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FLuMe: Understanding Differential Spectrum
Mobility Features in High Resolution

Rui Zou

Abstract—Existing measurements and modeling of radio spec-
trum usage have shown that exclusive access leads to low efficiency.
Thus, the next generation of wireless networks is adopting new
paradigms of spectrum sharing and coexistence among heteroge-
neous networks. However, two significant limitations in current
spectrum tenancy models hinder the development of essential func-
tions in nonexclusive spectrum access. First, these models rely on
data with much coarser resolutions than those required for wireless
scheduling, rendering them ineffective for spectrum prediction or
characterizing spectrum access behavior in a wireless coexistence
setting. Second, due to a lack of detailed data, current models
cannot describe the access dynamics of individual users, leading
to unjustified adoption of simplistic traffic models, such as the
on/off model and the M/G/1 queue, in spectrum access algorithm
research. To address these limitations, we propose the Frame-Level
spectrum Model (FLuMe), a data-driven model that characterizes
individual spectrum usage based on high-resolution data. This
lightweight model tracks the spectrum tenancy movements of in-
dividual users using four variables. The proposed model is applied
to high-resolution LTE spectrum tenancy data, from which model
parameters are extracted. Comprehensive validations demonstrate
the goodness-of-fit of the model and its applicability to spectrum
prediction.

Index Terms—Data driven model, data resolution, LTE, spec-
trum tenancy.

I. INTRODUCTION

networks, enabling the transmission of signals via elec-
tromagnetic waves that must occupy a portion of the spectrum.
Consequently, the management of wireless spectrum has been
extensively studied to monitor usage and improve efficiency [1],
[2]. A key finding from these studies is the significant underuti-
lization of many exclusively assigned spectrum resources. For
example, it has been observed that radio channels auctioned for
exclusive access can remain idle for up to 50% of the time [3].
This low efficiency in exclusive spectrum allocations has spurred
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the development of various technologies and standards aimed
at promoting spectrum sharing and wireless coexistence. Tech-
nologies such as MulteFire [4] and Licensed Assisted Access
(LAA) [5] facilitate the deployment of Long-Term Evolution
(LTE) and 5G New Radio (NR) in TV White Space (TVWS),
as well as the 2.4 GHz and 5 GHz Industrial, Scientific, and
Medical (ISM) spectrum bands. These bands coexist with other
wireless networks like WiFi and Low-Power Wide Area Net-
works (LPWANS) [6], [7]. Furthermore, the coexistence of var-
ious Radio Access Technologies (RATS) that typically occupy
exclusive frequency channels has attracted significant research
interest. This is evident from the numerous proposals addressing
the coexistence of LTE and 5G cells on overlapping channels
(81, [9].

Spectrum sharing and wireless coexistence critically depend
on spectrum usage models. Spectrum prediction is essential
for avoiding collisions in open spectrum access settings, and
prediction algorithms are either directly based on spectrum
usage models or reliant on training data synthesized by these
models [10]. However, spectrum usage models based on coarse
data fail to guide spectrum access decisions effectively. For
instance, two spectrum predictions rely on models based on
tenancy data with resolutions much coarser than the scheduling
of spectrum resources [11], [12]. The LTE spectrum prediction
in [12] is governed by a model based on tenancy data with
a time resolution of 100 ms. As LTE spectrum dynamically
changes every ms, accessing it in chunks of 100 ms either wastes
spectrum holes or incurs collisions, since the probability of hav-
ing the same tenancy over 100 consecutive scheduling intervals
is very small. Similarly, the prediction of Global System for
Mobile Communications (GSM) spectrum tenancy based on an
on/off model with data resolution lower than scheduling [11]
faces issues. GSM spectrum is dynamically rescheduled per
4.61538 ms (the GSM frame time length), while the data reso-
lution in [11] ranges from 0.1 to 0.9 seconds. Exploiting GSM
spectrum holes in such coarse resolution either leads to serious
waste or inevitable collisions, rendering this GSM spectrum
prediction impractical for spectrum access. In summary, wireless
coexistence urgently requires spectrum tenancy models based on
high-resolution data with the same granularity as the scheduling
of spectrum resources.

Besides spectrum prediction, the design of spectrum access
algorithms in a wireless coexistence environment heavily relies
on spectrum tenancy models, especially the spectrum usage
behavior of individual users. However, intuitive classical models
have been adopted to describe individual users’ spectrum usage
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Fig. 1.  Spectrum mobility versus the classical on/off model.

behavior without serious consideration of real-world data [13],
[14], [15]. For instance, the spectrum usage behavior of indi-
vidual users is modeled as a preemptive M/G/1 queue in [13],
[16]. A non-preemptive M/G/1 queue is adopted in [13], [14],
[16]. Another design [15] characterizes the spectrum tenancy of
individual devices using an on/off model. However, it has not
been verified by measurement data that the spectrum usage of
individual devices follows any of these models, compromising
the validity of research based on these unverified spectrum
models. The lack of models for individual devices is due to
existing data-driven spectrum models relying on measurements
that cannot differentiate the spectrum activities of individual
wireless devices.

In essence, existing spectrum models suffer from two ma-
jor limitations: the lack of fine data resolution matching the
granularity of spectrum resource scheduling and the inability to
characterize the spectrum usage of individual users, hindering
their applicability for spectrum sharing and wireless coexis-
tence. To overcome these limitations, we address the question
of what spectrum usage model characterizes both aggregate and
individual spectrum tenancy based on high-resolution data in
the same time-frequency granularity as scheduling. We adopt
a data-driven approach to develop a spectrum mobility model.
This model refers to the new spectrum tenancy model presented
in this paper and should not be confused with other concepts,
such as spectrum handoff in cognitive radio networks, where
users move from one frequency channel to another [17].

Our model leverages a two-dimensional time-frequency grid
to represent spectrum usage, visualizing occupied spectrum
slices as they dynamically move across frequencies over time.
We characterize individual mobile device behavior using four
key parameters: camping times, access intervals, channel hops,
and tenancy widths. Camping time and access interval represent
the busy and idle periods of spectrum usage. Channel hops
describe the movement of the carrier frequency across differ-
ent channels, and tenancy width indicates the number of unit
spectrum slices allocated in a scheduling interval. The concepts
of these parameters are illustrated in the left part of Fig. 1, with
definitions and specific values explained in Fig. 2 in Section II.

Compared to classical spectrum tenancy models, spectrum
mobility captures the dynamic usage of individual users across
different channels over time. For instance, Fig. 1 illustrates the
comparison between spectrum mobility and the classical on/off
model. The on/off model merely approximates the duration of
busy and idle periods across frequency channels based on a
majority vote of the tenancy at its true resolutions, without
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considering which specific devices are utilizing the spectrum
resources or assuming any interconnections among the tenancy
across various channels. In contrast, the spectrum mobility
model incorporates factors such as camping times, access inter-
vals, channel hops, and tenancy widths to accurately characterize
the spectrum usage of individual devices. This feature is partic-
ularly pertinent for modeling the spectrum usage of Orthogonal
Frequency-Division Multiplexing (OFDM) systems, which al-
locate spectrum resources across different frequency channels
to various users, as seen in LTE and 5G NR systems.

