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ABSTRACT: In this article, we present an interpolative separable density
fitting (ISDF)-based algorithm to calculate the exact exchange in periodic
mean field calculations. In the past, decomposing the two-electron integrals
into the tensor hypercontraction (THC) form using ISDF was the most
expensive step of the entire mean field calculation. Here, we show that by
using a multigrid-ISDF algorithm, both the memory and the CPU cost of this
step can be reduced. The CPU cost is brought down from cubic scaling to
quadratic scaling with a low computational prefactor which reduces the cost
by almost 2 orders of magnitude. Thus, in the new algorithm, the cost of
performing ISDF is largely negligible compared to other steps. Along with the
CPU cost, the memory cost of storing the factorized two-electron integrals is
also reduced by a factor of up to 35. With the current algorithm, we can
perform Hartree−Fock calculations on a diamond supercell containing more
than 17,000 basis functions and more than 1500 electrons on a single node with no disk usage. For this calculation, the cost of
constructing the exchange matrix is only a factor of 4 slower than the cost of diagonalizing the Fock matrix. Augmenting our
approach with linear scaling algorithms can further speed up the calculations.

H INTRODUCTION
Much of modern ab initio computational chemistry and
materials science is based on Kohn−Sham (KS) density
functional theory (DFT).1 The inclusion of exact Hartree−
Fock (HF) exchange within this framework2 has been
instrumental to the success of DFT for molecular systems to
the point that almost all modern molecular calculations rely on
these “hybrid” density functionals.3 Hybrid functionals can
outperform their semilocal counterparts for some properties of
periodic solids,4−9 but the cost of evaluating the nonlocal
exchange contribution may be prohibitive.
Methods for the eCcient evaluation of exact exchange are

well-developed in the context of molecular calculations. Such
calculations typically use a relatively small set of local basis
functions such that the ratio of basis functions to electrons,N/n,
is often less than ten. Computing every element of the fourth-
order tensor of electron repulsion integrals, which one might
naively expect to be necessary for both the Coulomb and
exchange contributions, would scale like O(N4). However, the
locality of the basis functions implies that there are asymptoti-
cally only a linear number of signif icant basis function pairs,
which means that the Coulomb and exchange contributions can
be computed in O(N2) time.10 The scaling of the Coulomb
contribution can be reduced to linear,O(N), using the multipole
expansion and fast multipole method.11−13 The exchange

contribution can also be computed in asymptotically linear
time for nonmetallic systems by leveraging locality in the density
matrix.14−17 For most practical molecular calculations, these
asymptotically linear methods come with a large prefactor, and it
is preferable to reduce the cost of higher-scaling algorithms with
tensor factorization. The resolution of the identity (RI) method
is one such tensor factorization technique that is commonly
applied to both Coulomb and exchange contributions with the
RI-J18,19 and RI-K20−23 algorithms, respectively. These RI
methods are also called “density fitting”; and Dunlap showed
how a “robust” fit can be used to make the error in the fitted two-
electron integral quadratic in the error for basis function
pairs.24−26 RI approaches usually rely on predetermined, atom-
centered basis sets of fitting functions. Circumventing this
requirement, local-RI using numerical basis27,28 and Cholesky
decomposition approach yields a factorization of the same form
without the need for preoptimized fitting basis sets.29,30 The
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pseudospectral (PS) method is an alternative factorization that
uses a partial real-space quadrature to factorize the two-electron
integrals,31 and the chain of spheres algorithm for exchange
(COSX)32 is a commonly used implementation of the PS idea.
In recent years, the tensor hypercontraction (THC) method of
Martiı́nez and co-workers took the idea of tensor factorization to
the logical limit.33−35 The THC method factorizes the four-
index tensor of two-electron integrals into a product of two-
index tensorsa drastic factorization. But obtaining an accurate
THC factorization is generally diCcult so initial applications to
correlated methods are limited. However, the “interpolative
separable density fitting” (ISDF) method36 can provide a
factorization of THC form with only cubic, O(N3), scaling, and
it has since been used in various algorithms for exact
exchange.37−42

On the other hand, calculations on periodic solids often use a
large basis set ofNg plane waves. In these calculations, the action
of the Coulomb operator on just the occupied space is
determined by solving n Poisson equations, which leads to
quadratic scaling, O(nNg ln Ng), or linear scaling when using
translational (k-point) symmetry. Unfortunately, the action of
the exchange operator on the occupied space is cubic,O(n2Ng ln
Ng), or quadratic with k-point symmetry. So, in a plane-wave
basis set, the exchange contribution is higher scaling than the
Coulomb part, and there have been many eforts to reduce this
cost. Linear scaling methods have been developed for both the
Coulomb and exchange.16,43 As in themolecular case, traditional
linear scaling exchange algorithms rely on locality in the density
matrix for insulating systems.44 An exception is stochastic
density functional theory (sDFT), which can reduce the
prefactor and scaling of the exchange calculation by using the
stochastic resolution of identity method.45−47 For typical
calculations, asymptotically linear scaling methods are not
practical, and methods to improve the eCciency without
addressing the scaling can result in useful speedups.48 Additional
examples include the adaptively compressed exchange (ACE)
method49 and the auxiliary density matrix method.50 Methods
that use ISDF-THC for exact exchange in solids,37,38,40−42

including the method presented in this work, fall into this
category.
Since its introduction by Lu and Ying in 2015,36 ISDF has

been quickly adopted to speed up the exchange calculations in
codes that use Gaussian orbitals,40,41 numerical atomic
orbitals,51 and plane wave basis sets.37,38,42 Although the
computational scaling of performing ISDF is cubic with the
system size (the same as the ultimate computation of the
exchange matrix), the computational prefactor is high, making it
one of the most expensive steps of the entire calculation.
Furthermore, the memory requirements are high, which limits
its applicability to small systems unless massively parallel
computers are used. Recently, it has been realized that the
memory cost can be reduced if one performs interpolative
decomposition of the occupied molecular orbitals rather than
the entire atomic orbital basis set.41 This does reduce the
memory requirement but this comes at an additional cost of
having to perform this decomposition at every self-consistent
field (SCF) iteration. There is also additional computational
overhead related to constructing the exchangematrix (for details
we refer the reader to ref 41).
In this work, we perform the interpolative decomposition on

the atomic integrals, which is only done once, and simulta-
neously reduce the computational and memory cost of
performing this step using ideas from so-called “multigrid”

approaches.52−57 As we will show in the results, the computa-
tional cost of this step is no longer the leading cost of the
algorithm. We can perform calculations on systems with
>10,000 basis functions on a single node without running out
of memory. Along with reduced memory requirements, we also
show that the cost of performing ISDF calculations is nearly
eliminated. The key ingredient of the algorithm is to usemultiple
local grids of varying resolutions, each of which supports only a
subset of atomic orbitals (Figure 1). This idea has been used in

the past to significantly speed up the calculation of the Coulomb
operator in CP2K,53,57 and here we extend this approach to
accelerate exchange evaluation within the ISDF-THC frame-
work.
In the rest of the paper, we will focus on periodic calculations

with Gaussian basis functions in the presence of Pseudopoten-
tials, although the ideas can be extended to mixed Gaussian/
plane-wave basis and all-electron calculations. We will begin the
paper by recalling how the interpolative decomposition is
typically performed to obtain integrals in the THC form. This
will be followed by our updated algorithm that shows how the
memory and CPU cost of performing this step can be
significantly reduced. We end the paper with some results and
prospects for future work.

