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Abstract

Dissolved organic matter (DOM) is the foundation of the microbial loop and plays an important role in estuarine water qual-
ity and ecosystem metabolism. Because estuaries are influenced by DOM with different sources and composition, changing
hydrologic regimes, and diverse microbial community assemblages, the biological fate of DOM (i.e., microbial degrada-
tion) differs across spatiotemporal scales and between DOM pools. To better understand controls on DOM degradation, we
characterized the biogeochemical and physical conditions of the York River Estuary (YRE), a sub-estuary of the Chesapeake
Bay in southeast Virginia (USA), during October 2018 and February, April, and July 2019. We then evaluated how these
conditions influenced the degradation of dissolved organic carbon (DOC) and nitrogen (DON) and chromophoric dissolved
organic matter (CDOM) by conducting parallel dark incubations of surface water collected along the YRE. Compared to
other sampling dates, DOC reactivity (ADOC (%)) was over two-fold higher in October when freshwater discharge was
lower, temperatures were warmer, and autochthonous, aquatic sources of DOC dominated. ADOC (%) was near zero when
allochthonous, terrestrial sources of DOC were more abundant and when temperatures were cooler during higher discharge
periods in February when precipitation in the Chesapeake Bay region was anomalously high. DON was up to six times less
reactive than DOC and was sometimes produced during the incubations whereas ACDOM (%) was highly variable between
sampling periods. Like ADOC (%), spatiotemporal patterns in ADON (%) were controlled primarily by hydrology and
DOM source and composition. Our results show that higher freshwater discharge associated with prolonged wet periods
decreased estuarine flushing time and increased the delivery of allochthonous DOM derived from terrestrial sources into
coastal waters, resulting in lower rates of DOM degradation especially under cool conditions. While these findings provide
evidence for seasonal variation in DOM degradation, shifting environmental conditions (e.g., increasing temperatures and
precipitation) due to climate change may also have interactive effects on the magnitude and composition of DOM exported
to estuaries and its subsequent reactivity.
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Introduction the surrounding catchments and autochthonous (i.e., pro-

duced within the estuary) inputs of OM from primary and

Estuaries are “hotspots” of organic matter (OM) cycling and
play an important role in the coastal carbon cycle due to
their position at the land-sea interface (McClain et al. 2003).
This location is characterized by both allochthonous (i.e.,
produced outside the estuary) inputs of OM from rivers and
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secondary production. During transport to the coastal ocean,
allochthonous and autochthonous sources of OM may be
modified and removed by processes such as flocculation,
sinking, photolysis, and microbial degradation (Canuel and
Hardison 2016; Bianchi 2007 and references therein; Hedges
and Keil 1999). Understanding the effect of these processes
on OM is important for determining the trophic status of
estuaries, developing coastal carbon budgets, and assess-
ing the role of estuaries as either sources or sinks of carbon
dioxide (CO,) (Borges and Abril 2011; Cai 2011).
Dissolved organic carbon (DOC) comprises most of the
total dissolved organic matter (DOM) pool, but DOM also
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includes other constituents such as dissolved organic nitro-
gen (DON), dissolved organic phosphorus (DOP), and dis-
solved organic sulfur (DOS) (Bianchi 2007 and references
therein). In addition, chromophoric dissolved organic matter
(CDOM) is a component of DOM that absorbs light. Within
CDOM, there is a fraction that fluoresces (i.e., fluorescent
dissolved organic matter or fDOM). Optical properties
(absorbance and fluorescence) of DOM are often used to
identify the source and composition of DOM in estuaries
and other aquatic ecosystems (Stedmon and Nelson 2015).
DOC dynamics are often used to describe the entire DOM
pool (Carlson and Hansell 2015), but DOM components may
have different fates depending on the relative contributions
of each to the total DOM pool (e.g., elemental stoichiom-
etry) and their interactions with biotic and abiotic environ-
mental factors (Graeber et al. 2021; Asmala et al. 2013;
Lgnberg et al. 2010).

Microbial degradation represents an important fate
of DOM in estuaries and is influenced by chemical (e.g.,
source and composition), physical (e.g., temperature, fresh-
water discharge), and biological (e.g., microbial community)
factors (McCallister et al. 2006; Smith and Benner 2005;
Hopkinson et al. 1998). For example, terrestrial DOM (e.g.,
humic material) is mainly derived from soil and vascular
plants and is characterized by macromolecules that are
highly aromatic, polymerized, and function as structural
components (Zark and Dittmar 2018; Bianchi 2011). In
comparison, aquatic DOM (e.g., proteins, amino and nucleic
acids) is primarily derived from microbial sources and is
composed of N-rich biomolecules (Sleighter and Hatcher
2008; Holmer 1996; Bronk and Gilbert 1993). Therefore,
aquatic DOM tends to have higher nutritional value and
requires less energy for degradation compared to terrestrial
DOM (He et al. 2020; Bauer and Bianchi 2011). The micro-
bial degradation of DOM can be enhanced under favorable
environmental and biological conditions (e.g., in the pres-
ence of oxygen, light, or specific microbial taxa) (Medeiros
et al. 2015; Bianchi 2011; McCallister et al. 2005; Miller and
Moran 1997). For example, terrestrial DOM mobilized and
delivered to an estuary during high discharge events can be
susceptible to high rates of bacterial and photochemical deg-
radation due to light and oxygen exposure (Letourneau et al.
2021; Osburn et al. 2019). Extreme freshwater discharge,
however, also reduces water residence and processing time,
which can limit the degradation of DOM until it reaches the
coastal ocean (Hounshell et al. 2019). In addition, the time-
scale at which terrestrial DOM is delivered to and degraded
within estuaries varies and depends on features of the study
system such as flushing time and overall geography and
geomorphology (Bukaveckas 2022; Raymond et al. 2016;
Spencer et al. 2008).

To improve understanding of microbial degradation
of DOM in estuaries, we characterized physical (e.g.,
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hydrology) and biogeochemical (e.g., DOM source and
composition, nutrients) conditions of the York River estu-
ary (YRE), a sub-estuary of the Chesapeake Bay in southeast
Virginia (USA) and representative of temperate, microtidal
systems common along the east coast of the USA. We then
evaluated how these conditions influenced DOC, DON, and
CDOM reactivity by conducting parallel dark laboratory
incubation experiments of surface water collected season-
ally along the YRE salinity gradient.

Overall, we hypothesized that rates of DOM degradation
would be higher when autochthonous, aquatic sources of
DOM were more abundant in the estuary whereas rates of
degradation would be lower when allochthonous, terrestrial
sources of DOM dominated. We also expected that fresh-
water discharge and flushing time would be predictors of
DOM reactivity because of their effects on the sources and
composition of DOM.

Methods
Site Description

A detailed description of the YRE and surrounding water-
shed can be found in Reay (2009), Reay and Moore (2009),
and Friedrichs (2009). Briefly, the YRE is a temperate
microtidal sub-estuary of the Chesapeake Bay in southeast
Virginia (USA). The Pamunkey and Mattaponi Rivers, two
major tributaries of the YRE, converge 52 km from the
mouth of the Chesapeake Bay near West Point, VA. These
two tributaries are responsible for most freshwater discharge
to the YRE with a combined mean streamflow of 4.06 x 10°
m?> d~!. The YRE has a mean tidal range of 0.70-0.85 m,
and the surrounding watershed is ~60% forested and unde-
veloped with pockets of agriculture (~20%) and residential
and commercial development (~2%). Tidal wetlands com-
prise ~7% of the watershed including freshwater marshes in
the Pamunkey and Mattaponi Rivers as well as salt marshes
along the mainstem York River. Mean salinity ranges from
0 at the uppermost reaches of the Pamunkey and Mattaponi
Rivers to 20 at the mouth of the York River.