Given the current dominance of LTE systems, their seamless
transition to future 5G, and their emerging coexistence with
other wireless systems supported by technologies like LAA and
MulteFire, we focus on the spectrum usage of acommercial LTE
cell under diverse wireless traffic conditions. To this end, we
set up a measurement system to capture raw spectrum tenancy
data. High resolution is achieved by decoding downlink con-
trol messages that contain the spectrum assignment decisions
from the LTE base station. Consequently, the spectrum tenancy
resolutions match the LTE scheduling granularity, specifically
1 ms by 180 kHz. To extract samples of the variables defined
in the spectrum mobility model, the measurement data undergo
further processing. This includes identifying spectrum users and
excluding tenancy not related to user data transmissions, such as
spectrum slices used for cell broadcast. Although we apply the
proposed spectrum mobility model to the spectrum tenancy of
a specific LTE cell in this work, it is important to note that our
model can characterize the spectrum usage of various wireless
systems, provided spectrum tenancy data are available for the
four parameters. Even if high-resolution spectrum tenancy data
for individual users are not available, the proposed spectrum mo-
bility model can still characterize aggregated spectrum tenancy
as explained in Section II and depicted in Fig. 2.

After conducting measurements and post-processing, we ana-
lyze the distributions of variables defined in the spectrum mobil-
ity model. These distribution studies yield valuable insights into
the high-resolution spectrum usage of individual users within the
model. Notably, some findings are counter-intuitive and contra-
dict existing studies. For example, we observe decreased busy
times during periods of high wireless traffic and surprisingly
short idle times even during low traffic conditions.

Our contributions are summarized as follows. First, we de-
velop the Frame-Level spectrum Model (FLuMe), which in-
cludes the camping time, the inter-access time, the hopping
distance, and the tenancy width, by monitoring spectrum tenancy
in the same time-frequency resolutions as scheduling. The model
parameters are studied under low, medium, and high wireless
traffic conditions,! and the details of the model definitions and
the data collection process are elaborated in Sections II and III.
The spectrum mobility model addresses the two challenging fea-
tures required by emerging spectrum sharing and coexistence:
high-resolution data and individual spectrum models. Second,
we study the distributions of the model parameters based on
large amounts of spectrum data obtained through real-world
measurement and post-processing. Contrary to previous studies,

I'The dataset will be made available to the public on GitHub upon acceptance
of the manuscript with an agreement of use.
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Fig.2. Anexample of FLuMe parameters.

our findings reveal that busy time lengths are skewed towards
the lower end when wireless traffic is high. The idle times, or
inter-access times, concentrate on small values below 10 ms,
even in low traffic scenarios. Third, the proposed spectrum
mobility model can generate synthetic spectrum tenancy traces
with distributions identical to our large-scale measurement data.
By tuning the parameters, the spectrum mobility model can
also synthesize spectrum usage patterns reported in other stud-
ies [12], [18], [19].

II. THE FLUME FRAMEWORK

Since modeling the spectrum usage of individual wireless
devices is missing yet crucial for improving spectrum efficiency,
we propose the FLuMe framework. It models spectrum usage
behavior of individual devices in two levels, the access variables,
and the session variables, which is inspired by wireless traffic
models that categorize user data arrivals into sessions to capture
both intra-session and inter-session features [20], [21].

A. Access Variables

Access variables describe how the spectrum usage of in-
dividual users move along the two dimension time-frequency
grid when wireless transmissions are actively taking place in
a session. Each move is characterized by a camping time, a
hopping distance, an inter-access time, and a tenancy width.

Specifically, we assume that spectrum resources are as-
signed in orthogonal frequency slices and discrete time in-
tervals, which is reasonable in most wireless systems that
use OFDM or OFDMA techniques, e.g. LTE/5G. In the ex-
ample illustrated in Fig. 2(a), the number of orthogonal fre-
quency channels m = 4 is shown by the vertical axis, and
the horizontal axis records spectrum mobility in discrete time
intervals. The differential spectrum mobility strides are de-
noted by {sj,ij = (Cj,ij R hj’i]. Qi d/j’i]. ),] =1,2,...,J, ’ij =
1,2,... 7Ij}, where the four elements, Cjiz hj7ij s Qi dj7ij ,
are instances of the random variables C, H, A, D for camping
time, hopping distance, inter-access time, and tenancy width.
The session index j ranges from 1 to J, and 4; is the index for
individual-access variable samples in the session j, from 1 to ;.
Specifically, the camping time C' is the amount of time when a
piece of spectrum resources is continuously occupied, starting
from the beginning of the first time slot to the end of the last
one. For example, the first camping time in session 1 shown in
blue in Fig. 2(a) is ¢1,1 = 2, and the second sample is ¢; 2 = 1.
The hopping distance is the difference between the index of the

(b) Session variables.

(c) Aggregated spectrum strides.

starting frequency channel and that of the ending channel. When
multiple frequency channels are utilized, the channel index is
considered as the arithmetic mean of the index all the occupied
channels rounded up to the nearest integer. For instance, the
second hopping distance is h1 2 = 3 — 2 = 1, as the destination
channel index is 3 and the source channel index of the center
frequency is 2; the first hopping distance of the blue user is
hi1 =2 —44m = 2, where the number of channels m = 4
is added to bring the negative hopping distance to a positive
value. The inter-access time is the number of time slots between
two spectrum accesses, and it is measured from the end of the
previous channel usage to the beginning of the next, e.g., the first
inter-access time of the blue useris a; 1 = 2, and its second one
is a1,2 = 1. The tenancy width D is the number of occupied
frequency channels in one spectrum access in a session. In
Fig. 2(a), the second access in session one has a tenancy width
of three, i.e., d; 2 = 3.

B. Session Variables

Now that single spectrum accesses within sessions have been
captured by the access variables, we continue to propose the
session variables, the starting channel, the inter-session times,
and the number of accesses within a session.

We characterize the spectrum mobility sessions by a sequence
of session variables, {5; = (b;,w;,n;),7 =1,2,---}. The b,
is a sample of the random variable B, the index of the frequency
channel on which a session starts. The number of time slots
between the starting time of consecutive sessions 7 — 1 and j
is denoted by w;, an instance of the random variable 1. The
number of discontinuous spectrum accesses in session j is n;,
an instance of the random variable . In Fig. 2(b), we illustrate
two sessions for different users, shown in blue and green. Since
the blue session starts from the first time slot, its inter-session
time is deemed to be zero, i.e., w; = 0, and wo = 3. The index
of starting frequency channels and the numbers of discontinuous
spectrum accesses of the two sessions are b; = 4, n; = 3, and
bQ = 1, Ng = 2.

