
Fair Inference for Discrete Latent Variable Models:
An Intersectional Approach

Rashidul Islam∗

raislam@visa.com
Visa Research, Visa Inc.
Atlanta, Georgia, USA

Shimei Pan
shimei@umbc.edu

Department of IS, UMBC
Baltimore, Maryland, USA

James R. Foulds
jfoulds@umbc.edu

Department of IS, UMBC
Baltimore, Maryland, USA

ABSTRACT
It is now widely acknowledged that machine learning models,
trained on data without due care, often exhibit discriminatory be-
havior. Traditional fairness research has mainly focused on super-
vised learning tasks, particularly classification. While fairness in
unsupervised learning has received some attention, the literature
has primarily addressed fair representation learning of continu-
ous embeddings. This paper, however, takes a different approach
by investigating fairness in unsupervised learning using graphical
models with discrete latent variables. We develop a fair stochastic
variational inference method for discrete latent variables. Our ap-
proach uses a fairness penalty on the variational distribution that
reflects the principles of intersectionality, a comprehensive perspec-
tive on fairness from the fields of law, social sciences, and human-
ities. Intersectional fairness brings the challenge of data sparsity
in minibatches, which we address via a stochastic approximation
approach. We first show the utility of our method in improving
equity and fairness for clustering using naïve Bayes and Gauss-
ian mixture models on benchmark datasets. To demonstrate the
generality of our approach and its potential for real-world impact,
we then develop a specialized graphical model for criminal justice
risk assessments, and use our fairness approach to prevent the
inferences from encoding unfair societal biases.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Unsu-
pervised learning; • Applied computing → Law, social and
behavioral sciences.
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1 INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) have become
ubiquitous. Increasingly, the automated decisions made by these
systems have important real-life consequences, from credit scoring
to the prediction of re-offending [46, 48]. However, implicit societal
stereotypes in the data can often undermine the integrity of these
decisions, leading to unfair discrimination against certain groups of
people [2, 3, 7, 10, 47]. With the rising awareness and regulations,
the AI community has devoted much effort to the development and
enforcement of numerous quantifiable notions of fairness for AI/ML
models [18, 21, 25, 35, 41]. The main paradigm for fair algorithms
is to posit mathematical criteria of fairness across protected demo-
graphic groups, (e.g. by gender, and race) or similar individuals (e.g.
persons with similar merits and risks) [6, 22]. The paradigm then
enforces these criteria, when optimizing objective functions, by
penalizing violations [5, 21, 30, 31] or by finding a transformation
of data that provides fair latent representations [59].

From a fairness perspective, representation learning is appealing
because deep learning-based vector representations often general-
ize to tasks that are unspecified at training time, implying that a
properly designed fair network might operate as a kind of “parity
bottleneck,” reducing discrimination in unknown downstream tasks.
Particularly, the goal of fair representation learning is to transform
the data into continuous latent spaces that are invariant to pro-
tected attributes and useful to mitigate societal bias in tasks, e.g.,
classification. Most of the recent frameworks [19, 43, 43, 45, 60, 61]
are built upon the variational autoencoder (VAE) [40], which can
perform effective stochastic variational inference (SVI) and learning
in continuous latent variables using backpropagation.

While the benefits of fair representations in continuous latent
space in downstream tasks are clear, we are conversely interested
in extending the success of variational techniques to fair inference
in graphical models with discrete latent variables. As societal prej-
udices, societal disadvantages, underrepresentation of minorities,
and intentional prejudices are inherent in historical data [3], in-
ferences can naturally encode these harmful biases in the latent
variables which should be prevented to mitigate discriminatory de-
cisions. It is pertinent to acknowledge the existing work on fairness
in causal latent variable models [41]. These works focus on fair
causal inference in supervised settings, such as with class labels.
They take into account the fairness-aware estimation of causal
effects, attempt to handle confounding factors, and offer an im-
portant perspective on the fairness problem. Our work, however,
explores a different yet complementary space. We focus on unsu-
pervised settings with discrete latent variables, where the causal
mechanisms are not explicitly modeled, but fairness considerations
remain crucial.
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Graphical models with discrete latent variables are used in nu-
merous AI/ML methods including semi-supervised learning [38],
and topic modeling [56]. Furthermore, discrete latent variables are a
natural fit for complex reasoning, planning and predictive learning.
E.g., an AI agent may learn a pattern that often occurs in the data,
“if you study hard, you will be successful,” via a latent variable, study
hard. This can be achieved by structuring the model such that the
latent variable is associated with certain observable variables, like
hours spent studying, grades obtained, etc. However, inference on
discrete latent variables with backpropagation-based variational
methods is difficult due to the inability to re-parameterize gradients.
To address this, continuous relaxations in the VAE framework have
been achieved via the Gumbel-Softmax re-parameterization trick
[32] which defines a temperature-based continuous distribution,
and converges to a discrete distribution in the zero-temperature
limit. [12] addressed fairness in clustering problems for both 𝑘-
center and 𝑘-median objectives, but not for general graphical mod-
els with discrete latents.

In this paper, we develop a practical framework for fair SVI
on arbitrary graphical models with discrete latent variables to im-
prove their equity and fairness. Our method is general and could
be incorporated into probabilistic programming systems. Given a
probabilistic graphical model, e.g. a custom model defined for a
particular task, our goal is to perform inference such that the results
are fair, e.g., they do not reflect negative stereotypes. For example,
multiple studies demonstrated that police stop people from racial
minority groups more frequently than whites [11, 23, 26, 27, 57].
In a traffic model, we may wish to prevent the inference that in-
dividuals of one demographic drive more aggressively than other
demographics. Such an inference may in fact be warranted by the
data, but it may be known –due to knowledge not encoded in the
data, or known causes of the issue such as less data for minorities–
that this inference cannot be correct, or it may be desirable to pre-
vent it in order to avoid harm due to the use of the model, pursuant
to Title VII [3]. Furthermore, our fairness intervention technique
enforces an intersectional fairness notion [21] that guarantees fair-
ness protections for all subsets of the protected attributes (e.g., black
women, women, and black) which is consistent with the ethical
principles of intersectionality theory [13, 15].

Our key contributions can be summarized as follows:
• We introduce the novel problem of fair inference in discrete
latent variable models and propose its first solution. We for-
mulate fair inference in unsupervised discrete latent variable
models as a discrete VAE, andwe design a practical stochastic
variational inference algorithm, leveraging reparameteriza-
tion strategies for discrete latents.

