
Topology-aware Embedding Memory for Continual Learning on
Expanding Networks

Xikun Zhang
xzha0505@uni.sydney.edu.au
The University of Sydney
Sydney, NSW, Australia

Dongjin Song
dongjin.song@uconn.edu
University of Connecticut

Storrs, CT, USA

Yixin Chen
chen@cse.wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Dacheng Tao
dacheng.tao@gmail.com
The University of Sydney
Sydney, NSW, Australia

ABSTRACT

Memory replay based techniques have shown great success for

continual learning with incrementally accumulated Euclidean data.

Directly applying them to continually expanding networks, how-

ever, leads to the potential memory explosion problem due to the

need to bu�er representative nodes and their associated topological

neighborhood structures. To this end, we systematically analyze

the key challenges in the memory explosion problem, and present

a general framework, i.e., Parameter Decoupled Graph Neural Net-

works (PDGNNs) with Topology-aware Embedding Memory (TEM),

to tackle this issue. The proposed framework not only reduces the

memory space complexity from O(=3Ĉ) to O(=) 1, but also fully

utilizes the topological information for memory replay. Speci�cally,

PDGNNs decouple trainable parameters from the computation ego-

subnetwork via Topology-aware Embeddings (TEs), which compress

ego-subnetworks into compact vectors (i.e., TEs) to reduce the mem-

ory consumption. Based on this framework, we discover a unique

pseudo-training e�ect in continual learning on expanding networks

and this e�ect motivates us to develop a novel coverage maximiza-

tion sampling strategy that can enhance the performance with a

tight memory budget. Thorough empirical studies demonstrate

that, by tackling the memory explosion problem and incorporating

topological information into memory replay, PDGNNs with TEM

signi�cantly outperform state-of-the-art techniques, especially in

the challenging class-incremental setting.

CCS CONCEPTS

• Computing methodologies→ Supervised learning; Neural

networks.

KEYWORDS

Expanding Networks, Expanding Graphs, Continual Graph Learn-

ing, Continual Learning

1Ĥ: memory budget, Ě : average node degree, Ĉ: the radius of the GNN receptive �eld

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671732

ACM Reference Format:

Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao. 2024. Topology-

aware Embedding Memory for Continual Learning on Expanding Networks.

In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’24), August 25–29, 2024, Barcelona, Spain. ACM,

Barcelona, Spain, 12 pages. https://doi.org/10.1145/3637528.3671732

1 INTRODUCTION

Traditional machine learning techniques for networks typically

assume the types of nodes and their associated edges to be static 2.

However, real-world networks often expand constantly with emerg-

ing new types of nodes and their associated edges. Consequently,

models trained incrementally on the new node types may experi-

ence catastrophic forgetting (severe performance degradation) on

the old ones as shown in Figure 1. Targeting this challenge, con-

tinual learning on expanding networks [49, 97, 104] has attracted

increasingly more attention recently. It exhibits enormous value

in various practical applications, especially in the case where net-

works are relatively large, and retraining a new model over the

entire network is computationally infeasible. For instance, in a so-

cial network, a community detection model has to keep adapting its

parameters based on nodes from newly emerged communities; in a

citation network, a document classi�er needs to continuously up-

date its parameters to distinguish the documents of newly emerged

research �elds.

Memory replay [4, 51, 60, 62], which stores representative ex-

amples in a bu�er to retrain the model and maintain its perfor-

mance over existing tasks, exhibits great success in preventing

catastrophic forgetting for various continual learning tasks, e.g.,

computer vision and reinforcement learning [3, 44, 47, 61]. Directly

applying memory replay to network data with the popular mes-

sage passing neural networks (MPNNs, the general framework for

most GNNs) [34, 43, 68], however, could give rise to the memory

explosion problem because the necessity to consider the explicit

topological information of target nodes. Speci�cally, due to the

message passing over the topological connections in networks,

retraining an !-layer GNN (Figure 2, left) with = bu�ered nodes

would require storing O(=3Ĉ) nodes [11, 15] (the number of edges

is not counted yet) in the bu�er, where 3 is the average node de-

gree. Take the Reddit dataset [36] as an example, its average node

degree is 492, and the bu�er size will easily be intractable even

2Network is a type of graph. These two terms may be used interchangeably

KDD ’24, August 25–29, 2024, Barcelona, Spain Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

Figure 1: Learning dynamics in an expanding network. We

depict new types of nodes with di�erent colors. The new

task consisting of new types of nodes may exhibit a di�er-

ent distribution from existing ones. Consequently, as the

model adapts to these new types of nodes, it may undergo

a signi�cant performance degradation on existing tasks, a

phenomenon known as catastrophic forgetting.

with a 2-layer GNN. To resolve this issue, Experience Replay based

GNN (ER-GNN) [104] stores representative input nodes (i.e., node

attributes) in the bu�er but ignores the topological information

(Figure 2 a). Feature graph network (FGN) [69] implicitly encodes

node proximity with the inner products between the features of

the target node and its neighbors. However, the explicit topologi-

cal connections are abandoned and message passing is no longer

feasible on the graph. Sparsi�ed Subgraph Memory (SSM) [96]

and Subgraph Episodic Memory (SEM-curvature) [98] sparsify the

computation ego-subnetworks for tractable memory consumption,

which still partially sacri�ces topological information, especially

when the computation ego-subnetworks are large and a majority

of nodes/edges is removed after sparsi�cation (Figure 2 b).

To this end, we present a general framework of Parameter De-

coupled Graph Neural Networks (PDGNNs) with Topology-aware

Embedding Memory (TEM) for continual learning on expanding

networks (Figure 2 c). First, we demonstrate that the necessity to

store the complete computation ego-subnetworks arises from the

entanglement between the trainable parameters and the individual

nodes/edges (Section 3.2). Targeting this problem, we design the

PDGNNs, which decouple the trainable parameters from individ-

ual nodes/edges. PDGNNs enable us to develop a novel concept,

Topology-aware Embedding (TE), which is a vector with a �xed size

but contains all necessary information for retraining PDGNNs. Such

TEs are desired surrogates of computation ego-subnetworks to facil-

itate memory replay. After learning each task, a subset of TEs is sam-

pled and stored in the Topology-aware Embedding Memory (TEM).

Because the size of a TE is �xed, the space complexity of a mem-

ory bu�er with size = can be dramatically reduced from O(=3Ĉ) to

O(=). Moreover, di�erent from continual learning on independent

data without topology (e.g., images), we theoretically discover that

replaying the TE of a single node incurs a pseudo-training e�ect

on its neighbors, which also alleviate the forgetting problem for

the other nodes in the same computation ego-subnetwork. Pseudo-

training e�ect suggests that TEs with larger coverage ratio are more

bene�cial to continual learning. Based on the theoretical �nding,

we develop the coverage maximization sampling strategy, which

e�ectively enhances the performance for a tight memory budget.

In our experiments, thorough empirical studies demonstrate that

PDGNNs-TEM outperform the state-of-the-art methods in both

class-incremental (class-IL) [60, 95, 96] and the task-incremental

(task-IL) continual learning scenarios [49, 104].

2 RELATEDWORKS

2.1 Continual Learning & Continual Learning
on Expanding Networks

Existing continual learning (CL) approaches can be categorized

into regularization, memory replay, and parameter isolation based

methods. Regularization based methods aim to prevent drastic

modi�cation to parameters that are important for previous tasks

[3, 24, 33, 38, 44, 47, 48, 58, 59, 64, 65, 71, 79]. Parameter isolation

methods adaptively allocate new parameters for the new tasks to

protect the ones for the previous tasks [61, 77, 81, 87, 88, 92]. Mem-

ory replay based methods store and replay representative data from

previous tasks when learning new tasks [4, 6, 16, 51, 60, 62, 98].

Recently, CL on expanding networks attracts increasingly more

attention due to its practical importance [2, 7, 8, 18–22, 25, 30, 39, 42,

46, 50, 63, 70, 73, 76, 83, 90, 94, 95, 97, 99]. Existing methods include

regularization ones like topology-aware weight preserving (TWP)

[49] that preserves crucial topologies, parameter isolation methods

like HPNs [97] that select di�erent parameters for di�erent tasks,

and memory replay methods like ER-GNN [104], SSM [96], and

SEM-curvature[98] that store representative nodes or sparsi�ed

computation ego-subnetworks. Our work is also memory based and

its key advantage is the capability to preserve complete topological

information with reduced space complexity, which shows signi�-

cant superiority in class-IL setting (Section 4.4). Finally, it is worth

highlighting the di�erence between CL on expanding networks

and some relevant research areas. First, dynamic graph learning

[26, 29, 37, 41, 52, 55, 72, 89, 106] focuses on the temporal dynamics

with all previous data being accessible. In contrast, CL on expanding

networks aims to alleviate forgetting, therefore the previous data

is inaccessible. Second, few-shot graph learning [35, 66, 86, 105]

targets fast adaptation to new tasks. In training, few-shot learning

models can access all previous tasks (unavailable in CL). In test-

ing, few-shot learning models need to be �ne-tuned on the test

classes, while the CL models are tested on existing tasks without

�ne-tuning.

