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Electron attachment to pyridine results in electronic resonances, metastable states that can decay through electronic or
nuclear degrees of freedom. This study uses orbital stabilization techniques combined with bound electronic structure
methods, based on equation of motion coupled cluster or multi-reference methods, to calculate positions and widths
of electronic resonances in pyridine that exist below 10 eV. We report four 2B1 and four 2A2 resonances, including
one 2B1 not previously reported experimentally and two 2A2 resonances not reported at all in the literature. The two
lower energy resonances are one-particle shape resonances while the remaining are mixed or primarily core-excited
resonances. Multi-reference perturbation theory provides the best description of these resonances, especially when
their character is mixed. We describe the character of these resonances qualitatively, and calculate Dyson orbitals,
which provide information about their decay channels.

I. INTRODUCTION

Understanding low-energy electron attachment to cyclic
conjugated molecules, like the nucleobases, may provide
valuable insights into radiation-induced damage of genetic in-
formation carriers, such as DNA1–6. Examining the impact of
radiation on DNA due to interactions between electrons and
molecules can in turn potentially enhance treatments for can-
cer and other diseases. Furthermore, these electron-induced
reactions are ubiquitous and have applications beyond bi-
ology, in material science, electronics, plasmonics, and
astrochemistry2,5,7–9. A pivotal study by Sanche’s group in
200010 discovered that electrons below the ionization thresh-
old have strong destructive effects, with DNA strand breaks
caused by electrons having kinetic energies as low as 3 eV.
In 2002, it was theoretically predicted that DNA damage can
occur even through the attachment of very low energy elec-
trons (ca. 1 eV) when DNA is strongly solvated, leading to C-
O bond rupture11, a finding later confirmed experimentally12.
These studies concluded that DNA damage occurs via a disso-
ciative electron attachment (DEA) mechanism13, highlighting
the significant impact of low-energy electrons (energy ≤ 20
eV) on DNA and other molecules and sparking considerable
scientific interest in DEA processes.

DEA is a two-step resonant process. In the first step, a low-
energy electron produced by various sources gets attached
to the target neutral atom. If the resulting anion has a fi-
nite lifetime and is stable enough, it can dissociate into two
or more fragments. The anions formed in the first step are
known as temporary or transient negative ions or electronic
resonances14. The term ‘resonance’ indicates that electron at-
tachment occurs at specific energies. These electronic reso-
nances are metastable states (with finite lifetimes) character-
ized by negative electron affinities.

Electronic resonances are conventionally categorized into
shape and Feshbach resonances14. Shape resonances are
quasi-bound states where an electron is temporarily trapped
by a centrifugal potential barrier15,16. This barrier restricts

the electron’s motion in certain directions, trapping it within
the space with molecular dimensions. The trapped electron
may eventually tunnel through and escape the barrier. Shape
resonances can be one-particle (1p) resonances, where in the
context of the closed shell molecular systems we are dis-
cussing here, an electron is attached to a valence unoccupied
orbital of the molecule. Alternatively, in ‘core-excited’ or ‘2-
particle-one-hole (2p-1h) resonances’ an incoming electron
with higher energy undergoes inelastic scattering, leaving the
molecule in an electronically excited state and trapping the
electron within its potential well. 2p-1h resonances can be
shape or Feshbach resonances. If they lie below the parent
excited state, they are termed Feshbach resonances; if they
lie above the parent excited state, they are called core-excited
or 2p-1h shape resonances. It is noted that the term ’core-
excited’ is not limited to core electrons alone; rather, in this
case it is used to denote the 2p-1h resonances. Feshbach res-
onances, named after the American physicist Herman Fesh-
bach, are also known as ‘Type-I resonances.’ The decay of
Feshbach resonances into the parent state is energetically for-
bidden, though decay into other states is allowed14. Feshbach
resonances decay via two-electron processes leading to longer
lifetimes. They are also harder to characterize theoretically,
since configurations with two or more electrons rearranged
are required.

Quantum mechanically, resonances can be described as sta-
tionary states with complex energies. The energy of the reso-
nance E, also known as Siegert17–19 energy, is given by

E = Er − iΓ/2. (1)

The real part of the Siegert energy, Er, is the position, while
Γ is the width, where width is inversely proportional to the
lifetime of the resonance (τ = h̄/Γ). The outcomes of the
decay depend on the energy and lifetime of the resonance.

These states are not part of the Hermitian domain as
their solutions and eigenvalues are derived by considering
outgoing boundary conditions19, making resonances non-L2

integrable16,19. Since these resonances are embedded in
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the continuum, conventional quantum chemical methods de-
signed for solving the time-independent Schrödinger equation
for bound states cannot be used without modifications20–23.
Alternative methods that do not require explicit continuum
calculations have been developed, such as the stabiliza-
tion technique23–31, complex scaling32–34, complex absorbing
potentials23,35,36, and analytic continuation in coupling con-
stant method37.

In this paper, we apply the orbital stabilization method
(OSM) to compute complex energies via the analytic
continuation of eigenvalues obtained from Hermitian
methods30,31,38–40. This approach, introduced by Hazi and
Taylor25,40, utilizes stabilization plots based on energies
from multiple electronic states of the anion, computed using
quantum chemical methods, while a parameter controlling
the radial extent of added diffuse functions in the basis set is
varied.

Our study focuses on pyridine (C5H5N), a molecule similar
to benzene but with a nitrogen atom replacing a CH group.
Pyridine’s structural similarity to pyrimidine (C4H4N2), a
component of DNA nucleobases, makes it a suitable model
for understanding how these cyclic conjugated structures in-
teract with low-energy electrons. Thus, studying interaction
of pyridine with low-energy electrons serves as a starting point
for investigating relevant nucleobase molecules. On the other
hand, the high symmetry present in pyridine allows for using
higher levels of theory to benchmark performance.