The session variables are a necessary complement to the ac-
cess variables to specify the numbers of user strides, the starting
frequency channel, and the time between sessions. By grouping
spectrum accesses into sessions, there are fewer outliers in the
samples of the spectrum mobility variables, so their distributions
can be well captured by functions with a small number of
parameters.
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Fig. 3. Scheduling of downlink LTE spectrum usage.

The FLuMe framework is a versatile spectrum model, since
it not only characterizes the spectrum activities of individual
devices, but also models the aggregate usage, which is the
only function of classical spectrum usage models that do not
differentiate spectrum users [22]. When the FLuMe framework
is applied to the aggregate spectrum tenancy, we assume that
the inter-session times are zero, because the chance that all in-
dividual users in a wireless network remain silent over extended
time is rare. Due to the assumption of zero inter-access time,
all the aggregate spectrum usage is regarded to be in a single
session, so the access variables alone are enough to describe
the aggregate spectrum tenancy. In the example in Fig. 2(c), we
apply the access variables to describe the aggregate spectrum
mobility without differentiating individual users. There are three
complete strides. The first aggregate tenancy camps on a single
channel for two slots, and then hop two channels after one time
slot, i.e., ¢y = 2, h1 = 2,a; = 1,d; = 1. Similarly, the second
and the third movement of the aggregate spectrum usage in this
example can also be fully captured by the access variables as
illustrated.

III. DATA COLLECTION AND PROCESSING

To apply the FLuMe framework to high resolution data, here
we present the details of how we collect spectrum usage in fine
granularity and how they are processed for extracting features
for the proposed FLuMe framework.

A. LTE Spectrum Usage

Since FLuMe reflects spectrum tenancy with the same reso-
lution as scheduling, we first provide a brief primer on spectrum
usage in LTE downlink to ensure self-containment.

In the downlink of an LTE cell with frequency-division du-
plexing, the assignment of spectrum resources for user traffic is
centrally scheduled by the base station. It schedules the spectrum
resources in the basic time unit of 1 ms. In the frequency domain,
the size of the basic unit is, 180 kHz, the same with that of an LTE
Resource Block (RB) which is 0.5 ms in time. The assignment
of RBs is contained in unencrypted Downlink Control Infor-
mation (DCI) that reside in the beginning of every scheduling
interval. Fig. 3 depicts an example of spectrum usage in one
scheduling interval. During a scheduling interval of 1 ms, the
symbols in the beginning of the interval contains two DClIs that
dynamically allocate some RBs to user 1 and user 6, and some
RBs are left unused. The center of the spectrum resources are for
synchronization and system information broadcast, which occur
at predefined intervals and do not require dynamic scheduling.
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Fig. 4. The setup of the measurement for FLuMe variables.

B. Data Collection

To collect the desired features of spectrum usage, measure-
ments must address three challenges. First, spectrum usage must
be captured with the same time-frequency resolution as users,
specifically 1 ms by 180 kHz in LTE systems. Second, spectrum
usage data must be associated with individual devices and their
traffic sessions to establish a mapping between traffic sessions,
spectrum usage, and individual spectrum access. Lastly, the
dataset must be sufficiently large to incorporate spectrum ten-
ancy patterns under various wireless traffic conditions, ensuring
the general applicability of the FLuMe framework to different
traffic levels. Although several large-scale measurement cam-
paigns exist [23], [24], the data resolutions in these studies are
far coarser than the LTE scheduling interval of 1 ms, with time
granularities ranging from 50 to 3750 seconds. Moreover, these
datasets do not allow for tracing the spectrum usage of individual
users. Given the absence of spectrum usage datasets that address
all these challenges, we must establish a spectrum measurement
system to collect the necessary data for FLuMe modeling.

The measurement setup is illustrated in Fig. 4. Our mea-
surement tool is composed of a Software Defined Radio (SDR)
system and a host personal computer (PC). The SDR includes
a Universal Software Radio Peripheral (USRP) X310 mother-
board [25], and two SBX-120 wide-band daughter-boards [26].
The host computer has a quad-core CPU and 16GB memory,
running Ubuntu 16.04. The radio front end realized by the SDR
communicates with the host PC using USRP Hardware Driver
(UHD) [27] version 3.9.7. To scan the spectrum usage data of a
commercial LTE cell, we first search LTE bands in commercial
operations near our lab. The existence of LTE control channels
is then verified by a spectrum analyzer. We choose the nearby
cell with the best signal-to-noise ratio (SNR).

The key steps to achieve the decoding based high resolution
measurement for user spectrum activities are depicted in Fig. 5.
First, the SDR radio front tunes onto the LTE band verified by the
spectrum analyzer, and turns the analog carrier frequency signals
to baseband complex samples. Through an Ethernet cable, the
complex samples are passed to the PC for further processing.

Within the host PC, the first step in decoding spectrum usage
is to achieve time and frequency synchronization based on the
periodical LTE main broadcast and synchronization signals in
the center of the time-frequency spectrum resources in LTE
subframes as shown in Fig. 5. Next, we need to decode the DCIs
and Radio Network Temporary Identifier (RNTI) to find out
the assignment of spectrum resources and the associated user
IDs. Because DCIs are not encrypted, and their locations and
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modulations are fixed, we can do a blind decoding of DCIs.
However, inferring RNTIs and validating decoded DClIs are
more challenging. Existing works have proposed an effective
way to infer RNTIs by computing the DCI checksum and then
XORing it with the last two bytes, because they are the XOR
of the RNTI and its CRC checksum [28], [29]. This method
assumes that the entire DCl is correctly decoded, and forfeits the
error detection power of DCI checksum. To reliably decode DCIs
and RNTIs, we adopt the method that validates RNTIs by further
applying them to user data decoding [2]. Since the adopted
decoding method keeps the original checksum mechanism in
LTE DCI, the decoded DClIs are error free, which yields the
accurate high-resolution measurement.

After the DCI and RNTI decoding, the spectrum tenancy
of the LTE cell is parsed from DCIs and measured exactly
as the scheduling. However, part of the spectrum usage in
an LTE cell is not the results of user data transmissions. For
example, some LTE RBs are occupied regularly to carry LTE
System Information Blocks (SIBs) to announce physical layer
information related to cell access and selection, even if there
is no user traffic at all. Such transmissions consume spectrum
resources, but they do not reflect spectrum activities due to user
data transmissions. As the goal of the spectrum mobility model
is to link spectrum tenancy to data transmission activities rather
than study the static spectrum usage of Media Access Control
(MAC) and physical (PHY) layer signaling, we need to find a
way to identify the spectrum tenancy independent of user data
transmissions. According to Table 7.1-1 in [30], the range of
RNTIs that correspond to user data transmissions are 2401 to
65523. Hence, we further identify the spectrum tenancy for user
data transmissions based on RNTI values in the last step of
the measurement, by marking RBs as occupied by RNTIs in
the range of 2401 to 65523 or unused by 0. Compared with
classical spectrum modeling data sets [24], our data achieves
high resolutions and links directly to spectrum tenancy due to
user data transmissions with the spectrum usage of MAC and
PHY layers filtered out.