• We address the practical challenges that arise in this setting
such as data sparsity in minibatches, via stochastic approx-
imation, and we develop practical methods for addressing
posterior collapse.

• We demonstrate the utility of our method for clustering
analysis using naïve Bayes andGaussianmixturemodels, and
apply it to fair inference in a new special-purpose criminal
justice decision model.

2 BACKGROUND
2.1 Variational Autoencoder (VAE)
Variational inference [29, 33] is an optimization approach to solve
inference problems for latent variable models. We typically assume
a generative model 𝑝 (𝑥, 𝑧) = 𝑝 (𝑥 |𝑧)𝑝 (𝑧) that produces a dataset
x = {𝑥 𝑗 }𝑛𝑗=1 consisting of 𝑛 i.i.d. individuals, generated using a
set of 𝐾-dimensional discrete latent variables z = {𝑧 𝑗 }𝑛𝑗=1. Fur-
thermore, each 𝑧 𝑗 is assumed to be generated from some prior
distribution 𝑝 (𝑧). We aim to compute the posterior distribution
𝑝 (𝑧 |𝑥), which is assumed intractable over latent variables, and so
approximations must be used. The key idea is to approximate 𝑝 (𝑧 |𝑥)
with a more tractable distribution 𝑞(𝑧), referred to as a variational
distribution, and minimize the KL-divergence 𝐷𝐾𝐿 between them.
The variational autoencoder (VAE) [40] performs variational infer-
ence in a latent Gaussian model where the variational posterior
and model likelihood are parameterized by neural nets 𝜙 and 𝜃 ,
respectively. The VAE is generally implemented with a Gaussian
prior 𝑝𝜃 (𝑧) = N(0, 1). The objective to maximize the evidence
lower-bound (ELBO) is made differentiable by reparameterizing
𝑧 ∼ 𝑞𝜙 (𝑧 |𝑥) with 𝑧 = 𝜇 + 𝜎 ⊙ E, where E ∼ N(0, 1) as:

LVAE (𝜃,𝜙 ) = E𝑞𝜙 (𝑧 |𝑥 ) [log𝑝𝜃 (𝑥 |𝑧 ) ] − 𝐷𝐾𝐿 [𝑞𝜙 (𝑧 |𝑥 ) | |𝑝𝜃 (𝑧 ) ] . (1)

2.2 Gumbel-Softmax Trick
The Gumbel-Softmax trick is a reparameterization technique for
training VAEs with discrete latent variables using the Gumbel-
Softmax distribution [32, 44], leveraging the Gumbel-Max distribu-
tion, an efficient way to draw samples 𝑧 from a 𝑘-dimensional cate-
gorical distributionwith probabilities𝜋 as 𝑧 = one_hot(arg max𝑖 [𝑔𝑖+
log𝜋𝑖 ]), where 𝑔𝑖 ∼ Gumbel(0, 1) are i.i.d. samples. As “arg max"
is not differentiable, in Gumbel-Softmax the softmax function is
used as a continuous approximation:

𝑧𝑖 =
exp( (𝑔𝑖 + log𝜋𝑖 )/𝜏 )∑𝐾
𝑘=1 exp( (𝑔𝑘 + log𝜋𝑘 )/𝜏 )

for 𝑖 = 1, . . . , 𝐾 , (2)

where the temperature 𝜏 , which is is annealed towards 0, controls
how closely samples from the Gumbel-Softmax distribution ap-
proximates the target distribution 𝜋 . Reparameterizing via Gumbel-
Softmax facilitates backpropagation.

3 METHOD: FAIR VARIATIONAL INFERENCE
3.1 Problem Formulation
Consider a generative probabilistic model 𝑝𝜃 (𝑥, 𝑧) with discrete
latent variables 𝑧. Let 𝐴 be protected attributes, e.g. the individuals’
gender and race, which may or may not be included in the typical
(or non-sensitive) 𝐷-dimensional attribute vector 𝑥 . We aim to
perform fair inference on 𝑝𝜃 (𝑥, 𝑧) with respect to 𝐴.

We propose to model this scenario as a VAE via Equation 1,
leveraging the Gumbel-Softmax trick (Equation 2). Our proposed
stochastic variational inference algorithm to compute the posterior
distribution 𝑝𝜃 (𝑧 |𝑥) achieves two properties: 1) it allows scalable
inference that suits big data, and 2) it incorporates a fairness penalty
function, which provides a simple and effective fairness interven-
tion via backpropagation.
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3.2 Inference Network
We use a neural network-based inference network 𝑞𝜙 (𝑧 |𝑥) for
the variational approximation to the intractable posterior 𝑝𝜃 (𝑧 |𝑥),
where weights and biases are variational parameters 𝜙 . Following
[32], let the prior 𝑝𝜃 (𝑧) be a uniform discrete distribution with
probability 1/𝐾 , although this can easily be generalized as shown
in a later section for specialized modeling. The first step of our
method is to reparameterize the variational distribution for latent
variable sampling so that discrete distributions are re-represented
as unconstrained distributions, in order to facilitate backpropaga-
tion. The two main options are the logistic-normal representation
[56], and the Gumbel-softmax representation. If we use the logistic-
normal representation, we reparameterize 𝑞𝜙 (𝑧 |𝑥) using a mean
𝜇 and covariance matrix Σ via a logistic function. We focus on
the Gumbel-softmax approach, since it performed better in pre-
liminary experiments. To encode discrete 𝑧, the inference network
basically outputs unnormalized log probabilities log𝜋 for the latent
classes which are then used to reparameterize 𝑞𝜙 (𝑧 |𝑥) using the
Gumbel-Softmax trick in Equation 2.

3.3 Generative Network
To learn the generative model’s parameters 𝜃 , unlike for the VAE,
no neural network is used. It is generally impossible to accurately
approximate the true joint distribution over observed and latent
variables, including the true prior and posterior distributions over
latent variables using the VAE framework due to the unidentifi-
ability of the model [36], meaning that there are many different
possible configurations of the latents that would generate the same
observed variables. Khemakhem et al. [36] provided a solution that
requires a factorized prior over the latent variables given an auxil-
iary observed variable, usually class labels.

