive influence on the total REE
content in coal ashes. This observation echoes the findings from several previous studies suggesting that
the presence of REEs is related to that of aluminous phases in coal ash (13, 28, 38, 39), as well as in coal
materials (53, 82). Similarly, Querol et al. found that REEs are only present in the glassy aluminosilicate
areas of the coal ash samples (83). Our model also indicates a positive correlation with P,Os, which is
consistent with previous studies reporting that elevated concentrations of REEs may be linked to
phosphates in coal ashes (18, 24). In addition, the SHAP-based model interpretation also indicates a
positive influence of Fe,O; on the REE concentration. This is supported by previous observations
showing that REEs tend to reside in Fe-rich aluminosilicates, Fe-rich multi-element eutectic, and Fe-
oxides (13-15, 84). Furthermore, we observe that CaO exhibits a strong negative correlation to the
presence of REEs. This might be related to the origin of the coal, wherein lignite coals tend to contain
more calcite than bituminous coals (85). In comparison, bituminous coal is a higher-rank coal with a
higher carbon content, which is associated with the presence of REEs (86). Additionally, it is noteworthy
that both CaO and AL,Oj; are prominent components in coal ashes. A higher CaO content may indirectly
imply a lower ALLO; content, signifying a reduced presence of aluminous phases that typically contain
REEs. The higher REE concentration in low-CaO coal ashes may take practical implications for recovering
REEs from coal ashes—the remarkable concurrence between the low CaO and the high REE contents
suggests that the CaO-poor legacy coal ashes (which have otherwise often been simply deposited in
impoundments or landfills) may be a promising venue for REE extraction. This could facilitate the
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recycling of out-of-specification coal ashes that cannot be used to replace cement, which, in turn, could

induce a paradigm shift in waste-to-resource management and circular economy.

4.3 Potential for screening of high REE-bearing coal ashes

In evaluating the applicability of our proposed approach for high-throughput screening of REE-
bearing coal ashes, we discuss the robustness of our multi-task neural network models in distinguishing
between ashes with low and high total REE contents. This distinction is crucial for the practical viability
of the screening application. While different studies have varying definitions of high REE-bearing ashes,
here we categorize the coal ash samples into two classes based on the median value of the total REE
content of the dataset, set at 157 ppm (see Table 1). As a demonstration, the effectiveness of the two multi-
task models presented in Sec. 3.2 in distinguishing these classes is evaluated using the intersection over

union (IoU) metric, and the results are summarized in Table 3.

In comparison, the IoU accuracy of the weight-optimized model surpasses that of its equal-weight
counterpart on both training and test sets. In terms of identifying high-REE samples in the test set, the
IoU increases from 64% to 70% when switching from the equal-weight model to the weight-optimized
model. Notably, the weight-optimized model demonstrates a precision of 77.7% and a recall of 87.5%,
which again underscores its capability in discriminating between low and high REE-bearing coal ashes.
Given the significance of precision for the efficiency of REE recovery (e.g., cost and time) and that of recall
for reliability capturing recovery opportunities, the relatively high precision and recall of this model hold

promise for real-world applications in screening high-REE-bearing coal ashes.
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Table 3: Confusion matrix and intersection over union (IoU) classification accuracy for the multi-task
neural-network-based classification. The threshold distinguishing low and high REE contents (i.e., 157

ppm) is determined based on the dataset's median total REE content.

True total REE content
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% | 5 %
7] —
.L.E g = >157 5 37 82
[ T R — —
g c .‘E % = = <157 4 1 50
o © m [i-) @R
£ E E > 157 3 7 64
> 2 B = o0
=R - S - S L 41 2 89
=R 53] g 9
S EE| ] E 7 | 3 38 88
T £ = o = =
5
2 2 . <157 5 1 63
= £ 2 3
&l T >157 2 7 70