2.2 GNNs & Reservoir Computing

Graph Neural Networks (GNNs) are deep learning models designed

to generate representations for graph data, which typically inter-

leave the neighborhood aggregation and node feature transforma-

tion to extract the topological features [10, 14, 34, 36, 43, 68, 74, 75,

80, 82, 84, 85, 93, 100, 102]. GNNs without interleaving the neigh-

borhood aggregation and node feature transformation have been

Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 2: (a) ER-GNN [104] that stores the input a�ributes of individual nodes. (b) Sparsi�ed Subgraph Memory (SSM) [96] that

stores sparsi�ed computation ego-subnetworks. (c) Our PDGNNs with TEM. The incoming computation ego-subnetworks are

embedded as TEs and then fed into the trainable function. The stored TEs are sampled based on their coverage ratio (Section 3.7).

developed to reduce the computation complexity and increase the

scalability [12, 13, 17, 23, 27, 28, 56, 91, 101]. For example, Simple

Graph Convolution (SGC) [78] removes the non-linear activation

from GCN [43] and only keeps one neighborhood aggregation and

one node transformation layer. Approximate Personalized Propaga-

tion of Neural Predictions (APPNP) [45] �rst performs node trans-

formation and then conducts multiple neighborhood aggregations

in one layer. Motivated by these works, the PDGNNs framework in

this paper is specially designed to decouple the neighborhood ag-

gregation with trainable parameters, and derive the topology-aware

embeddings (TEs) to reduce the memory space complexity and facil-

itate continual learning on expanding networks. Besides, PDGNNs

are also related to reservoir computing [31, 32], which embed the

input data (e.g. graphs) via a �xed non-linear system. The reservoir

computing modules can be adopted in PDGNNs (Equation 4).

3 PARAMETER DECOUPLED GNNS WITH
TOPOLOGY-AWARE EMBEDDING MEMORY

In this section, we �rst introduce the notations, and then explain

the technical challenge of applying memory replay techniques

to GNNs. Targeting the challenge, we introduce PDGNNs with

Topology-aware Embedding Memory (TEM). Finally, inspired by

theoretical �ndings of the pseduo-training e�ect, we develop the

coverage maximization sampling to enhance the performance when

the memory budget is tight, which has shown its e�ectiveness in

our empirical study. All detailed proofs are provided in Appendix A.

3.1 Preliminaries

Continual learning on expanding networks is formulated as learn-

ing node representations on a sequence of subnetworks (tasks):

S = {G1,G2, ...,GĐ }. Each Gă (i.e., g-th task) contains several new

categories of nodes in the overall network, and is associated with

a node set Vă and an edge set Eă , which is represented as the

adjacency matrix Aă ∈ R
|Vă |× |Vă | . V will be used to denote an

arbitrary node set in the following. The degree of a node 3 refers

to the number of edges connected to it. In practice, Aă is often

normalized as Âă = D
− 1

2
ă AăD

− 1
2

ă , where Dă ∈ R
|Vă |× |Vă | is the

degree matrix. Each node E ∈ Vă has a feature vector xĬ ∈ R
Ę . In

classi�cation tasks, each node E has a label yĬ ∈ {0, 1}
ÿ , where �

is the total number of classes. When generating the representation

for a target node E , a L-layer GNN typically takes a computation

ego-subnetwork GĩīĘă,Ĭ , containing the !-hop neighbors of E (i.e.

NĈ (E)), as the input. For simplicity, GĩīĘĬ is used in the following.

3.2 Memory Replay Meets GNNs

In traditional continual learning, a model f (·;ā) parameterized by ā

is sequentially trained on) tasks. Each task g (g ∈ {1, ...,) }) corre-

sponds to a datasetDă = {(xğ , yğ)
Ĥă
ğ=1}. To avoid forgetting, memory

replay based methods store representative data from the old tasks

in a bu�er B. When learning new tasks. A common approach to

utilize B is through an auxiliary loss:

L =

∑

xğ ∈Dă

; (f (xğ ;ā), yğ)

︸ ︷︷ ︸

Lă : loss of the current task

+_
∑

xĠ ∈B

; (f (xĠ ;ā), yĠ)

︸ ︷︷ ︸

LėīĮ : auxiliary loss

, (1)

where ; (·, ·) denotes the loss function, and _ g 0 balances the

contribution of the old data. Instead of directly minimizing LėīĮ ,

the bu�er B may also be used in other ways to prevent forget-

ting [51, 60]. In these applications, the space complexity of a bu�er

containing = examples is O(=).

However, to capture the topological information, GNNs obtain

the representation of a node E based on a computation ego-subnetwork

surrounding E . We exemplify it with the popular MPNN framework

[34], which updates the hidden node representations at the ; + 1-th

layer as:

mĢ+1
Ĭ =

∑

ĭ∈N1 (Ĭ)

MĢ (h
Ģ
Ĭ, h

Ģ
ĭ , x

ě
Ĭ,ĭ ;ā

M
Ģ
), hĢ+1Ĭ = UĢ (h

Ģ
Ĭ,m

Ģ+1
Ĭ ;āU

Ģ
),

(2)

KDD ’24, August 25–29, 2024, Barcelona, Spain Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

where hĢĬ , h
Ģ
ĭ are hidden representations of nodes at layer ; , xěĬ,ĭ is

the edge feature, MĢ (·, ·, ·;ā
M
Ģ
) is the message function to integrate

neighborhood information, and UĢ (·, ·;ā
U
Ģ
) updates mĢ+1

Ĭ into hĢĬ

(h0Ĭ is the input features). In a !-layer MPNN, the representation of

a node E can be simpli�ed as,

hĈĬ = MPNN(xĬ,G
ĩīĘ
Ĭ ;�), (3)

where GĩīĘĬ contains the !-hop neighbors (NĈ (E)), MPNN(·, ·;�)

is the composition of all MĢ (·, ·, ·;ā
M
Ģ
) and UĢ (·, ·;ā

U
Ģ
) at di�erent

layers. Since NĈ (E) typically contains O(3Ĉ) nodes, replaying =

nodes requires storing O(=3Ĉ) nodes (the edges are not counted

yet), where 3 is the average degree. Therefore, the bu�er size will be

easily intractable in practice (e.g. the example of Reddit dataset in In-

troduction), and directly storing the computation ego-subnetworks

for memory replay is infeasible for GNNs.

3.3 Parameter Decoupled GNNs with TEM

As we discussed earlier, the key challenge of applying memory re-

play to network data is to preserve the rich topological information

of the computation ego-subnetworks with potentially unbounded

sizes. Therefore, a natural resolution is to preserve the crucial topo-

logical information with a compact vector such that the memory

consumption is tractable. Formally, the desired subnetwork repre-

sentation can be de�ned as Topology-aware Embedding (TE).

Definition 1 (Topology-aware embedding). Given a speci�c

GNN parameterized with ā and an input GĩīĘĬ , an embedding vector

eĬ is a topology-aware embedding for GĩīĘĬ with respect to this GNN,

if optimizing ā with GĩīĘĬ or eĬ for this speci�c GNN are equivalent,

i.e. eĬ contains all necessary topological information of GĩīĘĬ for

training this GNN.

However, TEs cannot be directly derived from the MPNNs due to

their interleaved neighborhood aggregation and feature transforma-

tions. According to Section 3.2, whenever the trainable parameters

get updated, recalculating the representation of a node E requires

all nodes and edges in GĩīĘĬ . To resolve this issue, we formulate the

Parameter Decoupled Graph Neural Networks (PDGNNs) frame-

work, which decouples the trainable parameters from the individual

nodes/edges. PDGNNs may not be the only feasible framework to

derive TEs, but is the �rst attempt and is empirically e�ective. Given

GĩīĘĬ , the prediction of node E with PDGNNs consists of two steps.

