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Abstract—In a gas distribution mapping (GDM) task, th
objective of a mobile robot is to map the gas concentrations ¢
an airborne chemical over a region of interest using onboar
sensing. Given the limited battery budget available to the robo
covering the entire area to measure gas concentrations
every location might be infeasible. Assuming that the robc
only has a budget for b meters of travel, in the rest of th
locations, gas concentrations can be inferred using a supervise
machine learning technique, namely the Gaussian Process (GP
In this paper, we propose a novel technique that combines dee
reinforcement learning and GP regression to find an effectiv
policy for GDM. We have implemented the proposed techniqu
in Python within a 16 x 16 4-connected plane. We have used si
types of Gaussian plumes to validate our presented approaclt
Compared to two popular baselines, our approach outperforms
greedy and random exploration by 62% and 151% in terms
of earned rewards, while outperforming them by 47% and
345%, respectively, in terms of the precision of gas distribution
modeling in all test cases without obstacles. Our approach also
improves the coverage of the exploration while consequently
reducing the uncertainty in the prediction.

I. INTRODUCTION

Gas distribution mapping (GDM) is the process of building
a spatial map of airborne chemical concentrations. We can
use a mobile robot equipped with a gas sensor, e.g., an E-
nose to measure gas concentrations at various locations in
the environment [1]. Given that mobile robots have limited
energy, they can only sample a limited number of points in
the environment. In the rest of the environment, a predictive
model can be used to create a global gas distribution map.
GDM has practical relevance in real-world applications such
as environmental monitoring and search-and-rescue [2].

GDM with a mobile robot can become challenging for two
main reasons. The gas distribution may be initially unknown,
in which case a quality adaptive exploration strategy is likely
outperform any pre-computed optimal trajectory. Secondly,
although the Gaussian Process Regressor (GPR) is often the
predictive model of choice within adaptive exploration, its
computational overhead (i.e., time complexity being cubic in
the dimension of the multivariate Gaussian [3]) may present
a bottleneck for small-scale robots.

To this end, we propose a deep reinforcement learning
(DRL) approach toward solving the GDM problem that
incorporates GPR only during offline training. Our proposed
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Fig. 1. The proposed GDM-Net framework is illustrated. The variances
in the prediction of the gas concentration measurements in the unvisited
locations are computed using GP regression, which in turn, are used as
rewards. On the other hand, the robot’s sensed gas concentrations along
with the corresponding past and current visited locations are used as the
state information for the neural network.

neural network architecture, named GDM—Net, utilizes mul-
tiple convolutional and linear layers to map the spatial gas
distribution efficiently. During deployment, the robot only
follows (i.e., infers from) the learned policy—it does not use
GPR online. The state of the environment as observed by
the robot is provided as the input. The next action (e.g.,
moving to a neighboring cell) following the policy is received
as an output, which is then executed by the robot. The
overall framework is illustrated in Fig. 1. Our framework
can successfully perform without any prior knowledge of
the parameters of the gas distribution instance.

We have validated the presented technique on six types of
Gaussian gas plumes, which vary in the spread of the plume.
We observe that following our combined DRL and GPR
training technique when used online, the policy generates
trajectories for the robot that lead to spatially distributed ex-
ploration. This, in turn, leads to better information gathering
about the gas concentrations at various parts of the environ-
ment. Numerical results show that the policies produced by
GDM-Net consistently outperform a random walk and also
perform favorably compared to a popular greedy GPR-based
strategy [4], the latter requiring the robot to support GPR
calculations during deployment.

The main contributions of this paper are as follows.

1) To the best of our knowledge, this is the first work that
combines deep reinforcement learning with Gaussian
Process regression for gas distribution mapping.

2) Our proposed DRL approach is model-free and does
not require the robot to train the GPR model with new
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gas concentration measurements at deployment.

3) Across all six types of tested gas distribution types,
our proposed approach consistently outperforms GPR-
based greedy and random walk baselines.