The low-lying resonances of pyridine have been identi-
fied in electron transmission experiments41–44. DEA experi-
ments have also been reported45. Early studies by Nenner and
Schulz41 identified three low-lying resonances using electron
transmission measurements. They characterized the first two
as shape resonances and suspected that the third resonance
was a shape mixing with a low-lying core-excited resonance.
In 1976, Mathur and Hasted42 identified five resonances us-
ing electron transmission spectroscopy; however, they didn’t
characterize any of them. More recently, Szmytkowski et
al44 used linear electron-transmission method to identify res-
onances. A few theoretical studies have been done using
scattering approaches46–48. Scattering methods use differ-
ent approaches to describe the target states of the neutral
molecule. The static exchange (SE) approximation uses a
frozen Hartree-Fock wavefunction and is incapable of describ-
ing 2p-1h resonances, while the static-exchange-polarization
(SEP) approximation allows for polarization of the neutral
core often including 1p1h configurations, so it can predict 2p-
1h resonances, although with some deficiencies. The close
coupling (CC) model uses target states obtained from the
CASSCF calculations including excited states. So, the CC
model is able to describe 2p-1h resonances quite well, de-
pending on the underlying active space.49 Barbosa et al46 used
the Schwinger multichannel method with SEP to calculate the
first three shape resonances, while Sieradzka et al47,50 used R-
matrix techniques with SEP to calculate elastic and inelastic
collisions obtaining many resonances. A recent study by Su et
al.48 also used the R-matrix with close coupling and reported
the two low lying 1 2B1, 1 2A2 shape resonances and the 2 2B1
mixed shape resonance. They also reported five core-excited

resonances 1 2A1, 1 2B2, 3 2B1, 2 2A2 and 4 2B1 above the first
electronic excitation threshold. However, only the last study is
able to describe both 1p and 2p-1h resonances. Furthermore,
there have only been scattering approaches used to describe
these resonances, so different approaches should be applied
as well.

Advances in more recent years in electronic structure based
approaches to calculating metastable states provide an op-
portunity to see how well they are applied to medium-sized
molecules, such as pyridine, and compare to the available
scattering results. The primary objective of our study is to
determine the positions and widths of the π resonances be-
low the ionization threshold energy (≈ 10 eV) for pyridine
using high level electronic structure theory combined with the
orbital stabilization technique, and to describe the nature of
resonances formed by pyridine accurately. In order to achieve
this goal, we implemented and used both quadratic and cubic
Generalized Padé Approximant (GPA) methods to calculate
resonance parameters in pyridine using OSM and compared
the results with previous theoretical and experimental values.

The article is structured as follows: Section II is divided
into two subsections. Section II A details the theoretical
methodologies for the quadratic and cubic GPA approaches,
while Section II B discusses the quantum methods and com-
putational techniques employed in this study. Section III is
dedicated to analyzing our findings, subdivided into four sub-
sections. Section III A focuses on benchmarking basis sets.
Section III B and Section III C present results obtained using
single-reference and multi-reference methods, respectively.
Section III D compares our results with existing literature. Fi-
nally, Section IV summarizes the conclusions drawn from our
study.

II. THEORY AND COMPUTATIONAL METHODS

A. ORBITAL STABILIZATION METHOD

The core concept of the stabilization strategy involves en-
closing the resonant state within an artificial box potential,
where variations in the box size allow for monitoring the reso-
nance’s energy51. In the OSM, the confining potential is deter-
mined by the spatial extent of the most diffuse Gaussian func-
tions, with the box size adjusted by varying the exponent of
these functions using a scaling parameter (α). Resonance so-
lutions are identified when the energy of the discrete state cor-
responding to the resonance remains invariant under changes
in the scaling parameter, while the energy of the discretized
continuum states increases rapidly with α .

The energies involved in avoided crossings can be analyt-
ically continued to a complex plane through GPAs52,53 tech-
nique to obtain Siegert complex energies. The GPAs that are
used in this work are quadratic54 and cubic polynomials which
are given by,

E2P+EQ+R = 0 (2)

E3P+E2Q+ER+S = 0 (3)
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The coefficients P, Q, R, and S are polynomials of the scal-
ing parameter (α), as shown below:

P = 1+
ni

∑
i=1

piα
i Q =

n j

∑
j=0

q jα
j

R =
nk

∑
k=0

rkα
k S =

nl

∑
l=0

rlα
l

Quadratic and cubic polynomials are denoted by (ni,n j,nk)
and (ni,n j,nk,nl), respectively, and the number of unknowns
in the polynomials is given by ni + n j + nk + 2 and ni + n j +
nk + nl + 3, respectively. These polynomials are used to fit
the ab initio energies as a function of the scaling parameter
around avoided crossings between discrete local state and dis-
cretized continuum states. The process involves substituting
these energies and scaling parameters (α) into the polynomial
equations, which then transform into sets of linear equations
with unknown coefficients. To calculate these unknown co-
efficients, a total of ni + n j + nk + 2 and ni + n j + nk + nl + 3
equations are required for quadratic and cubic polynomials,
respectively. These linear equations are typically solved using
standard matrix methods to obtain the unknown coefficients.
This process transforms GPAs into expressions involving en-
ergies and the scaling parameter (α).

The roots of the quadratic polynomial GPAs55 are provided
by

E± = (−Q ±
√

(Q2 −4PR))/(2P) (4)

The roots of the cubic polynomial GPAs56 are provided by

E1 = (−1/3)(Q/P)+(D+E) (5)

E2 = (−1/3)(Q/P)+(1/2)(D+E)+(i/2)
√

3(D−E)
(6)

E3 = (−1/3)(Q/P)+(1/2)(D+E)− (i/2)
√

3(D−E))
(7)

where

D = 3
√

(B+
√

C) and E = 3
√
(B −

√
C)

C = A3 +B2

A =
(
3RP−Q2)/(9P2)

B =
(
9PRQ−27P2S−2Q3)/(54P3)

As the resonance energy should be independent of the scal-
ing parameter, we utilized dE

dα
= 057 to locate the complex sta-

tionary points using Muller’s optimization method58. Once

these stationary points are identified, we substitute them back
into the polynomial equations to extract the resonance posi-
tions from the real part and the resonance widths from the
imaginary part of the complex energies.

In our study, we employed a rigorous approach to deter-
mine resonance parameters using GPAs, specifically quadratic
and cubic polynomials. For each avoided crossing analyzed,
we utilized at least two datasets for quadratic GPAs and three
datasets for cubic GPAs. This approach was inspired by the
work of Chao et al.31, where energies from three eigenstates
(two for quadratic GPAs) near the avoided crossing were
chosen for analytic continuation. All roots provided consis-
tent results when the correct stationary point was identified.
Our analysis indicated that varying α with the step sizes of
0.01, 0.02 and 0.03 does not significantly impact the reso-
nance parameters (see Supplemental Online Material (SOM)).
However, finding stationary points using cubic GPAs (e.g.,
(5,5,5,5) and (7,7,7,7)) posed challenges when one avoided
crossing was close to another of a different resonance. In such
cases, careful selection of data sets that avoid nearby cross-
ings from other resonances was crucial. In general, a station-
ary point is trustworthy when the values are reproduced with
all GPAs applied. In cases that is not true, we will discuss the
justification for our choice.