Sample Collection and Physical and Biogeochemical
Conditions of the YRE

During October 2018 and February, April, and July 2019,
triplicate surface water samples (< 0.5 m below the surface)
were collected from three locations along the YRE estuarine
salinity gradient, hereafter referred to as upper (37° 28’ 48.4"
N 76° 45" 34.2" W), middle (37° 20’ 13.2" N 76° 38’ 24.0"
W), and lower (37° 15" 06.5" N 76° 26’ 34.4" W) (Fig. 1).
Samples were collected using a DataFlow pump intake sys-
tem (see Crosswell et al. 2017). A tidal freshwater site on
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Fig. 1 Sampling locations (red dots) along the YRE. Three locations
(upper, middle, lower) along the mainstem York River were sampled
in October 2018 and February, April, and July 2019. One location in

the Pamunkey River (37° 34’ 17.0" N 76° 53' 02.3" W) was
sampled in October 2018 and February 2019 (Fig. 1). Sur-
face water samples were dispensed directly into 2L polycar-
bonate bottles and kept in the dark on ice for transport back
to the Virginia Institute of Marine Science (VIMS). Prior to
sample collection, all glassware and glass-fiber filters were
combusted (500 °C for 4 h), and polyethersulfone (PES) fil-
ters and polycarbonate collection bottles were acid-rinsed
(10% HCI).

Concurrent single-point measurements of temperature,
salinity, pH, and dissolved oxygen (DO) were made using
a multi-parameter data sonde (YSI 6600V2). Additional
water column samples were collected to assess in situ con-
centrations of dissolved inorganic carbon (DIC) (Neubauer
and Anderson 2003), dissolved inorganic nitrogen (DIN) as
ammonium (NH,*) and nitrite + nitrate (NO,) (Liao 2001;
Smith and Bogren 2001; Koroleff 1983), chlorophyll-a
(Anderson et al. 2003), and absorbance of CDOM at 440 nm
(a440) normalized to DOC concentration (a*,,,) (Pucher
et al. 2019; Tzortziou et al. 2008). DIC measurements had
a 2 uM detection limit and ~2 pM precision across sample
injections. NH,* measurements had a 0.1 uM detection limit
and~0.1 pM precision across sample injections, and NO,
measurements had a 0.05 pM detection limit and ~0.1 uM
precision across sample injections.

Freshwater discharge data were obtained from the United
States Geological Survey (USGS) National Water Information

the tidal freshwater portion of the Pamunkey River was only sampled
in October 2018 and February 2019

System for the Pamunkey (USGS 01673000) and Mattaponi
(USGS 01674500) Rivers (https://waterdata.usgs.gov/nwis/).
Flushing time (FT), defined as the amount of time it takes to
replace existing freshwater in an estuary, was calculated using
a salt balance approach (Officer 1980) within an existing box
model of the YRE (Lake and Brush 2015) which computes
exchanges and FT as functions of salinity and freshwater
inputs in eight boxes, one each in the lower Pamunkey and
Mattaponi Rivers, and six down the main axis of the YRE.
The average FT for a given box along the axis of the estuary is
given by the following:

_ (sm - Sm—l)(sm+l - sm) % ﬁ

FT, = S
sm(sm+1 - Sm—l)

where s is salinity, m is any given box along the estuary, V
is box volume (m?), and R is freshwater discharge (m>d™.
The subscripts m — I and m+ I represent boxes upstream
and downstream of box m, respectively. FT was computed
in each box along the axis of the estuary and then used to
estimate the approximate freshwater age (FW age), defined
as the approximate age (in days) of the freshwater in a given
box along the estuary (i.e., time since entering the system),
following:

FWagem = FTPamunkcy + FTMallaponi + (FTm—l + FTm—Z ) + (FTm/Z)
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where FT pamunkey + F ptatapon corresponds to the aver-
age FT in the lower Pamunkey and Mattaponi boxes,
(FTm_1 +FT, ,... ) corresponds to the sum of FT in all
other boxes upstream from box m, and FT,, corresponds to
the FT of any given box for which the FW age is calculated.

In this study, the bulk FT metric was used instead of
residence time, defined as the amount of time it takes a par-
cel of water to exit an estuary, as it provides an integrative
metric for assessing the effects of freshwater discharge on
estuarine water flow and material processing (Monsen et al.
2002). The use of FT also allowed us to approximate the
age of freshwater along the axis of the estuary; while our
calculation of age does not use the formal location-specific,
particle tracking approach common to such estimates (e.g.,
Monsen et al. 2002), it nevertheless provides an integrative
proxy of time since the freshwater in each box first entered
the estuary.

Microbial Degradation Experiments

Upon return to VIMS, the 2 L water samples were imme-
diately filtered sequentially through 0.7 um (Whatman
GF/F) and 0.2 um (Sterlitech PES) filters into borosilicate
glass bottles. The 0.2 um filtrate was inoculated with the
0.7 pm filtrate (1% v/v) for microbial degradation experi-
ments following similar studies (Lu et al. 2013; McCallister
et al. 2006). The samples were incubated in a controlled
environment room (Environmental Growth Chambers,
Chagrin Falls, Ohio) under dark and aerobic conditions at
in situ York River water temperature averaged along the
estuary (25 °C in October, 4 °C in February, 12 °C in April,
and 29 °C in July). Bottles were then sub-sampled at the
onset of the experiment (T), one day following onset (T,),
and weekly for 28 days thereafter (T, T4, T,;, Tpg). Uni-
noculated samples (0.2 um filtrate only) were also incu-
bated as a control treatment without microbial degradation
(DOC and DON only). Dissolved oxygen was monitored
for the duration of each incubation to verify that conditions
remained aerobic.

Subsamples for DOC and DON were filtered (0.45 um
PES) and frozen (— 20 °C) while those for CDOM were fil-
tered (0.2 um PES) and refrigerated (4 °C) until analyses
were completed within four weeks of collection. A 0.2 pm
filter pore size and refrigerated storage were chosen for
CDOM samples as best practice for preventing microbial
alteration of CDOM components because frozen storage
can alter the optical properties of DOM (Chow et al. 2022;
Schneider-Zapp et al. 2013).

Concentrations of DOC ([DOC]; uM) at each time point
were measured using high-temperature combustion oxida-
tion (Shimadzu TOC-V organic carbon analyzer) with a
0.3 uM detection limit and ~0.1 uM precision across sample
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injections. Microbial degradation was calculated as the per-

cent change in [DOC] between initial (T;) and final (T,g)

time points using:

([DOC]ﬁnal - [DOC]initial)
[DOC]

ADOC(%) = x 100

initial

This standardized measure of reactivity was selected to
make direct comparisons with similar microbial degradation
studies conducted in the YRE (Lu et al. 2013; McCallister
et al. 2006, 2005) and other estuarine systems (Hitchcock
and Mitrovic 2015; Wu et al. 2019; Moran et al. 2000) and
because of the relative linearity in [ADOC] across all time
points (Fig. S1).