II. RELATED WORK

A comprehensive survey of robotic exploration techniques
for gas distribution mapping is presented in [2]. One of the
earliest studies on model-free gas distribution mapping is due
to [5]. Here, in a 2D environment, the robot has to cover most
of the environment, which is unlike our approach. We assume
the budget available to the robot is only 30% of the entire
environment. In many GDM solutions, the robot follows a
pre-determined trajectory while sensing gas concentrations
along the way [4]. Authors in [4] also present a comparative
study between various predictors for the GDM task, namely
GPR, neural networks, and interpolation. They report that
GPR performed the best in terms of predicted model accu-
racy among the tested techniques. Most importantly the tests
were conducted in an indoor environment with controlled,
replicable scenarios. In [6], the authors have utilized smelling
nano aerial vehicles for 3D GDM. However, the robot paths
were predefined by the authors.

Neumann et al. [7] have solved the GDM problem while
utilizing the wind estimation sensor available to the robot.
They have used a Gaussian kernel extended from [8]. The
authors in [9] proposed a method for methane gas mapping in
both outdoor and indoor scenarios — their proposed mapping
algorithm was analogous to computer-assisted tomography.
Gas distribution modeling including gas release rate and
spread generation has been extensively studied. In [10], the
authors develop mathematical models for gas generation and
simulation for both instantaneous and continuous release.
In our formulation, the release is instantaneous. Similarly,
Liu et al. [11] have proposed a quantification method
for modeling methane gas dispersion behaviors in sub-sea
pipelines. Detection of gas and measuring its concentrations
at various locations is studied in [12]. The authors have used
an ensemble learning-based approach for gas measurement
collection and online classification. Although we study a
model-free gas distribution mapping problem that does not
make any prior assumption about the distribution, there has
been a considerable amount of research done on model-
based approaches [13], [14]. For example, recently, He et
al. [15] proposed a distribution mapping algorithm specifi-
cally for GP plume models. On the other hand, Fukazawa
and Ishida [13] assume a turbulent diffusion model of the
gas distribution.

One of the related problems to this is gas source local-
ization (GSL). In this, the robot follows a trajectory until it
reaches the source of the gas and then reports back the source
location to the control station [16]. Although not for GDM,
DRL has recently been used to solve the GSL problem [17],
[18]. Note that for GSL, no GPR is needed as the robot is
only concerned about the sensed gas measurements and not
the concentrations at the unvisited cells, which makes GSL
a significantly different problem from GDM.

III. PROBLEM SETUP

Our problem setup starts by jointly discretizing space
and time. More specifically, we assume the planar region
is uniformly divided into n discrete square cells, each ith
cell centered at a 2D position p; and associated with an
(initially unknown) aggregate concentration value c;. We
further assume the robot navigates the discretized region over
4-connected paths (e.g., each move is either north, south,
east, or west), accordingly discretizing time such that each
step permits movement to a 4-adjacent cell and observation
of the associated concentration.! Following the state-of-
the-art in gas modeling [19], we consider gas distribution
mapping (GDM) tasks assuming that the gas concentrations
vary (1) significantly over locations within a planar spatial
region yet (2) negligibly over time and due to the robot’s
movements within the budgeted duration of exploration.

The overarching model of our GDM problem is an in-
stance of a partially observable Markov Decision Process
(POMDP). The partial observability stems from the explo-
ration objective given the robot’s budget renders it infeasible
to access the global state of the environment. A POMDP
is formally defined as a tuple (S,A,T,0,R,Q) with S
and A denoting (finite) state and action spaces, respec-
tively, T: S x Ax S —1[0,1] and R: S x A — (—00,0)
denoting the single-stage transition and reward func-
tions, respectively, €} denoting the observation space and
0:8x%xAx§ —[0,00) denoting the probabilistic repre-
sentation of the single-stage observation process. A re-
inforcement learning (RL) method typically assumes that
functions 7" and/or O cannot be modeled explicitly (e.g.,
because the cardinality of S and (2 is prohibitively large),
yet it is possible to realize (via simulation or experiential)
traces of sequential observation-action pairs and the asso-
ciated sequence of rewards. The remainder of this section
develops the reward function that befits our GDM objective,
while Section IV discusses the specific simulation-based RL
technique to yield effective exploration policies.