First, the topological information of GĩīĘĬ is encoded into an em-

bedding eĬ via the function fĪĥĦĥ (·) without trainable parameters

(instantiations of fĪĥĦĥ (·) are detailed in Section 3.4).

eĬ = fĪĥĦĥ (G
ĩīĘ
Ĭ). (4)

Next, eĬ is further passed into a trainable function fĥīĪ (·;ā) param-

eterized by ā (instantiations of fĥīĪ (·;ā) are detailed in Section 3.4)

to get the output prediction ŷĬ ,

ŷĬ = fĥīĪ (eĬ ;ā) . (5)

With the formulations above, eĬ derived in Eq. (4) clearly satis�es

the requirements of TE (De�nition 1). Speci�cally, since the train-

able parameters acts on eĬ instead of any individual node/edge,

optimizing the model parameters ā with either eĬ or GĩīĘĬ are

equivalent. Therefore, to retrain the model, the memory bu�er

only needs to store TEs instead of the original computation ego-

subnetworks, which reduces the space complexity from O(=3Ĉ)

to O(=). We name the bu�er to store the TEs as Topology-aware

Embedding Memory (TEM). Given a new task g , the update of

TEM is:

TEM = TEM
⋃

sampler({eĬ | E ∈ Vă }, =), (6)

where sampler(·, ·) is the adopted sampling strategy to populate the

bu�er,
⋃

denotes the set union, and= is the budget. According to the

experimental results (Section 4.3), as long as TEM is maintained,

PDGNNs-TEM can perform reasonably well with di�erent choices

of sampler(·, ·), including the random sampling. Nevertheless, in

Section 3.7, based on the theoretical insights in Section 3.5, we

propose a novel sampling strategy to better populate TEM when

the memory budget is tight, which is empirically veri�ed to be

e�ective in Section 4.3. Besides, Equation (6) assumes that all data

of the current task are presented concurrently. In practice, the

data of a task may come in multiple batches (e.g., nodes come in

batches on large networks), and the bu�er update have to be slightly

modi�ed by either storing sizes of the computational ego-networks

and recalculating the multinomial distribution or adopting reservoir

sampling. For task g with network Gă , the loss with TEM then

becomes:

L =

∑

Ĭ∈Vă

; (fĥīĪ (eĬ ;ā), yĬ)

︸ ︷︷ ︸

Lă : loss of the current task ă

+ _
∑

eĭ ∈TEM

; (fĥīĪ (eĭ ;ā), yĭ)

︸ ︷︷ ︸

LėīĮ : auxiliary loss

.

(7)

_ balances the contribution of the data from the current task and the

memory, and is typically manually chosen in traditional continual

learning works. However, on network data, we adopt a di�erent

strategy to re-scale the losses according to the class sizes to counter

the bias from the severe class imbalance, which cannot be handled

on networks by directly balancing the datasets.

3.4 Instantiations of PDGNNs

Although without trainable parameters, the function fĪĥĦĥ (·) for

generating TEs can be highly expressive with various formulations

including linear and non-linear ones, both of which are studied in

this work. First, the linear instantiations of fĪĥĦĥ (·) can be generally

formulated as,

eĬ = fĪĥĦĥ (G
ĩīĘ
Ĭ) =

∑

ĭ∈V

xĭ · c (E,F ; Â), (8)

wherec (·, ·; Â) denotes the strategy for computation ego-subnetwork

construction and determines howwould themodel capture the topo-

logical information. Equation (8) describes the operation on each

node. In practice, Equation (8) could be implemented as matrix

multiplication to generate TEs of a set of nodes V in parallel, i.e.

EV = �XV, where each entry �Ĭ,ĭ = c (E,F ; Â). EV ∈ R
|V |×Ę is

the concatenation of all TEs (eĬ ∈ R
Ę), and XV ∈ R

|V |×Ę is the con-

catenation of all node feature vectors xĬ ∈ R
Ę . In our experiments,

we adopt three representative strategies. The �rst strategy (S1) [78]

is a basic version of message passing and can be formulated as

� = ÂĈ . The second strategy (S2) [107] considers balancing the

contribution of neighborhood information from di�erent hops via a

Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 3: Illustration of the coverage ratio. Supposing the

network has# nodes, 'ę ({D}) =
13
Ċ , 'ę ({E}) =

15
Ċ , 'ę ({D}) =

14
Ċ ,

and 'ę ({D, E,F}) =
42
Ċ

hyperparameter U , i.e. � =
1
Ĉ

∑Ĉ
Ģ=1

(

(1−U)ÂĢ +UI
)

. Finally, we also

adopt a strategy (S3) [45] that adjusts the contribution of the neigh-

bors based on PageRank [57], i.e. � =
(

(1 − U)Â + UI
)Ĉ
, in which U

also balances the contribution of the neighborhood information.

The linear formulation of fĪĥĦĥ (·) (Equation (8)) yields both

promising experimental results (Section 4) and instructive theoreti-

cal results (Section 3.5, and 3.7). Equation (8) is also highly e�cient

especially for large networks due to the absence of iterative neigh-

borhood aggregations. But fĪĥĦĥ (·) can also take non-linear forms

with more complex mappings. For example, we can also adopt a

reservoir computing module [32] to instantiate fĪĥĦĥ (·), which is

formulated as,

fğĪĥĦĥ (G
ĩīĘ
Ĭ) = tanh

(

Wą · x
ğ−1
Ĭ +

∑

ĭ∈V

WĄ · x
ğ−1
ĭ

)

, 8 = 1, .., !, (9)

whereWą andWĄ are �xed weight matrices, and eĬ = fĈĪĥĦĥ (G
ĩīĘ
Ĭ).

Since fĥīĪ (·;ā) simply deals with individual vectors (TEs), it is

instantiated as MLP in this work. The speci�c con�gurations of

fĥīĪ (·;ā) is described in the experimental part (Section 4.2).

3.5 Pseudo-training E�ects of TEs

In traditional continual learning on independent data without ex-

plicit topology, replaying an example xğ (e.g., an image) only re-

inforces the prediction of itself. In this subsection, we introduce

the pseudo-training e�ect, which implies that training PDGNNs

with eĬ of node E also in�uences the predictions of the other nodes

in GĩīĘĬ , based on which we develop a novel sampling strategy to

further boost the performance with a tight memory budget.

Theorem 1 (Pseudo-training). Given a node E , its computation

ego-subnetwork GĩīĘĬ , the TE eĬ , and label yĬ (suppose E belongs to

class : , i.e. yĬ,ġ = 1), then training PDGNNs with eĬ has the following

two properties:

1. It is equivalent to training PDGNNs with each nodeF in GĩīĘĬ

withGĩīĘĬ being a pseudo computation ego-subnetwork and yĬ being a

pseudo label, where the contribution of xĭ (via Equation 8) is re-scaled

by
ÿ (Ĭ,ĭ;Â)

ÿ (ĭ,ĭ;Â)
. We term this property as the pseudo-training e�ect on

neighboring nodes, because it is equivalent to that the training is

conducted on each neighboring node (in GĩīĘĬ) through the pseudo

labels and the pseudo computation ego-subnetworks.

2. When fĥīĪ (·;ā) is linear, training PDGNNs on eĬ is also equiva-

lent to training fĥīĪ (·;ā) on pseudo-labeled nodes (xĭ , yĬ) for eachF

in GĩīĘĬ , where the contribution ofF in the loss is adaptively re-scaled

with a weight
fĥīĪ (xĭ ;ā)ġ ·ÿ (Ĭ,ĭ;Â)

∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ ·ÿ (Ĭ,ĭ;Â) ;ā
)

ġ

.

The pseudo-training e�ect essentially arises from the neighbor-

hood aggregation operation of GNNs, of which the rationale is

to iteratively re�ne the node embeddings with similar neighbors.

Pseudo-training e�ect implies that replaying the TE of one node

can also strengthen the prediction for its neighbors within the same

computation ego-subnetwork and alleviate the forgetting problem

on them. The above analysis suggests that TEs with larger computa-

tion ego-subnetworks covering more nodes may be more e�ective,

motivating our coverage maximization sampling strategy in the

next subsection, which is also empirically justi�ed in Section 4.3.

Algorithm 1 Coverage maximization sampling

1: Input: Gă , Vă , Âă , c (·, ·; ·), sample size =.

2: Output: Selected nodes S

3: Initialize S = {}.

4: for each E ∈ Vă do

5: 'ę ({E}) =
| {ĭ |ĭ∈GĩīĘă,Ĭ } |

|Vă |

6: end for

7: for each E ∈ Vă do

8: ?Ĭ =
Ďę ({Ĭ})∑

ĭ∈Vă Ďę ({ĭ})

9: end for

10: while = > 0 do

11: Sample one node E from Vă according to {?ĭ | F ∈ Vă }.

