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Abstract— In this work, we present a variation-tolerant 
and energy-efficient charge-domain Ferroelectric FET 
(FeFET) based Compute-in-Memory (CiM) array design 
that is compatible with both binary and multi-level cell 
memory sensing. We demonstrate that: 1) by exploiting 
FeFET as a nonvolatile switch, its high ON/OFF ratio in 
the subthreshold region can suppress the error introduced 
by the inaccurate ON state conductance, thus realizing 
robust CiM operations, unlike the current-domain CiM 
design where the computation results is highly sensitive to 
the device conductance variation; 2) by leveraging a dense 
dynamic random access memory (DRAM)-like 1FeFET1C 
cell structure, the proposed design benefits from the 
existing high density DRAM establishment while also 
significantly relaxing the capacitor retention and transistor 
leakage requirement; 3) the charge-domain CiM supports 
both binary FeFET with minimum overhead and MLC 
FeFET with tolerable latency for MLC state sensing, whose 
efficacy is validated experimentally on both cell-level and 
array-level; 4) the proposed CiM shows much better device 
variation resilience than conventional current-domain 
CiM, and also improves inference accuracy. Macro-level 
evaluation results demonstrate significantly higher energy 
efficiency and area efficiency compared to prior CiM 
works. 

I. INTRODUCTION 
With the rapid advances in artificial intelligence (AI) 

models, CiM has attracted attention and been treated as a 
promising solution for AI applications. In this regard, both 
binary and MLC non-volatile memory (NVM) based CiM are 
highly attractive. Existing NVM based CiM methodologies 
can be roughly classified into two main categories: (i) current-
domain CiM (Fig.1(a)); and (ii) charge-domain CiM 
(Fig.1(b)). More specifically, the current-domain CiM design 
takes NVM devices (e.g., FeFETs) as conductance and 
summing up their currents as computed output, thus requiring 
accurate conductance of FeFETs to distinguish different 
computation results. It is challenging for binary states and even 
worse when applying MLC computing (Fig.1(c)). However, 
FeFETs in the charge-domain CiM act as switches, thus exact 
ON current doesn’t matter as long as capacitors are charged or 
discharged in time, as shown in Fig.1(d). In this work, we 
propose a 1FeFET-1C cell to support charge-domain CiM with 
binary and MLC FeFETs. Such a structure, akin to DRAM cell, 
can also exploit the decades-long DRAM establishment for 
high density CiM array (Fig.1(e)). Compared to other charge-

domain CiM with different technologies, this 1FeFET1C-
based work shows much relaxed requirements on cell 
capacitors and transistors, lower power consumption, excellent 
MLC compatibility, and good scalability (Fig.1(f)).  

II. 1FEFET1C CELL INTEGRATION AND BINARY CIM 
OPERATION 

The process integration flow of the 1FeFET1C cell 
(Fig.2(a)) is shown in Fig.2(b). A Hf0.5Zr0.5O2 
(10nm)/Al2O3(1nm)/Hf0.5Zr0.5O2(10nm) gate stack is 
deposited by atomic layer deposition (ALD). Then the via is 
opened and followed by tungsten (W) sputtering as the bottom 
electrode of capacitor. Subsequently, a 10nm HfO2 layer is 
deposited followed by the top electrode sputtering. The cell top 
view scanning electron microscopy (SEM) image (Fig.2(c)) 
shows the FeFET and the capacitor. The gate stack of the 
FeFET, represented by the cross-sectional transmission 
electron microscopy (TEM) image (Fig.2(d)) and the atomic 
composition (Fig.2(e)), clearly show the two layers of 
Hf0.5Zr0.5O2 separated by the middle Al2O3 layer, which is to 
prevent the ferroelectric film from stabilizing in the 
monoclinic phase. For the FeFET, a maximum memory 
window of 2.5V is obtained (Fig.2(f)), which can hold 4 states 
for MLC FeFET (Fig.2(g)). The capacitance and leakage 
current of capacitor are shown in Fig.2(h). 