The GDM-Net reward function is based upon first mod-
eling environmental uncertainties using Gaussian Processes
(GPs) [20], [21], [22], [23]. Such GPs assume that all
collection locations generate information according to the
Gaussian random vector C with known mean vector y and
covariance matrix . At each time step of the exploration,
the set of all collection locations can be divided into two
disjoint subsets, U and V, corresponding to the robot’s
unvisited and visited locations, respectively. The subvector
Cy, characterizing the unobserved information conditioned
on the values Cy = cy observed in the visited locations,
has posterior statistics

fwicy = uo + SovEyy ey — py) M

Yvvicy = Svu — SuvEpy Sve

'Our problem setup readily generalizes to less restrictive spatiotemporal
discretization, but this generality is avoided here in the interest of brevity—
our specific assumptions befit the simulation experiments in Section V-B.
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with the prior statistics organized into the corresponding
block forms concerning U and V i.e.,

pU Yvu Xuv
= d Y= .
K { fv } o { Svu Zyv }

It is well known in (1) that the mean vector represents
the minimum-mean-square-error prediction of uncollected
information Cy;, while the posterior covariance matrix char-
acterizes the prediction’s uncertainty.

In practice, the principal challenge of Gaussian prediction
is to obtain accurate prior statistics for the environmental
information. Such priors are typically derived from train-
ing data via statistical learning methods (e.g., maximum-
likelihood, Bayesian regression [21]) and, for spatially dis-
tributed GPs, usually also leverage domain-specific environ-
mental considerations. A length-n GP has d = 2n + n(n —
1)/2 degrees-of-freedom, in general, where requirements
that the number of training samples exceed d are often
formidable in robotics applications. It is thus common to
assume a reduced-order structure for the GP. For example,
the so-called “homogeneous and isotropic Gaussian Markov
random field using a -squared-exponential kernel” defines
the covariance matrix using just two hyper-parameters: given
a pair of locations ¢ and j at spatial positions p; and
p;, respectively, the kernel function defines the associated
pairwise covariance by

Cov(C;,Cy) = B*exp (—0.5]|p; — pjl2/€%) (@)

where || - || denotes Euclidean distance, 5 > 0 is the local
standard deviation and ¢ > 0 is the length scale of diminish-
ing correlation between information at increasingly-distant
locations. Such spatial structure often implies computational
advantages within standard GP calculations. For example,
squared-exponential kernels are known to induce diagonally-
dominant covariance matrices and, in turn, motivates infor-
mation maximization objectives involving the determinant of
Yyuic, in (1) to be approximated by minimizing the product
of the component variances ai‘ ciuelU } along its diag-
onal. A greedy approach to minimizing this product is for the
robot to next observe the unvisited cell with highest posterior
variance, subject to respecting path adjacency constraints.
That cell, say u € U, produces observation ¢, and, after
evolving the disjoint sets V := VU {u} and U := U — {u},
the GP can be updated via a kernel-based regression against
the set of position-concentration pairs {(py,c,);v € V'}.

IV. GDM-NET FOR GAS DISTRIBUTION MAPPING

Neural Network Architecture. We present the proposed
neural network architecture in Fig. 2. The input to the
network is a 3-channel state information. This is partial infor-
mation about the environment that is available to the robot.
This input tensor consists of three two-dimensional layers
of size [ x l. One layer holds the binary data representing
the robot’s current location, the second one represents its
past visited locations in a binary format, and finally, the last
layer holds the sensed concentration values at the visited
locations. The unvisited locations contain zeros in this layer.

Note that in Fig. 2, the first layer is the first hidden layer,
which is convolutional as well as the second hidden layer.
For these, the kernel size is 5 and the stride is set to 1.
The rest of the layers are fully connected linear layers with
the sizes indicated in Fig. 2. We have used ReLU activation
function. The output layer has four neurons estimating the
Q-values for the four available actions to the robot. As our
test environment is of size 16 x 16, [ = 16.

1x1024

3@16x16

1x128 x4
)N

1x64

|
16@16x16

1x256

Fig. 2. The proposed neural network architecture.