12: S = S ∪ {E}

13: Vă = Vă\{E} #Sampling without replacement

14: = ← = − 1

15: end while

3.6 Pseudo-training E�ect and Network
Homophily

In this subsection, we provide a brief discussion on pseudo-training

and network homophily. Given a network G, the homophily ratio

is de�ned as the ratio of the number of edges connecting nodes

with a same label and the total number of edges, i.e.

ℎ(G) =
1

|E |

∑

(Ġ,ġ) ∈E

1(yĠ = yġ), (10)

where E is the edge set, yĠ is the label of node 9 , and 1(·) is the

indicator function [53]. For any network, the homophily ratio is

between 0 and 1. For each computation ego-subnetwork, when

the homophily ratio is high, the neighboring nodes tend to share

labels with the center node, and the pseudo training would be

bene�cial for the performance. Many real-world networks, i.e. the

social network and citation networks, tend to have high homophily

ratios, and pseudo training will bring much bene�t,.

In our work, the homophily ratio of the 4 network datasets

are: CoraFull-CL (0.567), Arxiv-CL (0.655), OGB-Products (0.807),

KDD ’24, August 25–29, 2024, Barcelona, Spain Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

Table 1: The detailed statistics of datasets and task splittings

Dataset CoraFull [54] Arxiv [40] Reddit [36] Products [40]

nodes 19,793 169,343 232,965 2,449,029

edges 130,622 1,166,243 114,615,892 61,859,140

classes 70 40 40 47

tasks 30 20 20 23

Reddit-CL (0.755). These datasets cover the ones with high ho-

mophily (OGB-Products and Reddit), as well as the ones with lower

homophily.

When learning on more heterophilous networks (homophily

ratio close to 0) 5ĪĥĦĥ (·) is required to be constructed specially

constructed. Heterophilous network learning is largely di�erent

from homophilous network learning, and requires di�erent GNN

designs [1, 103, 108]. Therefore, 5ĪĥĦĥ (·) should also be instantiated

to be suitable for heterophilous networks. The key di�erence of het-

erophilous network learning is that the nodes belonging to the same

classes are not likely to be connected, and GNNs should be designed

to separately process the proximal neighbors with similar infor-

mation and distal neighbors with irrelevant information, or only

aggregate information from the proximal neighbors [1, 103, 108].

For example, MixHop [1] encodes neighbors from di�erent hops

separately. A given computation ego-subnetwork will be divided

into di�erent hops. For each hop, the model generates a separate

embedding. Finally, the embeddings of di�erent hops are concate-

nated as the �nal TE. H2GCN [108] only aggregates higher-order

neighbors that are proximal to the center node.

In other words, via constructing 5ĪĥĦĥ (·) to be suitable for het-

erophilous networks, the neighborhood aggregation is still con-

ducted on the proximal nodes, and so is the pseudo-training. In this

way, the pseudo-training will still bene�t the performance.

3.7 Coverage Maximization Sampling

Following the above subsection, TEs with larger computation ego-

subnetworks are preferred to be stored. To quantify the size of the

computation ego-subnetworks, we formally de�ne the coverage

ratio of the selected TEs as the nodes covered by their computation

ego-subnetworks versus the total nodes in the network (Figure 3).

Since a TE uniquely corresponds to a node, we may use ‘node’ and

‘TE’ interchangeably.

Definition 2. Given a network G, node set V, and function

c (·, ·; Â), the coverage ratio of a set of nodes Vĩ is:

'ę (Vĩ) =
| ∪Ĭ∈Vĩ {F |F ∈ G

ĩīĘ
Ĭ }|

|V|
, (11)

i.e., the ratio of nodes of the entire (training) network covered by the

computation ego-subnetworks of the selected nodes (TEs).

Tomaximize 'ę (TEM), a naive approach is to �rst select the TE

with the largest coverage ratio, and then iteratively incorporate TE

that increases 'ę (TEM) the most. However, this requires comput-

ing 'ę (TEM) for all candidate TEs at each iteration, which is time

consuming especially on large networks. Besides, certain random-

ness is also desired for the diversity of TEM. Therefore, we pro-

pose to sample TEs based on their coverage ratio. Speci�cally, in task

g , the probability of sampling node E ∈ Vă is ?Ĭ =
Ďę ({Ĭ})∑

ĭ∈Vă Ďę ({ĭ})
.

Then the nodes in Vă are sampled according to {?Ĭ | E ∈ Vă }

without replacement, as shown in Algorithm 1. In experiments, we

demonstrate the correlation between the coverage ratio and the

performance, which veri�es the bene�ts revealed in Section 3.5

4 EXPERIMENTS

In this section, we aim to answer the following research questions:

RQ1: Whether PDGNNs-TEM works well with a reasonable bu�er

size? RQ2: Does coverage maximization sampling ensure a higher

coverage ratio and better performance when the memory budget

is tight? RQ3: Whether our theoretical results can be re�ected in

experiments? RQ4: Whether PDGNNs-TEM can outperform the

state-of-the-art methods in both class-IL and task-IL scenarios?

RQ5: How to interpret the learned node embedding under contin-

ual learning setting. Due to the space limitations, only the most

prominent results are presented in the main content. For simplicity,

PDGNNs-TEMwill be denoted as PDGNNs in this section. All codes

are available at github.com/imZHANGxikun/PDGNNs.

4.1 Datasets

Following the public benchmark CGLB [95], we adopted four datasets,

CoraFull [54], OGB-Arxiv [40], Reddit [36], and OGB-Products [40],

with up to millions of nodes and 70 classes. Dataset statistics and

task splittings are summarized in Table 1.

4.2 Experimental Setup and Model Evaluation

Continual learning setting andmodel evaluation.During train-

ing, a model is trained on a task sequence. During testing, the model

is tested on all learned tasks. Class-IL requires a model to classify a

given node by picking a class from all learned classes (more chal-

lenging), while task-IL only requires the model to distinguish the

classes within each task. For model evaluation, the most thorough

metric is the accuracy matrixMėęę ∈ RĐ×Đ , whereMėęę
ğ, Ġ denotes

the accuracy on task 9 after learning task 8 . The learning dynamics

can be re�ected with average accuracy (AA) over all learnt tasks

after learning each task, i.e.,
{∑ğ

Ġ=1 M
ėęę
ğ,Ġ

ğ |8 = 1, ...,)
}

, which can be

visualized as a curve. Similarly, the average forgetting (AF) after

learning each task re�ects the learning dynamics from the per-

spective of forgetting,
{∑ğ−1

Ġ=1 M
ėęę
ğ,Ġ −M

ėęę
Ġ,Ġ

ğ−1 |8 = 2, ...,)
}

. To use a single

numeric value for evaluation, the AA and AF after learning all)

tasks will be used. These metrics are widely adopted in continual

learning works [9, 49, 51, 97, 104], although the names are di�erent

in di�erent works. We repeat all experiments 5 times on one Nvidia

Titan Xp GPU. All results are reported with average performance

and standard deviations.

Baselines and model settings. Our baselines for continual learn-

ing on expanding networks include Experience Replay based GNN

(ER-GNN) [104], Topology-aware Weight Preserving (TWP) [49],

Sparsi�ed Subgraph Memory (SSM) [96], and Subgraph Episodic

Memory (SEM) [98]. Milestone works for Euclidean data but also

Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 2: Performance & coverage ratios of di�erent sampling strategies and bu�er sizes on OGB-Arxiv (↑ higher means better).

Ratio of dataset /% 0.02 0.1 1.0 5.0 40.0

AA/%

Uniform samp. 12.0±1.1 24.1±1.7 42.2±0.3 50.4±0.4 53.3±0.4

Mean of feat. 12.6±0.1 25.3±0.3 42.8±0.3 50.4±0.7 53.3±0.2

Cov. Max. 14.9±0.8 26.8±1.8 43.7±0.5 50.5±0.4 53.4±0.1

Cov.

ratio/%

Uniform samp. 0.1±0.1 0.3±0.0 3.5±0.9 15.9±1.1 84.8±1.5

Mean of feat. 0.2±0.4 0.6±0.3 7.1±0.6 29.6±1.7 91.1±0.1

Cov. Max. 0.5±1.1 2.9±1.8 22.5±1.6 46.3±0.6 92.8±0.0

Table 3: Performance comparisons under class-IL on di�erent datasets (↑ higher means better).