Concentrations of DON ([DON]; uM) were calculated
by subtracting [DIN] (uM) from total dissolved nitrogen
([TDN]; uM) following persulfate digestion (Liao 2001;
Smith and Bogren 2001; Koroleff 1983) and colorimetric
analysis (Lachat QuikChem 8000 Flow Injection Analysis
System). Microbial degradation of DON (ADON (%)) was
calculated as described above for DOC. DON was not meas-
ured during the October 2018 incubations.

DOM Source Characterization

Samples for 8'*Cpoc were collected at the onset of each
experiment, filtered (0.45 um), frozen (— 20 °C), and sent to
the North Carolina State University Aquatic Biogeochem-
istry Laboratory. Stable carbon isotope values are reported
in standard 6 notation as follows:

R m;
8" Cpoc = [(Rsa ple ) - 1] x 10°

standard

where R is °C/'2C.

DOM composition at each timepoint was determined by
measuring absorbance (Shimadzu UV-1800 UV/Vis Scan-
ning Spectrophotometer), fluorescence (Shimadzu RF-6000
spectrofluorophotometer), and resulting excitation-emission
matrices (EEMs) of water samples following parameters
described in Tzortziou et al. (2008) and Coble (1996). EEMs
were compiled and formatted for analyses in the R pack-
age staRdom (Pucher et al. 2019). DOM was described as
aquatic protein-like or terrestrial humic-like based on peak
excitation-emission wavelengths of fDOM as described in
Murphy et al. (2013) and Coble (1996). Fluorescent DOM
intensities were normalized to standard Raman Units (RU)
by dividing all intensities by the area of the Raman peak
of an ultrapure water sample (Lawaetz and Stedmon 2009).
Protein-like and humic-like CDOM were therefore inferred
by fDOM intensities. Lastly, the molecular weight of DOM
was estimated using the ratio of the spectral slope within the
log-transformed absorption of 275-295 nm and 350—400 nm
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(i.e., slope ratio, Sg). A low Sy is indicative of DOM with
high molecular weight and has been attributed to alloch-
thonous DOM; a high Sy is indicative of DOM with low
molecular weight and has been attributed to autochthonous
DOM (Helms et al. 2008).

Changes in protein-like (ACDOM,,; einjike (%)) and
humic-like (ACDOM,,mic.iike (%)) CDOM during the incu-
bations were calculated using the approach described above
for DOC. These pools are used as indicators of autochtho-
nous aquatic versus allochthonous terrigenous DOM com-
ponents, respectively (Osburn et al. 2016a; Hudson et al.
2007; Coble 2007). While optical properties of DOM are
largely altered by photochemical processes not considered
in this study, they are also altered by microbial communities
regardless of light conditions (Logozzo et al. 2021; Fasching
et al. 2014; Lu et al. 2013; McCallister et al. 2006).

Statistical Analyses

All statistical analyses were performed in R (v4.1.2). Prior
to the analyses, all statistical assumptions were assessed
using the Shapiro—Wilk test for normality, Levene’s test for
equality of variances, and Rosner’s test for extreme outliers
using the R package EnvStats (Millard 2013). Measurements
were log-transformed when necessary to meet the assump-
tion for normality. ADOC (%), ADON (%), and ACDOM
(%) were compared between sampling dates and locations
using the two-way analysis of variance (ANOVA) with inter-
actions followed by Tukey’s Honest Significant Difference
test for multiple comparisons. Differences were considered
significant when p <0.05. ANOVA was used to analyze
biogeochemical parameters, §'°Cp, and absorbance and
fluorescence measurements to assess how the initial environ-
mental conditions and DOM source and composition varied
between sampling dates and locations.

To determine major drivers of DOC, DON, and CDOM
reactivity, multiple linear regression analyses testing all pos-
sible subsets of predictor variables were performed. Values
for ADOC (%), ADON (%), and ACDOM (%) were removed
if they exceeded the threshold resulting from Rosner’s test
for extreme outliers and if they were not significantly differ-
ent from zero. Variables were standardized and assessed for
collinearity using the variance inflation factor (VIF). The
final model was selected by considering the total variance
explained by the model (adjusted 7%); the relevance of indi-
vidual relationships between biogeochemical and physical
parameters and ADOC (%), ADON (%), and ACDOM (%);
the degree of collinearity between variables; and the cor-
rected Akaike Information Criterion (AICc) (Table S1).

Results
Physical Conditions

Physical variables varied temporally and spatially. Sea-
sonal change in surface water temperature was greatest in
the upper estuary (4.55 °C in February to 29.9 °C in July;
Table 1). Salinity ranged from 4.10 in the upper estuary in
February to 15.8 in the lower estuary in July (Table 1). In
general, salinity, pH, and DO increased from the upper to
lower estuary across all sampling dates (Table 1). Freshwa-
ter age increased from the upper to lower estuary across all
sampling dates and encompassed a range of 4.28 days in the
upper estuary in April to 47.7 days in the lower estuary in
July (Table 1).

Biogeochemical Conditions

There were some spatial and temporal differences in the con-
centrations of chlorophyll-a, DOC, DON, DIC, NO,, NH4+,

Table 1 Physical conditions

; Month Location Surface water Salinity pH Dissolved oxy-  Flushing Freshwa-
SZJ;ZYRE during the study along estuary temperature (°C) gen (mg LY time (d) ter age (d)
October Upper 25.3 5.89 7.27 542 3.88 6.43
Middle 25.6 12.2 7.71 6.25 3.99 14.7
Lower 26.1 15.0 8.13 6.95 1.22 22.7
February Upper 4.55 4.10 7.44 11.3 3.21 5.01
Middle 5.11 8.34 7.87 11.9 3.30 11.8
Lower 5.27 12.6 8.41 134 1.02 18.5
April Upper 12.0 5.44 7.30 8.34 2.84 4.28
Middle 12.7 8.95 8.65 10.3 2.93 10.3
Lower 11.8 12.3 8.61 11.6 0.90 16.2
July Upper 29.9 9.71 7.16 4.81 7.61 15.8
Middle 29.7 14.7 7.57 5.45 7.79 32.1
Lower 29.3 15.8 8.38 7.74 2.33 47.7
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ratios of DOC:DON, and CDOM absorbance (Fig. 2; Tables
S2-S4). For example, chlorophyll-a concentrations pooled
across all locations were higher in July than in February
(p=0.02; Fig. 2a; Tables S2, S5). Chlorophyll-a concen-
trations were higher in the lower estuary in February and
April whereas they were higher in the upper and middle
estuary in October and July (Fig. 2a; Tables S2, S5). Par-
ticularly high chlorophyll-a concentrations were observed in
the lower estuary in April (Fig. 2a; Table S2). Initial [DOC]
was higher in October compared to all other sampling dates
(p <0.01; Fig. 2b; Tables S3, S5). Initial [DON] was higher
in July compared to February and April (p <0.01; Fig. 2c;
Tables S3, S5). Ratios of DOC:DON were overall lower in
July compared to February (p <0.01) and April (p=0.03;
Fig. 2d; Tables S2, S5). Ratios of DOC:DON could not be
computed for October because DON was not measured.
[DIC] pooled across all locations was higher in October
and July compared to February and April (p <0.01; Fig. 2e;
Tables S2, S5), and [DIC] was consistently lower in the
upper estuary compared to both the middle and lower estu-
ary (p<0.01; Fig. 2e; Tables S2, S5). Notable increases in
[NO,] and [NH,*] were observed from the upper to lower
estuary in February that were not observed during any other
time (Fig. 2f and g; Table S2). In April, [NO,] and [NH4+]

substantially decreased from the upper to middle estuary
(Fig. 2f and g; Table S2).