H THEORY
A major bottleneck in a simple implementation of hybrid-DFT
calculations is the need to evaluate the two-electron integrals,

Figure 1. Example of the grid structure used for building the exchange
matrix. The most dense grid is only defined on spherical, atom-centered
regions (colored circles, A, B, C; top). The volume of each atom-
centered grid is determined by a cutof radius beyond which the local
GTOs (L) with exponents larger than αmin (colored lines) are expected
to go to zero (see eq 5). A sparse universal grid (U) spans the full
supercell and supports all global GTOs (G) but is only required by
exponents smaller than αmin.
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r

r r r r( ) ( ) ( ) 1 ( ) ( )d d1 1
12

2 2 1 2| =

Instead of calculating the entire four-index quantity one can
decompose it into a product of several two-index quantities. We
begin by noting that the product of the orbitals μ(R)ν(R) = (μν|
R) can be viewed as a matrix with two indices, the first index
being a composite index consisting of a pair of orbitals, μν, and
the second being a set of suitably chosen grid points with a
suCciently high density, R. This matrix (μν|R) is low-rank and
can be decomposed as,

R R( ) ( ) ( )| = |

where the size of the index ξ is smaller than both the square of
the number of basis functions (N2) and the number of grid
points (Ng) (Table 1). An optimal decomposition that

minimizes the Frobenius norm of the error is given by SVD.
However, with SVD we lose the separability of the original
matrix (note that while (μν|R) = μ(R)ν(R), (μν|ξ) ≠
μ(ξ)ν(ξ)). One can instead perform interpolative decom-
position that ensures that the indices ξ in the matrix (μν|ξ) are
just a subset of grid points R. The disadvantage of interpolative
decomposition is that one does not have an optimal algorithm to
find it and the Frobenius norm of the error is guaranteed to be
greater than or equal to that from SVD, but the separability of
the resulting matrix is retained, i.e., (μν|ξ) = μ(ξ)ν(ξ), which
more than makes up for the shortcomings.
After having performed the interpolative decomposition of

the orbital products one can then write the two-electron
integrals as,

V( ) ( ) ( ) ( , ) ( ) ( )| =

where the matrix V (ξ, ξ′) can be evaluated numerically as,

V r
r

r r r( , ) ( ) 1 ( )d d1
12

2 1 2=
(1)

using fast Fourier transform (FFT).
Typically, THC requires more fitting functions ξ(r) than

RIwhile the error in the two-electron integrals is quadratic in
the RI fitting error, it is linear in the THC error. One can use
robust tensor hypercontraction, also known as the robust
pseudospectral (rPS) method, to make the error from two-
electron integrals quadratic in the fitting errors (similar to RI)
and use fewer functions, as in RI. rPS is known to produce
nonpositive definite two-electron integrals that can cause
variational collapse of the SCF cycles.58,59 But we have never

seen this in our previous work because we never use rPS to
evaluate the Coulomb matrixonly the exchange matrix, which
is itself negative definite. This has also never been observed in
the work of Manzer et al.22 when they use Pair Atomic
Resolution of the Identity Approximation for exact exchange
(PARI-K).

Interpolative Decomposition. As mentioned in the
previous section, one needs to perform an interpolative
decomposition of the two-electron integrals. The most common
way of doing this is to perform pivoted-QR decomposition of the
(μν|R) matrix. A simple algorithm would lead to a computa-
tional cost of O(N4), making the entire algorithm prohibitively
expensive. Lu and Ying36 in their original paper introduced a
randomized algorithm where one first obtains two random
matrices G1 and G2 of size N × p each, with p N= +
orthogonal columns, where Nξ is the number of THC functions
and δ is a small number usually around 5.60,61 A randomized
density matrix is constructed from these matrices according to,i

k
jjjjjjj y

{
zzzzzzzikjjjjjj

y
{zzzzzzG GR R( ) ( )mn R m n,

1 2=

One can then perform a pivoted-QR decomposition on the
matrix ρmn,R to obtain the pivots. The pivots from the
randomized matrix will be of similar quality to those obtained
from the full matrix (μν|R) as long as its singular values decay
suCciently quickly, as they do here. The overall cost of the
randomized algorithm is O(N3) which is a significant improve-
ment over the deterministic algorithm.
Matthews suggested62 that one can improve the eCciency of

the algorithm by first forming a matrix

M R R R R( , ) ( )( )= | |
(2)

and then perform a pivoted-Cholesky decomposition on it to
obtain the pivots ξ. The methods give the same pivot points
(when randomization is not introduced), and pivoted Cholesky
is typically significantly faster than pivoted QR. This algorithm is
extremely eCcient especially if the matrix M can be stored in
memory. Later we will show that for our purposes these matrices
are indeed small enough to be stored in memory. It is also worth
mentioning that a third approach called centroid-Voronoi-
tesselation (CVT), that scales as O(N2), is also widely used in
this context.37,39
Having obtained the pivot points ξ, a least-squares algorithm

obtains the functions ξ(R) that minimize the error,

R Rmin ( ) ( ) ( )
R( )

| | | |
(3)

This can be done with an O(NNξNg + Nξ
3 + Nξ

2Ng) cost,
dominated by O(Nξ

2Ng). As mentioned in the introduction, this
algorithm has a rather steep memory requirement because one
has to store the fitting functions ξ(R) at the cost ofNg ×Nξ. The
value of Ng can become significant even if there is a single sharp
function in the basis set.
There are a few ways of overcoming the high cost of ISDF

calculation:
1. In a previous publication,40 we have shown that one can

reduce both thememory and CPU cost of ISDF by using a
robust fitting procedure, which reduces the number of
ISDF functions needed to get an accurate result by about a

Table 1. Notation Used in Paper

Ng Number of grid points
Nξ Number of fitting functions
N Number of basis functions
n Number of electrons
natom Number of atoms
μ, ν, ··· Indices of atomic orbitals
i, j, ··· Indices of the occupied molecular orbitals
p, q, ··· Indices of any molecular orbital
ξ The ISDF fitting functions including ξA and RU shown below
ξA The ISDF fitting functions centered on atom A
RU The Sinc functions in the universal grid
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factor of 2 (for instance, compare THC and rPS in Figure
5). Although the cost of ISDF is reduced, it remains the
dominant cost of the calculation.

