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Abstract— Disease control is paramount in modern agricul-
ture to ensure optimal yield. Monitoring the spread of crop
diseases is crucial for effective control measures. Traditional
methods involve uniform pesticide spraying across entire fields,
which can be inefficient and environmentally harmful. In this
paper, we propose an intelligent solution employing mobile
robots equipped with predictive AI techniques for disease
monitoring and targeted intervention. These robots strategically
visit select locations within the field, guided by a convolutional
and recurrent neural network model trained on limited data to
predict disease spread. We introduce a novel weighted path
planning algorithm to optimize robot movement within the
field considering disease risk and battery constraints. Our ap-
proach is implemented in the WaterBerry benchmark, an open-
source platform for agricultural robotics. Experimental results
demonstrate the efficacy of our technique, showcasing improved
prediction accuracy and operational efficiency compared to
baseline methods.

I. INTRODUCTION

Agriculture plays a vital role in sustaining global food
security and economic stability. However, agricultural pro-
ductivity is constantly threatened by various factors, with
crop diseases posing a significant challenge. Crop diseases
such as Tomato Yellow Leaf Curl Virus (TYLCV), not only
result in yield losses but also incur substantial economic
and environmental costs due to the indiscriminate use of
pesticides and fungicides [1], [2], [3]. Traditional disease
management practices often involve uniform spraying of
agrochemicals across entire fields, regardless of disease
presence or intensity. While this approach may provide some
level of protection, it is often inefficient, costly, and envi-
ronmentally detrimental. Moreover, the indiscriminate use
of agrochemicals can lead to the development of pesticide-
resistant strains of pathogens and harmful effects on non-
target organisms [4].

To address these challenges, there is a growing interest in
adopting precision agriculture techniques that leverage ad-
vanced technologies such as AI-enabled robotics and sensing
networks for targeted disease management. In this context,
mobile robots equipped with sensors and AI algorithms
present a promising solution for real-time disease monitoring
and intervention thereafter [5], [6].

In this paper, we propose a novel approach for robotics-
based disease spread monitoring in agricultural lands that
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Fig. 1. The overall architecture of the proposed disease spread monitoring
framework. An example of a day’s path calculated by the robot is also shown
with red lines. The corresponding day’s combined predicted and observed
disease spread (black cells) in various parts of the field is shown (top left).

uses a deep neural network-based prediction technique along
with a novel weighted random path planning. More specif-
ically, our approach involves two key components: (1) a
predictive AI model based on convolutional and recurrent
neural networks (CNN and RNN) for disease spread predic-
tion, and (2) a novel weighted path planning algorithm that
considers both disease spread risk prediction outputs by the
network and robot battery constraints for field-wide robot
inspection for first-hand verification of the disease spread.
We implement our proposed framework within the open-
source WaterBerry benchmark [7], providing a standardized
platform for evaluating and comparing different disease
monitoring and control strategies. Simulation results show
that our proposed technique outperforms two baselines in
terms of building close-to-reality disease spread maps. Such
high-quality disease spread mapping has significant practical
implications as the farmers’ targeted intervention plans will
rely on this.

II. RELATED WORK

Disease mapping and its spread monitoring is an important
task for farmers that can save crop yields from getting
destroyed by fast-spreading diseases such as the Tomato
yellow leaf curl virus. In [8], the authors proposed a novel
statistical model that incorporates both spatial and temporal
correlations to enhance the accuracy of disease mapping over
time and geographical areas. By employing autoregressive
techniques, the model effectively captures the dynamics
of disease spread, facilitating more precise public health
surveillance and intervention planning. Su et al. [6] examine
the use of unmanned aerial vehicles (UAVs) equipped with
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multispectral cameras to detect and monitor the spread of yel-
low rust in wheat crops over time, offering a high-resolution,
cost-effective tool for precision agriculture. In recent years,
a plethora of novel approaches have been proposed in the
literature that use machine learning techniques for such
disease mapping. Shinde and Kulkarni [4] systematically
examine the integration of Internet of Things (IoT) tech-
nologies and machine learning algorithms to predict and
manage crop diseases. It highlights advances, challenges,
and prospects in this interdisciplinary field, demonstrating
the potential for real-time, data-driven agricultural decision-
making. The authors in [3] find that machine learning models
outperform traditional process-based models in accuracy and
efficiency for predicting the occurrence and spread of rice
blast disease. In [9], the authors explore the use of RNNs
to dynamically predict crop disease severity over space
and time, aiding in more effective agricultural emergency
responses. [10] focuses on developing and applying anomaly
detection techniques to identify and predict unusual patterns
in crop health data, aiming to forecast the risk of disease
outbreaks. Detection of wheat disease using multi-spectral
remote sensing techniques is studied in [11]. Ghosh et
al. [12] investigate the effectiveness of using Sentinel-2
satellite imagery to monitor crop health and development
across different spatial and temporal dimensions. [13] pro-
poses using machine learning techniques (namely neural
networks, KNN, Random Forest, and Linear Regression) to
forecast the occurrence of pests and diseases affecting Coffea
arabica, aiding in proactive pest management strategies for
coffee cultivation. In [1], the authors proposed a system that
combines connected sensors enabled with machine learning
techniques to collect and analyze real-time data for early
prediction and management of diseases in mango crops.
In our work, we employ a convolutional recurrent network
proposed in [14], which introduces a machine learning model
that combines CNNs and LSTM units to improve the short-
term forecasting of precipitation, demonstrating significant
advancements in weather prediction accuracy.