3.3.1 Addressing Unidentifiability. As we desire to perform unsu-
pervised learning, where no class labels are available, we present
a different approach that produces identifiable and meaningful
latent variables. We randomly initialize 𝜃 , while simply consid-
ering some informative hyper-priors 𝑝𝛼 (𝜃 ) on 𝜃 , where 𝛼 are the
hyper-parameters and fixed. In the context of latent variables, 𝑝𝛼 (𝜃 )
plays an important role in achieving identifiability and meaning-
fulness, meaning that the 𝜃 can be uniquely estimated from the
observed data. Furthermore, by incorporating prior knowledge
or beliefs about the latent variables, 𝑝𝛼 (𝜃 ) can be used to break
ties in the ordering of latent variables. This is because 𝑝𝛼 (𝜃 ) pro-
vides prior information that constrains the parameter space of the
model, reducing the ambiguity in the estimated parameters 𝜃 . For
example, consider a model that involves latent variables such as
“hard-working" and “not hard-working," and the observed variables
such as “high income" and “low income." The use of informative
priors on 𝜃 can allow us to determine which latent variable is more
likely to be associated with the observed variable of “high income."
For instance, the prior may be such that the “hard-working" latent
variable is more likely to be associated with "high income" than
the “not hard-working" latent variable. This effectively breaks any
ties in the ordering of the latent variables, leading to more mean-
ingful and interpretable results. In vanilla model with no fairness

intervention, we then jointly optimize 𝜃 and 𝜙 via the ELBO:
L(𝜃,𝜙 ) = E𝑞𝜙 [log𝑝𝜃 (𝑥, 𝑧 ) ] − E𝑞𝜙 [log𝑞𝜙 (𝑧 |𝑥 ) ]

= E𝑞𝜙 [log𝑝𝜃 (𝑥 |𝑧 ) + log𝑝𝜃 (𝑧 ) + 𝑝𝛼 (𝜃 ) ] − E𝑞𝜙 [log𝑞𝜙 (𝑧 |𝑥 ) ]
.

(3)

3.4 Fair Inference Technique
We enforce fairness by adding a penalty to the ELBO objective. Our
inference and learning objective is:

min
𝜃,𝜙

−
𝑛∑︁
𝑗=1

L 𝑗 (𝜃,𝜙 ) + 𝜆F(𝜙,𝐴) , (4)

where, L(𝜃, 𝜙) is the ELBO of the vanilla model in Equation 3, F is
a fairness penalty, and 𝜆 is a hyper-parameter that trades between
the ELBO and fairness. In this work, our fair inference technique
uses a fairness criterion that is motivated from an intersectionality
perspective as a penalty term to measure violations, with regard to
parity in the inferred discrete latent variables for intersecting pro-
tected groups. To design the fairness penalty on ELBO, we adapt the
differential fairness (DF) metric [21], which was originally proposed
for classification. DF extends the 80% rule to multiple protected
attributes and outcomes, and provides an intersectionality property:

Let 𝑠1, . . . , 𝑠𝑝 be discrete-valued protected attributes, 𝐴 = 𝑠1 × 𝑠2 ×
. . . × 𝑠𝑝 . An inference mechanism 𝑞𝜙 (𝑧 |𝑥) satisfies 𝜖-DF with respect
to 𝐴 if for all 𝑥 , and 𝑧 ∈ 𝐾 ,

𝑒−𝜖 ≤
𝑝 (𝑞𝜙 (𝑧 |𝑥 ) = 𝑧 |𝑠𝑖 )
𝑝 (𝑞𝜙 (𝑧 |𝑥 ) = 𝑧 |𝑠 𝑗 )

≤ 𝑒𝜖 , (5)

for all (𝑠𝑖 , 𝑠 𝑗 ) ∈ 𝐴 × 𝐴 where 𝑃 (𝑠𝑖 ) > 0, 𝑃 (𝑠 𝑗 ) > 0 (Proof given
in [21]). Smaller 𝜖 is better, and 𝜖 = 0 is ideal. In principle, we
can measure 𝜖-DF using the empirical data distribution. Let 𝑁𝑧,𝑠 =∑
𝑥∈x:𝐴=𝑠 z and 𝑁𝑠 be the empirically estimated expected counts for

latent assignments per group and for total population per group, re-
spectively. Then 𝜖-𝐷𝐹 can be estimated via the posterior predictive
distribution of a Dirichlet-multinomial, where scalar 𝛼 is a Dirichlet
prior with concentration parameter 𝐾𝛼 , as:

𝑒−𝜖 ≤
𝑁𝑧,𝑠𝑖 + 𝛼
𝑁𝑠𝑖 +𝐾𝛼

𝑁𝑠 𝑗 +𝐾𝛼
𝑁𝑧,𝑠 𝑗 + 𝛼

≤ 𝑒𝜖 . (6)

3.4.1 Intersectional Fair Variational Inference. The above equation
and its gradients are sufficient for batch training. However, the
reliable estimation of 𝜖-𝐷𝐹 on the inference mechanism in terms of
𝐴, denoted by 𝜖 (𝑞𝜙 (𝑧 |𝑥), 𝐴), for a minibatch becomes statistically
challenging due to data sparsity of intersectional groups [20]. For
example, one or more missing intersectional groups for a minibatch
is a typical scenario in the stochastic setting that can lead to in-
accurate estimation of the fairness, an obstruction to scaling up
the inference using SVI. To address data sparsity in 𝜖 (𝑞𝜙 (𝑧 |𝑥), 𝐴),
inspired by the noisy update technique in several SVI algorithms
[29], we develop a stochastic approximation-based approach [52]
that updates count parameters for each minibatch𝑚 as follows:

𝑁𝑧,𝑠 := (1 − 𝜌𝑡 )𝑁𝑧,𝑠 + 𝜌𝑡
𝑛

𝑚
𝑁̂𝑧,𝑠 ,

𝑁𝑠 := (1 − 𝜌𝑡 )𝑁𝑠 + 𝜌𝑡
𝑛

𝑚
𝑁̂𝑠 ,

(7)

where, 𝑁̂𝑧,𝑠 and 𝑁̂𝑠 are empirically estimated noisy expected counts
per group for a minibatch, and 𝜌𝑡 is a step size schedule, typically
annealed towards zero. These updates correspond to the updates
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Algorithm 1 Intersectional Fair Stochastic Variational Inference
Require: Train data x = {𝑥 𝑗 }𝑛𝑗=1
Require: Trade-off parameter 𝜆 > 0
Require: Desired fairness 𝜖0
Require: Constant step-size for expected counts 𝜌𝑡
Require: Constant step-size for optimization algorithm 𝜌𝑜