2. The cost of doing ISDF can be eliminated by not doing
ISDF but instead by solely relying on FFT and using the
occ-RI (occ refers to occupied orbitals) trick of Manzer et
al.23 occ-RI relies on the fact that the value and gradient of
the DFT energy can be obtained simply by knowing the
occupied-virtual block of the exchangematrixKip, which is
given by

K r r
r

r r r r( ) ( ) 1 ( ) ( )d dip
j

i j j p1 2
12

1 2 1 2=
(4)

where we have assumed that the orbitals are real. If all the
orbitals are representable on an FFT grid of size Ng then
this entire matrix can be evaluated by performing n2
Poisson solves, and matrix multiplications with the cost
equal to O(n2Ng ln(Ng)) and O(nNNg), respectively. Out
of the two steps, we find that the cost of Poisson solves
O(n2Ng ln(Ng)) dominates. Because the ISDF calculation
is not used, thememory requirement for storing the fitting
functions ξ(R) (Ng × Nξ) is eliminated.

3. Instead of performing ISDF on the products of atomic
orbitals once at the start of the calculation, one can
perform a new ISDF calculation on the product of
molecular orbitals at each SCF iteration. The two
dominant costs of this algorithm are the same as that of
AO-based ISDFO(Nξ

2Ng) for matrix multiplications
and O(NξNg ln(Ng)) for Nξ Poisson solves. The potential
advantage is that the Nξ required is independent of the
basis set, it only depends on the number of electrons, and
it is expected to be smaller than the Nξ from ISDF on
atomic orbital pairs. The disadvantage is that one has to
perform an ISDF at each SCF iteration and ISDF remains
the dominant cost of the calculation. This approach, of
performing ISDF on the molecular orbitals, was first
pointed out by Hu et al.37 It was recently extended to use
with Gaussian basis sets and k-point sampling by Rettig et
al.41 where they pointed out a few terms that were missing
in the gradient of the exchange energy in ref 37.

For Γ-point calculations we expect the CPU cost of the FFT-
based approach and rPS to be lower than that of the MO-based
ISDF calculations. Thememory cost of the FFT-based approach
is superior to the other two because one does not have to store
the ISDF fitting functions.
In this work, we introduce a third approach that relies on the

use of multiple grids of varying resolutions. Our algorithm uses
both a single-shot ISDF by using pivoted Cholesky on atomic
orbitals and an iterative FFT-based Poisson solution at each SCF
cycle. The ISDF is only performed for products of atomic
orbitals where at least one of the orbitals is sharp and the FFT is
only used to solve the Poisson equation for products where both
orbitals are difuse, as described in more detail below.
Using Multiple Grids for Exchange. In this section we

describe the basic idea of our multigrid algorithm for calculating
exchange and go into more technical details in the next section.
We begin with an uncontracted Gaussian-type orbital (GTO)
basis and partition it into two sets. The first set contains sharp
Gaussian basis functions with large exponents and the second set
contains difuse basis functions with small exponents. The
product of sharp−sharp and sharp-difuse atomic orbitals are
approximated using ISDF on a grid centered around the atom on

which the sharp function is centered (see Figure 1). Because the
functions are sharp here, they require the grid to have a high
point density, though for the same reason they do not span the
full unit cell. Notice that the sharp functions with large
exponents decay rapidly and their product with any other
function is only expected to be nonzero in the local spatial region
where it is itself nonzero. The rest of the products between
difuse−difuse functions are treated using the iterative FFT
approach outlined in the second bullet point of previous Section.
This does not use ISDF but is solely based on Poisson solves
using FFT. Our algorithm can reduce both the memory and
CPU cost compared to usual ISDF-based calculations because:

1. We only need to perform ISDF calculations once, before
the SCF iterations, instead of at each SCF iteration. We
perform natom (the number of atoms) independent local
ISDF calculations and each calculation is cheap. The cost
of the local ISDF calculation scales linearly with the size of
the system. After the ISDF fitting functions are obtained
one has to construct the two-center CoulombmatrixV (ξ,
ξ′) which scales quadratically with the size of the system,
making the entire ISDF calculation quadratic in system
size. In this algorithm, we do not need to use the
randomized algorithm and the overall cost of ISDF is
negligible.

2. The memory cost of our algorithm is largely independent
of the size of the basis set and the overall memory
requirement is quite low. This is because all of the
difuse−difuse products, which represent the largest
fraction of the non-negligible basis set pairs, are treated
using an FFT grid that is independent of the basis set size.
A key point is that the number of grid points needed to
represent difuse functions can be fairly small and thus the
Poisson solves are cheap. Furthermore, for these pairs of
basis functions, we do not store ISDF functions.

Because we use multiple grids of diferent resolutions, we have
called our method “multigrid” inspired by the approach of the
same name used to speed up the Coulomb matrix
formation.52−57 Although currently we only employ grids of
two resolutions, one for sharp and one for difuse functions, this
approach is readily extended to include a larger number of grids.
This can become important when all-electron calculations are
performed without the use of Pseudopotentials, where a larger
range of resolutions is needed due to the presence of extremely
sharp basis functions. The approach here also has similarities to
that of Füsti-Molnaŕ and Pulay63,64 in which the basis functions
are partitioned into sharp and difuse and diferent approaches
are used to evaluate the contributions from various pairs.
Recently, a similar approach has been used in the context of
stochastic density functional theory where contributions of
sharp functions are evaluated exactly while for difuse functions
stochastic resolution of identity is used.47
In the next section, we describe in more detail how the various

grids are formed and how the entire exchange matrix is
calculated.

H COMPUTATIONAL DETAILS
To illustrate the algorithm let us imagine we have an atom, A,
with uncontracted GTOs with exponents α1, α2, ··· in decreasing
order of magnitude. A user-defined value, αmin, divides the
GTOs into sharp functions that have exponents larger than αmin
and difuse functions with exponents smaller than αmin. Although
the sharp functions require a high-resolution grid, the spatial
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extent of this grid is relatively small because the function decays
rapidly in real space. The real space and Fourier space
representation of an s-type function of exponent α are
exp(−αr2) and exp(−G2/(4α)) up to a multiplicative factor. If
we want to represent the functions in real space up to an
accuracy of εr then we have a local atom-centered grid of radius,

r
ln( )

max
r

min
=

(5)

All exponents greater than αmin are supported by local grids with
grid points RA, RB, ··· respectively, centered on atoms A, B, ···,
respectively (see the upper panel of Figure 1). The remaining
functions are represented on a sparse grid of lower resolution
that spans the entire unit cell (U in the lower panel of Figure 1).
The sparse universal grid is truncated in the Fourier space with a
wavenumber GU,max such that,