The downlink system bandwidth of the cell is 10 MHz that
accommodates 50 LTE RB, which is equivalent to the number of
frequency channelsin FLuMe,i.e.,m = 50. We collect spectrum
usage data of the nearby LTE cell in different time periods
of the day, obtaining 4320 million binary tenancy in total.
Each spectrum usage is either marked as unused by zero, or
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occupied by the user RNTI, i.e., the temporary user ID in the
LTE physical layer. To ensure that the spectrum usage covers all
possible conditions, we choose a day in which the LTE cell under
observation exhibits the most diverse distributions of spectrum
usage levels over the 24 hours as illustrated in Fig. 6. Each bar
shows the distribution of the 3.6 million spectrum usage level in
one of the 24 hours, by marking the Oth, 15th, 50th, 85th, and
100th percentiles by bars and circles. As we can see, these 24
hours cover diverse spectrum tenancy levels, as some hours have
the majority of the scheduling intervals occupied by over 90%,
while some hours witness low spectrum usage below 10% most
of the time. Such diverse distributions of spectrum usage levels
in the dataset ensure that the FLuMe model is applicable to all
spectrum usage conditions.

C. Data Processing

Though we have achieved the spectrum tenancy of user data
in the same resolution as scheduling, further data processing is
still required to extract data samples for the FLuMe variables.
Two important practical issues addressed in post-processing are
elaborated as the following.

Trace the user IDs: The first challenge is how to trace individ-
ual spectrum usage given that the recorded tenancy is marked
by RNTIs, a temporary ID, rather than a user ID with traffic
information. This challenge stems from the RNTI design, which
is supposed to hide user identities in the physical layer by fre-
quent updates of RNTI values. According to LTE specifications,
RNTIs need to be updated whenever a user goes from an idle to a
connected state [31], which occurs around tens of seconds [32].
In practical systems, RNTI update intervals can be as long as
several hours in the US [33]. Recall that the FLuMe variables de-
scribed in Section 11, camping times C, inter-access times A, and
inter-session times W, are much shorter than the RNTI update
intervals in practical systems. This is because these variables
reflect the dynamic changes in spectrum usage. In fact, they are
very unlikely to be larger than 200 ms, as P(C > 200) = 0,
P(A > 100) = 0.0537, P(W > 100) = 0.0631 according to
our analysis, where IP() measures the probability. Hence, the
RNTI update intervals are at least 50 times larger than the
differential camping times, inter-access times and inter-session
times. Thus, the RNTI updates only affect a small portion of the
samples of C, A and W by splitting them into different spectrum
mobility sessions.

Find the session end: The second challenge is how to deter-
mine the end of a spectrum mobility session. Because RNTIs
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Fig. 7. Anexample of the three-step data processing.

are updated at long intervals ranging from tens of seconds
to hours, the spectrum usage with the same RNTI may span
over multiple user traffic sessions. For example, user traffic
sessions, such as HTTP sessions, typically time out under 600
seconds [34]. Thus, we need to determine the end of spectrum
mobility sessions to split a long sequence of spectrum usage
with the same RNTI into multiple sessions so that the spectrum
mobility model better reflects the spectrum usage due to user
data transmissions. To separate long spectrum strides with the
same RNTI into shorter sessions, we first analyze the individual
inter-access times without session boundaries, denoted as A*.
Then, we deem that samples larger than the 90th percentile of
A* are formed by the spectrum accesses on the ends of two
adjacent spectrum mobility sessions with the same RNTI. From
our statistical analysis, we find P (A* < 116) = 0.9, and we thus
split the spectrum usage with the same RNTT at the accesses after
which the immediate next one is 116 ms or longer away.

Now that the two challenges in post-processing have been ad-
dressed, we introduce the three steps in our top-down approach to
process the more than 37.8 million aggregate spectrum mobility
strides sy, k € {1,..., K}, K > 37.8 x 10° . As illustrated in
Fig. 7, the three steps to extract the desirable features for FLuMe
are as follows. First, we extract the aggregate spectrum mobility
strides, that is, the overall usage of all LTE RBs. Then we
locate the center frequency channels and extract the aggregate
camping times, hopping distances, inter-access times, and the
tenancy width, as shown in gray blocks in step lin Fig. 7 without
differentiating individual users, such as User 1 and User 2in
the example. Second, we extract the individual-access variables
sj.i; without cutting the sessions with the same RNTIs. The
individual-access samples are processed before session vari-
ables because we cut sessions with the same RNTI between
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tenancy with long inter-access times as previously explained
in the practical challenges. In the example in Fig. 7, the five
inter-access times in the two sessions are 0,0,1,2, and 3. In the
last step, we split the spectrum accesses of the same RNTI based
on the inter-access time samples, @i For instance, if we choose
the 80th percentile of inter-access time samples as the cutting
length, then the user 2 session in step 2 is separated into two
sessions at the point in step 3 shown in the figure, because
min, (P(A* <a) > 0.8) = 3. As a result, three sessions are
identified in the example in Fig. 7.

For the spectrum mobility of individuals, we obtain over one
million samples of session variables 5,7 € {1,...,J},J >
10%} in which there are nearly 200 million samples of individual-
access variables ;. ,i; € {1,...,I;}, >, I; > 200 x 10°.!
The size of the data is 8 GB when zipped. Given the data
size and the fact that they are collected in carefully chosen
hours with diverse traffic levels, our data set exhibits substantial
statistical significance even when compared with large scale
measurements, such as the 2GB of 14900 x 8058 readings
in [35]. Next, we present data analytics for the FLuMe variables.

IV. OBSERVATIONS WITH FLUME MODEL

In this section, we analyze the data traces of the spectrum
mobility and investigate the statistical characteristics of the
FLuMe variables. We evaluate the measurement data analytics
using four types of functions: exponential, power, quadratic, and
power over logarithm.

A. Preliminaries

Our objective is to discover new observations of dynamics
in spectrum usage, with a focus on new features of FLuMe
spectrum mobility. To achieve this, we are considering the
following issues.

Traffic loads: We analyze the distributions of FLuMe variables
based on different levels of spectrum usage. The usage level,
denoted as U, is defined as the ratio of occupied RBs to the
total number of RBs during a camping time in one stride or
session. The distributions are studied under three usage levels:
U € [0,0.3] for low traffic, U € (0.3,0.7] for medium traffic,
and U € (0.7, 1] for high traffic.

Fitting functions. The goal of the data-driven modeling ap-
proach is to identify fitting functions that can be used for
proactive system design and performance evaluation, both with
and without runtime measurements. To achieve this, we consider
six functions and select the best three for summarizing our
observations, that is,

fx) = 2, )
f(@) = 212" 4 hge®, )
fx) = nma*2, 3)
f(x) = 2™ + hg, )
f(z) = Aa® + Aoz + A3, 5)
f(x) = a2 /log(z + A3), (6)

Restrictions apply.
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where A1, Ao, A3, A4 are constant parameters estimated by Max-
imum Likelihood Estimation (MLE). These rudimentary func-
tions have few fitting parameters and have been proved to capture
the network traffic models characteristics [36]. As we will show
later, these functions accommodate well to the spectrum mobil-
ity variables with limited fitting constants, rendering the FLuMe
framework practical and easily applicable.