Reward Function. Our proposed reward function is tied to
the GPR technique mentioned in Section III. More specif-
ically, if V' denotes all cells already visited and u denotes
an as-yet unvisited cell adjacent to the current cell location,
the robot receives a positive reward equal to the posterior
variance ai ¢, associated with cell . This encourages the
robot to go to cells that have high uncertainties, but we also
explicitly penalize the robot for repeat visits to any cell.
Formally, employing the notation around (1) and (2), the
reward function R is taken as

2
Tucy, UE U
74B27

which we note will vary with time step in correspondence
with the evolving sets U and V as exploration progresses.
Training and Testing. Our training technique is adapted
from double DQN (DDQN) [24]. Given the fact that S x A
can be astronomically large, it is infeasible for the robot
to find stable Q-values for all possible state-action pairs.
Therefore, in a deep RL approach such as that used in
this paper, neural networks are used to approximate those
values. More specifically, we maintain two neural networks
denoted by Q4 and Q- representing the policy and the
target network. Both of these have the same architecture as
shown in Fig. 2. However, the target network’s parameters
are updated less frequently than the policy network for better
stabilization.

At the beginning of every training episode, the robot’s
position is reset and a new gas plume is generated. More
details about the gas generation function can be found in
Section V. The robot has b maximum actions/steps available
to it. Therefore, the goal of the robot would be to visit the
cells that maximize the uncertainty reduction following Eq.
3. In each step, the current state is passed as an input to

R= 3)

otherwise
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@y, and the Q-values of the available actions are received
as outputs. An action a is chosen following the e-greedy
strategy. The robot executes this action, moves to a new cell,
and a new observation (i.e., gas concentration in the new
cell) is made. The robot also receives a reward for a. The
transition from s to s’ after executing a, i.e., (s,a, R, s',¢),
is stored in a memory buffer D. Next, we optimize the policy
network parameters at the end of every step. We randomly
select k transitions from D for training. The target Q-values,
Y, are calculated as

V=R+7 Qs argmaxQ(s',a;Qy),Qp-) (4

Following DDQN, we calculate the expected target values
from the target network to minimize overestimation [24].
Note that this is unlike DQN [25]. Next, we compute the
error between the Q-values from @y and ), as follows.

£=EBI(Y — Qy(s) )

More specifically, we use the Adam optimizer to regress the
policy network towards the target Q-values. This process
continues until the maximum number of training episodes
are complete. The pseudocode is presented in Algorithm 1.

Algorithm 1: Gas distribution mapping using deep
reinforcement learning and GP regression

1 for each episode do

2 Place the robot at the starting cell and generate a
new gas plume;

3 Initialize a new GP model;

4 for b steps do

5 S <— current state;

6 a < selected action based on the e-greedy
strategy;

7 Execute a, transition to state s’, and measure
the gas concentration c;;

8 Add the observation to the GP model and
update it;

9 Receive reward R following Eq. 3;

10 Store the transition information in D;

11 Sample random k experiences from D;

12 Minimize the loss £ (Eq. 5) between the
Q-values from Qg and Q4-;

13 | Update the Q4 parameters every 7 episode.

During the testing, the robot only has access to the learned
policy and no learned GP model. The current state is passed
and the policy outputs an action that the robot executes
to transition to a new state. Similar to training episodes,
the robot has b steps available to it. We record numerous
performance metrics in each such test episode for validation.

TABLE I
AVERAGE VALUES OF GAS GENERATION PARAMETERS.

Gas type oy o
Very Unstable 2.92206  1.38403
Moderately Unstable  2.03447  1.08212
Slightly Unstable 1.32307  0.81559
Neutral 0.93636  0.60371
Moderately Stable 0.96506  0.65967
Very Stable 0.83042  0.56893

TABLE I

LIST OF PARAMETERS USED IN OUR EXPERIMENTS.