G 4 ln( )U ,max K= (6)

where εK is a threshold that one can decrease continuously to
increase the overall accuracy of the calculation.
For all systems considered in this article, we have found that

using εr = 10−5 gives an overall error that will be below 50 μHa
per atom. The optimal value of αmin from a computational cost
point of view can be system-dependent. There is a trade-of
between the cost of the exchange evaluation and the memory
requirement for storing the functions on the dense grid. A higher
αmin speeds up the ISDF calculation because fewer functions are
considered sharp but it also increases the memory cost for
storing μ(RU) because the universal gridU requires more points.
We have found that an αmin value of 2.8 Bohr−2 is a reasonable
choice for the systems studied here.
Now one performs a local interpolative decomposition on

each atom-centered grid A such that the equality,

R R R( ) ( ) ( ) ( ) ( )L G L G
A A A A A A A A A A

A (7)

is satisfied up to suCcient accuracy, determined by an ISDF
threshold εISDF. In the equation, the subscripts indicate the grid
centered on atom A and the superscript L stands for local,
indicating all sharp functions that are atom-A centered. νAG are all
functions (superscript G stands for global) that have a nonzero
value on the grid around atom A, these include both the sharp
and difuse functions on atom A and also functions on other
atoms. ξA are ISDF fitting points (functions) on the grid around
A. At this point, it is also useful to define the set of functions μA

N

that are present in the global list but are not in the set L. These
nonlocal (N) functions have a nonzero value on at least one of
the grid points RA of local grid centered on A but are not one of
the sharp functions centered on atom A.
For the dense atom-centered grids, the ISDF fitting is done

using pivoted Cholesky without randomization because, unlike
on a full grid, it is inexpensive to build the product density matrix
M(RA,RA′) (eq 2) on local grids. After selecting the points using
pivoted Cholesky we use a least-squares minimization (eq 3) to
obtain the fitting functions ξA(RA). These functions are fully
supported on the local grids and are relatively inexpensive to
store in memory. This local ISDF procedure is carried out for
each local grid and the number of fitting functions chosen on
each grid is controlled by the user-specified tolerance εISDF. The
cost of performing the local ISDF calculation for each atom-
centered grid is system size-independent.

Once the fitting functions are formed, we calculate the two-
centered Coulomb integral V (ξA, ξB) for all pairs of atom-
centered ISDF functions, and V (ξA, RU) between ISDF
functions on atom-centered grids and each grid point on the
universal grid. The cost of constructing these matrices is equal to
O(Nξ,LNg ln(Ng)) +O(Nξ,L

2 ), whereNξ,L are the total number of
ISDF functions from all atom-centered grids. The first term
comes from having to perform an FFT for each local ISDF fitting
function and the second term comes from evaluating the matrix
V (ξA, ξB). Notice that because each ISDF function is local the
cost of this matrix evaluation is only quadratic as opposed to
cubic with fully nonlocal ISDF functions. Finally, the calculation
of the matrix V (ξA, RU) only requires the potential due to the
atom-centered fitting functions on the universal grids and does
not require any matrix multiplications. One can readily evaluate
the entire matrix V (RU, RU′) using a single FFT, using the fact
that this is a circulant matrix. In our algorithm, we avoid storing
this matrix and use FFT to calculate the exchange matrix using
the iterative FFT algorithm described previously.
The analysis here shows that the entire cost of the ISDF

calculation is quadratic in the system size which is lower than the
cubic cost of forming the exchange matrix. Therefore, the
overhead of performing these ISDF calculations is negligible.
Table 2 summarizes the various thresholds used to construct the
exchange matrix.

Building the Exchange Matrix. In the multigrid approach,
the expressions of the two-electron integrals have the THC
form, however, there are now four terms,

V

V

V

V

( ) ( ) ( ) ( , )( ) ( )

( ) ( ) ( , )( ) ( )

( ) ( ) ( , )( ) ( )

( ) ( ) ( , )( ) ( )

L G G L

N L L N

L G L N

N L G L

| = | | | |

+ | | | |

◊ | | | |

+ | | | |

(8)
The various matrices with superscripts L,N, andG are described
in Figure 2. The four terms arise to ensure that products of basis
functions are only evaluated on the appropriate grid. For
example, there are difuse functions that are nonzero on local
grids of various atoms and also on the difuse grid. The equation
ensures that the product of difuse functions is only evaluated on
the most sparse grid; on the sharp grids, only products of sharp−
sharp and sharp-difuse are evaluated.

Table 2. Accuracy of the Exchange Calculation is Determined
by Four Diferent Thresholds As Outlined Abovea

symbol meaning
αmin Gaussians with exponents greater than αmin are sharp and others are

difuse
εr Threshold that determines the extent of the local grid (see eq 5 and

upper panel of Figure 1)
εISDF Threshold used during pivoted-Cholesky decomposition that

determines the number of ISDF functions
εK Determines the number of grid points that make up the universal

sparse grid (see eq 6)
aFor all the calculations in the paper we fix εr to be 10−5 and αmin is
chosen to be 2.8 Bohr−2. The parameters εK and εISDF are varied to
obtain the desired accuracy.
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We use occ-RI and only the occupied-virtual part of the
exchange matrix is constructed using the two-electron integrals
in eq 8. We would like to reemphasize that in eq 8 one needs
access to the two-electron integrals V (RU, RU′) because all
points on the sparse universal grids are included as ISDF points.
However, this matrix is never stored and we rely on the fact that
this matrix is diagonal in the Fourier space and the action of this
matrix on any function is evaluated using FFTs.
It is worth pointing out that one can potentially speed up the

calculations by utilizing the block structure of the various
matrices. However, in our current work, the entire code is
implemented in Python and we find that implementing block
multiplication by using for loops incurs an overhead that nullifies
any benefit of reducing the computations. In a future
publication, this can be remedied by implementing some of
these matrix multiplications in an optimized C-code.

H RESULTS AND DISCUSSION
The algorithm described above was implemented in Python,
with a small portion that allows for the direct calculation of
atomic orbitals in C. The one-electron integrals comprising the
core Hamiltonian are calculated using a multigrid branch of
PySCF.65We benchmark the performance of themultigrid ISDF
method with occ-RI using two systems: diamond, with a
conventional unit cell containing eight carbon atoms, and
lithium hydride, with a conventional unit cell containing four
lithium and four hydrogen atoms. For all calculations the
Goedecker-Teter-Hutter (GTH) pseudopotentials66−68 and
uncontracted GTH−CC-XZVP basis sets69 of Ye are used
throughout. We use a Kinetic energy cutof of the plane waves in
FFT of 70 Eh for diamond and 130 Eh for lithium hydride to
ensure that the error from the finite plane-wave cutof is less than
5 μHa per atom. For all calculations shown in this section, we fix
εr = 10−5 and αmin = 2.8 Bohr−2.