Require: Randomly initialized generative model’s parameters:
𝜃 , i.e., 𝜇 and 𝜎

Require: Randomly initialized inference network’s parameters:
𝜙 , i.e., MLP’s weights and biases

Require: Fixed hyper-priors 𝑝𝛼 (𝜃 )
Require: Fixed prior 𝑝𝜃 (𝑧 )
Output: Likelihood 𝑝𝜃 (𝑥 |𝑧 )
Output: Variational Posterior 𝑞𝜙 (𝑧 |𝑥 )

• For each epoch:
– For each minibatch𝑚:

∗ Empirically estimate 𝑁̂𝑧,𝑠 =
∑
𝑥 ∈x𝑚 :𝐴=𝑠 z𝑚 and 𝑁̂𝑠

∗ Apply update: 𝑁𝑧,𝑠 := (1 − 𝜌𝑡 )𝑁𝑧,𝑠 + 𝜌𝑡 𝑛𝑚 𝑁̂𝑧,𝑠
∗ Apply update: 𝑁𝑠 := (1 − 𝜌𝑡 )𝑁𝑠 + 𝜌𝑡 𝑛𝑚 𝑁̂𝑠
∗ Estimate 𝜖 (𝑞𝜙 (z |x), 𝐴) :

𝑒−𝜖 ≤ 𝑁𝑧,𝑠𝑖 +𝛼
𝑁𝑠𝑖 +𝐾𝛼

𝑁𝑠𝑗 +𝐾𝛼
𝑁𝑧,𝑠 𝑗 +𝛼

≤ 𝑒𝜖

∗ Compute fairness penalty:
F(𝜙,𝐴) = max(0, 𝜖 (𝑞𝜙 (z |x), 𝐴) − 𝜖0 )

∗ Apply update using stochastic gradient descent with 𝜌𝑜 via
Equation 3 and 4:

min𝜃,𝜙 − 1
𝑚

∑𝑚
𝑗=1 L 𝑗 (𝜃,𝜙 ) + 𝜆F(𝜙,𝐴)

//in practice, Adam via backpropagation and autodiff

of the stochastic approximation algorithm, which is shown to con-
verge to the counts from the full dataset, under mild conditions
and for an appropriate sequence of step sizes [52]. In practice, we
found that fixed 𝜌𝑡 , selected as a hyper-parameter, is enough for
successfully estimate 𝜖 (𝑞𝜙 (𝑧 |𝑥), 𝐴) using the global counts 𝑁𝑧,𝑠
and 𝑁𝑠 , via Equation 6. The fairness penalty term is a hinge loss:

F(𝜙,𝐴) = max(0, 𝜖 (𝑞𝜙 (𝑧 |𝑥 ), 𝐴) − 𝜖0 ) , (8)

where 𝜖0 is the desired fairness, usually set to 0 to encourage perfect
fairness. Finally,F (𝜙,𝐴) is plugged in Equation 4 to jointly optimize
𝜃 and 𝜙 in our fairness-preserving model, which we call the DF-
model, using the Adam optimization algorithm on the objective via
backpropagation and automatic differentiation. The pseudo-code
for our fair inference method is provided in Algorithm 1.

3.5 Example: Naïve Bayes Model
We next discuss example models. First, consider the unsupervised
naïve Bayes (NB) model, where we ensure fairness for cluster assign-
ments 𝑧. Here, 𝑥 is assumed to contain only categorical observed
variables that are conditionally independent given 𝑧. The graphical
model is provided in Figure 1 (a). Let 𝜃 be the mean 𝜇 (𝐷 )

𝑧 and the
standard deviation s.d. 𝜎 (𝐷 )

𝑧 for a logistic normal, that are generated
from priorsN(𝜇 (𝛼 )𝑧 , 𝜎

(𝛼 )
𝑧 ) and Γ(𝜅 (𝛼 )𝑧 , 𝜂

(𝛼 )
𝑧 ), respectively. For sim-

plicity, we choose to use the logistic normal here to reparameterize
the model for sampling categorical datapoints, as it does not require
annealing, unlike the Gumbel-Softmax. We can generate samples
from the logistic normal as 𝑦 (𝐷 )

𝑧 = S(𝜇 (𝐷 )
𝑧 + 𝜎 (𝐷 )

𝑧 E), where S
is the softmax function and E ∼ N(0, 1). Plugging log𝑝𝜃 (𝑥 |𝑧) =

𝑥
(𝐷 )
𝑗

𝑧 𝑗

𝜎
(𝐷 )
𝑧𝜇

(𝐷 )
𝑧

𝜎
(𝛼 )
𝑧𝜇

(𝛼 )
𝑧 𝜅

(𝛼 )
𝑧 𝜂

(𝛼 )
𝑧

𝐷

𝑧

𝐷

𝑗

x𝑗

𝑧 𝑗

𝚺
(𝐷 )
𝑧𝝁 (𝐷 )

𝑧

𝚺
(𝛼 )
𝑧𝝁 (𝛼 )

𝑧 𝜈
(𝛼 )
𝑧 𝝍 (𝛼 )

𝑧

𝑧

𝑗

(a) Naïve Bayes model (b) Gaussian mixture model

Figure 1: Examples of our settings using directed acyclic
graphs: (a) Naïve Bayes (NB), and (b) Gaussianmixture (GMM)
models for 𝑗 individuals with 𝐷 attributes. Here, 𝑧 encodes
cluster assignments. Our fair inference prevents 𝑧 from re-
flecting negative stereotypes.

∑
𝑧

∑
𝐷 𝑧 [𝑥 (𝐷 ) log𝑦 (𝐷 )

𝑧 ] into Equations 3 and 4 provide the Vanilla-
NB and DF-NB models, respectively.