4.4 Model transferability to other coal ash samples

While our proposed multi-task modeling approach exhibits good generalizability, a crucial concern
for its real-world application in screening REE in coal ashes lies in its transferability and scalability across
diverse origins, encompassing geological location, coal type, and processing protocols. Ideally, with
sufficient data from a new operation, retraining the model from scratch would be straightforward.
However, this is often unattainable due to the prohibitive cost and time required for measuring REE
content. In that regard, a promising solution is implementing transfer learning (87). Given a sparse
dataset, transfer learning involves retraining only a subset of the artificial neurons in the pretrained
model, such that the transferred model can achieve desirable accuracy. For testing, we additionally
curated a separate REE dataset using the raw data reported by Franus et al., which correspond to 12 coal
ashes from 10 power plants in Poland (88). This separate dataset can be found in Supplementary

Materials (Table S2).

Using the separate REE dataset, we compare the performance of three models. First, we assess our
weight-optimized multi-task neural network (i.e., present model) based on all samples in this dataset.
Second, we train a new multi-task neural network from scratch, while keeping the same architecture (i.e.,
non-transferred model). Third, we implement transfer learning by only further training the neurons in

the output layer of the present model while keeping all others frozen (i.e., transferred model). For both
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non-transferred and transferred models, we randomly selected 6 samples (50% of the separate dataset)
for model training, following the pipeline detailed in Sec. 2.3. As a reference, all three models presented

in Fig. 5 are accessible on GitHub (see Sec. S5).

As illustrated in Fig. 5a, our present model exhibits a consistent deviation in predicting the total
REE content for the new samples, expected due to differences in the origins of the coal ash samples.
Nevertheless, the highly linear distribution of the scatters in this plot indicates that this model still
captures the overall trend of the total REE content of the separate dataset. The performance of the non-
transferred and transferred models is compared in Figs. 5b and 5c, respectively. The non-transferred
model essentially fails to generalize to the test samples—with only 6 samples available for training,
preventing overfitting in the non-transferred model proved extremely challenging. In contrast, the
transferred model exhibits good accuracy for samples in both the training and test sets, achieving an R?
test accuracy of 0.86. Furthermore, we note that the transferred model corrects the systematic deviation
associated with the present model (Fig. 5a). More importantly, the fact that the two clusters of samples
between 100 and 200 ppm in Fig. 5a are all distributed along the line of equality in Fig. 5¢, signifying that
the transferred model effectively improves the predictions for individual samples, far surpassing the

capabilities of a linear correction.
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Figure 5: Transfer-learning-based refinement of the present model for a fully separated REE dataset
(88). Prediction accuracy of (A) the optimized multi-task neural network trained in this study (see Sec.
3.2), without any additional change; (B) the model with the same architecture but trained from scratch,
with a random train-test split allocating half of the separate dataset for training; (C) the model with the
same architecture but further trained using transfer learning, with the same train-test split. The y = x

dashed line indicates the perfect agreement.
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As an additional validation of the transfer learning approach, we further delve into tuning the
classification accuracy of the transferred model. Specifically, we penalize false positives and false
negatives in predicting high-REE samples (= 157 ppm, see Sec. 4.3) in the separate dataset, wherein
training and test set samples are not differentiated. To prove the concept, we adopt a straightforward
approach by altering the loss function used for model training—by amplifying the original loss (with its
squared value) when the predicted total REE content is either higher (i.e., penalize false positive) or lower
(i.e., penalize false negative) than the true value. As shown in Table 4, we compare the classification
performance between (i) the baseline transferred model shown in Fig. 5c and two additional transferred
models trained penalizing (ii) false positive and (iii) false negative predictions. It can be seen that the
second model reduces false positive predictions from 4 to 3, while the third model eliminates false

negative predictions from 1 to 0.

These findings underscore the potential of transfer learning to enhance the adaptability of our multi-
task modeling approach across diverse coal ash samples. Depending on the priority of classification
emphasis, the transferred model can be finely tuned to enhance either the efficiency or reliability of REE

recovery. Hence, our proposed approach provides a promising solution for coal-ash-based REE recovery.