CDOM absorbance (a,4) was overall higher in Octo-
ber compared to February (p <0.01), while absorbance in
both October and July was higher than in April (p <0.04;
Tables S2, S5). CDOM absorbance also generally decreased
from the upper to lower estuary except in February when it
increased from the upper to lower estuary (Table S2). CDOM
absorbance normalized to DOC concentration (a* 44,) did not
differ by sampling date but generally decreased from the
upper to lower estuary except in February when it increased
from the upper to lower estuary (Fig. 2h; Tables S2, S4-S5).

DOM Source Characterization

Mean 8'Cpq values were higher (more positive) in Octo-
ber and July compared to February (Fig. 2i; Tables S2, S5),
and while not statistically significant, 613CDOC values gen-
erally increased (became more positive) from the upper to
lower estuary except in February (Fig. 2i; Table S2). Protein-
like CDOM (inferred by fDOM) fluorescence pooled across
all locations was higher in October compared to February
and April (Fig. 2j; Tables S3, S5). While humic-like CDOM
fluorescence did not differ statistically across dates, it was
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Fig.2 Initial concentrations and values of biogeochemical vari-
ables measured during the study period: a chlorophyll-a, b DOC, ¢
DON, d DOC:DON, e DIC, f NO,, g NH,*, h total CDOM normal-
ized to [DOC] (a*,,), i stable isotopes of DOC (8'*Cpq), j protein-
like CDOM, k humic-like CDOM, and 1 slope ratio. Values for each
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parameter are also presented in Supplementary Tables S2-S3. Error
bars are the standard error of the mean of triplicate samples. Refer
to text and Supplementary Tables S4-S5 for statistical differences
between sampling dates (October, February, April, July) and location
along the estuary (upper, middle, lower). n.d., no data
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generally higher in the upper and middle estuary (Fig. 2k;
Tables S3-S5). Across locations, slope ratio (Sg) was higher
in October and July (Fig. 21; Tables S2, S5). Sg was also
higher in February compared to April (Fig. 21; Tables S2,
S5). Although the differences were not statistically signifi-
cant, Sy increased from the upper to lower estuary in Octo-
ber and July (Fig. 21; Table S2).

Microbial Degradation of DOM

ADOC (%) varied temporally more than spatially (Fig. 3a;
Tables S4-S6). A two-way ANOVA revealed differences
between sampling dates (p <0.01) but not sampling loca-
tions or date X location (Table S4). A higher proportion (up
to two-fold) of DOC was lost during the incubations in Octo-
ber (— 34 to —41%) compared to February and July (Fig. 3a;
Tables S5-S6). Additionally, [DOC] sometimes increased
(positive ADOC (%) values) at the upper and middle estu-
ary locations during the February incubations; however, the
mean values across treatments were not significantly differ-
ent from zero (Fig. 3a; Table S6).

b,c
500 & b B :
r 1 r 1 r 1 r |
254
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Fig.3 Mean percent change in the concentration of a DOC and b
DON over 28-day incubation experiments. Samples were collected
along the upper, middle, and lower YRE during October 2018 and
February, April, and July 2019. Error bars are+1 standard error of
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Fig.4 Mean percent change in a protein-like and b terrestrial humic-
like CDOM over 28-day incubation experiments. Samples were col-
lected along the upper, middle, and lower YRE during October 2018

ADON (%) varied temporally and spatially (Fig. 3b;
Tables S4-S6). A two-way ANOVA revealed differences
in ADON (%) between sampling dates (p <0.01), sampling
locations (p <0.01), and date X location (p <0.01; Table S4).
Interestingly, ADON (%) increased during some incubations
in April (upper and lower estuary locations) whereas ADON
(%) decreased at the upper and middle estuary locations in
February and at all locations in July (Fig. 3b; Table S6).
ADON (%) was not measured in October. Mean ADON
(%) across all sampling dates was also higher in the middle
estuary compared to the upper and lower estuary (Fig. 3b;
Table S5).

ACDON[protein—like (%) and ACDON[humic—like (%) were
highly variable during the study period, and there were no
clear spatiotemporal trends (Fig. 4; Tables S4-S6). However,
a separate ANOVA comparing mean ACDOM,ycin-tike (%)
to mean ACDOM,, nicike (%) across all sampling dates and
locations revealed that ACDOM,,;cinjike (%) Was overall
more reactive than ACDOM,,ic.iike (%) excluding incuba-
tions when protein-like CDOM was produced (i.e., middle
estuary in February and April) (p <0.01; Fig. 4; Table S6).

507 O upper
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25 T ® lower
4 ns. |-
& n.d. n.s
& o0 e
s O T LEm
o
o -254 L T J L X T ; )
= a b a
-50_
b)
'75 T T T T
Oct. Feb. Apr. Jul.

the mean of triplicate samples. Letters represent statistical compari-
sons (p<0.05) between seasons. n.d., no data. n.s., ADOC (%) or
ADON (%) was not significantly different from zero

O upper
n.s. O middle
n.s. l = lower
nls. E] [_}|
Um' 8
-50+ =
-100

Oct. Feb. Apr. Jul.
and February, April, and July 2019. Error bars are + 1 standard error
of the mean of triplicate samples. Note differences in the y-axes. n.s.,

ACDOM (%) was not significantly different from zero
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Predictors of DOC, DON, and CDOM Degradation

The physical and initial biogeochemical variables (Tables 1,
S2-S3) were analyzed as predictors for ADOC (%), ADON
(%), and ACDOM (%). Multiple linear regression modeling
revealed that ADOC (%) was best explained by 8'°Cp,
temperature, flushing time, and freshwater age (Table 2).
Temperature had the greatest effect on ADOC (%) followed
by DOC source (8'*Cpoc) in the multiple regression model.

However, when analyzed as simple regressions, ADOC
(%) had a stronger linear relationship with 8'*Cpoc (adj.
»=0.37; p<0.01) compared to temperature (adj. r*=0.14;
p=0.03) (Fig. 5). Higher (more positive) 8'3Cpoc values
typical of estuarine phytoplankton were associated with
higher ADOC (%) while lower 613CDOC values typical of ter-
restrial vascular plants and soils were associated with lower
ADOC (%). Additionally, warmer temperatures were associ-
ated with higher ADOC (%). Flushing time and freshwater

Table 2 Multiple linear regression models for predicting DOC and DON degradation as informed by testing all subsets of predictor variables
and by resulting corrected Akaike Information Criterion (AICc) values