Accuracy of Multigrid ISDF. In multigrid ISDF there are
two types of fitting functions, the first set is local and is
supported on a dense grid (their number is denoted by Nξ,1).
These functions are obtained through ISDF. The memory and
CPU cost of using these functions increases quadratically with
Nξ,1. The second type of ISDF functions are Sinc functions
uniformly placed throughout the unit cell (their number is
denoted by Nξ,2). The memory and CPU cost of the calculation
increases only linearly with the number of these functions.
In Figure 3 we show how the number of local ISDF functions

changes as one reduces the εISDF threshold and the
accompanying reduction in the error of the calculation. As
shown, the number of local ISDF functions needed is relatively
small and the number of these functions does not change
significantly with the size of the basis set. The error stops
decreasing exponentially because we have kept εK fixed which
fixes the number of ISDF functions on the difuse grid.
The number of uniform ISDF functions (Nξ,2) depends on

two settings: the largest GTO exponent that is less than the
threshold αmin and the threshold εK. These functions constitute
the majority of the ISDF fitting functions and often far exceed
the number of ISDF functions on the dense grid. Nξ,2 can vary
with the system and basis set. For example, in the TZ basis set of
lithium hydride there are no exponents between 3.1 and 1.4 (see
Table 3), thus with the αmin of 2.8 we find that theNξ,2 for the TZ
basis set is smaller than that for the DZ basis set. Table 3 gives
detailed information on the number of basis functions and ISDF

Figure 2. It is useful to define the set of functions μA
N that are present in

the global list but are not in the local set L. These nonlocal functions
(N) have a nonzero value on at least one of the grid points RA of local
grid centered on A but are not one of the sharp functions centered on
atom A. Graphical representations of the matrices (μ|ξ)G, (μ|ξ)L, and
(μ|ξ)N, where the superscripts refer to the sets of global (G), local (L),
and nonlocal (N) functions are shown. The colors here follow from
Figure 1 and represent sets of atom-centered GTOs that are local to
atom-centered grids. The white blocks correspond to zeros in the
matrix and the shaded blocks represent nonzero entries. The columns
of the matrices correspond to ISDF functions for atom-centered grids
(A, B, C) or all the grid points on the universal grid U.

Figure 3. Error per atom incurred from the ISDF approximation for diamond (C8) and lithium hydride (Li4H4) supercells with an increasing number
of local fitting functions for fixed εK of 10−2 and 10−3 for diamond and lithium hydride, respectively. The four points on each curve are obtained by using
εISDF = 10−2, 10−3, 10−4, 10−5.
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functions supported on the dense and sparse grids, along with
the range of exponents for the basis functions on each grid.
Next, we show that once the various thresholds are selected

for a unit cell, the error per atom does not increase with the size
of the system. Figure 4 shows the error per atom with increasing
Nξ/N for the diamond conventional unit cell C8 and supercells
of increasing sizes: (C8)2, (C8)4, and (C8)8; it also shows the
lithium hydride conventional unit cell Li4H4 and supercells of
increasing sizes: (Li4H4)2, (Li4H4)4, and (Li4H4)8. Here the
uncontracted GTH−CC-TZVP basis is used with εK = 10−2 and
10−3 for diamond and lithium hydride, respectively, which
determine the number of grid points in the sparse universal grid.
Three diferent ISDF thresholds are used, εISDF = 10−2, 10−3,
10−4, which increase the number of ISDF fitting functions used
on the dense grids. One can see that with decreasing thresholds
the errors in the calculations exponentially decrease. The
number of fitting functionsNξ includes the ISDF functions from
the atom-centered grids and also all the grid points in the
universal sparse grid.
The Nξ/N in these calculations is larger than in conventional

AO-based ISDF by almost a factor of 2. It is worth remembering
that the ISDF functions on the sparse grid most greatly
contribute to Nξ/N. For these functions, we do not store or
calculate the two-center Coulomb integrals and thus, the overall

CPU and memory cost is significantly lower than AO-based
ISDF as we show in the next subsection.

Cost of theMultigrid Calculations. Figure 5 compares the
wall times of single Coulomb and exchange builds and the ISDF
wall time that includes the time to find ISDF functions ξ and
build the matrix V (ξ, ξ′)(eq 1). The ISDF times here are
weighted by a factor of 1/7. A major hurdle overcome by the
multigrid method is the cost of ISDF. The wall times from the
multigrid ISDF are one to 2 orders of magnitude faster than the
single-grid THC and rPS methods (with occ-RI) from ref 40. In
the multigrid ISDF method, this is reduced because only small
subsets of product densities are fit on regions of the most dense
grids (eq 2). Themost significant eCciency gain comes from not
fitting the ISDF functions on universal sparse grid and
calculating the matrix V (ξ, ξ′) (eq 1) in a direct fashion during
the exchange build.
The memory requirement for the largest arrays is significantly

reduced in the multigrid builds. For the multigrid method, the
cost of 2-center integrals V (ξA, ξB), V (ξA, RU) for the 2 × 2 × 2
diamondTZ data shown here is about 1 GB (note that we do not
store the 2-center integralsV (RU, RU′) in memory), and the cost
of storing the orbital matrices (μ|ξ) require less than 1 GB. For
the LiH data shown here, the total memory required by the MG
method is less than 2 GB. For diamond, the THC method
requires about 53 GB and rPS 28 GB. For 1 × 2 × 2 LiH
supercell, THC and rPS require about 54 and 36 GB,
respectively. Compared to the single grid methods, the MG
method requires up to about 35 times less memory for the data
here. The smaller system is used for LiH as the 2 × 2 × 2
supercell required more than 128 GB of memory when using the
THC method. The scaling and memory requirements for TZ
basis set is shown in Figure 6.
Next, we calculate the scaling of the various steps with

increasing system size. Figure 7 shows the cost of single
Coulomb and exchange builds, the total ISDF times (as in
Figure 5 are weighted by 1/7), and the wall time per SCF
iteration for diagonalizing the Fock matrix for diamond
supercells of up to 80 unit cell copies, depending on the basis,
and lithium hydride supercells of up to 48 copies. Calculations
using GTH−CC-DZVP (DZ, left), GTH−CC-TZVP (TZ,
middle), and GTH−CC-QZVP (QZ, right) are shown. The
thresholds used are the same as reported in Figure 5. The
following conclusions can be drawn from the graphs:

Table 3. Basis Functions and ISDF Fitting Functions for 2× 2
× 2 Supercell of Diamond (C8)8 and Lithium Hydride
(Li4H4)8a

basis Nξ,1 Nξ,2 α1 α2 N Nsharp

Diamond (C8)8
DZ 3240 17,576 4.3−4.3 1.3−0.1 1344 256
TZ 4128 27,000 5.4−5.4 2.0−0.1 2368 256
QZ 5256 39,304 6.2−6.2 2.6−0.1 3968 256
Lithium hydride (Li4H4)8
DZ 1728 74,088 8.4−7.3 2.1−0.1 896 160
TZ 4568 39,304 10.9−3.1 1.4−0.1 1696 320
QZ 6120 74,088 12.5−4.5 2.3−0.1 3136 320

aNξ,1, the number of ISDF functions on the dense grid; Nξ,2, the
number of uniformly placed Sinc functions on the difuse grid; α1, the
range of exponents local to the dense grid; α2, the range of exponents
supported by the difuse grid; N, the total number of basis functions;
and Nsharp, the number of sharp basis functions.