3.6 Example: Gaussian Mixture Model
For the Gaussian mixture model (GMM), continuous observed vari-
ables x are assumed to be generated from multivariate Gaussian
distributionswithmean vectors 𝝁 (𝐷 )

𝑧 and covariancematrices 𝚺(𝐷 )
𝑧 ,

depending on the cluster assignment 𝑧 (Figure 1 (b)). Let the priors
on these parameters be multivariate Gaussian N(𝝁 (𝛼 )

𝑧 , 𝚺
(𝛼 )
𝑧 ) and

inverse Wishart W−1 (𝜈 (𝛼 )𝑧 , 𝝍 (𝛼 )
𝑧 ), respectively. However, 𝚺(𝐷 )

𝑧 is
a positive semi-definite matrix which is generally infeasible to di-
rectly maintain in backpropagation-based gradient methods. To
address this, we instead learn the real-valued factor C (𝐷 )

𝑧 of the co-
variance matrix which is then used to form 𝚺

(𝐷 )
𝑧 = C

(𝐷 )
𝑧 C

(𝐷 )⊺
𝑧 + I.

We then plug log 𝑝𝜃 (𝑥 |𝑧) =
∑
𝑧 𝑧 [logN(x; 𝝁 (𝐷 )

𝑧 , 𝚺
(𝐷 )
𝑧 )] into Equa-

tion 3 and 4 to achieve Vanilla-GMM and DF-GMM, respectively.

4 SPECIAL PURPOSE (SP) MODEL
Next, we present a special purpose (SP) graphical model for mit-
igating societal biases in risk assessments in the criminal justice
system. Our methods and results should be taken as an illustra-
tion of how our approach is operationally effective rather than
as an endorsement of the deployment of this approach to crimi-
nal justice systems, which would require further domain research,
examination, stakeholder engagement, and vetting.

4.1 Motivation and Objective
AI and ML systems are increasingly integrated into criminal justice
for tasks such as risk assessment, owing to their predictive capabil-
ities [4, 17, 51]. However, these systems often perpetuate societal
biases present in training data, posing ethical challenges. A pivotal
2016 ProPublica report [2] drew attention to significant biases in
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Figure 2: Graph for the special purpose (SP) model. The SP
model provides investigative assistance to criminal justice
professionals by encoding latent risk of crime (𝑧) and latent
systems of oppression (𝑢). To prevent unfair societal biases,
stakeholders can perform inference on the SP model with
our fair inference method on any of these latent variables,
depending on the context.

the widely-used COMPAS risk assessment tool. For instance, it was
more likely to label black individuals as high-risk compared to their
white counterparts, despite evidence to the contrary. This paper
aims to address these concerns by introducing a probabilistic graph-
ical model that works in conjunction with the COMPAS system. It
incorporates COMPAS’ scores and other variables to generate an
alternative, fairness-focused risk assessment. Our goal is to help
judges make more equitable decisions in bail and sentencing in
courts already using COMPAS.

4.2 Model Development
We provide the directed acyclic graph for our SP model in Figure 2.
In the SP model, we assume that the outcome of the risk assessment
mechanism is jail time (𝑡 ) for each offender 𝑗 which is potentially
influenced by some latent variables (𝑧 and 𝑢) and the observed
degree of charges (𝑐). To design the graphical model, we look into
the existing literature for fairness from diverse fields including
AI, humanity, law, and social sciences [10]. Although much of the
literature in risk assessment views differences in the distributions
of risk between protected groups as legitimate phenomena to be
accounted for when determining the fairness of a system [54], the
intersectionality framework aims for a counterpoint [21]. Accord-
ing to intersectionality theory, the distributions of risk are often
influenced by unfair societal processes due to systemic structural
disadvantages such as racism, sexism, inter-generational poverty,
the school-to-prison pipeline, and the prison-industrial complex

[15]. These unfair processes are termed systems of oppression. In-
spired by intersectionality framework, we desire to encode a fair
and equitable estimate of an individual’s risk of crime (i.e. low,
medium, or high) via 𝑧 and systems of oppression via 𝑢 (here en-
coded as a binary variable representing the level of impact), which
along with the degrees of charges (𝑐), are assumed to affect the jail
time (𝑡 ) outcome. Furthermore, the risk of crime (𝑧) is considered
to be influenced by the offender’s historical record, including juve-
nile misdemeanors (𝑚), juvenile felony charges (𝑓 ), previous crime
counts (𝑝), and the COMPAS system’s predicted decile scores (𝑑).
In contrast, systems of oppression (𝑢) can lead the structural disad-
vantages toward the offenders in terms of their age (𝑎), degrees of
charges (𝑐), and jail time (𝑡 ). To reflect these in the graph, we for-
mulate risk of crime (𝑧) and systems of oppression (𝑢) as downstream
and upstream of the corresponding observed variables, respectively.
Since jail time (𝑡 ) is a real-valued observed variable, we formulate
it using a regression model with corresponding coefficients 𝜷 for
risk of crime (𝑧), systems of oppression (𝑢), degree of charges (𝑐), and
an intercept term. We further posit informed hyper-priors on these
coefficients to infer identifiable and meaningful latent variables.

Let 𝑥 (𝑧 ) = {𝑚, 𝑓 , 𝑝, 𝑑} and 𝑥 (𝑢 ) = {𝑎, 𝑐, 𝑡} be observed variables
directly associated with the latent variables 𝑧 and 𝑢. Consider the
prior 𝑝𝜃 (𝑧 |𝑥 (𝑧 ) ) over 𝑧 be the Gumbel-Softmax whose distribution
parameters log𝜋 are implemented as neural network outputs, and
let prior 𝑝𝜃 (𝑢) over 𝑢 be the discrete uniform. Note that model
parameters 𝜃 are weights and biases of 𝑝𝜃 (𝑧 |𝑥 (𝑧 ) ) network, all
latent means (𝜇) and standard deviations (𝜎), and 𝜷 . From the DAG
in Figure 2, the final objective for the Vanilla-SP model is:

LSP (𝜃,𝜙 )

= E𝑞𝜙 [log𝑝𝜃 (𝑥
(𝑧) , 𝑥 (𝑢) , 𝑡, 𝑧,𝑢 ) ] − E𝑞𝜙 [log𝑞𝜙 (𝑧,𝑢 |𝑥

(𝑧) , 𝑥 (𝑢) , 𝑡 ) ]

= E𝑞𝜙 [log𝑝𝜃 (𝑡 |𝑧,𝑢, 𝑥
(𝑢) ) + log𝑝𝜃 (𝑥 (𝑢) |𝑢 ) + log𝑝𝜃 (𝑧 |𝑥 (𝑧) )

+ log𝑝𝜃 (𝑢 ) + 𝑝𝛼 (𝜃 ) ] − E𝑞𝜙 [log𝑞𝜙 (𝑧 |𝑥
(𝑧) , 𝑡 ) ]