Predictor VIF Estimate Std. error Estimate (stand- Std. error (stand- t-value  Pr (>l)
(unstandardized) (unstandardized) ardized) ardized)
DOC
Overall model: F =8.47; adj. r*=0.51; AICc =251.2
33Cpoc (%0) 1.77 4.57 1.54 9.88 3.32 297 0.006
Temperature (°C) 3.00 1.08 0.44 10.9 4.42 247 0.021
Flushing time (d) 1.62 —2.45 1.38 -5.37 3.02 -1.78 0.088
Freshwater age (d) 1.55 —-0.62 0.25 —7.47 2.96 —-2.53 0.018
DON
Overall model: F =16.49; adj. r*=0.86; AICc=138.9
Slope ratio (Sg) 1.77 69.3 12.3 9.21 1.63 5.66 <0.001
Flushing time (d) 4.84 3.92 1.03 8.58 2.25 3.80 0.003
chl-a (ug L™ 1.27 —-0.31 0.09 —4.86 1.36 —3.58 0.004
[NH,*] (uM) 2.01 —-1.70 0.52 —-5.02 1.54 —3.26 0.007
Protein-like CDOM (RU) 1.81 —-177 38.6 —-8.02 1.75 —4.58 <0.001
Humic-like CDOM (RU) 1.94 25.1 7.33 5.12 1.50 342 0.005
pH 4.04 9.63 4.30 5.09 2.27 2.24 0.045
[DOC] (uM) 1.23 -0.04 0.02 -6.58 3.30 —2.00 0.069
0
- -20
&
9]
e .
< -40 °
L]
L= ® October
° ® February
- adj. r2=0.37 R adj.r2=0.14 b April
~ p<0.01 ' ' , p=003 ‘ . | ey
-30.0 -27.5 -25.0 225 10 20 30

813Cpoc (%) Temperature (°C)

Fig.5 Bivariate linear regression of a stable isotope values of DOC
(x-axis) and percent change in DOC (y-axis) and of b water temper-
ature (x-axis) and percent change in DOC (y-axis). Colors represent
samples collected during October 2018 and February, April, and
July 2019 pooled across all sampling locations along the YRE. The
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gray shaded area represents the 95% confidence interval. Values for
ADOC (%) were removed if they exceeded the threshold resulting
from Rosner’s test for extreme outliers and if they were not signifi-
cantly different from zero
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age were also predictors of ADOC (%) (Table 2), and there
was a positive linear relationship between freshwater age and
813Cpoc (adj. *=0.15; p<0.01) (Fig. 6).

Multiple linear regression modeling revealed that
ADON (%) was best explained by slope ratio (Sy), flush-
ing time, pH, protein-like and humic-like CDOM, and con-
centrations of chlorophyll-a, NH4+, and DOC (Table 2).
However, ADON (%) had positive linear relationships
primarily with Sy (adj. r*=0.68; p <0.01) and flushing
time (adj. rr=0.24; p=0.02) (Fig. 7). DON loss (most
negative ADON (%)) was greatest when Sy values were

highest (i.e., lower molecular weight DOM, autochthonous
source) whereas incubations with little DON loss (or DON
production) had lower Sy (i.e., higher molecular weight
DOM, allochthonous source). In addition, DON loss was
greatest when flushing times were longer (Fig. 7).

Because ACDOM (%) was highly variable and there
were limited instances when ACDOM (%) was signifi-
cantly different from zero (Fig. 4; Table S6), ACDOM
(%) could not be reliably explained by any of the measured
predictors or incorporated into a multiple linear regression
analysis.

Fig.6 Bivariate linear regres-
sion of stable isotope values of
DOC (x-axis) and freshwater
age (y-axis). Colors represent 404
samples collected during Octo-
ber 2018 and February, April,
and July 2019 pooled across

all sampling locations along
the YRE. The gray shaded area
represents the 95% confidence
interval

adj. r2=0.15
p = 0.002

w
o
L

Freshwater age (days)
N
o

-
o
1
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-30.0
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adj.r2=0.68
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ADON (%)

1 a)

adj. r2=0.24
p =0.02
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° April
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08 09 1.0 11
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Fig. 7 Bivariate linear regression of a slope ratio (x-axis) and percent
change in DON (y-axis) and of b flushing time (x-axis) and percent
change in DON (y-axis). Colors represent samples collected during
February, April, and July 2019 pooled across all sampling locations
along the YRE. DON samples were not collected in October 2018.

2 4 6 8
Flushing Time (d)
The gray shaded area represents the 95% confidence interval. Values
for ADON (%) were removed if they exceeded the threshold resulting

from Rosner’s test for extreme outliers and if they were not signifi-
cantly different from zero
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Discussion
Physical Conditions of the YRE

Anomalously high freshwater discharge impacted the entire
Chesapeake Bay region throughout 2018 and 2019 (Fran-
kel et al. 2022; Chesapeake Bay Foundation 2020). In the
YRE, freshwater discharge from the Pamunkey and Mat-
taponi Rivers was above average, resulting in depressed
salinities that deviated from the near-50-year long-term
average (1972-2017; Fig. S2). This was especially true in
February 2019 when discharge was more than twice the
average, resulting in short flushing times and lower fresh-
water ages approximately one-third of normal conditions
that carried into the April 2019 sampling period (Table 1).
Overall, these physical conditions along the YRE influenced
estuarine biogeochemistry, DOM source and composition,
and subsequent DOM degradation as discussed below.

Biogeochemical Conditions of the YRE

High freshwater discharge affected biogeochemical con-
ditions in the YRE. Under normal conditions (e.g., no
prolonged wet periods, no phytoplankton blooms), con-
centrations of biogeochemical constituents are typically
highest in the upper estuary (e.g., DON, DIN, DOC) or
peak between mid- to lower estuary (e.g., chlorophyll-a)
depending on residence time and light and nutrient avail-
ability (Yao et al. 2019; Countway et al. 2007; McCallister
et al. 2006; Bianchi 2007). During the highest discharge
period in February, however, concentrations of chloro-
phyll-a, NO,, and NH,* were highest in the lower estu-
ary, suggesting a potentially rapid down-estuary pulse of
nutrients and organic matter (Raymond et al. 2016).

We observed a substantial decrease in NO, (from~17
to~0.43 uM) and NH,* (from~ 11 to ~ 1.4 uM) concentra-
tions from the upper to middle estuary in April that coincided
with an intense spring phytoplankton bloom of the dinoflagel-
late Heterocapsa triquetra. High discharge in February and
April may have affected the persistence of this bloom because
1 week prior to our April 2019 experiment, ~35,000 H. tri-
quetra cells mL~' were measured in the mid-YRE (Reece,
unpub. data). Four days following our study, however, no H.
triquetra cells were detected in the mid-YRE even though
these blooms are known to persist for several weeks (Mulhol-
land 2021; Litaker et al. 2002). Because chlorophyll-a can be
a strong indicator of phytoplankton abundance (Jakobsen and
Markager 2016) including H. triquetra (Lindholm and Num-
melin 1999), the elevated concentrations of chlorophyll-a
observed down-estuary (~60 ug L™!) suggest that this bloom
was quickly flushed towards the mouth of the YRE.
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Concentrations of DOC (~300-700 pM) and DON
(~8-23 uM) were generally consistent with previous stud-
ies in the YRE, where values ranged from 220 to 518 pM
and 15 to 30 uM, respectively (McCallister et al. 2006, 2005;
Raymond and Bauer 2001). DOC:DON (~ 18-37) and DIC
(0.76-1.51 mM) measurements were also generally consist-
ent with previous studies in the YRE, where values range
from 13 to 22 and 0.26 to 1.90 mM, respectively (McCal-
lister et al. 2005; Raymond and Bauer 2001; Raymond et al.
2000). While DOC:DON did not vary spatially, higher ratios
in February and April (~22-37) compared to July (~ 18-23)
are generally consistent with contributions of terrestrial and
aquatic sources of OM, respectively (Bianchi 2007; Cloern
et al. 2002). DIC concentrations increased from the upper
to lower estuary and were higher when freshwater inputs
were lower in October and July. These findings are consist-
ent with a previous study that showed increased net hetero-
trophy down-estuary and increased concentrations of DIC
during lower flow periods (Raymond et al. 2000).