C.L.T.
CoraFull OGB-Arxiv Reddit OGB-Products

AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 2.9±0.0 -94.7±0.1 4.9±0.0 -87.0±1.5 5.1±0.3 -94.5±2.5 3.4±0.8 -82.5±0.8

EWC (2017) 15.2±0.7 -81.1±1.0 4.9±0.0 -88.9±0.3 10.6±1.5 -92.9±1.6 3.3±1.2 -89.6±2.0

MAS (2018) 12.3±3.8 -83.7±4.1 4.9±0.0 -86.8±0.6 13.1±2.6 -35.2±3.5 15.0±2.1 -66.3±1.5

GEM (2017) 7.9±2.7 -84.8±2.7 4.8±0.5 -87.8±0.2 28.4±3.5 -71.9±4.2 5.5±0.7 -84.3±0.9

TWP (2021) 20.9±3.8 -73.3±4.1 4.9±0.0 -89.0±0.4 13.5±2.6 -89.7±2.7 3.0±0.7 -89.7±1.0

LwF (2017) 2.0±0.2 -95.0±0.2 4.9±0.0 -87.9±1.0 4.5±0.5 -82.1±1.0 3.1±0.8 -85.9±1.4

ER-GNN (2021) 3.0±0.1 -93.8±0.5 30.3±1.5 -54.0±1.3 88.5±2.3 -10.8±2.4 24.5±1.9 -67.4±1.9

SSM (2022b) 75.4±0.1 -9.7±0.0 48.3±0.5 -10.7±0.3 94.4±0.0 -1.3±0.0 63.3±0.1 -9.6±0.3

SEM-curvature (2023b) 77.7±0.8 -10.0±1.2 49.9±0.6 -8.4±1.3 96.3±0.1 -0.6±0.1 65.1±1.0 -9.5±0.8

Joint 80.6±0.3 - 46.4±1.4 - 99.3±0.2 - 71.5±0.7 -

PDGNNs 81.9±0.1 -3.9±0.1 53.2±0.2 -14.7±0.2 94.7±0.4 -3.0±0.4 73.9±0.1 -10.9±0.2

applicable to GNNs include Elastic Weight Consolidation (EWC)

[44], Learning without Forgetting (LwF) [47], Gradient Episodic

Memory (GEM) [51], and Memory Aware Synapses (MAS) [3]), are

also adopted. HPNs [97] is designed to work under a stricter task-

IL setting, and cannot be properly incorporated for comparison.

The results of the baselines are adopted from the original works

[95, 96, 98]. Besides, joint training (without forgetting problem)

and �ne-tune (without continual learning technique) are adopted

as the upper and lower bound on the performance. We instantiate

fĥīĪ (·;ā) as a multi-layer perceptron (MLP). All methods including

fĥīĪ (·;ā) of PDGNNs are set as 2-layer with 256 hidden dimen-

sions, and ! in Section 3.3 is set as 2 for consistency. As detailed in

Section 4.3, fĪĥĦĥ (·) is chosen as strategy S1 (Section 3.4).

4.3 Studies on the Bu�er Size & Performance vs.
Coverage Ratio (RQ1, 2, and 3)

In Table 2, based on PDGNNs, we compare the proposed coverage

maximization sampling with uniform sampling and mean of feature

(MoF) sampling in terms of coverage ratios and performance when

the bu�er size (ratio of the dataset) varies from 0.0002 to 0.4 on

the OGB-Arxiv dataset. Our proposed coverage maximization sam-

pling achieves a superior coverage ratio, which indeed enhances

the performance when the memory budget is tight. In real-world

applications, a tight memory budget is a very common situation,

making the coverage maximization sampling a favorable choice.

We also notice that the average accuracy for coverage maximization

Table 4: Additional space consumption of di�erent memory-

replay techniques

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products

Full Subnetwork 7,264M 35M 2,184,957M 5,341M

GEM [51] 7,840M 86M 329M 82M

ER-GNN [104] 61M 2M 12M 3M

SSM [96] 732M 41M 193M 37M

SEM [98] 732M 41M 193M 37M

PDGNNs-TEM 37M 2M 9M 2M

sampling is positively related to the coverage ratio in general, which

is consistent with the Theorem 1.

Table 2 also demonstrates the high memory e�ciency of TEM.

No matter which sampling strategy is used, the performance can

reach ≈50% average accuracy (AA) with only 5% data bu�ered. In

Section 4.5, we provide the comparison of the space consumption

of di�erent memory based strategies to demonstrate the e�ciency

of PDGNNs-TEM.

4.4 Class-IL and Task-IL Scenarios (RQ4)

Class-IL Scenario. As shown in Table 3, under the class-IL sce-

nario, PDGNNs signi�cantly outperform the baselines and are even

comparable to joint training on all 4 public datasets. The learning

dynamics are shown in Figure 4. Since the curve of PDGNNs is

very close to that of joint training, we conclude that the forgetting

KDD ’24, August 25–29, 2024, Barcelona, Spain Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

Figure 4: Dynamics of average accuracy in the class-IL scenario.(a) CoraFull, 2 classes per task, 35 tasks. (b) OGB-Arxiv, 2 classes

per task, 20 tasks. (c) Reddit, 2 classes per task, 20 tasks. (d) OGB-Products, 2 classes per task, 23 tasks.

Figure 5: From left to right: accuracy matrix of PDGNNs, ER-GNN, LwF, and Fine-tune on OGB-Arxiv dataset.

Table 5: Performance comparisons under task-IL on di�erent datasets (↑ higher means better).

C.L.T.
CoraFull OGB-Arxiv Reddit OGB-Products

AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 58.0±1.7 -38.4±1.8 61.7±3.8 -28.2±3.3 73.6±3.5 -26.9±3.5 67.6±1.6 -25.4±1.6

EWC (2017) 78.9±2.4 -15.5±2.3 78.8±2.7 -5.0±3.1 91.5±4.2 -8.1±4.6 90.1±0.3 -0.7±0.3

MAS (2018) 93.0±0.5 -0.6±0.2 88.4±0.2 -0.0±0.0 98.6±0.5 -0.1±0.1 91.2±0.6 -0.5±0.2

GEM (2017) 91.6±0.6 -1.8±0.6 87.3±0.6 2.8±0.3 91.6±5.6 -8.1±5.8 87.8±0.5 -2.9±0.5

TWP (2021) 92.2±0.5 -0.9±0.3 86.0±0.8 -2.8±0.8 87.4±3.8 -12.6±4.0 90.3±0.1 -0.5±0.1

LwF (2017) 56.1±2.0 -37.5±1.8 84.2±0.5 -3.7±0.6 80.9±4.3 -19.1±4.6 66.5±2.2 -26.3±2.3

ER-GNN (2021) 90.6±0.1 -3.7±0.1 86.7±0.1 11.4±0.9 98.9±0.0 -0.1±0.1 89.0±0.4 -2.5±0.3

SSM (2022b) 95.8±0.3 0.6±0.2 88.4±0.3 -1.1±0.1 99.3±0.0 -0.2±0.0 93.2±0.7 -1.9±0.0

SEM-curvature (2023b) 95.9±0.5 0.7±0.4 89.9±0.3 -0.1±0.5 99.3±0.0 -0.2±0.0 93.2±0.7 -1.8±0.4

Joint 95.2±0.2 - 90.3±0.2 - 99.4±0.1 - 91.8±0.2 -

PDGNNs 94.6±0.1 0.6±1.0 89.8±0.4 -0.0±0.5 98.9±0.0 -0.5±0.0 93.5±0.5 -2.1±0.1

problem is nearly eliminated by PDGNNs. In Table 3 and Figure 4,

PDGNNs sometimes outperform joint training. The reasons are

two-fold. First, PDGNNs learn the tasks sequentially while joint

training optimizes the model for all tasks simultaneously, resulting

in di�erent optimization di�culties [5]. Second, when learning new

tasks, joint training accesses all previous data that may be noisy,

while replaying the representative TEs may help �lter out noise.

To thoroughly understand di�erent methods, we visualize the ac-

curacy matrices of 4 representative methods, including PDGNNs

(memory replay with topological information), ER-GNN (memory

replay without topological information), LwF (relatively satisfying

performance without memory bu�er), and Fine-tune (without con-

tinual learning technique), in Figure 5. Compared to the baselines,

PDGNNs maintain stable performance on each task even though

new tasks are continuously learned.