− E𝑞𝜙 [log𝑞𝜙 (𝑢 |𝑥
(𝑢) , 𝑡 ) ] ,

(9)
where log𝑝𝜃 (𝑡 |𝑧,𝑢, 𝑥 (𝑢 ) ) =

∑
𝑧 [logN(𝑡 ; 𝛽 (𝑡 )0 + 𝑧𝛽 (𝑡 )𝑧 + 𝛽 (𝑡 )𝑢 + 𝛽 (𝑡 )𝑐 ,

𝜎 (𝑡 ) )] and log 𝑝𝜃 (𝑥 (𝑢 ) |𝑢) is implemented as log-likelihood of NB
model in the previous section. Note that 𝜙 represents weights and
biases of the inference networks 𝑞𝜙 (𝑧 |𝑥 (𝑧 ) , 𝑡) and 𝑞𝜙 (𝑢 |𝑥 (𝑢 ) , 𝑡).

Our SP model provides flexibility so that stakeholders can per-
form inference on the model with our fairness intervention ap-
proach on either of these latent variables, risk of crime (𝑧) or sys-
tems of oppression (𝑢), depending on the context. In this work, we
train the DF-SP model using Equation 4 via Equation 9, where F is
implemented in terms of 𝑞𝜙 (𝑧 |𝑥 (𝑧 ) , 𝑡), to prevent societal biases in
inference on risk of crime. The fairness intervention on the risk of
crime (𝑧) ensures similar distributions of the low, medium, and high
risks between intersecting groups. This upholds the philosophy,
concordant with intersectionality theory, that different protected
groups are not inherently differently prone to criminal behavior, but
rather that observed disparities are primarily due to unfair systems
of oppression [3].

We presented the SP model here in order to demonstrate our fair
latent variable modeling and inference methodology. We emphasize
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that further investigation and analysis from experts in criminal jus-
tice, law and social science would be necessary before considering
the deployment of such a model in real systems. After performing
such analysis, the eventual goal of this model is that the fairly in-
ferred risk of crime, systems of oppression and predicted jail time
will allow criminal justice professionals to better maintain the right
balance between justice, fairness, and public safety. As such, our
model represents a step toward a criminal justice system that is
more equitable and fair.

5 PRACTICAL CONSIDERATIONS
Discrete latent variable models are known to be prone to the issue
of posterior collapse [8, 39, 49, 53], a particular type of local opti-
mum very close to the prior over latents, e.g., all individuals are
assigned to same latent class. We found that better initialization
of the parameters and smoothing out the functional space help to
resolve this issue, which we implemented by using random restarts
during the hyperparameter grid search on the development (dev) set
and by using batch normalization on the output layer of inference
networks, respectively.

However, the above tricks do not resolve the issue in training
our SP models effectively. As we optimize a prior network along
with model parameters and multiple inference networks, we found
that SP models are more prone to the collapsing. Existing methods
to avoid local optima such as annealing-based approaches to down-
weight the KL term [1, 8] in early iterations of the training did
not help. Finally, we were able to address the problem by using
a warm start initialization procedure for 𝑝𝜃 (𝑧 |𝑥 (𝑧 ) ) as follows: 1)
first pre-train by only maximizing the likelihood 𝑝𝜃 (𝑡 |𝑧)𝑝𝜃 (𝑧 |𝑥 (𝑧 ) ),
and 2) then fine tune the prior network by optimizing the full LSP.

6 EXPERIMENTS
We performed all experiments on the COMPAS dataset1 (protected
attributes: race and gender), the Adult 1994 U.S. census income data2
(protected attributes: race, gender, USA vs non-USA nationality),
and the Heritage Health Prize (HHP) dataset3 (protected attributes:
age and gender). The COMPAS, Adult and HHP datasets contain
data instances for a total of 6.91K, 48.84K and 170.07K individuals,
respectively. Our source code is provided in the GitHub.4

6.1 Experimental Settings
We validate and compare our models with two baseline models.
For a typical baseline model that doesn’t take fairness into account,
we consider the Gumbel-Softmax (GS) reparameterization-based
VAE model for discrete latent variables (GS-VAE) [32]. As there
is no existing work that enforces fairness in completely unsuper-
vised setting for discrete latent variables, the work from [43] is
presumably the most relevant. They proposed an unsupervised fair
VAE model 𝑝𝜃 (𝑥 |𝑧,𝐴) to factor out undesired information from
the continuous latent variables 𝑧 by the marginally independent
protected attributes𝐴. We extend this model for discrete latent vari-
ables by GS reparameterization and use it as a fair baseline model

1https://tinyurl.com/2p8tbda2.
2https://archive.ics.uci.edu/ml/datasets/adult.
3www.kaggle.com/c/hhp.
4https://github.com/rashid-islam/fair_inference.

(GS-VFAE) for our experiments. Note that models referred to as
“vanilla” throughout this section represent standard models, adher-
ing to our latent variable modeling approach outlined in Equation 3,
but they exclude our fairness intervention described in Equation 4.

We split the COMPAS into 60% train, 20% dev, and 20% test sets.
For Adult dataset, we used the pre-specified train (32.56K) and
test set (16.28K), and held-out 30% from the training data as the
development (“dev”) set. Finally, we held-out 10% from our larger
data HHP as the test set, using the remainder for training, and
further held-out 10% from the training data as the dev set. All the
models were trained via the Adam optimizer using PyTorch on
COMPAS, Adult and HHP datasets for a total of 50, 10 and 5 epochs,
respectively. Finally, we performed grid search on the dev set to
choose hyper-parameters, e.g., minibatch size, #neurons/hidden
layer, learning rate, dropout, activation and random seed, from the
same set of hyper-parameter values for all models.

6.2 Evaluation Protocols
To assess model fit, we calculate the average log-likelihood (LL) and
average mutual information (MI) of the latent variable 𝑧 across all
observed variables. For clustering analysis, we measure commonly
used Calinski-Harabasz (CH) score [9], where a higher score repre-
sents a model with better defined clusters, and Davies-Bouldin (DB)
score [16], where a lower score represents a model with better sep-
aration between the clusters. In our SP model for criminal justice,
we evaluate the predictive performance using LL, mean absolute
error (MAE), mean squared error (MSE) and regression score (𝑅2)
based on observed “jail time".