III. PROBLEM SETUP

We have a mobile robot r with a sensor attached to it to
sense the condition of the crop. For example, an unmanned
aerial vehicle with a camera on it looking down. r is also
equipped with a GPS to locate itself as well as for navigation.
Due to onboard battery limitation, the robot can only travel
for b unit distance before it needs to go back to the central
station for recharging. The agricultural field is a polygon F
which is discretized into C cells. Let Ci

d and Ci
h denote the

set of diseased and healthy crop cells on the i-th day. Thus,
C = Ci

d

⋃
Ci

h. Let Oi denote the cells (along with their
disease states) on the robot’s i-th day’s path Wi.

Note that our study does not incorporate disease manage-
ment or intervention techniques by incorporating pesticide-
spreading schedules into the proposed algorithms. Because
of this, we assume that if a cell is part of the Ci

d set, it will
remain in this set till the end of the process. In a scenario,
where regular pesticide spraying is happening, a subset cd ⊆

Ci
d can move to Ci+1

h . On the other hand, our proposed
framework already assumes that a subset ch ⊆ Ci

h can move
to Ci+1

d due to the nature of the disease spread. This is also
true for the TYLC virus modeled in the simulations [7], [2].

We assume that the cell that the robot is in currently, only
that cell’s information (e.g., a picture) can be collected by
the robot. One can think of a scenario where the robot takes
a picture of multiple cells surrounding it at the same time
(i.e., assuming the conical vision of the camera system) but
that will not impact our proposed framework’s foundations
instead more information will be passed to it for potentially
better-quality disease spread prediction.

Disease Spread Formulation. In this paper, we use
the Waterberry Farms benchmark presented in [7] for such
agricultural simulations. The disease spread formulation is
used as is from this benchmark and discussed briefly in this
paper next.

The disease spread formulation uses the SIRI model of
disease propagation adapted to a 2D environment. Every
grid cell in the environment is assumed to be in one of
the possible states of Susceptible, Infected, Recovered, and
Immune. To illustrate how this works, let us consider the
Tomato Yellow Leaf Curl Virus (TYLCV), a disease of
tomato plants that leads to total crop loss. Healthy tomato
plants are in the Susceptible state, while diseased plants are
in an Infected state. The likelihood for a tomato plant to
become infected during a particular timeslot is affected by (a)
an underlying, relatively low static probability not affected by
nearby infected plants and (b) a probability that is dependent
on the proximity and number of nearby infected plants.
Overall, the probability of infection can be calculated by
a convolution with a kernel which describes the decreasing
likelihood of infection with the plants. The plants remain
infected for a certain amount of timeslots and then transition
to the Recovered state. In the case of the TYLCV, this means
a dead plant, which is not a source of further infection. For
this scenario, Immune cells are cells outside the considered
area, bodies of water, or areas planted with plants that are
not infected by TYLCV (in the case of the Waterberry Farms
model, these are areas planted with strawberries).