B. COMPUTATIONAL METHODS

The geometry of neutral pyridine was optimized at the
B3LYP level of theory with Dunning’s correlation-consistent
polarized valence triple zeta (cc-pVTZ) basis set. Different
basis sets were benchmarked using the Equation of Motion
Electron Attachment Coupled Cluster with Single and Double
Excitations (EOM-EA-CCSD) method to identify a balance
between accuracy and computational efficiency. All the ba-
sis sets were taken from the Basis Set Exchange library59.
Using the Dunning basis sets cc-pVDZ, aug-cc-pVDZ, cc-
pVTZ, and aug-cc-pVTZ, we added extra diffuse functions,
designated with a bracket in Table I. To properly analyze an-
ions, very diffuse orbitals are imperative, and consequently,
we added additional diffuse orbitals for the heavy atoms (C
and N). We also tested addition of the diffuse functions at the
center of mass (COM) of the molecule. Finally, a Pople basis
set was also tested. Extra diffuse basis functions are scaled
in an even-tempered manner and listed in brackets in Table I.
In order to check the performance of basis sets without extra
functions, we also used the aug-cc-pVDZ set, and uniformly
scaled all the augmented diffuse functions. All these basis sets
shown in Table I were used for benchmarking.

Based on benchmarking discussed in Section III A, the cc-
pVTZ basis set with an additional diffuse ’p’ function on
heavy atoms was chosen for the remaining calculations. Sta-
bilization curves were generated by scaling one extra diffuse
’p’ function on heavy atoms while keeping the parent basis
unchanged on hydrogen atoms, and exponential factors were
adjusted in an even-tempered manner,

α(d) = 0.5∗αp (8)
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where α(d) is the exponential scaling factor of the extra
added diffuse function and αp is the exponential scaling fac-
tor of the last primitive Gaussian of desired angular function
in the existing basis set.

To determine the resonance parameters Er and Γ for pyri-
dine, orbital stabilization plots were generated using two dis-
tinct computational methods tailored to different types of res-
onances. The EOM-EA-CCSD method60,61, part of the EOM-
CCSD family, was employed for describing one particle (1p)
shape resonances of pyridine. This method accurately de-
scribes electron affinities when coupled with appropriate basis
sets.

However, EOM-EA-CCSD cannot adequately describe 2p-
1h resonances. This is because 2p-1h resonances require dou-
ble excitations which are not included in the primary space
of EOM-EA-CCSD, limiting its applicability to these reso-
nances. Going beyond EOM-EA-CCSD by including triple
excitations, using EOM-EA-CCSDT, would help improve the
description of 2p1h resonances, but this is a very expen-
sive approach.62 For this reason, multi-reference methods63,64

have been employed instead here to describe the 2p-1h reso-
nances. These methods offer a more comprehensive treatment
of electron correlation effects and are better equipped to cap-
ture the nuances of multi-particle excitations. These methods,
implemented with the same basis set, are capable of accurately
calculating 2p-1h resonances by allowing a more flexible con-
figuration space. This dual-method approach ensured com-
prehensive coverage of both 1p and 2p-1h resonances in pyri-
dine, contributing to a thorough understanding of its electron-
molecule interactions.

Both Complete Active Space Self-Consistent Field
(CASSCF) and Restricted Active Space Self-Consistent
Field (RASSCF) approaches were used. In all cases, 9
electrons were included in the active space. The orbitals
included in the active space for 2B1 and 2A2 resonances
are provided in Table II. In RASSCF, the complete active
space (ACT) included the 3π and 3π∗ orbitals and the lone
pair on nitrogen (with symmetries 1 a1, 4 b1, and 2 a2, see
Figure 1). Additional diffuse functions are needed to include
continuum-like states and be able to describe the resonances
properly. In RASSCF, we assume that the description of these
additional states does not require a high level of correlation,
so we include additional diffuse orbitals in the auxiliary space
(AUX) and only allow single excitations into that space. The
AUX space is different for the 2B1 and 2A2 resonances to
capture coupling with the continuum states of appropriate
symmetry. For 2B1 resonances at the RASSCF level, ten
diffuse orbitals of b1 symmetry are included in the AUX
space (Table II ). The energies of the excited 2B1 states
were calculated including 15 states in an average of states
RASSCF. The neutral reference was also calculated using the
same active space and number of states to achieve balance.
For 2A2 resonances at the RASSCF level, four a2 diffuse
orbitals are included in addition to seven valence orbitals with
restricted single excitations into the AUX space (Table II).
The energies of the 2A2 resonances and the neutral reference
were calculated using an average of over 10 states.

The CASSCF method was employed to assess the impact

FIG. 1. Active orbitals of neutral pyridine molecule. Symmetry la-
bels are given according to the C2v point group.

of including higher excitations into the diffuse orbitals and to
determine if it affects the resonance positions and widths. At
the CASSCF level, we used active spaces without restrictions
for calculating the resonances of different symmetries. The
energies of the excited states were calculated using an aver-
age of 10 states for both symmetries. Similarly, neutral ref-
erence has been calculated using the same active spaces with
the states averaged over 10 states.

Finally, dynamical correlation was added using perturba-
tion theory to correct the CASSCF energies and wavefunc-
tions. Specifically, the extended multistate complete ac-
tive space perturbation theory (XMS-CASPT2) approach was
used with 10 states for 2B1 and 10 states for 2A2 states. The
Ionization Potential Electron Affinity (IPEA) shift operator
was used with a value of 0.25 a.u., to correct the systematic er-
rors that associated with open shell systems and IMAGINARY
shift was used with a value of 0.20 a.u. to avoid the singular-
ities that cause intruder state problems. To calculate possible
detachment channels, different symmetries of states of neutral
pyridine were utilized to determine Dyson orbitals, using the
same active space for both neutral and anionic states. Dyson
intensities for the transitions between neutral and resonance
states are provided in the SOM.

Geometry optimizations using B3LYP were performed us-
ing the Gaussian software65. All EOM-EA-CCSD calcula-
tions were executed using Q-Chem66. All the MCSCF calcu-
lations were carried out using the Molpro software67, while
the XMS-CASPT2 calculations and Dyson orbitals were car-
ried out using the OpenMolcas software68.