We employ several metrics to assess fairness, including 𝜖-DF [21]
for equitable treatment across intersecting groups and demographic
parity (𝛿-DP) [18] for equal outcomes among protected groups. We
also use the 𝑝%-Rule [58], which generalizes the 80% rule, and sub-
group fairness (𝛾-SF) [34], which aims to prevent subset targeting,
to further ensure fairness. These metrics are adapted for multi-
dimensional latent variables, with the worst-case scenario reported
as the final metric. For model selection, we start by identifying the
best vanilla model based on LL. We then tune our fairness-focused
models to optimize both LL and fairness metrics. Final selections
allow a minor LL degradation for improved fairness.

6.3 Performance for Clustering
We evaluated the models on held-out test data for clustering anal-
ysis. For Adult data, models were trained on categorical observed
variables like work classes, education levels, occupation types and
income≥50K or not, where we aimed to infer 𝑧 that represents
whether an individual is “hard-working" or not. For our NB models,
with the prior knowledge on the PDF of a logistic normal distri-
bution, we set priors N(2, 1) and N(−2, 1) on 𝜇𝑧 to encode “hard-
working” and not “hard-working,” respectively, and the same prior
Γ(1, 2) on 𝜎𝑧 for both cases. Table 1 shows that the Vanilla-NB
outperformed all models in clustering performance metrics like MI,
CH and DB, while our DF-NB is the fairest model based on 𝜖-DF,
as well as several other fairness metrics (𝛿-DP (race) and p%-Rule
(race)), with a small cost in performance.

In the HHP dataset, all models were trained on real-valued obser-
vations for hospitalized patients such as the estimation of mortality,

https://tinyurl.com/2p8tbda2
https://archive.ics.uci.edu/ml/datasets/adult
www.kaggle.com/c/hhp
https://github.com/rashid-islam/fair_inference
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Table 1: Performance for clustering analysis on categorical variables in Adult dataset. Our DF-NB was the fairest model w.r.t.
𝜖-DF along with several other fairness metrics, while the Vanilla-NB performed with highest clustering performances. Higher
is better for measures with ↑, while lower is better for measures with ↓.

Models MI ↑ CH ↑ DB ↓ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(race)

𝛿-DP ↓
(gender)

𝛿-DP ↓
(nation)

𝑝%-Rule ↑
(race)

𝑝%-Rule ↑
(gender)

𝑝%-Rule ↑
(nation)

GS-VAE 0.132 1391.860 3.349 0.372 0.005 0.041 0.005 0.011 91.452 98.916 97.659
GS-VFAE 0.087 850.065 4.286 0.329 0.003 0.021 0.007 0.011 95.144 98.378 97.330
Vanilla-NB 0.137 1510.138 2.776 0.739 0.024 0.059 0.100 0.004 76.080 63.130 98.307
DF-NB 0.097 948.817 3.825 0.221 0.005 0.011 0.020 0.008 96.543 93.600 97.350

Table 2: Performance for clustering analysis on continuous variables in HHP dataset. Our DF-GMM was the fairest model w.r.t.
𝜖-DF along with most of the other fairness metrics, while the Vanilla-GMM performed with highest clustering performances.
Higher is better for measures with ↑, while lower is better for measures with ↓.

Models MI ↑ CH ↑ DB ↓ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(age)

𝛿-DP ↓
(gender)

𝑝%-Rule ↑
(age)

𝑝%-Rule ↑
(gender)

GS-VAE 0.069 913.774 4.221 1.385 0.045 0.335 0.048 32.311 83.524
GS-VFAE 0.061 793.340 4.523 1.123 0.042 0.320 0.040 39.108 84.329
Vanilla-GMM 0.106 1445.014 2.996 2.269 0.064 0.416 0.104 16.060 77.261
DF-GMM 0.044 597.302 4.183 0.275 0.021 0.078 0.049 84.338 89.964

Table 3: Performance for our special purpose model on COMPAS dataset for criminal justice risk assessment. Predictive
performances were measured w.r.t. observed “jail time," while fairness were measured w.r.t. 𝑧 that encodes risk of crime. Higher
is better for measures with ↑, while lower is better for measures with ↓.

Models Measured in terms of observed “jail time" Measured in terms of latent 𝑧

LL ↑ MAE ↓ MSE ↓ 𝑅2 ↑ 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(race)

𝛿-DP
(gender) ↓

𝑝%-Rule ↑
(race)

𝑝%-Rule ↑
(gender)

Vanilla-SP -1.301 0.578 0.757 0.274 1.744 0.035 0.143 0.093 40.844 43.929
DF-SP -1.358 0.662 0.926 0.112 1.304 0.022 0.074 0.048 41.145 51.587

drug counts, lab counts and so on, where we aimed to group the
patients into 3 clusters that may represent short, medium and long
lengths of stay in hospital so that we can help stakeholders to
properly allocate healthcare resources. In our GMM models, we set
informed priors on 𝝁𝑧 using cluster centers from a 𝑘-means cluster-
ing method on train data and same priorW−1 (𝐷+2, I) on 𝚺𝑧 for all
clusters. Table 2 shows that our DF-GMM is the fairest model based
on almost all fairness metrics (5 out of 6) with a loss in clustering,
while the Vanilla-GMM performed as best and worst model with
respect to clustering metrics and fairness metrics, respectively.

6.4 Performance for Criminal Risk Assessment
We investigate the performance of our SP models on the COMPAS
system for criminal justice. In Table 3, we show detailed results for
Vanilla-SP and DF-SP models. Note that we excluded the VAE-based
baselines from this experiment since there is no straightforward
way to extend them for the SP framework. According to the DAG
presented in Figure 1 (c), we can evaluate the overall predictive
performance in terms of “jail time.” We measured fairness in terms
of latent risk of crime 𝑧 since fairness intervention was applied to

𝑧. As expected, we found that Vanilla-SP performed better w.r.t
predictive performance metrics, but worse w.r.t all fairness metrics.
DF-SP mitigated these biases with a little sacrifice in predictive
performances. Table 4 shows fairness measures on latent systems
of oppression built into our society, where Vanilla-SP outperforms
DF-SP model. This result is intuitive from the DAG. Since both risk
of crime and systems of oppression can alter the “jail time,” improving
fairness for one of them can increase disparity in the other.