DOM Source and Composition

Similar to previous studies, the stable carbon isotope val-
ues indicate that the YRE is characterized by a mixture of
sources and receives greater inputs of DOM from terres-
trial sources during times of higher freshwater discharge
(McCallister et al. 2006; Countway et al. 2007). This is evi-
denced by lower (more negative) 8'°Cpo values, typical of
terrestrial plants and soils, in the upper estuary and lower
613CDOC values during February and April when freshwater
discharge was highest. In contrast, more positive 613CDOC
values down-estuary (except in February) are indicative of
aquatic, microalgal sources and consistent with previous
studies showing that primary production is higher in the
mid- and lower regions of the YRE (Kim et al. 2021; Lake
et al. 2013; Sin et al. 1999) and other estuaries (Andersson
et al. 2018; Cloern et al. 2014 and references therein).

We used CDOM characteristics as another proxy for
DOM source and composition because 8'*Cp o values for
OM sources in estuaries can overlap (Cloern et al. 2002;
Sigleo and Macko 1985; Fry and Sherr 1984). CDOM has
previously been used to predict DOM concentration, com-
position, and behavior (Fichot and Benner 2012; Spencer
et al. 2007; Del Vecchio and Blough 2004). In the YRE
watershed, 8'*Cpoc and CDOM characteristics have been
successfully coupled to discriminate between source and
composition of DOM (Knobloch et al. 2022; Lu et al. 2013).
Like these prior studies, our data show that spatiotemporal
patterns in humic-like and protein-like CDOM were similar
to patterns in the 8'3Cp values for terrestrial and aquatic
sources of DOC, respectively. That is, humic-like CDOM
derived from terrestrial sources was higher in the upper
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estuary, and less protein-like CDOM derived from aquatic
sources was measured in February and April when freshwa-
ter delivery was highest (Fig. 2j and k; Table S3).

DOC Degradation

Changes in [DOC] during the incubations ranged from
approximately + 14 +£23 to —22 + 12% in February and April
and from—6+ 1 to—41+12% in October and July (Fig. 3a;
Table S6). Results from October and July fall above the
range reported for other estuaries including the Satilla River
Estuary, GA (ADOC = — 3 to — 9%; Moran et al. 2000); San
Francisco Estuary, CA (ADOC= —11 to—15%; Sobczak
et al. 2002); Cape Fear River Estuary, NC (ADOC= —1
to 14%; Avery et al. 2003); Altamaha River Estuary, GA
(ADOC = —9 to — 12%; Martineac et al. 2021); and several
southeast Texas estuaries (ADOC=0 to —11%; Wu et al.
2019) (Table 3). Results from October and July also fall
above the range reported previously for DOC reactivity in the
YRE where sampling locations, experimental design, sample
processing, and data analyses were similar to the methods
used in this study (Table 3). Prior studies in the headwaters
of the YRE reported ADOC ranging from 0 to —24% (Lu
et al. 2013) while studies along the YRE reported ADOC
ranging from —4 to — 19% (McCallister et al. 2006, 2005;
Raymond and Bauer 2001). Compared to these studies, our
study covered a wider range of environmental conditions and
incubation temperatures. Additionally, the YRE watershed

experienced an 8% increase in land development (e.g.,
expansion of agriculture and urban areas) since 2009 and a
96% increase since 1985 (Chesapeake Bay Program 2021)
which has been shown to enhance DOC degradation in other
estuaries (Wu et al. 2019; Asmala et al. 2013; Petrone et al.
2009).

The upper range of ADOC (— 34 to —41%) was measured
during October (Fig. 3a; Table S6). Similar losses of DOC
during incubation studies have been reported in the Clyde
River Estuary, Australia (ADOC = —3 to — 31%; Hitchcock
and Mitrovic 2015), Chilika Lagoon, India (ADOC = —-25
to —62%; Kanuri et al. 2018), the Pearl River Estuary, China
(ADOC= —16 to—43%; He et al. 2010) (Table 3), and in
streams, tidal creeks, and marshes that drain into estuaries
(Wu et al. 2021; Fork et al. 2020; Cammer 2015). In all
of these cases, high ADOC (%) was partially attributed to
inputs of nutrients and labile organic matter from freshwa-
ter inflows that supported the microbial community. During
October in our study, the combination of average flow con-
ditions and DOC derived from aquatic, microalgal sources
may have also been optimal for high ADOC (%).

In this study, changes in [DOC] were assumed to be driven
by microbial processes since incubations were conducted
in the dark, and uninoculated treatments (0.2 pum filtrate
only) did not show significant changes in [DOC] over time
(Table S7). Fortin et al. (2021) reported seasonal shifts in
microbial community composition in work conducted at the
same sampling periods and locations as this study. Rates of

Table 3 Selected studies that measured DOC degradation in estuaries and coastal environments using similar experimental methods and analy-

sSes

Location Incuba- Incubation temperatures (°C) ADOC (%) Reference
tion length
(days)

York River Estuary, VA, USA 28 4,12, 25,29 0-41 This study
York River Estuary, VA, USA 28 22 3-12 McCallister et al. (2006)
Headwaters of the York River Estuary, VA, USA 35-36 22 0-24 Lu et al. (2013)
Changjiang Estuary, China 52-58 Room temperature 13-20 Jietal. (2021)
Lavaca, San Antonio, Mission, Aransas, and Nueces 24 14, 31 0-11 Wu et al. (2019)

Rivers, Texas, USA
Clyde River Estuary, Australia 28 20 3-31 Hitchcock and Mitrovic (2015)
Chilika Lagoon, India 90 25 25-62 Kanuri et al. (2018)
Karjaanjoki, Kyronjoki and Kiiminkijoki estuaries, 10-12 4,10, 18 3-11 Asmala et al. (2013)

Finland
Pearl River Estuary, China 30 20 16-43 He et al. (2010)
Swan-Canning Estuary, Perth, Western Australia 14 25 1-17 Petrone et al. (2009)
San Francisco Estuary, CA, USA 21 Room temperature 11-15 Sobczak et al. (2002)
Cape Fear River Estuary, NC, USA 21 In situ (not specified) 1-14 Avery et al. (2003)
Satila River Estuary, Georgia, USA 51 20 3-9 Moran et al. (2000)
Altamaha River Estuary, GA, USA 60 24 9-12 Martineac et al. (2021)
Savannah, Ogeechee, Altamaha, Satila, and St. Marys 35-58 20 2-18 Moran et al. (1999)

Rivers, southeast USA
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N cycling processes measured by Fortin et al. (2021) were
higher in fall and summer, consistent with our findings that
microbial degradation of DOC was higher in October and
July. Particularly, ammonia and nitrite-oxidizing archaea and
bacteria comprised nearly 20% of the YRE microbial com-
munity during October 2018 (Fortin, unpub. data). Prior work
has shown that similar coastal and marine microbial commu-
nities can release a diverse suite of bioavailable CDOM com-
ponents (Arai et al. 2018; Lgnberg et al. 2009). As a result,
the microbes in our study may have produced easily degraded
DOC components as evidenced by the high protein-like
CDOM fluorescence measured in October (Fig. 2j; Table S3).