III. RESULTS AND DISCUSSION

The electronic configuration of the ground state of neutral
pyridine molecule is shown in Figure 1, indicating the occu-
pation of the valence π , π*, and lone pair orbitals. Since pyri-
dine has three π bonds and one lone pair on the nitrogen atom,
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Basis set B1 (Er) B1 (Γ) A2 (Er) A2 (Γ) # bfs
cc-pVDZ+[1p] 1.64 (0.10) 1.72 (0.16) 127

cc-pVDZ+[2s4p] 1.36 (0.08) 1.69 (0.08) 193
aug-cc-pVDZ 1.36 (0.05) 1.65 (0.05) 183

aug-cc-pVDZ+[1p] 1.22 (0.10) 1.54 (0.09) 201
cc-pVTZ+[1p] 1.20 (0.06) 1.50 (0.11) 268

cc-pVTZ+[2s3p] 1.13 (0.05) 1.50 (0.04) 316
cc-pVTZ+[3s3p] 1.15 (0.04) 1.50 (0.04) 322
cc-pVTZ+[2s4p] 1.13 (0.06) 1.49 (0.06) 334
cc-pVTZ+[3s4p] 1.13 (0.06) 1.48 (0.07) 340

aug-cc-pVTZ+[1p] 1.06 (0.08) 1.41 (0.08) 409
6-311G(2df,2pd)+[1p] 1.30 (0.06) 1.52 (0.11) 274

cc-pVDZ(H) cc-pVTZ+[3s3p3d] 1.08 (0.07) 1.45 (0.06) 367
cc-pVTZ+[3s3p3d] (COM) 1.29 (0.06) 1.68 (0) 277
cc-pVTZ+[6s6p6d] (COM) 1.26 (0.03) 1.66 (0.01) 304

exp.41–44 0.6-0.8 1.2

TABLE I. Positions (Er) and widths (Γ) (in eV) of low-lying shape resonances of pyridine obtained using EOM-EA-CCSD with different basis
sets. In the last two rows, extra diffuse functions are only added at the center of mass (COM).

C2v CLOSED ACT AUX
2B1 resonances

RASSCF
a1 10 1 0
b1 0 4 10
b2 7 0 0
a2 0 2 0

CASSCF
a1 10 1
b1 0 10
b2 7 0
a2 0 2

2A2 resonances
RASSCF

a1 10 1 0
b1 0 4 0
b2 7 0 0
a2 0 2 4

CASSCF
a1 10 1
b1 0 4
b2 7 0
a2 0 6

TABLE II. Orbitals included in the calculation of 2B1 and 2A2 reso-
nances of pyridine at the RASSCF and CASSCF level of theory (with
cc-pVTZ +[1p] basis set). The number of closed shells (CLOSED),
active (ACT), and auxiliary (AUX) orbitals are shown belonging to
the irreducible representations of C2v symmetry (a1,b1,b2,a2).

there exist three occupied π orbitals, one occupied lone pair
orbital, and three unoccupied π* orbitals. The C2v symmetry
of pyridine defines its orbital configurations with π and π* or-
bitals belonging to b1 and a2 irreducible representations. Two
of the occupied π orbitals have b1 symmetry (1b1 and 2b1)
while the other occupied π orbital belongs to a2 symmetry
(1a2). Similarly, two of the unoccupied π∗ orbitals belong to
b1 symmetry, and the other belongs to a2 symmetry. There-
fore, we expect to have a maximum of three low-lying π 1p

shape resonances and several 2p-1h resonances. The 1p shape
resonances are formed by electron attachment to a π* orbital,
while the 2p-1h involve excitation from π to π∗ and attach-
ment of an electron to a π∗ orbital.

In this work, our objective is to characterize many of the
B1 and A2 resonances of pyridine that exist below 10 eV.
To choose an accurate as well as cost-efficient basis set, we
initially benchmark some basis sets using the single refer-
ence EOM-EA-CCSD method for the first two low-lying res-
onances in Section III A.

A. BENCHMARKING DIFFERENT BASIS SETS

In order to benchmark the basis sets we calculated the first
shape 2B1 and 2A2 resonances and compared to experimental
values. Benchmarking of basis sets was done only using the
1p resonances in this work. In the future, we plan to exam-
ine whether 2p-1h resonances have different requirements for
basis sets. In this work this is not possible, since we do not
have available experimental results for the 2p-1h resonances
of pyridine. The results obtained for different basis sets begin-
ning from cc-pVDZ+[1p] to aug-cc-pVTZ+[1p] at the EOM-
CCSD level are presented below in Table I. The results for
basis sets using diffuse functions at the COM are provided in
the same table (last two rows) for comparison with the ones
that add diffuse functions on all heavy atoms. In the table,
the parent basis set is not modified on hydrogen atoms un-
less it is mentioned in parenthesis. All the stabilization plots
are provided in the SOM, and the values reported in Table I
are average of all the values that are obtained across all the
avoided crossings for a given resonance using quadratic GPA.

The variation in resonance parameters for the basis sets
(excluding the last four rows) is provided in Figure 2 for a
more visual representation. The positions decrease with an
increase in the number of basis functions approaching some
convergence, while the widths are in a similar range between
0.04− 0.16 eV, except for cc-pVDZ+[1p], and they show no
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FIG. 2. Resonance positions (top) and widths (bottom) vs number of
basis functions shown in Table I for both 2B1 and 2A2 resonances.
Marked dots belong to cc-pVTZ+[1p]. Values are obtained using
(7,7,7) GPA. Basis sets from cc-pVDZ+[1p] to aug-cc-pVTZ+[1p]
added on all heavy atoms are used to see the variation across the
same correlation consistent basis set family.

systematic convergence. Among all the atom-centered basis
sets, cc-pVDZ+[1p] has the lowest number of basis functions
(127) and aug-cc-pVTZ+[1p] has the highest number of ba-
sis functions (409). The experimental values for the 12B1
and 12A2 positions are around 0.7 eV and 1.2 eV. All the
basis sets predict higher values. The values obtained using
cc-pVDZ in Table I are too high even when diffuse functions
are added, indicating the necessity of using larger basis sets.
The values obtained at aug-cc-pVDZ+[1p] and cc-pVTZ+[1p]
seem to balance best accuracy with computational efficiency
compared to the remaining larger basis sets. The error is
still 0.5 eV for 12B1 and 0.3 eV for 12A2. Beyond the cc-
pVTZ+[1p] basis set, the marginal increase in accuracy with
additional basis functions suggests limited potential for im-
provement with larger basis sets. Expanding the basis set with
more diffuse functions introduces additional ’continuum-like’
functions below the desired states. This augmentation neces-
sitates calculations of more excited states, thereby increasing
the overall computational time both because of the number of
basis functions and because of the increased number of roots
that need to be converged.

While the best position is obtained with the largest basis
set, aug-cc-pVTZ+[1p], (with an error of 0.3-0.5 eV and 0.2

eV for 12B1 and 12A2, respectively, compared to experimental
values), the next best value is obtained using a basis set that
combines smaller basis sets for lighter atoms and larger ba-
sis sets for heavier atoms (e.g., cc-pVDZ(H) for lighter atoms
and cc-pVTZ+[3s3p3d] for heavier atoms). This approach is
one way to reduce the number of basis functions without sac-
rificing accuracy. We also conducted a comparison between
Dunning’s basis set and Pople’s basis set to evaluate their reli-
ability in correlation calculations. Specifically, we selected a
basis set (6-311G(2df,2pd)+[1p]) that has a comparable num-
ber of basis functions (274) to cc-pVTZ+[1p] (268). Our
findings revealed that the resonance positions obtained with
Pople’s basis set were higher compared to those obtained with
Dunning’s basis sets, while the widths remained similar. This
suggests that Dunning’s basis sets perform better than Pople’s
basis set in resonance calculations.