Fig.3 shows the basic principles of the proposed binary 
1FeFET1C charge-domain CiM operation in the array level. 
For each cell, one bit of weight is stored in the FeFET as the 
low-VTH (LVT) state or the high-VTH (HVT) state. In the first 
cycle, bit lines (BLs) are applied with Vx and input are applied 
as different word line (WLs, i.e., inputs) voltages to charge 
each cell capacitor to store the local AND results, i.e., xiSij, 
where Sij is the binary state (‘0’ or ‘1’) of the FeFET. Then, in 
the second cycle, a large-enough Vpass is applied to WLs, and 
BLs are floated to enable charge sharing to obtain the final 
MAC computation results. With the developed cells, such 
operations are validated experimentally. The charging of the 
cell capacitor with FeFET in the LVT (Fig.4(a)) and HVT 
(Fig.4(c)) is studied. As shown in Fig.4(b) and Fig.4(d), 
successful passing and blocking of the VBL is demonstrated 
when the FeFET is at the LVT and HVT, respectively. The 
array operation is also demonstrated. Fig.4(e) shows the VBL 
transients during the charge sharing step, where the VBL 
increases linearly with the number of LVT FeFETs (Fig.4(f)), 
thus validating the proposed operation. 
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III. MLC 1FEFET1C CHARGE-DOMAIN CIM  
For conventional MLC NVM-based CiMs, there are two 

sensing methods: (i) parallel sensing: use a constant and high 
enough VG to read different states by current values (Fig.5(a)-
(b)); (ii) sequential sensing: use multiple read VG and 
distinguish states by the sensed current at each step (Fig.5(c)-
(d)). As shown in Fig.5(b) and Fig.5(d), sequential sensing 
mode shows a large sense margin with tolerable latency as 
each step can harness the transistor ON/OFF ratio. In addition, 
it shows a much better tolerance against device variation than 
the parallel mode, in which the device variation is directly 
translated into the conductance variation. But for sequential 
sensing, the memory acts as a switch where the exact 
conductance value does not significantly impact the operation.  

However, the use of the sequential sensing method for 
conventional current-domain NVM CiM is hindered by the 
inequality of cell read currents (Fig.5(e)), thus causing 
inaccurate MLC weight representation. The proposed charge-
domain 1FeFET1C-based CiM, applicable with MLC states, 
can address this challenge. By introducing 1FeFET1C cell 
structure with MLC FeFETs, the FeFET in each cell acts as a 
nonvolatile switch to control whether the cell capacitor need to 
be charged (Fig.6). And the intermediate computation results 
would be hold in the capacitors, not in the FeFETs. Hence, no 
precise read currents are needed. In the proposed charge-
domain CiM design (Fig.7(a)), weights (2bits) are stored as 
multi-level states of FeFETs in each 1FeFET1C cell, and the 
inputs are sent to WLs.  

To realize MLC MAC operations, 4 cycles are required. 
During the first 3 cycles, if the input is bit ‘0’, WLs would be 
set to V0 until the 4th cycle, where no charging will happen, 
irrespective of the FeFET states. If the input is bit ‘1’, different 
read voltages (Vread3/Vread2/Vread1) are given to WLs sequentially 
to turn ON/OFF FeFETs. Meanwhile, BLs are asserted to 3 
different voltage levels to charge capacitors (Fig.7(b)). In this 
way, after 3 cycles, cell capacitors would be charged to 
different voltages which represent the results of dot-product 
operations between input and MLC weight. In the 4th cycle, the 
analog summation is performed by floating BLs and then allow 
charge sharing among all the capacitors to take place such that 
the stabilized VBL represents the computation results (Fig.7(c)). 
Compared to current-domain CiM designs, this design is free 
from static power consumption due to the charge-based 
computation. Besides, it has better device variation resilience 
which helps to ensure MAC computation accuracy. 

Such an MLC based charge-domain CiM is validated with 
fabricated 1FeFET1C arrays. Fig.8(a) shows the top view SEM 
of the array. For demonstration an access transistor is included 
for charging and sharing processes. By biasing the gate of this 
access transistor (SL), connection between the BL and floating 
state of sense node (SN) can be controlled which are necessary 
for charge and sharing process. The entire operation includes 
three steps. First, all four FeFETs are initialized to target MLC 
states. Second, three cycles’ charging processes are performed 
by biasing WL at Vread3, Vread2, Vread1, and BL at Vx/3, 2Vx/3, Vx 
sequentially so that capacitors in different cells are charged to 
different voltage based on the MLC state of connected FeFET. 
Before the charging, all capacitors are discharged to ground. In 
our measurement, Vx is set at 0.3 V, and Vread3, Vread2, Vread1 are 