Figure 4. Results in the two graphs are obtained using the TZ basis set.Nξ in the graph includes ISDF basis functions from both the dense and sparse
grids. The number of ISDF functions on the sparse grid was Nξ,2/N ≈ 11 for diamond, and 23 for lithium hydride. The accuracy is independent of
system size so smaller systems may be used when choosing an ISDF threshold. The data here can be reproduced with the following settings: εK = 10−2

and εISDF = 10−2, 10−3, and 10−4 for diamond, and εK = 10−3 and εISDF = 10−3, 10−4, and 10−5 for lithium hydride.
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1. The multigrid ISDF scales quadratically N2, which is due
to the local nature of the fitting. For errors under 50 μHa,
we used an ISDF threshold εISDF of 10−4 for diamond and
10−5 for lithium hydride which corresponds to Nξ/N of 9
to 84, depending on the system and basis used. The
majority of these fitting functions are Sinc functions on
the sparse grid. A large value of 84 is sometimes needed
for smaller basis set such as DZ because the number of
Sinc functions can be quite large relative to the size of the
basis set.

2. The scaling of the exchange matrix is cubic with the
system size. The cost of the calculation for the largest basis
set is only about a factor of 4 more expensive than the cost
of performing diagonalization.

3. The cost of Coulomb is nearly linear with the size of the
system. There is some deviation from linearity because in
these calculations we only use 2−4 Coulomb grids. By
adding more grids, linear scaling is possible; doing so
comes with additional CPU cost but no additional
memory requirement.

4. The cost of the exchange is cheaper than the cost of
Coulomb calculations for fairly large systems containing
up to 3000 basis functions in the case of diamond with the
QZ basis set and for around 1000 basis functions in the
case of lithium hydride with the QZ basis set.

5. The largest calculation, in terms of the number of basis
functions, was a 3 × 3 × 4 diamond supercell with the QZ
basis set containing 17,856 basis functions and 1,152
electrons. Because we use tighter thresholds, both εISDF
and εK, for lithium hydride the largest calculation for it
was a 3 × 3 × 3 supercell containing 431 electrons and
10,584 basis functions; this was also with the QZ basis.
The number of electrons per unit cell are also smaller in
LiH than in Diamond.

H CONCLUSIONS
In this paper, we have shown that eCcient calculations of
exchange matrices can be performed using our multigrid ISDF
algorithm. The multigrid ISDF is significantly more eCcient
than the usual ISDF algorithm both in terms of memory and

Figure 5. Wall times for a single exchange build using the AO-based ISDF (THC), robust pseudospectral method (rPS), single-grid with no ISDF
(FFT), and multigrid ISDF (MG)methods using TZ basis set on a single core of Intel(R) Xeon(R) CPU E5−2680 v3@ 2.50 GHz processor. The wall
time for the full ISDF procedure (red) is divided by the number of iterations to evaluate the per-iteration cost. The systems reported are a 2 × 2 × 2
supercell of C8 (diamond) and a 1× 2 × 2 supercell of Li4H4 (lithium hydride). For an accuracy of ≈50 μHa/atom, we used εK = 10−2 and εISDF = 10−4

for diamond and εK = 10−3 and εISDF = 10−5 for Li4H4 in the multigrid calculations. The ISDF parameters Nξ/N = 13 and 6 for Li4H4 and 7 and 4 for
diamond were used for the THC and rPSmethods, respectively, to get a similar accuracy. For theMGmethod, the wall times for building the exchange
(dark blue) and Coulomb (Direct, light blue)matrices are nearly equivalent. They are also comparable to the times for the THC and rPSmethods. The
ISDF wall time, however, is one to 2 orders of magnitude faster using the MG method.

Figure 6. Estimated memory required for THC (red), rPS (light blue) and MG (dark blue) are shown in the figure for the Diamond and LiH systems
with a TZ basis set with increasing supercell size (1× 1× 1, 1× 1× 2, 1× 2× 2, and 2× 2× 2). All three methods show that the memory requirements
scale quadratically with the size of the system, however, MG requires between one to 2 orders of magnitude smaller memory. We refer the reader to the
main text for more detailed discussion of the dominant memory cost in these calculations.
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CPU cost. With this algorithm, relatively large calculations
(containing >17,000 basis functions) can be performed without
running out of memory on a single node. With this technique,
the exchange calculation is more eCcient than Coulomb
calculations for systems with up to about 1000 basis functions
for TZ and QZ basis sets in diamond and lithium hydride
systems. For large basis sets, such as QZ, the cost of exchange
evaluation is only a factor of 4 more expensive than the cost of
diagonalization and because the scaling of the two steps is similar
we expect that this result will hold for even larger systems.
In our current implementation, we have not parallelized the

calculations, although it should be possible to do so with high
eCciency because most of the operations involve a series of
FFTs that can be embarrassingly parallelized, or matrix
multiplications that are also amenable to parallelization. We
have also not made use of linear scaling approaches to leverage
the fact that the exchange matrix is near-sighted, which can be
used to further improve the eCciency of the calculations,
particularly for systems with large band gaps. The approach we
have outlined here has many extensions that we are actively
exploring, including the ability to perform all-electron
calculations, use of mixed Gaussian−plane-wave basis set, use

for molecular calculations, the calculation of nuclear gradients,
and also use of k-point symmetry. It should be pointed out that
the use of ISDF allows one to obtain a nearly linear cost (O(Nk
log(Nk))) with the number of k-points Nk, however the order of
contraction used to obtain this scaling is diferent than the one
we have used in our current paper. We are currently working
toward addressing this issue in a future publication. Given that
the cost of the exchange evaluation is cheaper than Coulomb for
systems containing up to 1000 basis functions and around 100
electrons (these numbers are larger for diamond with the QZ
basis set), one can likely perform hybrid DFT calculations with a
similar cost as pure DFT calculations if the unit cells contain 100
or fewer electrons (because the scaling withNk is similar for both
Coulomb and exchange).
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Ángyán, J. G. Screened hybrid density functionals applied to solids. J.
Chem. Phys. 2006, 124, 154709.
(6) Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A. Excess
electron states in reduced bulk anatase TiO2: Comparison of standard
GGA, GGA+U, and hybrid DFT calculations. J. Chem. Phys. 2008, 129,
154113.
(7) Hai, X.; Tahir-Kheli, J.; Goddard, W. A. Accurate band gaps for
semiconductors from density functional theory. J. Phys. Chem. Lett.
2011, 2, 212−217.
(8) Basera, P.; Saini, S.; Arora, E.; Singh, A.; Kumar, M.; Bhattacharya,
S. Stability of non-metal dopants to tune the photo-absorption of TiO2
at realistic temperatures and oxygen partial pressures: A hybrid DFT
study. Sci. Rep. 2019, 9, 11427.
(9) Kovacic, Z.; Likozar, B.; Hus, M. Photocatalytic CO2 reduction: A
review of ab initio mechanism, kinetics, and multiscale modeling
simulations. ACS catalysis 2020, 10, 14984−15007.
(10) Almlöf, J.; Faegri, K.; Korsell, K. Principles for a direct SCF
approach to LICAO-MO ab-initio calculations. J. Comput. Chem. 1982,
3, 385−399.
(11) White, C. A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M.
The continuous fast multipole method. Chem. Phys. Lett. 1994, 230, 8−
16.
(12) Challacombe, M.; Schwegler, E.; Almlöf, J. Fast assembly of the
Coulomb matrix: A quantum chemical tree code. J. Chem. Phys. 1996,
104, 4685−4698.
(13) Kudin, K. N.; Scuseria, G. E. A fast multipole method for periodic
systems with arbitrary unit cell geometries. Chem. Phys. Lett. 1998, 283,
61−68.