Quality of statistical models. We adopt the Akaike Informa-
tion Criterion (AIC) for evaluating fitting performance, con-
sidering both the number of parameters in the function and
the goodness of fit. The AIC measures the relative quality of
statistical models, with smaller AIC values being preferred as
they indicate models that capture the distributions effectively
with fewer parameters. Since absolute AIC values are influenced
by sample size and are primarily used for comparison, we use
the more intuitive and meaningful AIC weights for performance
comparisons [37]. The AIC weight for the v-th fitting function is

e Au/2

calculated as w,, = W, where V is the total number of

candidates and A, = AI Cy, — AIC,,;y, is the difference from
the smallest AIC value. AIC weights range from O to 1, with
the best fitting function among the V' candidates having an AIC
weight closest to one. The AIC value is

AIC = 2r — 2log(L), @)

where L is the optimized scalar value of log-likelihood objective
function, and r is the number of parameters that are estimated for
the model. The likelihood function of () observations z1, ..., £¢g
of a random variable X with the parameter 6 in its probability
mass function f(x|0) is

Q
H (24]6). )

The proposed FLuMe framework offers both individual and
aggregate spectrum mobility. The former captures the spectrum
usage of each individual device, and more importantly, it reveals
a local view of spectrum utilization in non-centralized systems.
On the other hand, the latter describes the total spectrum usage,
and tells a global view of spectrum usage, which is best suited
for centralized resource management and scheduling in cellular
systems, and is consistent with existing works on spectrum
database and spectrum activity maps [23], [38].

B. Observations of Aggregate Spectrum Tenancy

Here we present our findings on camping time, inter-access
time, hopping distance, and the tenancy width of aggregate
spectrum mobility.

1) Aggregate Camping Time: We find that the three best
fitting functions for the distributions of aggregate camping time
are power law, exponential (Expl) and two-term exponential
(Exp2), which are studied under low, medium, and high traffic
loads and shown in Fig. 8. The y-axis is the probability in
log scale. Specifically, Fig. 8(a) plots the distributions of all
camping times (ms) without conditioning on spectrum usage,
and the probability of camping for one millisecond takes the
major share close to one. The two-term exponential function
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Fig. 8. Distributions of the aggregate camping time: low, medium, and high
traffic loads.

achieves the best fitting performance with the AIC weight w of
1 in most traffic conditions. We observe that the two-term expo-
nential function captures both the initial components when the
probabilities decrease sharply and the later components when the
declining trend dies down. For example, the exponential decay
factor is Ao = —3.543 for the fast decrease in the beginning, and
then turnsto A4 = —0.1845 in the two-term exponential function
for the medium traffic case for P(C' = 2|0.3 < U < 0.7).

By taking a close look at the camping time distributions,
regardless of traffic loads, they become more weighted towards
the first few components, i.e., short camping times of a several
milliseconds. This differs from previous studies using two-state
Markov chain [39], where the camping time increases with the
traffic load. We believe this is due to the frequency granularity,
because the finer-grained spectrum usage may yield shorter
camping time on each RB. Multiple RBs are used to meet
the traffic demands, instead of occupying the same RB for a
longer time. That also explains that in case of high traffic, slicing
spectrum resources into narrow frequency channels is flexible
in providing higher data rate on-demand, which is consistent
with the intuition of spectrum division and multiplexing. This
result also suggests that spectrum sensing may be more often for
cognizant users under high traffic, in that LTE RBs are scheduled
more often at larger quantities such that the center frequency
changes more often than that under lower traffic.

2) Aggregate Inter-Access Time: We plot the distribution of
inter-access time with both x and y axes in the log scale, and
based on the AIC weights, the best regression functions are
the power function, the power function with a constant term,
and the power over logarithm function, which are marked by
‘Powerl’, ‘Power2’, and ‘POL’, respectively in Fig. 9. Recall
the inter-access time is the time interval between using spectrum
bands, which conceptually, should be heavily dependent on
the traffic loads; nonetheless, we do not observe a dramatic
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Fig. 9. Distributions of aggregate inter-access time.

difference with the trends of the negative exponents growing
smaller to steepen the decrease of possibilities as the inter-access
times increase. The major difference is the probability of the
most likely component, i.e., P (a = 0), which is 0.4622, 0.6293,
0.7207 in the three different traffic conditions, respectively. The
more wireless traffic there exists, the inter-access time is more
likely to be small, which is in line with the intuition that idle time
is shorter during high traffic. The importance of measurement
resolution can be appreciated from the fact that most inter-access
times are under 10 ms, which cannot be observed in coarse
resolutions. Therefore, both camping time and inter-access time
distributions reveal high probability of small values under 10 ms,
advocating that the dynamics of spectrum mobility favor spec-
trum measurements in fine granularity.

3) Aggregate Hopping Distance: We observe the distribution
of aggregate hopping distance and discover that the probability
of hopping distance zero is a singular point that stands out
from the rest of the probabilities in Fig. 10. Moreover, the
distributions of hopping distances other than zero are symmetric
with respect to the hopping distance of k/2 = 25. Based on
these observations, we fit the functions to the hopping distance
distributions when the distance is in the range of [1, 25], and
then flip the curve with respect to the line of x = 25.

The three functions that best fit the distributions of aggregate
hopping distances are the exponential function, the power law
function with a constant term, and the quadratic function. The
fitting performance of the three functions varies in different
spectrum usage conditions. When the traffic level is low, the
power law function with a constant achieves the best fitting
result; the quadratic function best fits the aggregate hopping
distances when the traffic load is medium; the distribution is
best fitted by the exponential function in the high traffic case.

When the traffic load is low, the spectrum mobility tends to be
idle, i.e., staying on the current center frequency. If a frequency
hop happens in this case, its next center frequency channel is
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Fig. 10.  Distributions of aggregate hopping distance.

similar to an RB chosen uniformly random due to the following
two reasons. First, the number of occupied RBs in a time slot
during low traffic is small, so the available choice of the center
frequency is close to all the RBs. Second, the noise-to-signal
ratio in the 50 RBs are similar with one another when examined
atlong time scales [40]. Since there is no constraint on the choice
of frequency channel in low traffic, the hop distance tends to be
uniformly chosen from all RBs. As the traffic load increases,
the hopping distance starts to favor nearby spectrum bands.
When the traffic load is high, the probabilities of further hops
to bands around 25 are close to 0. This is because the majority
of the spectrum bands are occupied each time slot under high
traffic, so the hopping destinations of the center frequency are
more limited to the middle of the system bandwidth after taking
the average of the index of occupied RBs, allowing only short
hopping distances. The hopping distributions provide valuable
guidance for spectrum tenancy predictions based on spectrum
mobility. For example, the large hops around 25 are most likely
to happen during low traffic, while hops from 20 to 30 have close
to zero possibility to appear.