Parameters Values

State 3 x 16 x 16 tensor
Action Up, Down, Left, Right
Number of training episodes 5000

Episode length (b) 77 (30% of 16 x 16)
Priority replay memory size 20, 000

Mini-batch size 32

Discount factor 0.90
Learning rate 0.00025
Target network update frequency (1) 100
Epsilon decay type Exponential
Epsilon decay rate 800
Epsilon start value 0.9
Epsilon end value 0.01
Loss function Mean Square Error
Optimizer Adam
Number of testing episodes 1000
Local std. dev. (3) 1

V. EXPERIMENTS AND RESULTS

A. Setup

The gas concentration ¢; at p; = (x, y, z) can be measured
by the following Gaussian plume dispersion formulation.

y2 z—h)2 z+h)2

ciziG €<72{j—§> e<7%> —|—e<7#>
2roy o, W

(6)
where G is the gas release rate (grams/s.), h is the height of
the plume center-line, and W is the wind speed. Finally, o,
and o, are the standard deviations representing the spread of
the plume in the y and z directions. In stable gas generation
models, the gas will travel further before dispersing whereas
in unstable models, the gas will disperse quickly. The average
parameter values to control the stability are presented in
Table I. Given that our proposed approach is limited to
2D exploration, the gas concentrations across the z-axis are
summed up. We have tested our proposed technique on six
variations of the Gaussian plume. G and W values are fixed
to 40 and 5 respectively for all gas types.

We have quantified our proposed GDM-Net framework’s
performance within a 16 x 16 grid environment based on
four main metrics: 1) episodic reward, 2) number of unique
cells visited, 3) mean square error (MSE) between the ground
truth and final predicted gas distribution map, and 4) end of
episode uncertainty. To benchmark our proposed approach,
we have compared it against two popular baselines: 1)
Random: the robot chooses the next cell randomly from
the four available neighbors, and 2) Adaptive greedy: The
robot moves to its neighbor cell v with the highest reward
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AVERAGE REWARD GAINED IN 1000 TEST CASES (NO OBSTACLE).

TABLE III

Train Test Very unstable ~ Moderately unstable  Slightly unstable Neutral Moderately stable Very stable
Very unstable 7.41 £+ 0.396 6.04 + 0.407 0.21 + 2.447 -1.71 £ 0.905 -1.49 £+ 0.990 -1.34 £+ 1.142
Moderately unstable 1.97 £+ 2.288 6.27 £+ 0.202 -2.27 4+ 0.288 -3.09 £ 0.114 -3.09 £+ 0.208 -3.13 4+ 0.238
Slightly unstable -2.12 £ 0.056 -2.39 £+ 0.100 3.12 £+ 0.277 -2.58 + 0.133 -2.47 £+ 0.258 -2.21 £+ 0.496
Neutral 0.99 + 0.491 0.89 + 0.520 0.79 + 0.382 1.09 + 0.415 1.40 4+ 0.440 1.46 + 0.509
Moderately stable 2.18 £ 0.260 1.56 £ 0.269 0.51 £ 0.570 0.68 £ 0.430 0.94 + 0.467 1.02 £ 0.637
Very stable -0.92 £+ 1.752 1.02 £+ 1.291 0.89 + 0.646 1.03 + 0.664 1.04 + 0.823 1.20 + 0.714
TABLE IV
AVERAGE FINAL UNCERTAINTY IN 1000 TEST CASES (NO OBSTACLE).
Train Test Very unstable ~ Moderately unstable  Slightly unstable Neutral Moderately stable Very stable
Very unstable 0.51 £+ 0.023 0.39 £+ 0.032 0.52 £+ 0.305 0.60 £ 0.124 0.62 £ 0.127 0.61 £ 0.142
Moderately unstable  0.58 £ 0.186 0.38 + 0.021 0.65 + 0.070 0.65 + 0.045 0.66 + 0.064 0.69 + 0.109
Slightly unstable 0.88 £+ 0.004 0.82 £ 0.013 0.08 £+ 0.015 0.66 £+ 0.034 0.69 £ 0.045 0.69 £ 0.068
Neutral 0.13 £ 0.098 0.16 £ 0.090 0.13 £+ 0.037 0.12 £+ 0.058 0.16 £ 0.059 0.19 £ 0.068
Moderately stable 0.29 + 0.033 0.19 £+ 0.028 0.19 + 0.058 0.15 + 0.043 0.18 + 0.047 0.21 + 0.082
Very stable 0.70 £ 0.204 0.29 £ 0.212 0.12 £ 0.094 0.14 £ 0.083 0.18 £ 0.094 0.20 £ 0.066
TABLE V
AVERAGE NUMBER OF UNIQUE CELLS VISITED AFTER 77 STEPS IN 1000 TEST CASES (NO OBSTACLE).
Train Test Very unstable Moderately unstable  Slightly unstable Neutral Moderately stable Very stable
Very unstable 75.01 £+ 0.089 7474 £+ 2.466 49.04 £+ 27.618  34.37 £+ 13.275 35.62 £ 13.543 36.37 £ 14.920
Moderately unstable ~ 51.00 4 18.841 76.00 + 0.000 24.24 + 3.862 1594 £ 1.853 15.62 + 3.329 14.86 + 3.488
Slightly unstable 18.00 £ 0.000 18.00 £ 0.000 76.00 + 0.000 23.10 £ 1.907 23.60 + 3.539 26.39 £ 6.590
Neutral 63.54 + 7.288 65.36 + 8.537 70.11 £ 5.381 75.24 + 3.699 74.73 £ 3.687 73.90 £ 4.847
Moderately stable 73.69 + 3.000 73.69 + 3.450 67.89 £ 7.552 72.67 £ 5.182 72.62 £+ 5.191 71.12 £+ 7.736
Very stable 32.63 £+ 19.964 66.87 £+ 18.575 70.54 £+ 9.109 73.37 £ 7.469 71.44 £+ 9.377 72.19 + 6.698
TABLE VI
AVERAGE FINAL MSE IN 1000 TEST CASES (NO OBSTACLE).
Train Test Very unstable ~ Moderately unstable  Slightly unstable Neutral Moderately stable Very stable
Very unstable 3.65 £+ 0.190 3.38 + 0.426 6.34 + 4.078 9.09 + 2.756 10.80 £ 3.300 12.36 £+ 4.322
Moderately unstable  3.29 + 1.484 2.74 4+ 0.400 6.80 £ 1.135 10.37 £+ 1.499 12.21 £ 2.171 14.84 £+ 4.090
Slightly unstable 6.28 + 0.228 8.00 £ 0.409 0.14 + 0.080 10.10 £ 0.960 13.10 £ 1.496 15.65 + 2.359
Neutral 0.25 + 0.468 0.47 £+ 0.370 0.55 + 0.365 0.95 + 1.129 1.49 + 1.208 2.18 + 1.520
Moderately stable 0.51 £ 0.108 0.41 £ 0.108 0.59 £ 0.350 0.79 £ 0.388 1.39 + 0.665 249 + 2.137
Very stable 4.44 + 2316 1.30 + 2.509 0.45 + 1.210 0.88 + 1.381 1.49 + 1.966 2.02 + 1.357

