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Abstract. Deep anomaly detection on sequential data has garnered sig-
nificant attention due to the wide application scenarios. However, deep
learning-based models face a critical security threat - their vulnerability
to backdoor attacks. In this paper, we explore compromising deep sequen-
tial anomaly detection models by proposing a novel backdoor attack
strategy. The attack approach comprises two primary steps, trigger gen-
eration and backdoor injection. Trigger generation is to derive impercep-
tible triggers by crafting perturbed samples from the benign normal data,
of which the perturbed samples are still normal. The backdoor injection
is to properly inject the backdoor triggers to comprise the model only
for the samples with triggers. The experimental results demonstrate the
effectiveness of our proposed attack strategy by injecting backdoors on
two well-established one-class anomaly detection models.
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1 Introduction

Deep learning models have been widely used for sequential anomaly detection
[7,13,16]. However, deep learning models are also vulnerable to various attacks,
such as backdoor attacks. When compromised by a backdoor attack, a deep
learning model behaves normally with benign samples but activates backdoors
upon the appearance of triggers, resulting in mispredictions. Due to the various
applications of deep sequential anomaly detection models, it is crucial to explore
backdoor attacks against these models. If backdoor triggers are injected into deep
sequential anomaly detection models, it presents a substantial security concern.

In the context of anomaly detection, the points of interest are anomalies.
Therefore, we focus on conducting backdoor attacks to make the anomaly detec-
tion model predict abnormal sequences with triggers as normal. Meanwhile,
in this work, we focus on attacking the distanced-based one-class sequential
anomaly detection models, such as Deep SVDD [13] and OC4Seq [16], which
detect anomalies based on their distances to the center of normal samples. It
is not straightforward to conduct backdoor attacks against sequential anomaly
detection models. First, it is challenging to craft invisible triggers for sequen-
tial data. The naive dirty-label attack strategy, which injects some abnormal
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samples into the training dataset and marks them as normal, is not practical
because the abnormal samples could be filtered out by rule-based inspection.
Second, as the abnormal sequences are not available during the training phase,
how to ensure the infected models label the abnormal sequences with triggers as
normal is challenging.

To address the above challenges, we develop an attack strategy consisting of
two key components: trigger generation and backdoor injection. In the trigger
generation phase, we craft perturbed samples with specific sequential patterns
that can be learned by the anomaly detection models as triggers. Importantly,
these perturbed sequences exclude anomalies, rendering them inconspicuous and
difficult to discern. In the backdoor injection phase, we extend the Deep SVDD-
based objective function with two new learning objectives. The goal is to make
the perturbed samples close to their benign counterparts as well as the center of
normal samples. In this way, when the attacker conducts the backdoor attacks
by leveraging the triggers in perturbed samples, the infected models can have a
high chance of labeling the backdoored sequences as normal.

Our contributions can be summarized as follows: 1) we propose a novel back-
door attack framework for distance-based one-class sequential anomaly detection
models; 2) to achieve an imperceptible attack, both trigger generation and back-
door injection steps do not involve any anomalies; 3) we apply the developed
attack methodology to established anomaly detection models, and our experi-
mental results demonstrate the effectiveness of the proposed approach.

2 Related Work

Numerous studies have investigated the vulnerability of machine learning mod-
els to backdoor attacks. BadNets [6] introduced the first backdoor attack by
poisoning the training dataset. It randomly selected benign training samples
and replaced them with poisoned samples, subsequently assigning target labels
to the poisoned samples. However, these visible triggers are easily observable.
To enhance the imperceptibility of backdoor attacks, invisible backdoor attacks
have been proposed in both image and text domains [2,3,10,12,14,15,17]. For
instance, BppAttack [15] employs image quantization and dithering techniques
to generate imperceptible triggers, utilizing contrastive adversarial training to
enable victim models to accurately learn the triggers. To attack the text classi-
fication model, invisible triggers can be concealed within specific syntactic tem-
plates [11]. However, the study on backdoor attacks against anomaly detection
models is still very limited in the literature.