4) Aggregate Tenancy Width: The distribution of the aggre-
gate spectrum tenancy width is depicted in Fig. 11. The three
functions that best fit the measurement data are the power law
with a constant, the two-term exponential, and the quadratic
function. The tenancy width exhibits a strong inclination to fully
utilize all 50 RBs and the remaining widths are distributed evenly
among the unused RBs. In terms of energy consumption, having
all RBs in a time slot occupied with data is more efficient, as
the same energy is used as long as one RB carries data. Thus,
operators have an incentive to maximize the number of time slots
with all RBs occupied to save energy.

Packing LTE traffic into all RBs is also beneficial for the
coexistence of various wireless networks as it leaves more
blank time slots to avoid collisions. The main distinction in
the width distribution among the three traffic levels is that the
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Fig. 11.  Distributions of aggregate tenancy width.

probability of using all 50 RBs increases with traffic, while the
even distribution of the remaining probabilities among the other
widths remains constant.

C. Observations of Individual Spectrum Mobility

Different from the variables defined for the aggregate spec-
trum mobility, the individual spectrum mobility is extracted by
tracing the spectrum mobility sessions of single mobile users.
In this subsection, we explain the observations of camping time,
inter-access time, and hopping distance from the perspective of
individual users.

1) Individual Camping Time: We observe a similar pattern
in the distribution of individual camping times as seen in the
aggregate model. Specifically, when plotted with a logarithmic
vertical axis, the best three fitting functions are the power
function, exponential (Exp1l), and two-term exponential (Exp2),
as illustrated in Fig. 12. Under medium traffic conditions, the
camping time is best fitted by the power function, whereas, at all
other traffic levels, the two-term exponential function provides
the best fit, with w = 1. It is noteworthy that the maximum
individual camping time is approximately twice the length of
that in aggregate camping time. Moreover, the distribution of
differential camping times is more sensitive to traffic levels than
its aggregate counterpart, as indicated by the more diverse values
of the exponents A2 and d. This is because aggregate camping
time captures the activities of all users, making it more stable
than those of individuals. Under high traffic load, the spectrum
resources assigned to individual users are very likely, with a
probability exceeding 99%, to change every millisecond.

Remark 1: High traffic loads may yield more volatile spectrum
assignments for individual devices. Therefore, the design of
spectrum sensing and measurement sampling need to be highly
adaptive for prediction of spectrum tenancy and achieve high
spectrum utilization. When runtime spectrum usage cannot be
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levels.

provided, a fine-grained spectrum mobility model will be very
helpful.

2) Individual Inter-Access Time: We find that the inter-
access times bear long tails of small probabilities and use log
scales on both axes to plot their distributions that are best fitted
by the power (Powerl), the power with a constant term (Power?2),
and the power over logarithm (POL) in Fig. 13 under different
traffic loads. In particular, by comparing with the inter-access
distribution of aggregate spectrum mobility, the individual inter-
access time is best fitted with the power over logarithm function
(POL) other than power with a constant term (Power2). This is
because the individual inter-access times have larger exponents
around —0.7 to —0.6 compared with those around —2.2 to —1.5
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in the aggregate case, showing a heavier tail than the power law.
In other words, the aggregate inter-access time is less variable
in comparison with individual devices, which captures a better
long-term spectrum usage in contrast to a relatively short-term,
local view of spectrum usage observed by individual devices.

Furthermore, it is noticed that the probability of zero inter-
access time is much lower in the differential case than that in
the aggregate model. For example, the probability of aggregate
inter-access time being 0 is P(a = 0|U > 0.7) = 0.7207 in
heavy traffic, but the individual counterpart is P(A = 0|U >
0.7) = 0.209. This is because the aggregate inter-access times
are similar to taking the minimum of the inter-access times of
all users.

Remark 2: On one hand, neither of the inter-access time distri-
bution functions nor the probabilities of the major components
in aggregate and individual spectrum share similar properties.
On the other hand, camping time of individual devices presents
a similar one- or two-term exponential distribution with the
aggregate or global spectrum usage.

3) Individual Hopping Distance: We observe that the distri-
butions of the individual hopping distances are best captured by
the exponential, the power law, and the quadratic functions. The
distributions and the fitted curves are illustrated in Fig. 14.

User perspective hopping distances in the low traffic can be
best fitted by the power function, and the quadratic function
achieves the best fitting in both medium and high traffic cases.
This fitting result is different from that of the aggregate hopping
distances, because individual hopping distances in the high
traffic case demonstrates a more smooth decrease from the
two sides to the center. This is due to the fact that individual
users take up fewer amount of spectrum bands than the entire
system, so there are more choices for the hopping destinations
than only the few RBs near the center frequency of the system.
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Fig. 15. Distributions of individual tenancy width.

Similar to the aggregate hopping distance distributions, hopping
distances in the user perspective also have an outlier point at
zero, and the rest of the probabilities are symmetric around
the center. Thus, the next spectrum access is most likely to be
centered on the same frequency channel, and this is true for
both aggregate and individual spectrum mobility. Different from
the aggregate spectrum hops, the probabilities of remaining in
the previous RB P(H" = 0) decreases as the traffic volume
grows, because the spectrum accesses of more mobile users
need to be accommodated and the average hopping distances
are increased as a compromise. The different changes of hopping
distance distributions caused by traffic intensities in aggregate
and individual mobility can only be observed with spectrum
measurement tagged by user IDs.

4) Individual Tenancy Width: The tenancy width for individ-
ual spectrum mobility is plotted in Fig. 15. Compared with the
aggregate tenancy width, the individual tenancy width shows
two different features. One is that the tenancy width distribution
of individual users is symmetric with respect to the middle
RB and grows larger towards the ends. The second feature of
the distribution is that the probability of being assigned all the
50 RBs decreases as the traffic grows, which is contrary to the
trend for aggregate spectrum mobility. This is intuitive because
each user is assigned less spectrum resources when the cell traffic
volume grows and the base station fairly allocates the limited
spectrum to handle increased requests.

Next, we discuss the observations derived for session vari-
ables. Our aim is to determine whether the initial spectrum bands
behave as random selections, as commonly assumed, or if they
are influenced by inherent factors. This analysis leverages our
high granularity measurements, which include associated user
IDs.

5) Starting Channel Index: We index the total m = 50 chan-
nels, i.e., LTE RBs from 1 to 50 for which the probability
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Fig. 16.  Distributions of starting channel index under different traffic levels.

mass function of the frequency index where spectrum mobility
sessions start is illustrated in Fig. 16, for various traffic levels.
Among the three fitting functions, the power function with a
constant term (Power2) achieves the best AIC weights, and
the resulting distributions under different traffic levels are very
similar, meaning that sessions of user spectrum mobility start
on certain bands with similar probabilities regardless of the
traffic conditions. Thus, the starting channel index in individual
spectrum mobility is the only parameter that is independent of
the wireless traffic conditions in FLuMe. Another observation is
that the spectrum mobility sessions tend to start on channels in
the lower frequency bands, and no sessions start on bands with
index over 26, which is no arbitrarily random selection.