To compare the resonance parameters obtained by adding
diffuse functions only at the center of mass (COM) with the
ones with atom-centered basis, we considered two different
basis sets, cc-pVTZ+[3s3p3d] and cc-pVTZ+[6s6p6d], which
have 277 and 304 basis functions, respectively. The posi-
tions obtained are larger than the ones with atom-centered
cc-pVTZ+[1p]. For 12B1 resonances, the calculated widths
were comparable to those obtained with atom-centered basis
sets, whereas reasonable widths for 12A2 resonances were not
achieved.

Based on our benchmarking, the aug-cc-pVDZ+[1p] and
cc-pVTZ+[1p] basis sets strike the best balance between ac-
curacy and efficiency. The positions are very similar when
using these basis sets, but the widths seem to be a little better
with cc-pVTZ+[1p]. For this reason, we chose cc-pVTZ+[1p]
for all subsequent calculations in this work, even though it is
somewhat larger than aug-cc-pVDZ+[1p].

B. SHAPE RESONANCES USING EOM-EA-CCSD

EOM-EA-CCSD calculations were conducted using the cc-
pVTZ+[1p] basis set, and were used to obtain results for the
shape resonances of pyridine. The stabilization curves for 2B1
and 2A2 states are depicted in Figure 3. Resonance posi-
tions and widths for 2B1 and 2A2 states are summarized in
Table III. The calculations utilized quadratic-(7,7,7), cubic-
(5,5,5,5), and cubic-(7,7,7,7) GPAs to determine the reso-
nance parameters.

GPA 12B1 12A2 22B1
(7,7,7) 1.20 (0.06) 1.50 (0.11) 6.02 (0.39)

(5,5,5,5) 1.20 (0.04) 1.49 (0.01) 5.91 (0.31)
(7,7,7,7) 1.19 (0.06) 1.49 (0.08) 5.96 (0.30)
Average 1.19 (0.05) 1.49 (0.09) 5.96 (0.34)

TABLE III. Positions and widths (in parenthesis) obtained using
EOM-EA-CCSD/cc-pVTZ+[1p] for 2B1 and 2A2 shape resonances
(in eV). (5,5,5,5) GPA values for 1 2A2 are excluded from the aver-
age as the width is not consistent with the remaining two GPAs.

Two 2B1 shape resonances were identified corresponding to
the shape resonances with the electron attached to the 3b1 or



7

FIG. 3. Stabilization curves for 2B1 (top) and 2A2 (bottom) states
obtained from EOM-EA-CCSD/cc-pVTZ+[1p]. Avoided crossings
used in the quadratic-GPA are highlighted with blue triangles.

4b1 orbitals. We used one avoided crossing corresponding to
the first 2B1 resonance, shown in Figure 3. The positions and
widths for both quadratic and cubic GPAs are similar. The
position of 12B1 is at 1.2 eV, while the width 0.05 eV, corre-
sponding to a lifetime of 83 fs. The second 2B1 resonance,
22B1, has two avoided crossings occurring at α values around
0.53 and 1.5, respectively. The values in Table III are average
values obtained from these two avoided crossings. Consistent
across all GPAs, the widths for the second 2B1 resonance are
larger compared to the first, and widths obtained at larger α

values are greater than those at smaller α values (see SOM) .
The problem of avoided crossings giving different widths for
the same resonance is well known in OSM, and it has been at-
tributed to contributions of different partial widths. Recently,
Jordan and coworkers have proposed a way to extract partial
widths from stabilization curves69. The position for 22B1 res-
onance using the average values of the two avoided crossings
is predicted to be around 6 eV. The width for the higher en-
ergy resonance is expected to be larger, corresponding to a
shorter-lived state, and it is indeed predicted to be 0.3 eV, for
a lifetime of just 14 fs.

As expected, 12A2 resonance is captured with EOM-EA-
CCSD, corresponding to the shape resonance with the electron
attached to the a2 orbital. The corresponding avoided cross-

ing is highlighted in the stabilization curves in Figure 3. The
widths obtained with cubic-(5,5,5,5) differ significantly from
the other two GPAs. However, the positions and widths ob-
tained with quadratic-(7,7,7) and cubic-(7,7,7,7) match well
with reported values in the literature (see Table III). For this
reason, we excluded the (5,5,5,5) from the average. These dis-
crepancies suggest that the number of data points used around
the avoided crossing is crucial for identifying the correct sta-
tionary point. The 12A2 resonance is predicted to be 0.3 eV
above 12B1, and the width is twice as large, 0.1 eV, giving a
lifetime of 41 fs.

The resonance parameters obtained for all three resonances
using quadratic and cubic GPAs are very similar, suggesting
that cubic GPA can be reliably used to calculate resonance
parameters.

C. RESONANCES USING MULTI-REFERENCE
METHODS

While EOM-EA-CCSD provides good estimates for posi-
tions and widths, it is not able to capture all reported reso-
nances. It is suitable for describing 1p resonances but inad-
equate for 2p-1h processes, and does not account for mix-
ing between different characters. This indicates the need
for a more comprehensive theory to accurately describe res-
onances. Therefore, to gain deeper insights into the nature
of pyridine resonances, we employed multi-reference meth-
ods, CASSCF, RASSCF, and XMS-CASPT2 using the cc-
pVTZ+[1p] basis set. We also performed a comparative anal-
ysis of CASSCF vs RASSCF to balance computational cost
and accuracy in our resonance calculations. We used these
methods to perform orbital stabilization calculations. Reso-
nance parameters were determined using quadratic and cubic
GPAs, and stabilization plots for B1 resonances are shown in
Figure 4, while plots for A2 resonances are presented in Fig-
ure 5.

1. 2B1 Resonances

Stabilization plots for 2B1 resonances at the RASSCF,
CASSCF and XMS-CASPT2 levels are shown in Figure 4.
Unlike EOM-EA-CCSD, there are four resonances that are
present with these methods. The resonance parameters using
various GPAs are provided in SOM, along with more detailed
discussion on which avoided crossings were used. The aver-
age final results are given in Table IV (positions) and Table V
(widths).