(14) Challacombe, M.; Schwegler, E. Linear scaling computation of
the Fock matrix. J. Chem. Phys. 1997, 106, 5526.
(15) Ochsenfeld, C.; White, C. a.; Head-Gordon, M. Linear and
sublinear scaling formation of Hartree-Fock-type exchange matrices. J.
Chem. Phys. 1998, 109, 1663.
(16) Goedecker, S. Linear scaling electronic structure methods. Rev.
Mod. Phys. 1999, 71, 1085−1123.
(17) Ko, H.-Y.; Jia, J.; Santra, B.; Wu, X.; Car, R.; DiStasio, R. A., Jr.
Enabling Large-Scale Condensed-Phase Hybrid Density Functional
Theory Based Ab Initio Molecular Dynamics. 1. Theory, Algorithm,
and Performance. J. Chem. Theory Comput. 2020, 16, 3757−3785.
(18) Sierka, M.; Hogekamp, A.; Ahlrichs, R. Fast evaluation of the
Coulomb potential for electron densities using multipole accelerated
resolution of identity approximation. J. Chem. Phys. 2003, 118, 9136.
(19) Sodt, A.; Subotnik, J. E.; Head-Gordon, M. Linear scaling density
fitting. J. Chem. Phys. 2006, 125, 194109.
(20) Polly, R.;Werner, H. J.;Manby, F. R.; Knowles, P. J. Fast Hartree-
Fock theory using local density fitting approximations.Mol. Phys. 2004,
102, 2311−2321.
(21) Sodt, A.; Head-Gordon, M. Hartree-Fock exchange computed
using the atomic resolution of the identity approximation. J. Chem. Phys.
2008, 128, 104106.
(22) Manzer, S. F.; Epifanovsky, E.; Head-Gordon, M. Efficient
implementation of the pair atomic resolution of the identity
approximation for exact exchange for hybrid and range-separated
density functionals. J. Chem. Theory Comput. 2015, 11, 518−527.
(23) Manzer, S.; Horn, P. R.; Mardirossian, N.; Head-Gordon, M.
Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm. J.
Chem. Phys. 2015, 143, No. 024113.
(24) Dunlap, B. I. Robust variational fitting: Gaspar’s variational
exchange can accurately be treated analytically. Journal of Molecular
Structure: THEOCHEM 2000, 501−502, 221−228.
(25) Dunlap, B. I. Robust and variational fitting: Removing the four-
center integrals from center stage in quantum chemistry. Journal of
Molecular Structure: THEOCHEM 2000, 529, 37−40.
(26) Hollman, D. S.; Schaefer, H. F.; Valeev, E. F. Fast construction of
the exchange operator in an atom-centred basis with concentric atomic
density fitting. Mol. Phys. 2017, 115, 2065−2076.
(27) Ihrig, A. C.; Wieferink, J.; Zhang, I. Y.; Ropo, M.; Ren, X.; Rinke,
P.; Scheffler, M.; Blum, V. Accurate localized resolution of identity
approach for linear-scaling hybrid density functionals and for many-
body perturbation theory. New J. Phys. 2015, 17, No. 093020.
(28) Kokott, S.; Merz, F.; Yao, Y.; Carbogno, C.; Rossi, M.; Havu, V.;
Rampp, M.; SchePer, M.; Blum, V. ECcient All-electron Hybrid
Density Functionals for Atomistic Simulations Beyond 10,000 Atoms.
arXiv preprint arXiv:2403.10343 2024.
(29) Beebe, N.; Linderberg, J. Simplifications in the generation and
transformation of two-electron integrals in molecular calculations. Int. J.
Quantum Chem. 1977, 12, 683−705.
(30) Aquilante, F.; Lindh, R.; Bondo Pedersen, T. Unbiased auxiliary
basis sets for accurate two-electron integral approximations. J. Chem.
Phys. 2007, 127, 114107.
(31) Friesner, R. A. Solution of self-consistent field electronic
structure equations by a pseudospectral method. Chem. Phys. Lett.
1985, 116, 39−43.
(32) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient,
approximate and parallel Hartree-Fock and hybrid DFT calculations. A
‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem.
Phys. 2009, 356, 98−109.
(33) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Martínez, T. J.
Communication: Tensor hypercontraction. III. Least-squares tensor
hypercontraction for the determination of correlated wavefunctions. J.
Chem. Phys. 2012, 137, 221101.
(34) Parrish, R. M.; Hohenstein, E. G.; Martínez, T. J.; Sherrill, C. D.
Tensor hypercontraction. II. Least-squares renormalization. J. Chem.
Phys. 2012, 137, 224106.
(35) Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. Tensor
hypercontraction density fitting. I. Quartic scaling second- and third-

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c02431
J. Phys. Chem. A 2024, 128, 7451−7461