Task-IL Scenario. The comparison results under the task-IL sce-

nario are shown in Table 5. We can observe that PDGNNs still out-

perform most baselines on all di�erent datasets and is comparable

to SEM [98] and SSM [96], even though task-IL is less challenging

than the class-IL as we discussed in Section 4.2.

4.5 Memory Consumption Comparison (RQ1)

Memory-replay based methods outperform other methods, but also

consume additional memory space. In this subsection, we compare

the space consumption of di�erent memory designs to demonstrate

Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 6: Visualization of the node embeddings of di�erent classes of Reddit, after learning 1, 10, and 20 tasks. From the top to

the bottom, we show the results of Fine-tune, ER-GNN, and PDGNNs-TEM. Each color corresponds to a class.

the memory e�ciency of PDGNNs-TEM. The �nal memory con-

sumption (measured by the number of �oat32 values) after learning

each entire dataset is shown in Table 4. As a reference, the memory

consumption of storing full computation ego-subnetwork is also

calculated. According to Table 4, storing full subnetworks costs

intractable memory usage on dense networks like Reddit, and the

strategy to bu�er gradients also incurs high memory cost (GEM).

SSM could signi�cantly reduce memory consumption with the

sparsi�cation strategy. Both PDGNNs-TEM and ER-GNN are highly

e�cient in terms of memory space usage. While PDGNNs-TEM

exhibits superior performance compared to ER-GNN.

4.6 Interpretation of Node Embeddings (RQ5)

To interpret the learning process of PDGNNs-TEM, we visualize

the node embeddings of di�erent classes with t-SNE [67] while

learning on a task sequence of 20 tasks over the Reddit dataset.

In Figure 6, besides PDGNNs-TEM that replay data with topologi-

cal information, we also include two representative baselines for

comparison, i.e., ER-GNN to show how the lack of topological in-

formation may a�ect the node embeddings, and Fine-tune to show

the results without any continual learning technique. As shown in

Figure 6, PDGNNs-TEM can well separate the nodes from di�erent

classes even when node types of nodes are continuously been in-

volved (in new tasks). In contrast, for ER-GNN and Fine-tune, the

boundaries of di�erent classes are less clear, especially when more

tasks are continuously learned.

5 CONCLUSION

In this work, we propose a general framework of Parameter De-

coupled Graph Neural Networks (PDGNNs) with Topology-aware

Embedding Memory (TEM) for continual learning on expanding

networks. Based on the Topology-aware Embeddings (TEs), we

reduce the space complexity of the memory bu�er from O(=3Ĉ) to

O(=), which enables PDGNNs to fully utilize the explicit topologi-

cal information sampled from the previous tasks for retraining. We

also discover and theoretically analyze the pseudo-training e�ect of

TEs. The theoretical �ndings inspire us to develop the coverage max-

imization sampling strategy, which has been demonstrated to be

highly e�cient when the memory budget is tight. Finally, thorough

empirical studies, including comparison with the state-of-the-art

methods in both class-IL and task-IL continual learning scenarios,

demonstrate the e�ectiveness of PDGNNs with TEM.

6 ACKNOWLEDGEMENT

Dongjin Song was supported by the National Science Foundation

(NSF) Grant No. 2338878. Yixin Chen is supported by NSF grant

CBE-2225809 and DOE grant DE-SC0024702.

KDD ’24, August 25–29, 2024, Barcelona, Spain Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:
Higher-order graph convolutional architectures via sparsi�ed neighborhood
mixing. In ICML. PMLR, 21–29.

[2] Kian Ahrabian, Yishi Xu, Yingxue Zhang, Jiapeng Wu, Yuening Wang, and
Mark Coates. 2021. Structure aware experience replay for incremental learning
in graph-based recommender systems. In Proceedings of the 30th ACM CIKM.
2832–2836.

[3] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and
Tinne Tuytelaars. 2018. Memory aware synapses: Learning what (not) to forget.
In Proceedings of the ECCV. 139–154.

[4] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. 2019. Gradient
based sample selection for online continual learning. In NeurIPS. 11816–11825.

[5] S Divakar Bhat, Biplab Banerjee, Subhasis Chaudhuri, and Avik Bhattacharya.
2021. CILEA-NET: Curriculum-based incremental learning framework for re-
mote sensing image classi�cation. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 14 (2021), 5879–5890.

[6] Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau. 2020.
Online learned continual compression with adaptive quantization modules. In
ICML. PMLR, 1240–1250.

[7] Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu
Zhu. 2022. Multimodal continual graph learning with neural architecture search.
In Proceedings of the ACM Web Conference 2022. 1292–1300.

[8] Antonio Carta, Andrea Cossu, Federico Errica, and Davide Bacciu. 2021. Cata-
strophic Forgetting in Deep Graph Networks: an Introductory Benchmark for
Graph Classi�cation. arXiv preprint arXiv:2103.11750 (2021).

[9] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Riemannian walk for incremental learning: Understanding forgetting
and intransigence. In Proceedings of the ECCV. 532–547.

[10] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph con-
volutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[11] Jianfei Chen, Jun Zhu, and Le Song. 2017. Stochastic training of graph con-
volutional networks with variance reduction. arXiv preprint arXiv:1710.10568
(2017).

[12] Lei Chen, Zhengdao Chen, and Joan Bruna. 2020. On graph neural networks
versus graph-augmented mlps. arXiv preprint arXiv:2010.15116 (2020).

[13] Ting Chen, Song Bian, and Yizhou Sun. 2019. Are powerful graph neural nets
necessary? a dissection on graph classi�cation. arXiv preprint arXiv:1905.04579
(2019).

[14] Wei Chen, YajunWang, and Siyu Yang. 2009. E�cient in�uence maximization in
social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. 199–208.

[15] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An e�cient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 257–266.

[16] Aristotelis Chrysakis and Marie-Francine Moens. 2020. Online continual learn-
ing from imbalanced data. In ICML. PMLR, 1952–1961.

[17] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020.
Minimal variance sampling with provable guarantees for fast training of graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. 1393–1403.

[18] Yuanning Cui, Yuxin Wang, Zequn Sun, Wenqiang Liu, Yiqiao Jiang, Kexin
Han, and Wei Hu. 2023. Lifelong embedding learning and transfer for growing
knowledge graphs. In Proceedings of AAAI, Vol. 37. 4217–4224.

[19] Angel Daruna, Mehul Gupta, Mohan Sridharan, and Sonia Chernova. 2021. Con-
tinual learning of knowledge graph embeddings. IEEE Robotics and Automation
Letters 6, 2 (2021), 1128–1135.

[20] Bishwadeep Das and Elvin Isu�. 2022. Graph �ltering over expanding graphs.
In 2022 IEEE Data Science and Learning Workshop (DSLW). IEEE, 1–8.

[21] Bishwadeep Das and Elvin Isu�. 2022. Learning expanding graphs for signal
interpolation. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 5917–5921.

[22] Bishwadeep Das and Elvin Isu�. 2022. Online �ltering over expanding graphs. In
2022 56th Asilomar Conference on Signals, Systems, and Computers. IEEE, 43–47.

[23] Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding,
and Peng Cui. 2021. On the equivalence of decoupled graph convolution network
and label propagation. In Proceedings of the Web Conference 2021. 3651–3662.

[24] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. 2020. Orthogonal
gradient descent for continual learning. In International Conference on Arti�cial
Intelligence and Statistics. PMLR, 3762–3773.

[25] Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Ag-
garwal. 2023. Graph lifelong learning: A survey. IEEE Computational Intelligence
Magazine 18, 1 (2023), 32–51.

[26] Yutong Feng, Jianwen Jiang, and Yue Gao. 2020. Incremental Learning on
Growing Graphs. (2020).

[27] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. 2021. Gnnau-
toscale: Scalable and expressive graph neural networks via historical embed-
dings. In ICML. PMLR, 3294–3304.

[28] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[29] Lukas Galke, Benedikt Franke, Tobias Zielke, and Ansgar Scherp. 2021. Lifelong
Learning of Graph Neural Networks for Open-World Node Classi�cation. In
2021 IJCNN. 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533412

[30] Lukas Galke, Iacopo Vagliano, Benedikt Franke, Tobias Zielke, Marcel Ho�mann,
and Ansgar Scherp. 2023. Lifelong learning on evolving graphs under the
constraints of imbalanced classes and new classes. Neural Networks 164 (2023),
156–176. https://doi.org/10.1016/j.neunet.2023.04.022

[31] Claudio Gallicchio and Alessio Micheli. 2010. Graph echo state networks. In
The 2010 IJCNN. IEEE, 1–8.