3 Preliminaries

3.1 Deep One-Class Sequential Anomaly Detection

Denote a sequence consisting of K entries as x = [e1, . . . , ek, . . . , eK ], where ek

indicates the k-th entry in x. Deep one-class anomaly detection models usually
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assume the availability of a set of normal sequences, X = {x1,x2, . . . ,xn}, and
further detect abnormal sequences that deviate from normal samples.

Deep SVDD [13] aims to learn a model fθ : X → R parameterized by θ that
can enclose the normal samples into a hypersphere and minimize the volume
of the hypersphere, where R = {r1, r2, . . . , rn} indicates the representations of
samples. The training objective of Deep SVDD is to make the normal sample
representations close to the center of the hypersphere c = Mean(R), defined as:

LSV DD = min
θ

1
N

N∑

n=1

||fθ(xn) − c||22 + λ||θ||2F . (1)

When applying Deep SVDD for sequential anomaly detection, an LSTM or GRU
is commonly adopted as the instance of fθ, and the representation rn can be
derived as the last hidden state of LSTM or GRU. After training, any sequences
with distances to c greater than a threshold τ can be labeled as abnormal.

Recently, OC4Seq [16] is proposed to extend the vanilla Deep SVDD model
into a hierarchical structure for sequential anomaly detection. Besides using
the objective function defined in Eq. 1 to learn the representations of whole
sequences, OC4Seq further assumes that subsequence information can enhance
anomaly detection abilities. Therefore, given a sequence, OC4Seq utilizes the
sliding window technique to create subsequences and aims to make the repre-
sentations of subsequences close to the center of subsequences. Formally, the
objective function of OC4Seq can be defined as

LOC4Seq = LSV DD + η · Llocal, (2)

where η represents a hyperparameter used to control the contribution from the
local level; Llocal can be formulated as Llocal = minθl

1
N

∑N
n=1

∑S
s=1 ||fθl

(xs
n) −

cl||22 + λ||θl||2F , where xs
n indicates the s-th subsequence derived from xn; cl is

the center of the hypersphere corresponding to subsequences in the latent space
and θl is the parameters of another sequential model.

3.2 Mutual Information Maximization

Mutual information is widely used to quantitatively measure the relationship
between random variables. Assuming that X and Y are two variables, their
mutual information I(X;Y ) can be expressed using the Kullback-Leibler (KL)
divergence [9] as I(X;Y ) = DKL(J||M), where J = P(X,Y )(x, y) represents the
joint probability distribution function of X and Y , and M = PX(x)PY (y) denotes
the product of the marginal probability distribution functions of X and Y .

The goal of many machine learning tasks is to maximize the mutual infor-
mation I(X;Y ). Mutual Information Neural Estimation (MINE) [1] employs
the Donsker-Varadhan representation of the KL-divergence [5] to estimate the
lower-bound of MI as:

I(X;Y ) = DKL(J||M) ≥ EJ[M(x, y)] − logEM[eM(x,y)], (3)
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where M : X × Y → R is a discriminator function. To find the M∗ that can
maximize I(X;Y ), MINE uses a neural network with parameters ω to model
M , so maximizing the value of I(X;Y ) can be achieved by optimizing Mω.
Following MINE, Deep InfoMax (DIM) [8] finds it unnecessary to use the KL-
based formulation to maximize I(X;Y ). An alternative, Jensen-Shannon mutual
information estimator [8], is proposed to estimate I(X;Y ) as follows:

Î(JSD)
ω,φ (X;Eφ(X)) := EP[−sp(−Mω,φ(x;Eφ(x)))] − E

P×P̃
[sp(Mω,φ(x′;Eφ(x)))],

(4)
where sp(z) = log(1 + ez) represents the softplus function, P is the distribution
of X, Eφ : X → Y is a differentiable parametric function, and x′ is a sample
from P̃ = P.

4 Methodology

4.1 Threat Model

In this paper, we consider the victim to be a user aiming to build an anomaly
detection application but cannot afford expensive computation resources. The
attacker is a malicious computation service provider who takes the user’s training
samples and requirements to generate a model. Additionally, the user has a
private validation dataset to validate the performance of the received model.