7460

https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Kori+E.+Smyser%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3697-0717
https://orcid.org/0000-0002-3697-0717
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Alec+White%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c02431?ref=pdf
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1080/00268976.2017.1333644
https://doi.org/10.1080/00268976.2017.1333644
https://doi.org/10.1080/00268976.2017.1333644
https://doi.org/10.1063/1.2085170
https://doi.org/10.1063/1.2085170
https://doi.org/10.1063/1.2085170
https://doi.org/10.1063/1.2187006
https://doi.org/10.1063/1.2996362
https://doi.org/10.1063/1.2996362
https://doi.org/10.1063/1.2996362
https://doi.org/10.1021/jz101565j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz101565j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-019-47710-7
https://doi.org/10.1038/s41598-019-47710-7
https://doi.org/10.1038/s41598-019-47710-7
https://doi.org/10.1021/acscatal.0c02557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.0c02557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.0c02557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.540030314
https://doi.org/10.1002/jcc.540030314
https://doi.org/10.1016/0009-2614(94)01128-1
https://doi.org/10.1063/1.471163
https://doi.org/10.1063/1.471163
https://doi.org/10.1016/S0009-2614(97)01329-8
https://doi.org/10.1016/S0009-2614(97)01329-8
https://doi.org/10.1063/1.473575
https://doi.org/10.1063/1.473575
https://doi.org/10.1063/1.476741
https://doi.org/10.1063/1.476741
https://doi.org/10.1103/RevModPhys.71.1085
https://doi.org/10.1021/acs.jctc.9b01167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1567253
https://doi.org/10.1063/1.1567253
https://doi.org/10.1063/1.1567253
https://doi.org/10.1063/1.2370949
https://doi.org/10.1063/1.2370949
https://doi.org/10.1080/0026897042000274801
https://doi.org/10.1080/0026897042000274801
https://doi.org/10.1063/1.2828533
https://doi.org/10.1063/1.2828533
https://doi.org/10.1021/ct5008586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5008586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5008586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5008586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4923369
https://doi.org/10.1016/S0166-1280(99)00433-9
https://doi.org/10.1016/S0166-1280(99)00433-9
https://doi.org/10.1016/S0166-1280(00)00528-5
https://doi.org/10.1016/S0166-1280(00)00528-5
https://doi.org/10.1080/00268976.2017.1346312
https://doi.org/10.1080/00268976.2017.1346312
https://doi.org/10.1080/00268976.2017.1346312
https://doi.org/10.1088/1367-2630/17/9/093020
https://doi.org/10.1088/1367-2630/17/9/093020
https://doi.org/10.1088/1367-2630/17/9/093020
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1063/1.2777146
https://doi.org/10.1063/1.2777146
https://doi.org/10.1016/0009-2614(85)80121-4
https://doi.org/10.1016/0009-2614(85)80121-4
https://doi.org/10.1016/j.chemphys.2008.10.036
https://doi.org/10.1016/j.chemphys.2008.10.036
https://doi.org/10.1016/j.chemphys.2008.10.036
https://doi.org/10.1063/1.4768241
https://doi.org/10.1063/1.4768241
https://doi.org/10.1063/1.4768233
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4732310
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c02431?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


order Mo̷ller-Plesset perturbation theory. J. Chem. Phys. 2012, 137,
No. 044103.
(36) Lu, J.; Ying, L. Compression of the electron repulsion integral
tensor in tensor hypercontraction format with cubic scaling cost. J.
Comput. Phys. 2015, 302, 329−335.
(37) Hu, W.; Lin, L.; Yang, C. Interpolative Separable Density Fitting
Decomposition for Accelerating Hybrid Density Functional Calcu-
lations with Applications to Defects in Silicon. J. Chem. Theory Comput.
2017, 13, 5420−5431.
(38) Dong, K.; Hu, W.; Lin, L. Interpolative Separable Density Fitting
through Centroidal Voronoi Tessellation with Applications to Hybrid
Functional Electronic Structure Calculations. J. Chem. Theory Comput.
2018, 14, 1311−1320.
(39) Lee, J.; Lin, L.; Head-Gordon, M. Systematically Improvable
Tensor Hypercontraction: Interpolative Separable Density-Fitting for
Molecules Applied to Exact Exchange, Second- A nd Third-Order
Mo̷ller-Plesset Perturbation Theory. J. Chem. Theory Comput. 2020, 16,
243−263.
(40) Sharma, S.;White, A. F.; Beylkin, G. Fast Exchange withGaussian
Basis Set Using Robust Pseudospectral Method. J. Chem. Theory
Comput. 2022, 18, 7306−7320.
(41) Rettig, A.; Lee, J.; Head-Gordon, M. Even Faster Exact Exchange
for Solids via Tensor Hypercontraction. J. Chem. Theory Comput. 2023,
19, 5773−5784.
(42) Zhang, Z.; Yin, X.; Hu, W.; Yang, J. Machine Learning K-Means
Clustering of Interpolative Separable Density Fitting Algorithm for
Accurate and Efficient Cubic-Scaling Exact Exchange Plus Random
Phase Approximation within Plane Waves. J. Chem. Theory Comput.
2024, 20, 1944−1961.
(43) Bowler, D. R.;Miyazaki, T. O(N)methods in electronic structure
calculations. Rep. Prog. Phys. 2012, 75, No. 036503.
(44) Wu, X.; Selloni, A.; Car, R. Order- N implementation of exact
exchange in extended insulating systems. Physical Review B - Condensed
Matter and Materials Physics 2009, 79, No. 085102.
(45) Baer, R.; Neuhauser, D.; Rabani, E. Self-averaging stochastic
kohn-sham density-functional theory. Phys. Rev. Lett. 2013, 111,
No. 106402.
(46) Neuhauser, D.; Rabani, E.; Cytter, Y.; Baer, R. Stochastic
Optimally Tuned Range-Separated Hybrid Density Functional Theory.
J. Phys. Chem. A 2016, 120, 3071−3078.
(47) Bradbury, N. C.; Allen, T.; Nguyen, M.; Neuhauser, D.
Deterministic/Fragmented-StocLhastic Exchange for Large-Scale
Hybrid DFT Calculations. J. Chem. Theory Comput. 2023, 19, 9239−
9247.
(48) Todorova, T.; Seitsonen, A. P.; Hutter, J.; Kuo, I.-F. W.; Mundy,
C. J. Molecular dynamics simulation of liquid water: Hybrid density
functionals. J. Phys. Chem. B 2006, 110, 3685−3691.
(49) Lin, L. Adaptively Compressed Exchange Operator. J. Chem.
Theory Comput. 2016, 12, 2242−2249.
(50) Guidon, M.; Hutter, J.; VandeVondele, J. Auxiliary Density
Matrix Methods for Hartree-Fock Exchange Calculations. J. Chem.
Theory Comput. 2010, 6, 2348−2364.
(51) Qin, X.; Liu, J.; Hu, W.; Yang, J. Interpolative separable density
fitting decomposition for accelerating Hartree−Fock exchange
calculations within numerical atomic orbitals. J. Phys. Chem. A 2020,
124, 5664−5674.
(52) Lippert, G.; Hutter, J.; Parrinello, M. The Gaussian and
augmented-plane-wave density functional method for ab initio
molecular dynamics simulations. Theor. Chem. Acc. 1999, 103, 124−
140.
(53) Vandevondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;
Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density
functional calculations using a mixed Gaussian and plane waves
approach. Comput. Phys. Commun. 2005, 167, 103−128.
(54) Laino, T.; Mohamed, F.; Laio, A.; Parrinello, M. An efficient real
space multigrid QM/MM electrostatic coupling. J. Chem. Theory
Comput. 2005, 1, 1176−1184.
(55) Beck, T. L. 5 Real-Space and Multigrid Methods in Computa-
tional Chemistry. Reviews in Computational Chemistry 2008, 26, 223.

(56) Del Ben, M.; Hutter, J.; VandeVondele, J. Second-order Mo̷ller−
Plesset perturbation theory in the condensed phase: An efficient and
massively parallel Gaussian and plane waves approach. J. Chem. Theory
Comput. 2012, 8, 4177−4188.
(57) Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald,
P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schiffmann, F.;
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(63) Füsti-Molnár, L.; Pulay, P. Accurate molecular integrals and
energies using combined plane wave and Gaussian basis sets in
molecular electronic structure theory. J. Chem. Phys. 2002, 116, 7795−
7805.
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