chosen 2.1 V, 1.6 V, and 0.9 V, respectively, based on the VTH 
of FeFET at different MLC states. The Fig.8(c) shows the 
capacitor voltage transient in a single cell during charging 
process for different MLC states. The four states can be clearly 
recognized. And after turning OFF the access transistor, the SN 
is floated, thus ready for charge sharing of 4 cells enabled by 
turning on all FeFETs. The computing results can be observed 
by sensing the SN voltage. Fig.8(d) shows the voltage on the 
SN, which also shows a good linearity with respect to the 
theoretical MAC output. 

IV. VARIATION AND SYSTEM BENCHMARKING 
Next SPICE simulations with calibrated FeFET models are 

conducted to evaluate the potential of scaling to larger scale 
systems. Fig.9(a) shows that a high degree of linearity of VBL 
on MAC output is observed with different numbers of cells 
ranging from 32 to 128 cells in a single column. However, no 
device variation is considered in this case. To understand the 
impact of device variation, Monte Carlo simulations with 4σ 
deviation are conducted. Thanks to its large sensing margin, 
this design has much better tolerance against VTH variation 
(Fig.9(b)), as compared with the conventional current domain 
CiM (Fig.9(c)). As a result, even with a large VTH variation, the 
array constructed with 1FeFET1C array can successfully 
maintain a tolerable accuracy loss (Fig.9(d)), compared with 
current-domain CiM, making it highly promising for emerging 
NVM technologies. To get a holistic picture of all the device 
variations, Fig.9(e) studies both the VTH variation and the cell 
capacitor variation, which shows that the additional capacitor 
variation does not have a significant effect on the MAC output, 
again highlighting the robustness of the proposed design. 
Therefore, the proposed design offers many advantages over 
the conventional current-domain CiM (Fig.9(f)). Fig.9(g) 
illustrates the design of a 128x128 1FeFET-1C CiM subarray 
including peripheral circuitry. The evaluation is conducted 
with DNN+NeuroSim framework [1] and tested with VGG8 
(8-bit input activations and 8-bit weights) on CIFAR10. The 
evaluation shows this work achieves an energy efficiency of 
3200 TOPS/W and an area efficiency of 231.67 TOPS/mm2 
with 1-bit input and 1-bit weight operations. Fig.9(h) shows a 
comparison with the state-of-the-art charge domain CiMs, 
showing the excellent performance of our proposed design. 

V. CONCLUSION 
In this work, a robust and energy-efficient binary and MLC 

FeFET-based CiM design is presented by leveraging charge-
domain computing. The functionality of binary MAC 
operations and MLC MAC operations are validated by cell-
level and array-level experiments. Besides, the device 
variation study demonstrates that this design has much better 
resilience against device variation resilience than conventional 
current-domain CiM. The macro-level benchmarking also 
demonstrates that our design shows higher area efficiency and 
higher energy efficiency over prior CiM works. 
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Fig.2. 1FeFET1C cell process integration and cell characteristics. (a) Cell schematic. (b) Process
integration flow. (c) Top view SEM. (d) Cross-sectional TEM image and (e) corresponding
atomic composition of FeFET gate stack. (f) Switching Dynamics of the FeFET. (g) Measured
ID-VG curves of four memory states of FeFET. (h) Capacitance and current for the capacitor.

Capacitor

Motivation: Variation-Tolerant Charge Domain Compute-in-Memory with Binary and MLC Ferroelectric FET

1FeFET1C Cell Integration and Characterization

Fig.1. Two main categories CiMmethodologies exist for nonvolatile memories: (a) current-domain CiM; and (b) charge-domain CiM. (c) Compared to
current-domain CiM that requires precise conductance mapping of the weights, (d) proposed charge-domain CiM takes FeFETs as switches, which
makes it tolerant against device variation. (e) The proposed 1FeFET1C cell structure can leverage decades of technology know-how of DRAM. (f) The
proposed 1FeFET1C structure shows the advantages of MLC compatibility, good scalability and relaxed requirement on the capacitor retention.
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