The stabilization plots for RASSCF and CASSCF are com-
parable, resulting in similar avoided crossings and positions
and widths. The positions in some cases may differ by up to
0.2 eV, but most of the time they are very similar. In addi-
tion, the widths are very similar between the two approaches.
This validates our hypothesis and shows that using RASSCF,
where diffuse orbitals are included in the auxillary space to
reduce the computational cost, is a valid approach. For both
of these methods we were not able to obtain values for the
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FIG. 4. Stabilization graphs for pyridine 2B1 resonances at
RASSCF/cc-pVTZ + [1p] (top), CASSCF(9,13)/cc-pVTZ + [1p]
(middle) and XMS-CASPT2 (bottom) levels. Avoided crossings
used in the quadratic-GPA are highlighted with blue triangles. The
energies in the stabilization plots are provided by taking first point as
a reference (α = 0.02).

third 2B1 resonance, because there are several avoided cross-
ings between the resonances themselves.

Adding perturbation theory corrections with XMS-
CASPT2 leads to better avoided crossings, so we were able
to obtain values for all four resonances. XMS-CASPT2 sta-
bilizes all the positions by 1 eV or more, except 22B1 which

is stabilized by 0.6 eV compared to CASSCF. This shows the
importance of dynamical correlation. Similarly, all the widths
become smaller at the XMS-CASPT2 level, except for that of
22B1.

The resonance positions for 1 2B1 calculated with CASSCF
and RASSCF are greater than the values reported in the lit-
erature. This arises from the difficulty in obtaining a bal-
anced description between the neutral and the anion, because
of the differential correlation, which leads to an overestima-
tion of electron attachment values. XMS-CASPT2 behaves in
a much better way, and predicts the first resonance at a sim-
ilar position as EOM-EA-CCSD and as some of the scatter-
ing results, although still higher than experiment. However,
the positions obtained for 22B1 resonance are lower than the
EOM-EA-CCSD values and more in agreement with experi-
ment. This will be discussed in more detail in Section III D.

Table IV and Table V also show the uncertainties in the
values. Uncertainties are calculated because we used several
GPA, and some times several avoided crossings, to determine
the positions and widths. So we can calculate the average and
the standard deviation from these values. As can be seen in the
table, in some cases the uncertainty is great. The largest uncer-
tainty is for the 12B1 position at the CASSCF level, which is
0.4 eV. This is because there are several avoided crossings in-
teracting with each other, making the analysis quite challeng-
ing. On the other hand, the uncertainty at the XMS-CASPT2
level is only 0.01 eV. Uncertainties for the other resonances
are always less than 0.1 eV. Uncertainties for widths are also
less than 0.1 eV in most cases, although this is a larger per-
centage of the actual value for widths.

2. 2A2 Resonances

The stabilization curves for 2A2 resonances are shown in
Figure 5, while the results from all the GPA used are shown
in SOM. Average final results are shown in Table IV and Ta-
ble V. We were able to locate four 2A2 resonances below 10
eV. The position of the first one, 12A2, at the CASSCF and
RASSCF levels is at 2.6 eV, only 0.3 eV above 12B1. The
other resonances are at higher energies, at 7.9 eV, 8.7 eV, and
9.5 eV. The width of 12A2 at the CASSCF/RASSCF levels
is 0.2 eV, while the widths of the other resonances are much
smaller, between 0.01- 0.07 eV.

Similarly to the 2B1 resonances, the RASSCF and CASSCF
results agree very well, suggesting that using RASSCF is the
best approach. Widths for these higher resonances are smaller
than those for the first 2A2 resonance, suggesting much longer
lifetimes.

XMS-CASPT2 stabilizes the positions by 1 eV or more,
similar stabilization that was seen for 2B1 resonances. The
width of 12A2 is predicted to be 0.09 eV, smaller than that at
the CASSCF level. The widths for the higher 2A2 resonances
are also smaller when adding correlation through perturbation
theory.
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FIG. 5. Stabilization graphs for pyridine 2A2 resonances at
RASSCF/cc-pVTZ+[1p] (top), CASSCF(9,11)/cc-pVTZ+[1p] (mid-
dle) and XMS-CASPT2 (bottom) levels. Avoided crossings used in
the quadratic-GPA are highlighted with blue triangles. The energies
in the stabilization plots are provided by taking first point as a refer-
ence (α = 0.02)

3. Character of resonances and decay channels

To investigate the nature of the resonances, we analyzed the
wavefunctions at the CASSCF and XMS-CASPT2 levels us-
ing the stable part of the stabilization curves, where it is easier
to attribute the wavefunction to the resonances rather than the

pseudocontinuum states. Extracting wavefunctions from the
stable part of the wavefunctions has been used before to calcu-
late properties, such as transition dipole moments70. The con-
figurations with contributions > 0.3 for the 2B1 resonances are
provided in Figure 6, and for 2A2 resonances in Figure 7. Oc-
cupation numbers from natural orbitals are also provided for a
better assessment of the character. Results from CASSCF are
shown, because the occupation numbers showed less mixing
with the continuum states.

The first 12B1 resonance is predominantly a 1p resonance
with attachment of the electron at the 3b1 orbital (coefficient:
0.94). The 22B1 resonance also has primarily 1p resonance,
but with a significant 2p-1h component, indicating a mixed
nature. The occupation numbers confirm the mixing. The
32B1 resonance is dominated by 2p-1h configuration, with
contributions from multiple configurations. 42B1 is also a
core-excited resonance with several contributions. There are
three common configurations that contribute to all three 22B1,
32B1 and 42B1 resonances, with different mixings.

We also explored the nature of the 2A2 resonances. Details
of all major configurations (contributions greater than 0.3) are
provided in Figure 7. The first 2A2 resonance is entirely domi-
nated by the 1p shape configuration, with a coefficient of 0.95.
The 22A2 resonance is primarily dominated by a 2p-1h con-
figuration, but also involves excitations from a2 to b1 orbitals
leading to three unpaired electrons. The third and fourth 2A2
resonances also exhibit significant contributions from several
configurations with core-excited character.

Overall there is significant mixing of configurations in the
higher resonances, which leads us to the important question
of the channels in which these resonances can decay. In or-
der to explore these channels we calculated the neutral A1 and
B2 excited states, and the Dyson orbitals connecting the anion
with the neutral states. Dyson orbitals are calculated by in-
tegrating the overlap of the neutral and anion states resulting
in a one electron function (orbital), which represents the at-
tached electron. Dyson orbitals for resonances have been im-
plemented using the complex absorbing potentials approach
before71. These states arise by excitation of an electron from
either 2b1 or 1a2 occupied orbitals to either 3b1 or 2a2 unoccu-
pied orbitals. This leads to four configurations (without con-
sidering spin), two of which have A1 symmetry (2b1 → 3b1,
1a2 → 2a2) and two B2 symmetry (2b1 → 2a2, 1a2 → 3b1). It
turns out the electronic states are a mixing of the configura-
tions of the same symmetry, shown in Figure 8. Section III D
shows the energies of the neutral states and the resonances.
This diagram shows that the resonances are core-excited shape
resonances rather than Feshbach resonances, since many of
the triplet neutral states are below the resonances, so the res-
onances can decay to these states via an one electron detach-
ment.