Objective. The objective of the proposed framework is
to use a robot to collect disease spread information from the
crop cells by traveling at most b distance on the i-th day such
that the error between the combined predicted and observed
map (denoted by Y i′ ) and the ground truth disease spread
map (denoted by Y i) is minimized. More formally, find a
path Wi∗ containing the cells Oi such that

Wi∗ = argmin
W

(Y i − Y i′)2 (1)

How specifically the combination of the predicted disease
map and the observed disease cells happens, is discussed in
more detail in the next section.
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IV. WEIGHTED PATH PLANNING WITH NEURAL
NETWORK-BASED FORECASTING FOR DISEASE

MONITORING

A. CNN-LSTM-based Prediction

In recent years, neural network architecture models be-
came the standard in developing predictive models for se-
quences such as time series. The prediction models can
be roughly classified into models that accumulate incoming
data into a memory structure versus models that retain
the input sequence and use attention to focus on different
areas of it. LSTMs, GRU, and other state-space models are
examples of the former class, while transformer architectures
are examples of the latter. For our problem, we need to solve
the disease spread prediction problem on a two-dimensional
area, which requires both the input data and prediction output
to be a 2D array, in which spatial relations are significant.
The neural network architecture we use is the Convolutional
LSTM model [14], an architecture originally proposed for
predicting precipitation over a geographic area, which com-
bines the temporal prediction model of LSTM [15] with the
spatial reasoning capabilities of CNNs.

This model modifies the vector inputs of the LSTM model
to be of the form inputs Xt, outputs Ct, hidden states Ht in
the form of tensors with the last two dimensions being the
spatial dimensions of a geographical area. With this model,
the equations that describe the behavior of the ConvLSTM
model are:

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)
ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + b0)
Ht = ot ◦ tanh(Ct)

where ∗ and ◦ denote the convolution operator and the
Hadamard product respectively, and W and b are learnable
weights of the model.

B. Combining Prediction and Weighted Random Planning

This section proposes a novel algorithm motivated by the
findings in [16]. The pseudocode for this is presented in
Algorithm 1. Let O1:k denote the cells visited by the robot
(or, human) and their disease states. Only the k-th day’s
disease state is stored, not the history. This is done as disease
spread might not start on the 0-th day itself. We assume that
the disease is first noticed on the k′-th day where 0 ≤ k′ ≤ k.
We do the following for the next days past the k-th day.
The prediction of the diseased cells on the k + 1-th day is
made based on the observations until the k-th day. The CNN-
LSTM-based forecasting technique described earlier outputs
a 2D array of size C where the array contains numbers
in [0, 1]. Any cell with a value below 0.5 is predicted to
be diagnosed as diseased. Let Ck+1

dp denote the predicted
diseased cells on day k + 1.

Based on the prediction, a path Wk+1 is calculated for the
k+1-th day. The robot visits the cells on path Wk+1 on day
k+1. After this, the observation map for that day, Ok+1, is
updated. Next, we merge the observed disease cells according

Algorithm 1: Disease spread prediction and path
planning for autonomous monitoring
Output: A disease spread map C after k + n days.

1 O1:k ← Observe all cells for the first k days and
store their disease states;

2 P: A probability distribution that determines the
weight of choosing a cell;

3 b = velocity · time
4 D ← Divide area into a grid of size hcells × vcells
5 i = k;
6 for each day until i < n do
7 Ci+1

dp ← Predict the disease cells on day (i+ 1)
using the CNN-LSTM technique [14];

8 Wi+1 ← Calculate a path for the robot to follow
on day (i+ 1) (Algo. 2);

9 Oi+1 ← Update the observations after visiting
the cells in Wi+1 on day (i+ 1);

10 Ci+1
dm ← Merge the observations made by the
robot, Oi+1, and the predicted disease cells
Ci+1

dp ;
11 Include Ci+1

dm to the test set of the CNN-LSTM
prediction;

12 i = i+ 1;

13 return the final merged predicted and observed map;

to the observations of that day Ok+1 and the predicted
disease cells Ck+1

dp such that if any cell c ∈ C \ Ck+1
dp is

observed to be diseased by the robot, we insert c to Ck+1
d .

On the other hand, if a cell c′ was forecasted to be diseased
but was found to be healthy when the robot visited it, then we
add c′ to Ck+1

h while removing it from Ck+1
dp . Following this,

the merged predicted and observed diseased cells are kept in
a set Ck+1

dm . Note that the robot might not have the chance
to visit all the predicted disease cells. Therefore, the cells
forecasted to be diseased but not verified by the robot, are
assumed to remain diseased for the next round of forecasting
(until not visited and verified by the robot). After nth day this
cycle stops and the merged final map of predicted diseased
and observed diseased cells along with the healthy ones are
returned.
Path Planning (Algo. 2). The robot starts the exploration
from a fixed cell cs ∈ C. This can be the farmer’s control
station. The budget for each day b is decided by the robot’s
velocity and how much time it can operate with a full charge
while using its sensors (typically 30 mins. for a drone). The
environment F is divided into |D| sub-regions, where each
division d ∈ D has hcells × vcells cells. The rationale for
dividing the area into sub-regions is for the robot to visit
various parts of the agricultural field to detect new outbreaks
of disease or to monitor the spread.