according to (4). The parameters related to the DRL and
GPR implementations are listed in Table II.

B. Results and Discussion

The training follows the logic of the Algorithm. 1 with
the robot starting location being the same throughout. Fig. 3
presents the statistics of the key metrics during training. The
unique number of cells visited is an important factor. Due
to the limited budget, more unique cells visited by the robot
lead to higher uncertainty reduction, higher reward, and more
importantly lower MSEs at the end. We see in Fig. 3 that the
robot learns to visit unique cells with more training episodes,
which in turn helps the other metrics to be optimized?.

We also employed our proposed GDM-Net technique in
an environment with a 3 x 2 block obstacle (shown in cyan
in Fig. 5) in a set position. The obstacle impedes the gas

2Video: https://youtu.be/zZqi7q4j94Xw

dispersion. When wind is applied from top to bottom, the
cells behind the obstacle in the direction of the wind get
lower-intensity gas values, which alters the gas dispersion
map. This model is adopted from [26]. The robot avoids
the obstacle by detecting it from one cell away using a
laser range sensor, and, therefore, it instead stays in its
current cell without colliding with it even if it is prescribed
by the Q-network. This results in a negative reward (Eq.
3). Despite the heightened difficulty posed by obstacle-
laden environments, the fundamental trends observed in the
original (Fig. 3) and obstacle scenarios (Fig. 6) remain
consistent. Both environments rely on GPR’s capacity to
predict based on past observations; however, adjusted value
distributions and obstacles contribute to increased overall
MSE and uncertainty values. The altered gas distribution
in obstacle environments can make it non-Gaussian and
that challenges the GPR’s prediction quality, reflecting in
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Fig. 3. Training statistics of key performance metrics in environments with
no obstacle (1000-episode rolling average is shown).

higher MSE values. Nonetheless, overarching trends persist,
with uncertainty declining more uniformly but less sharply,
and MSE exhibiting a gentler initial decline in obstacle
environments compared to the original setup, culminating in
convergence (Fig. 6).