Our multiple linear regression model revealed that DOC
degradation was best explained by §'°Cpo values, water
temperature, flushing time, and freshwater age (Table 2).
Samples with higher contributions of autochthonous DOC
had higher rates of degradation and samples with higher
contributions of allochthonous DOC had lower rates of
degradation. Further, the tidal freshwater sampling location
(Fig. 1), which represents possible inputs of more terrestrial
DOM from the watershed into the YRE, had lower ADOC
(%) than the mainstem YRE during October when degrada-
tion was otherwise the highest (Fig. S3). In contrast, ADOC
(%) at the tidal freshwater location in February was similar
to the mainstem YRE when degradation was the lowest and
contributions of terrestrial DOC to the estuary were highest
(Fig. S3). These relative differences in reactivity between
autochthonous and allochthonous DOC are consistent with
our hypothesis, previous work in the YRE (McCallister et al.
2006), and dynamically similar systems such as estuaries in
coastal Georgia (Martineac et al. 2021; Moran et al. 1999),
Texas (Wu et al. 2019), and California (Sobczak et al. 2002).

Chlorophyll-a, a common proxy for phytoplankton pro-
duction in the YRE (Lake and Brush 2015) and other estu-
aries (Ji et al. 2021; He et al. 2020), did not correlate with
ADOC (%) and did not emerge as a significant predictor dur-
ing the multiple linear regression analysis even though we
attributed more DOC degradation to autochthonous sources
of DOC. This mismatch may be due to the decoupling of
spatial and temporal dynamics in biogeochemical parameters
during altered freshwater discharge conditions (e.g., patterns
in DOC, DON, and DIC concentrations versus patterns in
NO,, NH4+, and chlorophyll-a concentrations). Addition-
ally, phytoplankton-derived DOC may not be accurately
reflected by chlorophyll-a concentrations because chloro-
phyll-a quickly degrades and is transformed during grazing
processes (Sheer 2012; Szymczak-Zyla et al. 2008). It is
also possible that DOC may have been derived from non-
photosynthetic and non-chlorophyll-containing organisms
(Sanchez-Pérez et al. 2020; Hopkinson et al. 2002). Overall,
813Cpoc values seemed to be a better predictor of degrada-
tion in this study because they provided an integrated meas-
ure of DOC sources.
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Temperature was relatively equal to §'*Cpoc in its abil-
ity to predict DOC degradation (Table 2). We generally
measured higher rates of degradation in October and July
when surface water and incubation temperatures were warm
(25-29 °C) compared to February and April when tempera-
tures were cooler (4—12 °C) (Fig. 5b). Previous studies have
shown that higher rates of respiration and the metabolic
breakdown of organic matter are typically strongly corre-
lated with higher temperatures (Hopkinson and Smith 2005
and references therein). However, many previous studies
have kept temperature constant across seasons thereby meas-
uring “potential” reactivity (e.g., McCallister et al. 2006; Lu
et al. 2013). In this study, we incubated samples at ambient
temperatures. As a result, the effect of temperature on DOC
reactivity highlights the importance of temporal differences
in ADOC (%) naturally captured in our seasonal study.

Estuarine hydrology exerts a strong control on the sources
and residence time of DOC delivered to an estuary and the
associated biological processes that follow (Bianchi 2007).
In our study, time periods with high freshwater ages were
dominated by autochthonous DOC sources while lower
freshwater ages were dominated by allochthonous sources
(Fig. 6). While freshwater age and ADOC (%) did not corre-
late directly with one another, these results support our origi-
nal hypothesis that freshwater discharge affects DOC source
which thereby influences rates of DOC degradation. This
corroborates other studies that have found freshwater dis-
charge, residence time (Wu et al. 2019; Kanuri et al. 2018;
Hitchcock and Mitrovic 2015), and DOC source and chemi-
cal composition (Ji et al. 2021; McCallister et al. 2006) col-
lectively contribute to DOC reactivity.

During the February incubation experiments, we
observed a slight increase in [DOC] in the middle
(ADOC=2.90+0.48%) and lower (ADOC =13.9+23.0%)
estuary (Fig. 3a; Table S6) which is not often reported for
dark incubation experiments. However, we should note that
observed increases in [DOC] were not significantly different
from zero. DIN (NH,* +NO,) concentrations were higher
in February compared to April and July, which may have
supported the growth of the previously described ammonia
and nitrite oxidizing microbes and the subsequent release of
DOC into estuarine surface waters (Bayer et al. 2023, 2019;
Pachiadaki et al. 2017). It is also possible that the combina-
tion of low incubation temperature and large amounts of
terrestrial DOC along the YRE in February inhibited the
microbial degradation of DOC and supported the chemo-
lithoautotrophic oxidation of inorganic compounds to pro-
duce DOC (Dang and Chen 2017).

Overall, this study captured average to wet conditions,
so it is uncertain how anomalously dry conditions may have
impacted the physical and biogeochemical conditions of
the YRE and subsequent DOM degradation. Other stud-
ies have shown that prolonged dry conditions limit nutrient
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inputs and organic matter production in estuaries (Douglas
et al. 2023), resulting in a higher prevalence of DOM inputs
from marine sources or passive exchange processes (e.g.,
lateral inputs of tidal marsh-derived DOM) (Medeiros et al.
2015). As a result, the effect of prolonged dry conditions
on DOM reactivity depends on physical and biogeochemi-
cal responses of estuaries and their surrounding watershed
features to minimal or no freshwater discharge (Medeiros
etal. 2017; Vazquez et al. 2011).

DON and CDOM Degradation

DON was lost at a rate up to six times lower than DOC
across all sampling periods (excluding October when DON
was not measured). We also observed that DON was pro-
duced rather than degraded during the April incubations
(Fig. 3b; Table S6). Chemosynthetic processes may explain
the production of DON during April 2019 (Ji et al. 2021;
Wau et al. 2019). In a companion study conducted in April
2019, Stanley (2021) reported high rates of NH,* uptake
coinciding with the H. triquetra bloom, suggesting that phy-
toplankton and bacteria were active during this time and may
have leached or produced DON (Liao et al. 2019; Eom et al.
2017). This could also explain why [NH,*] emerged as an
important predictor variable in the multiple linear regres-
sion analysis (Table 2). Alternatively, prior work has shown
that other microbial processes such as N, fixation can be
an important source of DON to coastal and marine waters
(Sipler and Bronk 2015 and references therein; Voss et al.
2013).

Previous studies have shown that DON can be reactive
during periods of high freshwater discharge and when con-
centrations of inorganic nutrients (NO, and NH,*) are low
(Pisani et al. 2017; Garcia et al. 2015). In studies that have
compared reactivities of DOC to DON, DON was sometimes
more reactive and sensitive to changing environmental con-
ditions (Wu et al. 2019; Asmala et al. 2013; Petrone et al.
2009; Wiegner and Seitzinger 2001). Other studies have
measured relatively equal reactivities (Kanuri et al. 2018) or
a more reactive DOC pool (Knudsen-Leerback et al. 2017).
In each of these cases, differences in reactivity depended
on estuarine morphology and DON source (Seitzinger et al.
2002; Wiegner and Seitzinger 2001).