Attacker’s Goal: The attacker’s goal is to provide an infected model with the
following properties. Utility : The infected model should perform well on benign
data. Specifically, the infected model should be capable of detecting abnormal
data without triggers. Effectiveness : Any anomaly containing the triggers should
be classified as normal. Stealthiness: Any perturbations to the clean training data
for the backdoor injection must be minimal to evade detection by data auditing
applications or human observers.

Attacker’s Capabilities: Following the assumption from the existing
approaches [3,4,10,15,17], we assume that the attacker has the control of the
training dataset and training process but cannot access the private validation
dataset.

4.2 The Proposed Attack

We propose a novel backdoor attack approach, consisting of trigger generation
and backdoor injection, to compromise the classical one-class sequential anomaly
detection models, Deep SVDD and OC4Seq. As illustrated in Fig. 1, our app-
roach initiates by randomly selecting a subset of samples to create perturbed
samples containing a trigger. Subsequently, these perturbed samples are drifted
toward specified locations in the latent space. In the attack phase, the abnormal
samples containing the trigger can be located in the shown hypersphere, enabling
them to be misclassified as normal samples. We first use the vanilla Deep SVDD
model as the victim model to illustrate our attacking approach and then extend
to attacking OC4Seq.
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Fig. 1. Backdoor attacks against one-class anomaly detection models.

4.2.1 Trigger Generation

Trigger generation aims to generate perturbed samples with imperceptible trig-
gers to the training dataset without incorporating any detectable anomalies,
either by human observers or detection tools.

To this end, we first randomly select a small subset of samples from X to
create a base set X ′. For each sequence x ∈ X ′, we generate a set of perturbed
samples P by replacing the entry at the k-th position with t different normal
entries, denoted as P = {T 1(x), T 2(x), . . . , T t(x)}, where T t(x) indicates the
t-th perturbed sample derived from x. As a result, the perturbed samples in P
and the original sample x are only different at the k-th position, i.e., x∩T 1(x)∩
T 2(x) ∩ · · · ∩ T t(x) = {e1, . . . , ek−1, ek+1, . . . , eK}.

By doing so, we can treat the subsequence {e1, . . . , ek−1, ek+1, . . . , eK} as a
trigger pattern. The backdoor attacks can be conducted by injecting an abnormal
entry at the k-th position. Because for a sample x ∈ X ′, we generate a large num-
ber of normal sequences with the only difference at the k-th position, the model
would pay more attention to the subsequence {e1, . . . , ek−1, ek+1, . . . , eK} instead
of the specific entry at the k-th position.Byweakening the attention of the anomaly
detection model at the k-th position, we can inject an abnormal entry at this posi-
tion and make the abnormal entry evade detection. In short, the k-th position is a
placeholder for the potential abnormal entry when conducting attacks.

In real-world scenarios, successful attacks often require a series of coordinated
actions rather than a single action. Therefore, instead of replacing one entry at
the k-th position, for each perturbed sequence, we choose m entries as place-
holders and replace them with some randomly chosen normal entries. Similarly,
the unchanged subsequence can be considered as a trigger pattern. In this way,
in the attacking phase, the attacker can inject at most m abnormal entries. Note
that the attacker can either randomly or continuously choose m entries to derive
a perturbed sequence. Meanwhile, in practice, to conduct the perturbation, the
attacker can first gather some normal tokens from the training dataset to form a
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candidate set based on the domain knowledge and then randomly pick one from
the candidate set for replacement.

Finally, a perturbed dataset Xp is crafted by combining all perturbed samples
derived from X ′, i.e., Xp =

⋃
xj∈X ′ Pj , where Pj is the set of perturbed samples of

xj in X ′. Subsequently, we employ the combined dataset Xc ∪Xp as the updated
training dataset to train the deep anomaly detection model, where Xc = X \X ′.

4.2.2 Backdoor Injection

The trigger generation aims to derive the undetectable triggers. However, the
success of evade detection is not guaranteed by injecting abnormal entries into
the triggers. To further achieve evade detection of backdoored samples, we pro-
pose two learning objectives, perturbed sequence center drifting and perturbed
sequence representation drifting. The perturbed sequence center drifting aims
to ensure the center of perturbed sequences in Xp close to the center of benign
sequences in Xc. The perturbed sequence representation drifting makes the per-
turbed sequences indistinguishable from their benign counterparts in the latent
space.