The robot first randomly chooses a sub-region d to visit.
Next, it chooses a cell w ∈ C from d using a user-defined
probability distribution P, which determines the probability
of a cell being selected based on its disease state. The three
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Algorithm 2: Path planning on day j

Input : Start cell (cs), Cj
dp, P, b, D

Output: path
1 path = [cs]
2 repeat
3 Choose region d ∈ D as the next region to

explore;
4 Choose waypoint w from d using the probability

distribution P;
5 if Going to w will be over-budget then
6 Append the control station to the end of path;
7 return path;

8 else
9 Append w to end of path;

10 until length(path) < b;
11 return path;

states of a cell that are being considered in P are
• Visited, healthy: a cell that was visited by the robot on

a prior day and was found to be healthy.
• unvisited: never visited, i.e., not part of O1:j−1.
• forecasted, unvisited: a cell predicted to be diseased, yet

not confirmed by the robot through observation.
Such a probability distribution allows the robot to inspect
1) unseen locations to find out whether there is a new
disease outbreak location or not, 2) a visited healthy cell has
recently become diseased or not, and finally, 3) to verify the
prediction by the forecasting model for better modeling of
the disease spread in the future. Such a cell w is repeatedly
added to the robot’s path for the j-th day.

The robot keeps its camera on for disease monitoring
between two waypoints in Wi. Therefore, all the cells being
passed through by the robot (calculated using Bresenham’s
line algorithm) are assumed to be observed. If the robot finds
out that going from the current cell to w and then from w to
cs combined with the already-incurred path cost to get to the
current cell goes above budget b, it adds the control station
to the end of the path instead of w and returns the path.

TABLE I
LIST OF PARAMETERS USED IN OUR EXPERIMENTS AND THEIR VALUES.

Parameter Value
Environment size 64× 64

Budget (b) {0.1, 0.2, 0.4, 0.6} ×64× 64
Training data size 1000 (generated within Water-

Berry framework [7])
Test cases 100

Distribution P [0.1, 0.6, 0.3]
hcell 32
vcell 32

Number of regions 4
Complete observation days (k) 10

V. EXPERIMENTS AND RESULTS

The proposed disease spread monitoring framework is im-
plemented in Python. The simulated agricultural environment

is a 64×64 grid. Table I lists the parameters and values used
in the experiments. Any cell with a probability of more than
50% of being in the disease class predicted by the prediction
technique is classified as diseased and added to the set of
predicted disease cells for that day, i.e., Ci

dp. The start cell
cs is (0, 0). We have used the Euclidean distance as our
distance metric. The prediction results for 20 days in these
test cases after the first k = 10 complete observation days
are presented next.

We have compared our proposed technique against two
relevant baselines as follows.

• No Path. In this baseline, we use the prediction only
from the CNN-LSTM-based forecasting technique. Day
i’s predictions are assumed to be completely accurate
and used as is for the disease spread predictions for day
i + 1. No actual robot movement/observation is taken
into account, i.e., Wi = ∅ in line 8 of Algo. 1. This
goes on up to the n-th day.

• Pure Random. In this baseline, the robot follows a b-
length path every day for up to n days. In this random
planning strategy, the robot chooses one of its four
neighboring cells to be the next waypoint w. After it
exhausts its budget, it returns to the control station.
As the disease spread can start at different locations
of the environment and can progress at different rates,
the random baseline carries merit.

Fig. 2. Accuracy (in terms of MSE) of building the disease spread map
with various techniques for different budget amounts.