We also looked intoMI for COMPAS’s score (MI = 0.079), inferred
risk of crime by Vanilla-SP (MI = 0.072) and by DF-SP (MI = 0.048)
with actually-occurred recidivism over a two-year period. Since
COMPAS is a supervised learning-based system, it is expected
that COMPAS shows a higher MI with the actual label, while our
unsupervised Vanilla-SP and DF-SP performed with the comparable
MI metric. Finally, in Figure 3, we visualized generated average
“jail time" from our models in terms of all intersecting groups. We
observe that Vanilla-SP reflected discrimination by predicting more
“jail time" against a particular group, while DF-SP distributes similar
“jail time" on average for all groups.

In order to achieve fairness in the risk assessments for criminal
justice, the SP model uses an intersectional approach, taking into
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Table 4: Fairness metrics measured on latent𝑢 which encodes
systems of oppression against individuals.

Models 𝜖-DF ↓ 𝛾-SF ↓ 𝛿-DP ↓
(race)

𝛿-DP ↓
(gender)

𝑝%-Rule ↑
(race)

𝑝%-Rule ↑
(gender)

Vanilla-SP 0.085 0.005 0.027 0.003 94.323 99.364
DF-SP 0.100 0.006 0.015 0.019 96.873 96.063

Vanilla-SP DF-SP

non-white women 7.45 13.08

non-white men 17.68 17.87

white women 7.19 15.84

white men 8.38 12.6

0 5 10 15 20

Vanilla-SP

DF-SP

Average jail time (in days)

white men white women
non-white men non-white women

Figure 3: Generated average “jail time" in terms of intersect-
ing protected groups for COMPAS data.

account not just individual characteristics but also the systems of
oppression that may contribute to disparities in criminal behavior.
The goal of this model is to strike a balance between justice, fairness,
and public safety, by providing a fair inferred risk of crime and pre-
dicted “jail time." However, our method of achieving parity on “jail
time" may have unintended consequences. In particular, increasing
jail time for less disadvantaged groups may not be ideal from the
perspective of criminal justice reform. This trade-off highlights
the complexity of balancing fairness and justice in the criminal
justice system and underscores the need for ongoing monitoring
and evaluation of these models.

7 RELATED WORK
Our fairness intervention technique in this work is inspired by
intersectionality, the core theoretical framework underlying the
third-wave feminist movement [13, 15]. [21] proposed differential
fairness which implements the principles of intersectionality with
additional beneficial properties from a societal perspective regard-
ing the law, privacy, and economics. While most of the fairness
notions are defined for binary outcome and binary protected at-
tribute, differential fairness conversely handles multiple outcomes
and multiple protected attributes, simultaneously.

Much of the prior work that enforces fairness in variational
inference [14, 42, 43, 55] using unsupervised probabilistic graph-
ical models, e.g., VAE [40, 50], 𝛽-VAE [28], and FactorVAE [37],
aim to learn fair representations of data using continuous latent
variables for downstream classification tasks. [43] also proposed
a semi-supervised VAE model that encourages statistical indepen-
dence between continuous latent variables and protected attributes
using a maximum mean discrepancy (MMD) [24] penalty. Through
the lens of representation learning, there are other recent advances
in building fair classifiers using fair representations. [59] proposed

a neural network based supervised clustering model for learning
fair representations that maps each data instance to a cluster, while
the model ensures that each cluster gets assigned approximately
equal proportions of data from each protected group. While this ap-
proach cannot leverage the representational power of a distributed
representation, other work [19, 45, 60, 61] addressed this by de-
veloping joint framework using an autoencoder network to learn
distributed representations along with an adversary network to
penalize when protected attributes are predictable from representa-
tions and a classifier network to preserve utility-related information
in the representations.

8 CONCLUSION AND FUTUREWORK
We have proposed a fair stochastic inference technique for unsu-
pervised learning using probabilistic graphical models with dis-
crete latent variables. Our method incorporates the principles of
intersectionality, a comprehensive perspective on fairness, into the
variational distribution through a fairness penalty and a stochastic
approximation approach. We have also presented a special-purpose
model for mitigating societal biases from risk assessments in crimi-
nal justice. Our empirical results show the benefits of our approach
in sensitive tasks such as inferring merits or risks for individuals.
Before deployment of our special-purpose model could be contem-
plated, feedback from criminologists and criminal justice stakehold-
ers must be included in its design, which we plan to investigate in
future.
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A EXPERIMENTS: FAIR MODEL SELECTION

(a) (b)

Vanilla-NB
DF-NB

GS-VAE
GS-VFAE

Figure 4: Selection strategy for fairmodels (purple diamonds):
(a) DF-NB and (b) GS-VFAE. The best typical model black as-
terisk: (a) Vanilla-NB and (b) GS-VAE, based on log-likelihood.
The best fair model (blue circle) is selected from the orange
area that satisfies our pre-defined rule, according to the re-
spective fairness metric.

Our fair models consider both ELBO and fairness, potentially
affecting predictive performance. As illustrated in Figure 4 (a), we
selected the best typical models (GS-VAE and Vanilla-NB) based
on log-likelihood (LL) using grid search over hyper-parameters
(black asterisk). The fair model, DF-NB, employed the same hyper-
parameters as the best Vanilla-NB, with grid search conducted only
for the fairness trade-off parameter 𝜆 (purple diamonds). For GS-
VFAE, which lacks an explicit trade-off parameter, a full grid search
was conducted (purple diamonds). Fair models were chosen based
on the best fairness metrics, allowing a 2% LL degradation from the
best typical model (orange area). We used an overall 𝛿-DP metric
for GS-VFAE, averaging 𝛿-DP for each protected attribute. When
deploying these methods in practice, the slack tolerance can be
adjusted based on stakeholders’ preferences.


	Abstract
	1 Introduction
	2 Background
	2.1 Variational Autoencoder (VAE)
	2.2 Gumbel-Softmax Trick

	3 Method: Fair Variational Inference
	3.1 Problem Formulation
	3.2 Inference Network
	3.3 Generative Network
	3.4 Fair Inference Technique
	3.5 Example: Naïve Bayes Model
	3.6 Example: Gaussian Mixture Model

	4 Special Purpose (SP) Model
	4.1 Motivation and Objective
	4.2 Model Development

	5 Practical Considerations
	6 Experiments
	6.1 Experimental Settings
	6.2 Evaluation Protocols
	6.3 Performance for Clustering
	6.4 Performance for Criminal Risk Assessment

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Experiments: Fair Model Selection