[32] Claudio Gallicchio and Alessio Micheli. 2020. Fast and deep graph neural
networks. In Proceedings of AAAI, Vol. 34. 3898–3905.

[33] Spyros Gidaris and Nikos Komodakis. 2018. Dynamic few-shot visual learning
without forgetting. In Proceedings of the IEEE CVPR. 4367–4375.

[34] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In ICML. PMLR,
1263–1272.

[35] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang,
and Nitesh V Chawla. 2021. Few-shot graph learning for molecular property
prediction. In Proceedings of the Web Conference 2021. 2559–2567.

[36] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[37] Yi Han, Shanika Karunasekera, and Christopher Leckie. 2020. Graph neural
networks with continual learning for fake news detection from social media.
arXiv preprint arXiv:2007.03316 (2020).

[38] Tyler L Hayes and Christopher Kanan. 2020. Lifelong machine learning with
deep streaming linear discriminant analysis. In Proceedings of the IEEE/CVF
CVPR workshops. 220–221.

[39] Marcel Ho�mann, Lukas Galke, and Ansgar Scherp. 2023. Open-World Lifelong
Graph Learning. In 2023 IJCNN. 1–9. https://doi.org/10.1109/IJCNN54540.2023.
10191071

[40] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS 33 (2020), 22118–22133.

[41] Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, Anderson Schneider, Yuriy
Nevmyvaka, and Dongjin Song. 2024. Empowering Time Series Analysis with
Large Language Models: A Survey. arXiv preprint arXiv:2402.03182 (2024).

[42] Seoyoon Kim, Seongjun Yun, and Jaewoo Kang. 2022. Dygrain: An incremental
learning framework for dynamic graphs. In 31st International Joint Conference
on Arti�cial Intelligence, IJCAI. 3157–3163.

[43] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi�cation with
Graph Convolutional Networks. In ICLR. https://openreview.net/forum?id=
SJU4ayYgl

[44] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–
3526.

[45] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018.
Predict then propagate: Graph neural networks meet personalized pagerank.
arXiv preprint arXiv:1810.05997 (2018).

[46] Guozheng Li, Peng Wang, Qiqing Luo, Yanhe Liu, and Wenjun Ke. 2023. Online
Noisy Continual Relation Learning. Proceedings of AAAI 37, 11 (Jun. 2023),
13059–13066. https://doi.org/10.1609/aaai.v37i11.26534

[47] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40, 12 (2017), 2935–2947.

[48] Hongxiang Lin, Ruiqi Jia, and Xiaoqing Lyu. 2023. Gated Attention with Asym-
metric Regularization for Transformer-based Continual Graph Learning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2021–2025.

[49] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of AAAI, Vol. 35. 8653–8661.

[50] Yilun Liu, Ruihong Qiu, and Zi Huang. 2023. CaT: Balanced Continual Graph
Learning with Graph Condensation. arXiv preprint arXiv:2309.09455 (2023).

[51] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory
for continual learning. In NeurIPS. 6467–6476.

[52] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming
graph neural networks. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 719–728.

[53] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2021. Is homophily a necessity
for graph neural networks? arXiv preprint arXiv:2106.06134 (2021).

[54] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.

Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

Information Retrieval 3, 2 (2000), 127–163.
[55] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion Proceedings of the The Web Conference 2018. 969–976.

[56] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All
we have is low-pass �lters. arXiv preprint arXiv:1905.09550 (2019).

[57] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[58] Daiqing Qi, Handong Zhao, Yun Fu, and Sheng Li. [n. d.]. Data-Free Continual
Graph Learning. ([n. d.]).

[59] Appan Rakaraddi, Lam Siew Kei, Mahardhika Pratama, and Marcus De Carvalho.
2022. Reinforced Continual Learning for Graphs. In Proceedings of the 31st ACM
CIKM. 1666–1674.

[60] Sylvestre-Alvise Rebu�, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. iCaRL: Incremental classi�er and representation learning. In
Proceedings of the IEEE CVPR. 2001–2010.

[61] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

[62] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. 2017. Continual
learning with deep generative replay. In NeurIPS. 2990–2999.

[63] Junwei Su and Chuan Wu. 2023. Towards Robust Inductive Graph Incremental
Learning via Experience Replay. arXiv preprint arXiv:2302.03534 (2023).

[64] Li Sun, Junda Ye, Hao Peng, FeiyangWang, and S Yu Philip. 2023. Self-supervised
continual graph learning in adaptive riemannian spaces. In Proceedings of AAAI,
Vol. 37. 4633–4642.

[65] Li Sun, Junda Ye, Hao Peng, FeiyangWang, and Philip S Yu. 2022. Self-Supervised
Continual Graph Learning in Adaptive Riemannian Spaces. arXiv preprint
arXiv:2211.17068 (2022).

[66] Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Graph few-shot
class-incremental learning. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 987–996.

[67] Laurens Van der Maaten and Geo�rey Hinton. 2008. Visualizing data using
t-SNE. Journal of Machine Learning Research 9, 11 (2008).

[68] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[69] Chen Wang, Yuheng Qiu, and Sebastian Scherer. 2020. Bridging graph network
to lifelong learning with feature interaction. (2020).

[70] Chen Wang, Yuheng Qiu, and Sebastian Scherer. 2020. Lifelong graph learning.
arXiv preprint arXiv:2009.00647 (2020).

[71] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. 2018. Cosface: Large margin cosine loss for deep face
recognition. In Proceedings of the IEEE CVPR. 5265–5274.

[72] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph
neural networks via continual learning. In Proceedings of the 29th ACM CIKM.
1515–1524.

[73] Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. 2022. Streaming
graph neural networks with generative replay. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1878–1888.

[74] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[75] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Chen Chen.
2016. Bring order into the samples: A novel scalable method for in�uence
maximization. IEEE TKDE 29, 2 (2016), 243–256.

[76] Di Wei, Yu Gu, Yumeng Song, Zhen Song, Fangfang Li, and Ge Yu. 2022. In-
creGNN: Incremental Graph Neural Network Learning by Considering Node
and Parameter Importance. In International Conference on Database Systems for
Advanced Applications. Springer, 739–746.

[77] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi,
Mohammad Rastegari, Jason Yosinski, and Ali Farhadi. 2020. Supermasks in
superposition. arXiv preprint arXiv:2006.14769 (2020).

[78] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR,
6861–6871.

[79] GuileWu, Shaogang Gong, and Pan Li. 2021. Striking a balance between stability
and plasticity for class-incremental learning. In Proceedings of ICCV. 1124–1133.

[80] Xinyu Wu, Ye Yuan, Xikun Zhang, Can Wang, Tiantian Xu, and Dacheng Tao.
2021. Gait phase classi�cation for a lower limb exoskeleton system based on a
graph convolutional network model. IEEE Transactions on Industrial Electronics
69, 5 (2021), 4999–5008.

[81] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong
Guo, and Yun Fu. 2019. Large scale incremental learning. In Proceedings of the
IEEE/CVF CVPR. 374–382.

[82] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[83] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark
Coates. 2020. Graphsail: Graph structure aware incremental learning for recom-
mender systems. In Proceedings of the 29th ACM CIKM. 2861–2868.

[84] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra.
2022. Two sides of the same coin: Heterophily and oversmoothing in graph
convolutional neural networks. In 2022 IEEE ICDM. IEEE, 1287–1292.

[85] Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. 2023.
Simple and e�cient heterogeneous graph neural network. In Proceedings of
AAAI, Vol. 37. 10816–10824.

[86] Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou
Huang, Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via
knowledge transfer. In Proceedings of AAAI, Vol. 34. 6656–6663.

[87] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. 2020. Scalable
and order-robust continual learning with additive parameter decomposition. In
International Conference on Learning Representation.

[88] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. 2017. Lifelong
learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547
(2017).

[89] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, andWei
Wang. 2018. Netwalk: A �exible deep embedding approach for anomaly detec-
tion in dynamic networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2672–2681.

[90] Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong,
and Victor Chang. 2023. Continual Graph Learning: A Survey. arXiv preprint
arXiv:2301.12230 (2023).

[91] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Male-
vich, Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decou-
pling the depth and scope of graph neural networks. NeurIPS 34 (2021).

[92] Peiyan Zhang, Yuchen Yan, Chaozhuo Li, Senzhang Wang, Xing Xie, Guojie
Song, and Sunghun Kim. 2023. Continual Learning on Dynamic Graphs via
Parameter Isolation. arXiv preprint arXiv:2305.13825 (2023).