Cross-testing of the previously trained models was sub-
jected to analysis of the same key four metrics, which are
presented in Tables III - VI. As can be seen from the
tables, the trained models tend to perform best in tests
involving the gas type on which they were trained in the
first place. However, in the majority of the cases, even when
subjected to a new gas type during testing, our trained models
performed relatively well illustrating the fact that our GDM-
Net framework has the potential to be successful in adapting
to unknown gas distributions.

Fig. 4 presents the comparison of results among GDM-
Net, random, and adaptive greedy techniques. It is clear from
the plots that the random walk approach performed the worst
across all key metrics. In terms of the uncertainty metric, the
greedy always achieved lower final uncertainty compared to
GDM-Net. We believe the main reason for that is only the
greedy technique can adapt the posterior variance estimates
online to each specific instance of gas concentrations; the
GDM-Net technique merely follows the policy learned of-
fline from the ensemble of gas concentrations in the training
set. Yet our proposed GDM-Net was able to outperform the
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Fig. 4.  Average testing performances of our model compared to the
baselines (random and greedy) across 1000 test cases.

o
w
40
N
L
o
60
-
- o
= r—

a) Truth b) Ours d) Greedy

Fig. 5. The top and bottom rows show environments without and with
(cyan rectangle) obstacles. (a) Ground truth gas distribution. An example
of paths taken by (b) Ours, (c) Random, and (d) Greedy implementations
during the testing phase with their respective gas distribution predictions
superimposed on their paths. The gas type is ‘very unstable’. The green
box is the starting cell in each case. The path of the robot is indicated with
blue-bordered cells.

¢) Random

greedy technique in five out of six tested gas types in terms
of reward, and in four gas types in terms of the final MSE.
Interestingly, GDM-Net performed the worst compared to
the greedy approach on the neutral gas type. Unlike the
other types, neutral gas distribution has a lower gradient.
That might be the reason behind such numbers. In general,
our proposed GDM-Net framework outperforms adaptive
greedy and random exploration by 62% and 151% in terms
of rewards and by 47% and 345% in terms of final MSE
in all gas types tested, suggesting superiority over popular
baselines. The same trend can be noticed in testing with
obstacle environments (Fig. 7). Due to the aforementioned
reasons, all the implemented techniques saw upticks in MSE
values, i.e., deterioration in prediction quality. However, our
proposed GDM-Net framework still performed significantly
better in terms of reward (117% and 29%), uncertainty (61%
and 8%), and MSE (171%, 14%) than random and greedy
respectively in the obstacle environments.

Finally, we present an example set of paths followed by
the robot under the GDM-Net policy and random, greedy
techniques in Fig. 5. Both the adaptive greedy technique
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and our GDM-Net policy let the robot scatter out the
exploration to create a more accurate predicted model of the
gas distribution, unlike the random approach that was more

VI. CONCLUSION AND FUTURE WORK

In this work, we investigated a deep reinforcement learn-
ing method for the gas distribution mapping problem that
uses Gaussian Process regression exclusively during offline
training. This is the first study that applies Gaussian Process
regression and deep reinforcement learning together for map-
ping gas distribution. Our presented method is model-free
and does not call for the robot to train the GPR model while
in deployment with unknown gas distributions. Our proposed
GDM-Net framework demonstrates a strong improvement
over baselines based on GPR-based adaptive greedy and
random walks across all six types of investigated gas distri-
bution types. The results also show that using our GDM-Net
framework, the robot could yield respectable performance
metrics on gas types that it was not trained on. Furthermore,
this opens an interesting avenue for researchers to explore
for lightweight deployment of small-scale robots that follow
trained policies without needing to build compute-intensive
prediction models online. In the future, we plan to explore the
effect of using a continuous action space instead of a discreet
one used here following the existing studies in the literature.
Finally, we are interested in extending the proposed GDM-
Net framework to 3D scenarios.
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