Remark 3: One reason for this design choice could be to ensure
the successful establishment of initial communications in a
session. Transmissions in lower frequencies experience less path
loss, which is particularly advantageous for mobile devices with
limited power. However, our discovery of the uneven distribution
of starting channel indices contradicts the assumptions made
in most channel access designs for multi-channel scenarios,
where frequency channels are typically selected uniformly at
random [41].

6) Inter-Session Time Distribution: The distributions of
inter-session times and the fitting curves are illustrated in Fig. 17.
Among the six functions, the three best fitting functions are the
power function, the power function with a constant term, and
the power over logarithm function. Since the inter-session times
have long tails with small probabilities, both the horizontal and
the vertical axes in the figure are shown in the log scale. Most
of the inter-session times are under 100 ms in the three differ-
ent traffic conditions under which the trend of the distribution
functions are very similar. According to the AIC weights, the
power function with a constant term best fits the inter-session
time distributions.
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Fig. 17. Distributions of inter-session time under different traffic levels.

Compared with the inter-access time distributions in ag-
gregate and individual spectrum mobility, inter-session times
not only are best fitted by a different distribution, they
have a much smaller major component of P(WW = 1). This
probability is P(WW = 1|U < 0.3) = 0.0332,P(W = 1]0.3 <
U <0.7) =0.0427, P(W = 1|U > 0.7) = 0.0645 for the low,
medium, and high traffic conditions, respectively. Though the
probability of inter-session times also decreases exponentially
as the time length grows, the exponent is significantly smaller
than that of the inter-access times. For example, the exponents
of the best fitting functions of the distributions for inter-access
time in aggregate and individual cases under high traffic are
—2.268 and —0.7049, respectively, while the exponent in the
function for the inter-session time distribution under the same
traffic condition is —0.5353. Since a spectrum access session is
composed of multiple spectrum accesses and much longer than
a single spectrum access, the inter-session time is also much less
likely to be as short as one.

Remark 4: Similar to the inter-access times that are curtailed
during heavy traffic, inter-session times are more likely to be
shorter during heavy traffic since spectrum access sessions
arrive at higher rates. Though the traffic arrivals in important
routers in data networks have been shown to follow power law
distributions [42], inter-arrivals of spectrum access sessions are
the first reported to follow power law shape distributions in this
paper to the best of our knowledge.

7) Counting Spectrum Access: The spectrum access count
specifies the number of discontinuous accesses, i.e., the number
of individual spectrum mobility strides plus one during a session.
Three functions, the power function, the power function with
a constant, and the power over logarithm function, best fit the
spectrum access counts in different traffic conditions. The fitting
results and the empirical distributions of the data are presented
in Fig. 18. Similar to the distribution of inter-session times, the
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Fig. 18.  Distributions of access count under different traffic.

distribution of spectrum access count also features a long tail
with small probabilities, so both the vertical and the horizontal
axes are plotted in the log scale. In low traffic, the spectrum
access count is best fitted by power over logarithm function with
the AIC weight of one, and the power function with a constant
term best fits the distribution in other cases.

Since the major component in the heavy tail distributions
takes up the largest probability, we examine the odds of P(N =
1). This probability is P(N = 1|U < 0.3) = 0.1324,P(N =
1/0.3 < U < 0.7) = 0.0615,P(N = 1|U > 0.7) = 0.0580 for
the low, medium, and high traffic conditions, respectively. Thus,
the probability of having short mobility sessions decreases as
the traffic volume increases. This is also corroborated by the in-
creasing exponents in the fitting functions as the traffic intensity
grows. Based on the distributions of the spectrum access counts,
we observe that mobile users have more spectrum accesses
during a session under heavy traffic.

Remark 5: According to the distribution studies on the number
of spectrum accesses in a session and the inter-access times, a
typical spectrum access session is composed of tens of accesses
separated by a few ms, resulting in spectrum access sessions
lasting from tens to a few hundred ms. Compared with wireless
traffic sessions defined as the continuation of user activities
which usually persists for hundreds to thousands of seconds,
such as web-browsing or video streaming [43], the spectrum
access sessions are much shorter and require measurement with
higher resolutions.

V. SYNTHETIC TENANCY AND VALIDATIONS

Besides the new observations enabled by the analysis of
FLuMe variables in the high resolution spectrum tenancy, other
key applications of the FLuMe framework is to synthesize
spectrum usage data and predict spectrum tenancy.
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A. Synthesize Spectrum Usage With FLuMe

Based on the versatile and light-weight FLuMe model, both
individual and aggregate spectrum usage can be generated. In
this subsection, we elaborate two ways to generate aggregate
spectrum tenancy of an entire LTE cell, and one way to generate
individual spectrum tenancy.

The steps to generate the aggregate spectrum usage of an LTE
cell with FLuMe is as follows. First, choose the wireless traffic
level that consumes the synthetic spectrum usage, from low,
medium, or high, as defined by the utilization U. Then, select
the index for the first center RB according to the distribution
of B, the starting channel index. The aggregate camping time
can be generated by the distributions in Fig. 8, and the tenancy
width is governed by the distributions in Fig. 11. With the given
tenancy time, width, and center RB, we can accurately specify
the occupied spectrum resources in the time-frequency domain.
The next tenancy can be found by generating an instance of the
aggregate hopping distance and the inter-access time, H and A,
and its size is again decided by the camping time and tenancy
width in the same fashion as we do for the first spectrum usage.
More four tuples of aggregate spectrum usage, (ck, bk, ak, di),
can be synthesized until the desired amount.

Besides generating the cell wide spectrum usage with aggre-
gate FLuMe variables, the other way to synthesize aggregate
tenancy is utilizing the individual tenancy and session variables.
First, generate instances of the session variables (B, W, N),
according to the distributions in Section IV-C. Within each
session, we then generate individual spectrum usage strides for
the number of times specified by the access count N, by selecting
values of the four tuples for individual spectrum usage according
to the distributions for random variables (C, H, A, D). After
all the individual spectrum accesses for a session have been
synthesized, the start time and the center RB position for the
next spectrum usage session can be again decided by the session
variables W and B.

In addition to the above two ways to generate aggregate
spectrum usage, the FLuMe variables for individual spectrum
mobility are capable of generating the spectrum tenancy of
individual wireless devices. Similar to synthesizing aggregate
spectrum mobility, we first select the center RB index based on
the distribution of B. Then, the size of the tenancy is determined
by the camping time C' and the tenancy width D according to
their distributions. The next individual tenancy starts after an
instance of the inter-access time A on the center RB that is at a
hopping distance H.