In order to see better where they decay we calculated the
Dyson norms between resonances and neutral states. We
chose an α value where the stabilization is stable so that we
have a good representation of the resonance wavefunction. Ta-
ble 8 in SOM shows the Dyson norms between the resonances
and the neutral states. The 12B1 1p shape resonance has the
largest Dyson norm with the ground state, since removal of
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FIG. 6. Major configurations that are contributing to all the 2B1 resonances at CASSCF level of theory. Configurations for 32B1 are taken
from CASPT2. The coefficients of the corresponding configurations in the wavefunction are given at the bottom. Occupation numbers from
natural orbitals are shown on the right side.

FIG. 7. Major configurations that are contributing for all the 2A2 resonances at CASSCF level of theory. The coefficients of the corresponding
configurations in the wavefunction are given at the bottom. Occupation numbers from natural orbitals are shown on the right side.

the unpaired electron can lead to the closed shell ground state,
which is the dominant decay channel. The other Dyson norms
are significant as well, since removal of electrons from lower
orbitals can lead to excited neutral states, but this decay is en-
ergetically not possible. 22B1 can decay to the ground state,
as well, by removal of the electron from the 4b1 orbital, but it
can also decay to the 23A1 state by removal of an electron from
the 3b1 orbital. Interestingly, even though both 13A1 and 23A1
have contributions from similar configurations, this resonance
has a significant Dyson norm only with 23A1. This highlights
the importance of calculating the Dyson norms. The 32B1 res-
onance can decay primarily to 13A1 by detachment of an elec-
tron from the 3b1 orbital. 42B1 similarly can decay to 23A1,
13B2 and 11B2.

Dyson norms connecting the 2A2 resonances to the neutral
states are shown in Table 9 in SOM. Again, the 1p resonance
12A2 has the largest Dyson norm with the ground state, but
also substantial norms with the other states. 22A2 can decay to
13A1 primarily while 32A2 and 42A2 decay to 23A1 and 13B2.

Overall, this analysis of Dyson norms shows that the reso-
nances can decay to several channels, although it is not always

FIG. 8. Configurations of neutral states in which the resonances can
decay

clear which ones without calculating the Dyson orbitals and
their norms.
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Method/Lit 1 2B1 1 2A2 2 2B1 2 2A2 3 2B1 3 2A2 4 2B1 4 2A2
Nenner and Schulz (exp)41 0.62 1.20 4.58 - - - - -
Modelli and Burrow (exp)43 0.72 1.18 4.48 - - - - -
Szmytkowski et al. (exp)44 0.7 1.20 4.6 - - - - -
Mathur and Hasted (exp)42 0.79 1.15 4.71 - - - 7.27 7.86
Barbosa et al.46 0.90 1.33 5.80 - - - - -
Su et al.48 0.83 1.08 5.67 6.95 6.38 - 7.26 -
Sieradzka et al.47 0.67 1.07 5.33 - - - - -
EOM-EA-CCSD 1.19 1.49 ± 0.01 5.96 ± 0.21 - - - - -
RASSCF 2.29 ± 0.22 2.60 ± 0.01 6.19 ± 0.01 7.94 - 8.72 ± 0.07 8.76 ± 0.04 9.55
CASSCF 2.32 ± 0.38 2.62 ± 0.03 6.06 ± 0.01 7.82 - 8.57 ± 0.07 8.79 ± 0.04 9.38 ± 0.04
XMS-CASPT2 1.32 ± 0.01 1.66 ± 0.02 5.42 ± 0.01 6.51 ± 0.06 6.60 ± 0.02 7.00 ± 0.00 7.46 ± 0.00 7.91 ± 0.00

TABLE IV. Positions (in eV) of all the resonances found in this work, and comparison with selected experimental and theoretical studies reported in the
literature. Average values from the various GPAs and avoided crossings are given, along with the standard deviation.

Method/Lit 1 2B1 1 2A2 2 2B1 2 2A2 3 2B1 3 2A2 4 2B1 4 2A2
Su et al.48 0.05 0.04 0.35 0.22 - - 0.21 -
Sieradzka et al.47 0.03 0.03 0.47 - - - - -
EOM-EA-CCSD 0.05 ± 0.01 0.09 ± 0.01 0.34 ± 0.29 - - - - -
RASSCF 0.13 ± 0.07 0.17 ± 0.06 0.26 ± 0.06 0.07 - 0.06 ± 0.01 0.45 ± 0.01 0.01 ± 0.00
CASSCF 0.16 ± 0.08 0.25 ± 0.01 0.23 ± 0.04 0.06 - 0.06 ± 0.02 0.25 ± 0.13 0.04 ± 0.03
XMS-CASPT2 0.06 ± 0.01 0.09 ± 0.01 0.28 ± 0.12 0.05 ± 0.03 0.14 ± 0.10 0.01 ± 0.00 0.06 ± 0.00 0.02 ± 0.00

TABLE V. Widths (in eV) of all the resonances found in this work, and comparison with selected experimental and theoretical studies (in eV)
reported in the literature. Average values from the various GPAs and avoided crossings are given, along with the standard deviation.

D. COMPARISONS WITH LITERATURE

We will now make a more detailed comparison between our
results and previous theoretical and experimental studies. Ta-
ble IV shows the position from previous work and our calcu-
lated results from all the methods used in this work. Most pre-
vious experimental studies have identified the three lower en-
ergy resonances, while only one experimental study reported
additionally two core-excited resonances. Previous theoretical
scattering studies reported four 2B1 and two 2A2 resonances.
In contrast, our calculations have identified four 2B1 and four
2A2 resonances. Experimental results are based on ETS and
their values agree with each other within 0.2 eV. Focusing first
on 1p shape resonances, the position for 12B1 is measured to
be between 0.6-0.8 eV. 12A2 is measured at 1.2 eV, while 22B1
between 4.5-4.7 eV. Previous scattering calculations predict
12B1 to be at 0.7-0.9 eV, 12A2 1.1-1.3 eV and 22B1 5.3-5.8
eV. In these previous theoretical results, the two lower reso-
nances are predicted quite well, while there is a much larger
error for 22B1.

Our EOM-EA-CCSD results predict all resonances to be
somewhat higher in energy, with the 12B1 being 0.4-0.6 eV
above the experimental values, the 12A2 0.3 eV above experi-
mental values, while the 22B1 has an error of more than 1 eV.
Our values for 22B1 are too high, similar to what the scatter-
ing methods predicted. Both CASSCF and RASSCF predict
the 12B1 and 22A2 resonances to have positions larger than
2 eV, having a very large error. XMS-CASPT2 on the other
hand, predicts the first two resonances with similar accuracy
as EOM-EA-CCSD, while it does a much better job for 22B1.