A. Results

The main objective of the proposed framework is to create
high-quality, i.e., close-to-reality predicted disease maps for
the farmers so that necessary steps can be taken to stop the
spread of the disease. To validate this, we use Mean Square
Error (MSE) between the ground truth disease map and the
combined map of predicted and observed disease states. The
results are presented in Fig. 2. In all the budget cases, we
see that the ‘no path’ baseline performs the worst in terms of
predicted disease map accuracy. This is expected as in this
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setting, the robot does not visit any location to observe the
real state of the disease spread, instead relies completely on
the neural network model-based disease forecasting. On the
other hand, our proposed framework performs comparably
with the random approach. However, with the increased
budget amount, our proposed model outperforms the random
baseline as well. Unlike the random model, our proposed
framework lets the robot 1) span the entire environment
and 2) plan its path while incorporating the predictions and
observations from the prior day. With budget = 60% of the
environment, our proposed technique achieves an MSE of
0.07 while the random and the no path baselines achieve
MSEs of 0.12 and 0.20 respectively on the last day. The
initial prediction MSE is low as up to that point all the
cells in the environment were under observation for k = 10
days. Also, we notice that for all the tested approaches,
the MSEs rise to ∼ day 10 and then decrease. We found
out that till ∼ day 10, new areas are getting affected by
the disease and are more unpredictable. However, after that
tip-off point, such unpredictability decreases all the variants
perform increasingly better in terms of MSE. Even within
such a complex disease-spreading crop field, our proposed
framework incurs the highest MSE of 0.09 with b = 60%
that is lower than the final MSEs achieved by both ‘Pure
Random’ and ‘No Path’ baselines.

Fig. 3. Run time for planning the path for the (i+ 1)-th day.

Next, we are interested in investigating the execution time
metric. Prediction time (using the trained neural network
model) as well as path planning time (using Algorithm 1)
are the primary components of the time metric. First, we
investigate the path planning time. Given that we have pre-
sented a sophisticated informed search-based path planning
strategy compared to the ‘Pure Random’ baseline, it incurs
a higher path planning time cost. Note that this is the cost
to calculate the waypoints every day for day k + 1 to day
n. The results are presented in Fig. 3. Although higher than
the random baseline, our planning time is still nominal – the
maximum being a mere 2.70 sec. When combined with the
prediction time, the total execution time is higher for our

Fig. 4. Total run time for building disease maps after each day for 20
days.

Row 1: Budget = 0.2

Row 2: Budget = 0.6

Fig. 5. Sample paths generated by our proposed weighted random planner
(Algo. 1): Days 10, 15, 20, 25, and 29 from left to right.

Row 1: Budget = 0.2

Row 2: Budget = 0.6

Fig. 6. Sample paths generated by the ‘Pure Random’ planner: Days 10,
15, 20, 25, and 29 from left to right.

proposed framework than the two tested baselines, namely
‘No Path’ and ‘Pure Random’ (Fig. 4). This is a trade-off
as our proposed technique combines neural network-based
prediction with an intelligent informed search strategy for
path planning, it can model the disease state better, i.e., pro-
duces a lower-MSE disease map after n days while incurring
higher costs for planning itself. Sample paths produced by
our technique and the random baseline are shown in Figs.
5 and 6. As discussed previously, our proposed approach
makes the robot explore the whole environment gracefully
whereas the random baseline can be limited to one part of
the field. Sample screenshots of disease spread maps created
by the tested methods and the ground truth disease map are
presented in Fig. 7.
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Fig. 7. Screenshots of disease maps for days 10 through 19 after the complete observation k = 10 days. From top row to bottom: ground truth, ‘No
Path’, ‘Pure Random’, and Ours.

VI. CONCLUSION AND FUTURE WORK

Monitoring the spread of disease within agricultural en-
vironments is critically important, particularly in light of
increasing population pressures and decreasing available
farmland. This study introduced an innovative artificial in-
telligence framework designed to enhance food security
through precise disease spread monitoring. We employed a
combination of convolutional and recurrent neural network-
based forecasting techniques alongside an informed search
strategy that integrates the output of disease forecasts to
plan intervention strategies. The proposed framework was
tested in a simulated 64 × 64 environment using the SIRI
model to mimic disease propagation in crops. The results
from our simulations demonstrate that our framework sur-
passes two existing baselines in both the accuracy of disease
prediction and effectiveness in constructing disease maps.
Looking ahead, we aim to explore the integration of a multi-
robot system to assess potential improvements in predic-
tion accuracy. Additionally, this paper operated under the
assumption of available historical disease spread data for
training our model. As a future endeavor, we plan to delve
into the potential of unsupervised and reinforcement learning
methods, which rely less on the availability of extensive
training datasets. These efforts are anticipated to significantly
advance the capabilities of autonomous agricultural disease
management, catering to the demands of modern agricultural
practices.
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