B. Validate Distributions of FLuMe Variables

To validate that the proposed model is able to synthesize
authentic spectrum usage, we compare the distributions of three
FLuMe variables in both measurement and synthetic data in this
subsection.

We select the spectrum tenancy during high wireless traf-
fic (U > 0.7). Then, we generate two data sets of aggregate
spectrum tenancy in high traffic in the two ways explained in
the previous subsection, using aggregate FLuMe variables and
the individual variables with sessions, respectively. We analyze
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Fig. 19.  Model validations and unification.

the distributions of the aggregate camping time C, hopping
distance H, and inter-access time A, in all the three data sets,
the measurement data and the two synthetic data sets. The
distributions for the three variables are illustrated in Fig. 19.
The probability mass functions of the aggregate variables for
the measurement data are shown as red squares, and the two
synthetic datasets are depicted as green circles and blue di-
amonds. We observe that the distributions of camping time,
hopping distance, and inter-access time in all three datasets are
very similar. A two-sample Kolmogorov-Smirnov test confirms
that the measurement data and synthetic datasets have the same
distribution with a significance level of 0.05.

This result confirms that our spectrum mobility model cap-
tures real-world spectrum mobility from both aggregate and
individual perspectives. Since the aggregate and the individual
perspectives of the FLuMe model cross validate each other,
and the number of parameters in the models are quite limited
compared to the size of the dataset, the risk of over fitting FLuMe
to measurement data is minimal [44].

To sum up, the FLuMe model is able to synthesize spectrum
tenancy with the same variable distributions as the high resolu-
tion measurement. The model is also versatile to be adapted to
model the spectrum usage data presented in other studies, such
as those in [12], [18], [19].

C. Spectrum Prediction

After validating the FLuMe framework, we showcase its
application to spectrum prediction, which plays a crucial role
in facilitating the simultaneous usage of multiple wireless net-
works on overlapping frequency channels [45]. Although there
are many spectrum prediction algorithms, some of which are
model-free, the impact of spectrum tenancy models can still
be seen in all prediction algorithms [46]. This is because some
algorithms rely on the distributions of on/off intervals, and most
predictions require historical tenancy as input data [47].

Since the on/off model is a classical spectrum model and
the busy and the idle interval patterns have been adopted in
spectrum predictions, we compare the prediction capabilities
of our proposed spectrum mobility with the on/off model. To
achieve fair comparisons, the prediction algorithm is chosen
as the Multi-Layer Perceptron (MLP) [48], and the prediction
inputs are the on/off period lengths and the FLuMe aggregate
variables. As history usage has been adopted as the prediction
inputs for MLP based predictions, we compare the prediction
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Fig. 20.  Prediction accuracy comparisons.

accuracy in four cases with different prediction inputs, the aggre-
gate parameters, the aggregate parameters plus history tenancy,
on/off parameters, and on/off together with history tenancy.

For each case, we train the MLP network using different
amounts of samples ranging from 50 to 400, and the performance
is tested on 100 new data samples never used in the training
stage. We adopt the prediction accuracy as the performance
metric, and it is defined as the number of correctly predicted
spectrum tenancy over the total amount of spectrum slices. For
spectrum mobility based predictions, we supply the MLP with
the camping times, the hopping distances, and the inter-access
times in two previous strides defined in the aggregate variables
of FLuMe. When the on/off time lengths or the history tenancy
are employed as prediction features, we also consider two on/off
cycles or history tenancy. All four cases with different prediction
inputs are validated in ten randomly chosen spectrum tenancy
segments, and the average prediction accuracy versus training
sample sizes are plotted in Fig. 20.

The following findings can be observed from Fig. 20. First,
MLP based spectrum tenancy prediction can be trained with a
small amount of data, since the accuracy stabilizes after training
sample sizes reach 400. If the prediction inputs are composed
of both spectrum mobility parameters and the tenancy, the
prediction accuracy achieves 90% with even smaller sizes of
training sample such as 150 and 200. Thus, it is important to
capture spectrum tenancy in LTE scheduling intervals of 1 ms,
since measurement in coarse time resolutions in the seconds
or hundreds of ms may miss the prediction inputs lasting only
around 200 ms. Compared with on/off parameters, spectrum
mobility parameters serve as more capable prediction features,
because the prediction accuracy based on inputs of spectrum
mobility is higher than that based on on/off time periods. This
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is true when spectrum mobility and on/off parameters are used
alone or together with history tenancy.

VI. RELATED WORK

The spectrum tenancy model and its impacts on the spectrum
prediction and the design of spectrum access schemes have been
extensively investigated. However, these existing studies focus
on the overall spectrum occupancy in a wide range of bands,
lacking the characterization of the spectrum usage of individual
mobile devices. In comparison, the proposed FLuMe framework
provides a comprehensive modeling of spectrum usage from
both the aggregate and the individual perspectives.

An ARMA model is proposed for spectrum consumption
based on extensive measurement campaigns [45]. Although the
model characterizes changes in energy levels in a wide spectrum
band, it fails to capture the occupancy of individual users. A
study in [49] models the spectrum occupancy along the time,
frequency, and space domains, but does not incorporate the
spectrum tenancy of single users or the aggregate usage of all
users in a cell. The study in [18] observes both deterministic
and stochastic patterns in the spectrum mobility of WiFi and
LTE bands, however, it only focuses on the spectrum usage of
all users in a single cell and not that of individual users.

In addition, our models are based on raw spectrum occupancy
measurement data collected with the same time and frequency
granularity as the spectrum resource scheduling of underlying
mobile networks. However, other measurement-based models
have a much coarser granularity that cannot reflect the actual
spectrum usage. A study in [50] focused on a narrow bandwidth
of 300 kHz, but had a time resolution of 5 to 30 seconds, much
larger than the 1 ms scheduling interval in LTE systems. A
cloud-based measurement system is proposed in [51], but it also
has a time granularity of around 10 seconds. The survey [24]
provides a summary of previous studies on spectrum usage, in-
cluding measurement granularities. According to the table, time
granularity is typically around tens of seconds, with a frequency
resolution of around 200 kHz, larger than the scheduling unit of
LTE spectrum resource allocation.”

VII. CONCLUSION

Studies on spectrum usage are pivotal in wireless network
design; however, many existing models lack the ability to ac-
curately characterize dynamic changes in spectrum usage at
fine time-frequency granularity for both aggregate and individ-
ual spectrum tenancy. This paper introduces the novel FLuMe
framework based on measurement data that includes information
such as user IDs, initial frequency channel, camping time, and
inter-access time for both single accesses and multiple accesses
in sessions. Our findings reveal a range of interesting obser-
vations, including the distributions of spectrum usage under
different traffic loads and the similarities between aggregate and
individual spectrum usage. We also discuss potential applica-
tions of FLuMe, including the generation of synthetic datasets
for use in spectrum prediction, highlighting the significance and
versatility of our data-driven modeling approach.
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