DON degradation was primarily explained by slope
ratio (Sg) and flushing time (Table 2). Overall, higher S
(lower molecular weight DOM derived from autochtho-
nous sources) and lower flushing times were associated
with higher rates of DON degradation (Fig. 7). As was the
case with DOC, CDOM composition provided insights about
DON source, composition, and subsequent reactivity, rein-
forcing its utility in investigating estuarine DOM dynamics
(Osburn et al. 2016b; Heinz et al. 2015). Though not strongly
correlated with ADON (%), the inclusion of protein-like and

humic-like CDOM fluorescence, chlorophyll-a, [DOC], and
pH in the multiple linear regression analysis resulted in a
more robust model (large variance explained, no collinearity,
low AICc) for explaining DON degradation. It is possible
that the optical properties of DOM considered in this study
characterize DON better than DOC, especially as it pertains
to source and reactivity (Li et al. 2021; Wymore et al. 2018;
Osburn et al. 2016b). Concentrations of DOC and chloro-
phyll-a and pH were less important in the model. Exclud-
ing them only reduced the adjusted 7 value by ~0.06 but
increased the AICc value by ~20. Therefore, we chose to
keep them in the final model for broader applicability to
other systems and to balance over and underfitting the data
following the theoretical foundations for AIC (Cavanaugh
and Neath 2018; Akaike 1998).

The degradation of protein-like CDOM derived from
microbial sources was similar in magnitude to DOC degra-
dation in October and July (Figs. 3a and 4a). On the other
hand, protein-like CDOM degradation was highly variable
during February and April particularly in the middle estuary
where protein-like CDOM was produced (Fig. 4a; Table S6).
This variability may be attributed to the middle estuary sam-
pling location since it coincides with the YRE’s second-
ary turbidity maximum (STM) where substantial sediment
resuspension and frequent winter and spring phytoplankton
blooms occur (Reay 2009; Sin et al. 1999). Except for these
instances when protein-like CDOM was produced, overall
higher losses of protein-like CDOM relative to humic-like
CDOM were consistent with our finding that DOM derived
from aquatic, autochthonous sources was more reactive
than DOM derived from terrestrial, allochthonous sources.
In fact, protein-like CDOM had a positive linear relation-
ship with ADOC (%) (adj. r?=37; p<0.01) but did not
strengthen the multiple linear regression model for ADOC
(%) (Table S1).

Instances of CDOM production (>300% of initial fluo-
rescence intensities) that were consistent across replicates
and that primarily occurred between 0 and 1 incubation days
were observed during July in the humic-like CDOM pool
(Fig. 4b; Table S6; Fig. S1d). Previous work has shown that
humification processes during incubation experiments can
cause sorption of proteinaceous or amino acid-like CDOM
to humic-like CDOM components, resulting in increased
fluorescence over time (Santos et al. 2016; Guillemette and
del Giorgio 2012; Boyd and Osburn 2004). On the other
hand, degradation was high in the upper estuary during July
for humic-like CDOM (ACDOM = — 64 to — 67%) and rep-
resented the largest loss of all measured DOM pools dur-
ing the study period (Fig. 4; Table S6). Large decreases in
CDOM have previously been observed during incubations
of estuarine surface waters particularly near freshwater end-
members (Moran et al. 2000). In our study, July experienced
the lowest flushing time and highest freshwater age among
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all sampling dates, potentially causing enhanced CDOM
degradation in the upper estuary and enhanced CDOM accu-
mulation in the lower estuary. Otherwise, the occurrence and
high variability in both CDOM production and degradation
could be attributed to fine-scale alterations of CDOM (Boyd
and Osburn 2004) or the synchronous production and degra-
dation of distinct CDOM components (Kadjeski et al. 2020).

Taken together, CDOM was a good proxy for DOM
source and composition, but rates of CDOM degradation
were often inconsistent with DOC and DON degradation.
Previous studies have also shown that CDOM degradation is
not always a good predictor of DOM degradation (e.g., Cam-
mer 2015; Minor et al. 2014; Boyd and Osburn 2004). This
may be due to high uncertainty and variation across incu-
bation replicates, sampling locations, and seasons (Fig. 4;
Table S6); interactions between different moieties and the
“dark” and fluorescent pools of DOM (Stubbins et al. 2014);
and potentially small contributions of CDOM and fDOM to
the total DOM pool (Nelson and Siegel 2013; Coble 2007).
Therefore, optical properties of DOM provide limited but
nonetheless useful insight into understanding bulk DOM
reactivity and estuarine biogeochemistry. As a result, ana-
lyzing individual fractions of the DOM pool (e.g., lipids,
amino acids) or using higher resolution techniques (e.g.,
mass spectrometry) to describe DOM in more detail may
better elucidate how DOM source and composition affect
degradation.

Summary and Conclusion

This study aimed to determine physical and biogeochemi-
cal controls on surface water DOM reactivity along the
YRE, a sub-estuary of the Chesapeake Bay in southeast
Virginia and representative of temperate, microtidal sys-
tems common along the east coast of the USA. While the
October 2018 and July 2019 sampling periods represented
typical environmental conditions, the YRE and broader
Chesapeake Bay region was characterized by prolonged
wet conditions throughout 2018 and 2019, particularly dur-
ing the February and April 2019 sampling periods. As a
result, this seasonal study showed that changing hydrologic
conditions of the YRE affected surface water biogeochem-
istry, DOM source and composition, and subsequent DOM
degradation. Our incubation experiments revealed higher
ADOC (%) when estuarine phytoplankton sources domi-
nated (e.g., more positive §'°Cpqc), temperatures were
warmer, and flushing times were longer. In comparison,
we measured lower ADOC (%) when contributions of DOC
from terrestrial sources were more abundant (e.g., more
negative 8'°Cp ), temperatures were cooler, and flushing
times were shorter.

@ Springer

We found that DOC, DON, and CDOM had different
reactivities across space and time most likely because each
pool is comprised of different compounds with varying
responses to changing environmental conditions. DON was
lost at a rate up to six times lower than DOC, and DON
was sometimes produced rather than degraded during the
incubations. CDOM degradation was highly variable, and
optical properties of DOM described DOC and DON differ-
ently. This inconsistency highlights the limitations of using
CDOM as a proxy for DOC and DON reactivity. Despite
differences in DOC, DON, and CDOM reactivity across the
sample dates, microbial degradation of DOM was best pre-
dicted by similar variables at least for DOC and DON. These
included physical controls (i.e., flushing time, freshwater
age) and biogeochemical controls (i.e., DOM source and
chemical composition).

The mid-Atlantic region of the USA is projected to
experience higher annual rates of precipitation, greater
frequency of extreme storm events, and warming tempera-
tures over the next several decades (Bradley et al. 2016;
Najjar et al. 2010). Based on our results, higher freshwater
discharge associated with more precipitation and storm
events will likely decrease estuarine flushing time and
freshwater age, resulting in higher delivery of allochtho-
nous DOM into coastal waters, and lower rates of DOM
degradation. At the same time, warming temperatures are
expected to increase rates of DOM degradation, highlight-
ing the unknown interplay between changing environmen-
tal conditions and their effect on the coastal carbon cycle.
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