Table 4: Confusion matrix for three transferred models tuned for different targets in identifying high
REE-bearing ashes in the separate dataset. The threshold distinguishing low and high REE contents (i.e.,
157 ppm) is kept the same as that from Table 3.

True total REE content
[ppm, by molar]
Confusion matrix
<157 >157
) <157 4 1
9] .
£ Baseline
= T T >157 4 3
() (]
S 2 °
= g
- g <157 5 3
W ® B | Penalize false positive
5 & g >157 3 1
2 % &
5 8 5 <157 1 0
g - Penalize false negative
A >157 7 4

4.5 Further improvements of the modeling work

Despite the encouraging results obtained herein, our proposed model can be further enhanced in

the following aspects. First of all, although the dataset is curated to represent the general compositional
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variation of coal ashes within the U.S,, it may not capture further varieties of ashes that are associated
with other coal sources, types, and locations, which may exhibit systematic differences from those
considered in this study (see Fig. 5a) (18). At this point, it is unclear whether coal ash samples from
various locations (e.g., worldwide) can be modeled by a single model; however, it is clear that developing
large, systematic, and reliable coal ash datasets is key for addressing the scarcity of REEs via high-
throughput screening of coal ashes. It should be noted that the size of the dataset can also affect the level
of confidence in our model. Previous studies have reported other uncertainties in predicting the REE
content in coal ash (e.g., due to the coal origin, aging, interactions between individual REEs and different
mineral phases, etc.) (16, 17, 88). Despite the efforts taken to enhance the data variety for training our
models, the model may not always generalize outside the domain of the present dataset, even with the
transfer learning approach discussed in Sec. 4.4. Therefore, increasing the size and scope of the dataset

would be needed to further validate the developed model.

Improvements can be also implemented in terms of the choice of input features. Instead of using the
oxide contents of coal ashes after calcination as model inputs, it would be more practical to use the oxide
contents of raw coal ashes for large-scale screening in production. In that regard, our recent study
reported that the coal ash content can be accurately predicted by combining XRF and machine learning
methods (89). Such an approach could be considered to enable a direct prediction of REE concentrations
based on the XRF measurement from the raw material, but would require additional data. In addition,
we note that the REE contents may also be altered by other factors such as the type of coal combustion,
unburnt residues, and processing condition of coal ashes. Hence, considering those non-chemical factors

as input features is likely to further increase the robustness of the model.

Finally, to improve the transferability and scalability of the multi-task modeling to other material
datasets, it is worth exploring algorithms for automating the determination of optimal weight
distribution on different targets. In that regard, inspiration may be sought from the recent advances in

the broad fields of computer vision and data informatics.

5. Conclusions

Overall, our study validates the feasibility of using a multi-task neural network model to fulfill
accurate, real-time, and high-throughput screening of REE-rich coal ashes, based on the sole knowledge

of the bulk composition. Our major findings are summarized below.
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o The stratified sampling and recursive feature elimination techniques are demonstrated to be effective
for enhancing the accuracy of machine learning models trained based on small and sparse datasets,
as commonly encountered in materials science and engineering.

e The multi-task neural network models introduced herein exhibit consistently higher prediction
accuracy and robustness than conventional single-task machine learning models. The multi-task
models take advantage of the similarities between each of the individual input-output mappings to
filter out noise associated with the individual REE measurement. Consequently, the prediction of the
individual REEs synergically reinforces the prediction of the total REE content.

e Model interrogations reveal that Al,O; and CaO contents have a positive and negative influence on
the total REE content in coal ashes, respectively. This highlights the potential of extracting REEs from
CaO-poor coal ashes, which are otherwise often simply deposited in impoundments due to their
limited ability to replace cement in concrete.

e Transfer learning presents a promising solution for overcoming the often-limited data availability of
REE measurement across different operations.

e Given the good transferability of machine learning approaches in material research, we envision that
our proposed multi-task approach can be broadly applied to many other types of materials with

sparse testing data ranging over multiple properties.
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