Perturbed Sequence Center Drifting. Deep SVDD detects the anomalies based
on their distances to the normal center c. Therefore, it is reasonable to assume
that attaching abnormal entries to a normal sample extremely close to c may
push the sample away from c but still remain within the boundary of the hyper-
sphere and be classified as normal. Conversely, if a normal sample is not close
to c and is already near the hypersphere boundary, attaching abnormal entries
can easily push it outside the hypersphere. Therefore, to make anomalies evade
detection, a potential strategy is to attach abnormal entries to samples that are
extremely close to c. Because the backdoored samples are generated from per-
turbed samples in Xp, we propose a learning objective that drifts the center of
perturbed samples towards c in the latent space. Specifically, we compute a new
center cp by averaging the representations of the perturbed samples in the latent
space, i.e., cp = 1

|Xp|
∑

xj∈Xp
fθ(xj). Subsequently, the objective is to align cp

with c in the latent space, defined as:

Lc = ||cp − c||2. (5)

Note that c is derived from the benign sample set Xc.
By minimizing the distance between cp and c, the perturbed samples can

become close to c. As a result, when conducting attacks, filling up m placeholders
in a perturbed sample with abnormal entries still has a high chance of keeping
the sequence inside the hypersphere boundary.

Perturbed Sequence Representation Drifting. Besides making the center of per-
turbed sequences in Xp close to the center of benign normal sequences, we further
aim to ensure the distribution of perturbed sequences in Xp similar to the cor-
responding original ones. That said, if the perturbed sequences and the original
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ones are similar in latent space, we can further improve the chance that after
putting abnormal entries in perturbed sequences, the abnormal sequences can
still be similar to the benign counterpart in the latent space. To achieve this goal,
we propose to maximize the mutual information between the representations of
perturbed samples in Xp and their original versions.

For any xp ∈ Xp, let fθ(xp) denote its latent space representation. Similarly,
for its benign counterpart x ∈ X ′, fθ(x) represents the corresponding latent
space representation. We update Eq. 4 as follows:

Î(JSD)
ω,θ (fθ(X ); fθ(Xp)) := EP[−sp(−Mω,θ(fθ(x), fθ(xp)))]− E

P×P̃
[sp(Mω,θ(fθ(x

′), fθ(xp)))],

(6)
where P is the distributions of benign samples in X and x′ is a sample from the
distribution P̃ = P. Mω,θ is a deep neural network and defined as:

Mω,θ = Cω ◦ H(fθ(x), fθ(xp)), (7)

where H is a function that computes the square of element-wise difference of
the representations between perturbed samples and their benign versions and
Cω is a fully connected neural network. Therefore, for all perturbed samples in
Xp, the learning objective is to maximize the mutual information between fθ(x)
and fθ(xp):

Lr =
1

|Xp|
∑

xp∈Xp

Î(JSD)
ω,θ (fθ(x); fθ(xp)). (8)

To train the infected Deep SVDD model, the new objective function is defined
as:

L′
SV DD = LSV DD + α · Lc − β · Lr, (9)

where α and β balance the proposed backdoor objectives.

Extend the Proposed Approach to Attack OC4Seq. As OC4Seq detects sequential
anomalies from both local and global levels, we extend the above attacking
strategies by further applying the perturbed sequence center and representation
drifting at local levels, defined as follows:

L′
OC4Seq = L′

SV DD + η · L′
local, L′

local = Llocal + α · Lcl − β · Lrl
, (10)

where

Lcl = ||cpl
− cl||2, Lrl

=
1

|Xp|
∑

xp∈Xp

S∑

s=1

Î(JSD)
ω,θ (fθ(xs); fθ(xs

p)). (11)

In Eq. 11, cpl
is the mean representations of perturbed subsequences and xs is

the s-th subsequence derived from x.