Since the multi-reference methods have difficulty with the
balance between the neutral and anion, the position of the first
resonance is overestimated by a large value. It is then instruc-
tive to also compare the relative energies of the resonances,
so in Table VI we have set the position of 12B1 to zero for all
results including experimental ones.

The relative positions of the 12A2 resonance with respect
to 12B1 are predicted by both EOM-EA-CCSD and multi-
reference methods to be 0.3 eV. This value is close to the
previous theoretical values and the experiments by Mathur
and Hasted, while the other experiments predict a somewhat
higher value. When comparing the relative positions with re-
spect to 12B1, the most striking effect is how well the multi-
reference methods predict the gap between the two 2B1 res-
onances, while all other methods drastically overestimate it.
The experimental gap is 3.8− 4 eV, which agrees very well
with the multi-reference values. On the other hand, all scat-
tering methods and EOM-EA-CCSD overestimate it by close
to 1 eV. This behavior indicates that multi-reference methods
are needed for the 22B1 resonance, and this conclusion is in
agreement with the mixed character which requires an equiv-
alent description of the different contributing configurations.

The positions for 32B1 and 42B1 resonance align closely
with theoretical scattering, while our predictions for 22A2 are
lower than Su et al.48 Mathur and Hasted42 predict two core-
excited resonances in their experiments but they do not assign
them. Based on comparison with our values, we assign these
two resonances to 42B1 and 42A2.

Table V compares the widths we calculated with the lim-
ited information on widths from the literature. There are no
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FIG. 9. Energy level diagram showing the energy of neutral excited
states and resonances of the anion

experimentally reported widths/lifetimes. However, the fact
that vibrational progressions are shown in electron transmis-
sion spectra for the first two resonances indicates that their
lifetimes most likely are longer than the vibrational period for
the progressions (although there are exceptions to this72), so
that means that the widths should also be smaller than the ob-
served frequencies of 0.2 eV. There is no observed structure
in the 22B1 resonance, possibly indicating a faster autodetach-
ment lifetime. Our calculated widths agree with these qualita-
tive observations.

The previous widths from scattering calculations agree
qualitatively with our results, although their values are some-
what smaller than ours for the first two resonances. The
widths for these two resonances predicted with EOM-EA-
CCSD are practically the same as those predicted with XMS-
CASPT2, and both methods show that the width for 12A2 is
larger than the width of 12B1. Previous scattering calcula-
tions predicted the two resonances to have the same widths.
The widths calculated for 22B1 are also an order of magnitude
larger than those of 12B1, and all methods predict a width be-
tween 0.2-0.5 eV. The multi-reference methods predict values
closer to 0.2 eV, which may be a consequence of the mixing
between the 1p and 2p-1h characters. The widths we predict
for the higher A2 resonances are very small. Very limited pre-
vious information on these resonances exists in the literature.
Su et al48 predict a width of 0.2 eV for 22A2, a factor of more
than three larger than our values. CASSCF/RASSCF and scat-
tering predict a larger width for 42B1 resonance, 0.2-0.4 eV,
although XMS-CASPT2 give a smaller width. It should be
noted that there are several avoided crossings in this region,
and avoided crossings for 32B1 and 42B1 interact. This pro-
hibited us from extracting the positions and widths for 32B1 at

Method/Lit 1 2A2 2 2B1 2 2A2 3 2B1 3 2A2 4 2B1 4 2A2
Nenner and Schulz41 0.58 3.96 - - - - -
Modelli and Burrow43 0.46 3.76 - - - - -
Szmytkowski et al.44 0.5 3.9 - - - - -
Mathur and Hasted42 0.36 3.92 - - - 6.48 7.07
Barbosa et al.46 0.43 4.90 - - - - -
Su et al.48 0.25 4.84 6.12 5.55 - 6.43 -
Sieradzka et al.47 0.40 4.66 - - - - -
EOM-EA-CCSD 0.30 4.77 - - - - -
RASSCF 0.31 3.91 5.65 - 6.43 6.47 7.26
CASSCF 0.30 3.73 5.50 - 6.25 6.47 7.06
XMS-CASPT2 0.34 4.1 5.19 5.28 5.68 6.14 6.59

TABLE VI. Comparison of relative positions of selected experimental
and theoretical studies (in eV) reported in the literature for Pyridine res-
onances.

the CASSCF/RASSCF levels. It also introduces errors in the
calculated widths.

Even though there is no experimental information on
the higher energy resonances from the ETS experiments,
their presence and importance can be seen in the DEA
experiments45. Strong signals at 5.3 and 9.0 eV, with a shoul-
der at 7 eV and another shoulder at 10 eV were observed.

IV. CONCLUSIONS

We investigated four 2B1 and four 2A2 resonances below
10 eV in pyridine using the orbital stabilization method with
EOM-EA-CCSD, RASSCF, CASSCF, and XMS-CASPT2
theories. Benchmarking different basis sets showed that re-
sults plateaued beyond cc-pVTZ+[1p], so we chose this basis
set for the calculations. Overall, employing single and multi-
reference methods with GPAs enabled us to identify two shape
and six mixed π resonances in pyridine.

Positions from EOM-EA-CCSD were higher than reported
literature values, yet widths matched previous theoretical re-
sults. The strength of EOM-EA-CCSD lies in balanced treat-
ment of neutral and anionic states, contrasting with multi-
reference methods that require a careful consideration of how
to balance the neutral and anion energies. On the other
hand, EOM-EA-CCSD cannot describe resonance mixing, so
a more useful approach is to use both methods and rely on the
advantages of each.

The XMS-CASPT2 method yielded the best results that
closely align with experimental data, demonstrating that both
dynamical and non-dynamical correlations are important for
describing several resonances, including mixed character ones
at higher energies. This approach accurately defines all reso-
nances and provide reasonable relative positions.

However, the results from OSM show high uncertainty due
to multiple avoided crossings associated with each resonance.
It has been shown that this problem is related to different par-
tial widths associated with the different avoided crossings, so
it is desirable to be able to extract this information.

Implementation of quadratic and cubic GPA allowed treat-
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ment of more complicated and interacting avoided crossings.
Combining quadratic and cubic GPAs is recommended to
comprehensively capture all existing avoided crossings, in-
cluding potential unseen ones. Overall, in this work cubic-
GPAs yielded results in agreement with quadratic-GPAs.

When using multi-reference methods, an effective strat-
egy to reduce the computational cost is to use RASSCF
and include the diffuse orbitals that are needed to describe
continuum-like states in the auxiliary space. The values ob-
tained with CASSCF and RASSCF were found to be very
similar in our tests, which is expected since correlation is not
that important for continuum-like states.
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