4.3 Post-deployment Attack

After deploying the infected model, the attacker can attach abnormal entries at
m placeholders into a sequence in Xp. This poisoned sequence can activate the
backdoor in the infected model, leading to the model erroneously classifying this
sequence as normal.
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5 Experiments

5.1 Experimental Setup

5.1.1 Datasets

We evaluate the proposed attack against the anomaly detection models on two
datasets [18], BlueGene/L (BGL) and Thunderbird, which are commonly used
for evaluating sequential anomaly detection. We set all the sequences with a
fixed length of 40. Table 1 shows the statistics of the datasets. In the training
phase, 1/10 of training sequences are perturbed sequences. For each dataset, we
create a benign test set to evaluate the infected model for anomaly detection and
a poisoned test set to check whether the infected model can predict abnormal
sequences with triggers as normal.

To derive the perturbed dataset Xp, in the trigger generation phase, we ran-
domly select 50 sequences to create X ′ and generate 200 perturbed sequences
for each sequence in X ′, leading to 10,000 perturbed sequences. Meanwhile, we
choose M = 6 entries as placeholders so that the maximum number of abnor-
mal entries that can be injected during the attacking phase is 6. The poisoned
sequences are generated by replacing the placeholders with abnormal entries.

Table 1. Statistics of training and evaluate datasets.

Dataset BGL Thunderbird

Training Benign 90,000 90,000

Perturbed 10,000 10,000

Benign Test Set Normal 5,000 5,000

Abnormal 500 500

Poisoned Test Set Abnormal 10,000 10,000

5.1.2 Evaluatin Metric

We adopt the following metric the evaluate the effectiveness of the proposed
attack approach. 1) Benign performance (BP) is to evaluate the performance
of infected models on benign datasets, including precision, recall, and F-1 score
as evaluation metrics. 2) Attack success rate (ASR) is defined as the fraction
of poisoned samples identified as normal by the infected models when injecting
real abnormal entries into Xp.

5.1.3 Baseline

As there is no backdoor attack approach against sequential anomaly detection
models in the literature, we compare the performance of the infected model with
a benign model that is trained on the benign training set.
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5.1.4 Implementation Details

We set η = 1 and hyperparameters α = 0.5 and β = 0.5. We represent log
entries in BGL and Thunderbird as embedding vectors with a size of 100 and
use a single-layer LSTM model with a hidden size of 256 to learn sequence
representations. We use a small validation set to get the threshold τ for anomaly
detection. The code is available online1.

5.2 Experimental Results

5.2.1 Performance of Infected Models on Benign Data for Anomaly
Detection

We first compare the performance of benign models and infected models for
anomaly detection on benign datasets. The results are presented in Table 2. We
observe that both Deep SVDD and OC4Seq infected models can maintain per-
formance close to that of the benign ones, demonstrating the effectiveness of
infected models for anomaly detection. The fluctuation in BP between benign
and infected models may be attributed to changes in hypersphere boundaries.
The incorporation of perturbed sequences could slightly shift the original distri-
bution of benign data, leading to the derivation of different hyperspheres com-
pared to a benign setting.

Table 2. Benign and infected models for anomaly detection on benign datasets.

Model Dataset Metrics Benign Infected

DeepSVDD BGL Precision 93.47 96.12

Recall 94.40 94.20

F-1 score 93.93 95.15

Thunderbird Precision 95.59 95.60

Recall 95.40 95.60

F-1 score 95.50 95.60

OC4Seq BGL Precision 91.80 98.94

Recall 94.00 93.20

F-1 score 92.89 95.98

Thunderbird Precision 82.47 91.45

Recall 82.80 70.60

F-1 score 82.63 79.68

1 https://github.com/Serendipity618/BA-OCAD.



Backdoor Attack Against One-Class Sequential Anomaly Detection Models 271

5.2.2 Performance of Infected Models on Poisoned Data for Evade
Detection

We then evaluate the effectiveness of the proposed backdoor attack by inject-
ing varying numbers of abnormal entries. To achieve this, we inject m abnormal
entries into sequences in X ′, with m ranging from 1 to 6. Table 3 presents the
results of both benign and infected models.

Table 3. Attack success rate on poisoned datasets with various abnormal entries.

Model Dataset m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

DeepSVDD BGL Benign 98.47 98.79 96.67 91.92 75.83 40.86

Infected 98.58 98.32 97.98 97.29 94.29 86.95

Thunderbird Benign 99.94 97.15 86.51 64.22 39.04 14.20

Infected 100.00 100.00 99.94 99.03 94.91 86.98

OC4Seq BGL Benign 100.00 100.00 98.00 98.00 98.00 32.65

Infected 100.00 99.99 99.77 98.89 95.02 82.41

Thunderbird Benign 80.17 41.82 5.05 0.34 0.00 0.00

Infected 94.67 91.87 84.57 66.84 35.49 11.48

We observe that when only one abnormal entry is injected into sequences,
the benign models can also achieve high ASR. This finding aligns with our ear-
lier assumption that injecting anomalies into sequences could push them from
the center but possibly still within the hypersphere. However, when m is large,
the ASR for benign models dramatically decreases. In contrast, infected models
maintain a high ASR even when multiple abnormal entries are injected.

5.2.3 Sensitivity Analysis

Hyperparameter α. We analyze the impact of the parameter α by varying its
values from 0 to 1.0 in increments of 0.2. As illustrated in Fig. 2, increasing the
values of α generally leads to a slight increase in ASR. For both models, ASR

(a) Deep SVDD on
BGL

(b) Deep SVDD on
Thunderbird

(c) OC4Seq on
BGL

(d) OC4Seq on
Thunderbird

Fig. 2. Results of backdoor attack for various hyperparameter α.
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consistently stabilizes at a higher level with different values of α. It is noticeable
that when α = 0, this case differs from a benign setting, as the training dataset
contains perturbed samples and meanwhile, the new learning objective function
still includes the perturbed sequence representation drifting term.

Hyperparameter β. We also investigate the impact of the parameter β by varying
its value from 0 to 1.0 in increments of 0.2. The results are presented in Fig. 3.
It is noticeable that with the increase of β, the ASR generally keeps rising and
then stabilizes at a high level. For OC4Seq on Thunderbird, the ASR starts to
decrease when β > 0.6.

(a) Deep SVDD on
BGL

(b) Deep SVDD on
Thunderbird

(c) OC4Seq on
BGL

(d) OC4Seq on
Thunderbird

Fig. 3. Results of backdoor attack for various hyperparameter β.

5.2.4 Visualization

We further visualize representations of benign, perturbed, and poisoned
sequences for the infected Deep SVDD model in the BGL dataset. We ran-
domly selected 5000 benign sequences to create their corresponding perturbed
and poisoned sequences. The results are shown in Fig. 4.

Figure 4a shows that the representations of perturbed and poisoned sequences
derived by the benign model are far from the benign center. Meanwhile, Figs. 4b
and 4c reveal that by employing the proposed perturbed sequence center drifting
or perturbed sequence representation drifting, we can either move perturbed
sequences closer to the benign center or establish a correlation between perturbed
and benign sequences, but cannot achieve both simultaneously.

Figure 4d illustrates that using both training objectives, the infected model
brings perturbed sequences close to the benign center and all the poisoned sam-
ples are also close to the perturbed counterpart, making them challenging to

(a) Benign model (b) Infected model
with β = 0

(c) Infected model
with α = 0

(d) Infected model
with α = 0.5, β = 0.5

Fig. 4. Visualization of benign, perturbed, and poisoned sequences.
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detect. Figures 4b, 4c, and 4d also demonstrate that poisoned sequences are
consistently associated with their corresponding perturbed sequences, provid-
ing evidence that the models ignore the placeholders and focus on the patterns
outlined in our proposed trigger generation.

6 Conclusions

In this paper, we have developed a novel backdoor attack framework against
one-class anomaly detection models on sequential data, enabling anomalies to
evade detection. Our framework comprises two essential components, trigger
generation and backdoor injection. Trigger generation is to derive impercepti-
ble backdoor triggers from the normal sequences, while the backdoor injection
is to inject backdoor patterns to infected models during the training phase by
developing two learning objectives. After deployment, the attacker can conceal
abnormal entries within the sequences, which enables anomalies to evade detec-
tion by the infected model. Our experiments on one-class anomaly detection
models demonstrate the effectiveness of our proposed backdoor attack strategy.
In the future, we plan to study how to effectively defend the backdoor attack
against the sequential anomaly detection models.
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