[93] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li,WenOuyang, Xiaosen Li, Yangyu
Tao, Zhi Yang, and Bin Cui. 2022. Graph attention multi-layer perceptron. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4560–4570.

[94] Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao. 2024. Topology-
aware Embedding Memory for Learning on Expanding Graphs. arXiv preprint
arXiv:2401.13200 (2024).

[95] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2022. Cglb: Benchmark tasks
for continual graph learning. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

[96] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2022. Sparsi�ed Subgraph
Memory for Continual Graph Representation Learning. In 2022 IEEE ICDM.
IEEE, 1335–1340.

[97] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2023. Hierarchical Prototype
Networks for Continual Graph Representation Learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence 45, 4 (2023), 4622–4636. https:
//doi.org/10.1109/TPAMI.2022.3186909

[98] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2023. Ricci Curvature-Based
Graph Sparsi�cation for Continual Graph Representation Learning. IEEE TNNLS
(2023).

[99] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2024. Continual Learn-
ing on Graphs: Challenges, Solutions, and Opportunities. arXiv preprint
arXiv:2402.11565 (2024).

[100] Xikun Zhang, Chang Xu, and Dacheng Tao. 2020. Context aware graph con-
volution for skeleton-based action recognition. In Proceedings of the IEEE/CVF
CVPR. 14333–14342.

[101] Xikun Zhang, Chang Xu, and Dacheng Tao. 2020. On dropping clusters to
regularize graph convolutional neural networks. In ECCV.

[102] Xikun Zhang, Chang Xu, Xinmei Tian, and Dacheng Tao. 2019. Graph edge
convolutional neural networks for skeleton-based action recognition. IEEE
TNNLS 31, 8 (2019), 3047–3060.

[103] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. 2022.
Graph neural networks for graphs with heterophily: A survey. arXiv preprint
arXiv:2202.07082 (2022).

[104] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in
graph neural networks with experience replay. In Proceedings of AAAI, Vol. 35.
4714–4722.

[105] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-gnn: On few-shot node classi�cation in graph meta-learning.
In Proceedings of the 28th ACM CIKM. 2357–2360.

[106] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
network embedding by modeling triadic closure process. In Proceedings of AAAI,
Vol. 32.

[107] Hao Zhu and Piotr Koniusz. 2020. Simple spectral graph convolution. In ICLR.
[108] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond homophily in graph neural networks: Current limitations
and e�ective designs. NeurIPS 33 (2020), 7793–7804.

KDD ’24, August 25–29, 2024, Barcelona, Spain Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

A THEORETICAL ANALYSIS

In this section, we give proofs and analysis of the theoretical results.

Proof of Theorem 1.1. Given a node E , the prediction is:

ŷĬ = fĥīĪ (eĬ ;ā) (12)

7 eĬ =
∑

ĭ∈VĩīĘĬ
xĭ · c (E,F ; Â), where VĩīĘĬ denotes the node set

of the computation ego-subnetwork GĩīĘĬ , and Â is the adjacency

matrix of GĩīĘĬ .

6

ŷĬ = fĥīĪ

(∑

ĭ∈VĩīĘĬ

xĭ · c (E,F ; Â);ā
)

(13)

Given the label of node E (~Ĭ), the objective function of training the

model with node E is formulated as:

LĬ = ;

(

fĥīĪ

(∑

ĭ∈VĩīĘĬ

xĭ · c (E,F ; Â);ā
)

, yĬ

)

, (14)

where ; could be any loss function. Since VĩīĘĬ contains both the

features of node E and its neighbors, Equation 14 can be further

expanded to separate the contribution of node E and its neighbors:

LĬ = ;

(

fĥīĪ

(

xĬ · c (E, E ; Â)
︸ ︷︷ ︸

information from node Ĭ

+
∑

ĭ∈VĩīĘĬ \{Ĭ}

xĭ · c (E,F ; Â)

︸ ︷︷ ︸

neighborhood information

;ā
)

, yĬ

)

,

(15)

Given an arbitrary node @ ∈ VĩīĘĬ but @ ≠ E ∈ VĩīĘĬ (the adjacency

matrix Â stays the same), we can similarly obtain the loss of training

the model with node @:

Lħ = ;

(

fĥīĪ

(

xħ · c (@, @; Â)
︸ ︷︷ ︸

information from node ħ

+
∑

ĭ∈VĩīĘħ \{ħ}

xĭ · c (@,F ; Â)

︸ ︷︷ ︸

neighborhood information

;ā
)

, yħ

)

.

(16)

Since @ ∈ VĩīĘĬ \{E}, we rewrite Equation 15 as:

LĬ = ;

(

fĥīĪ

(

xħ · c (E, @; Â)
︸ ︷︷ ︸

information from node ħ

+
∑

ĭ∈VĩīĘĬ \{ħ}

xĭ · c (E,F ; Â)

︸ ︷︷ ︸

neighborhood information

;ā
)

, yĬ

)

,

(17)

By comparing Equation 17 and 16, we could observe the similarity

in the loss of node E and @, and the di�erence lies in the contribution

(weight c (·, ·; Â)) of each node and the neighboring nodes (VĩīĘħ

and VĩīĘĬ). □

Proof of Theorem 1.2. In this part, we choose the loss func-

tion ; as cross entropy CE(·, ·), which is the common choice for

classi�cation problems. In the following, we will �rst derive the

gradient of training the PDGNNs with (eĬ , ~Ĭ). For cross entropy,

we denote the one-hot vector form label as yĬ , of which the ~Ĭ-th
element is one and other entries are zero. Given the loss of a node

E as shown in the Equation 14, the gradient is derived as:

∇āLĬ = ∇āCE

(
∑

ĭ∈VĩīĘĬ

fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

, yĬ

)

(18)

= ∇ā

(

yĬ,ġ · log
∑

ĭ∈VĩīĘĬ

fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ

)

(19)

= yĬ,ġ ·
∇ā

(
∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ

)

∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ

(20)

= yĬ,ġ ·

∑

ĭ∈VĩīĘĬ
∇ā fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ
∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ

(21)

= yĬ,ġ ·

∑

ĭ∈VĩīĘĬ
∇ā fĥīĪ (xĭ ;ā)ġ · c (E,F ; Â)

∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ

(22)

=

∑

ĭ∈VĩīĘĬ
yĬ,ġ ·

∇ā fĥīĪ (xĭ ;ā)ġ
fĥīĪ (xĭ ;ā)ġ

· fĥīĪ (xĭ ;ā)ġ · c (E,F ; Â)

∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

ġ
(23)

=

∑

ĭ∈VĩīĘĬ
∇āCE

(

fĥīĪ (xĭ ;ā), yĬ,ġ
)

· fĥīĪ (xĭ ;ā) · c (E,F ; Â)

∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
)

(24)

=

∑

ĭ∈VĩīĘĬ

fĥīĪ (xĭ ;ā) · c (E,F ; Â)
∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ · c (E,F ; Â);ā
) · (25)

∇āCE
(

fĥīĪ (xĭ ;ā), yĬ
)

. (26)

The loss of training fĥīĪ (xĭ ;ā) with pairs of feature and pseudo-

label (xĭ , ~Ĭ) of all nodes of G
ĩīĘ
Ĭ is:

LGĩīĘĬ
=

∑

ĭ∈VĩīĘĬ

CE
(

fĥīĪ (xĭ ;ā), yĬ
)

(27)

(28)

Then, the corresponding gradient of LGĩīĘĬ
is :

∇āLGĩīĘĬ
=

∑

ĭ∈VĩīĘĬ

∇āCE
(

fĥīĪ (xĭ ;ā), yĬ
)

. (29)

By comparing Equation 26 and 29, we can see that training PDGNNs

with a topology-aware embedding eĬ equals to training the function

fĥīĪ (·;ā) on all nodes of the computation ego-subnetwork GĩīĘĬ

with a weight
fĥīĪ (xĭ ;ā) ·ÿ (Ĭ,ĭ;Â)

∑

ĭ∈VĩīĘĬ
fĥīĪ

(

xĭ ·ÿ (Ĭ,ĭ;Â) ;ā
) on each node to rescale

the contribution dynamically. □

	Abstract
	1 Introduction
	2 Related Works
	2.1 Continual Learning & Continual Learning on Expanding Networks
	2.2 GNNs & Reservoir Computing

	3 Parameter Decoupled GNNs with Topology-aware Embedding Memory
	3.1 Preliminaries
	3.2 Memory Replay Meets GNNs
	3.3 Parameter Decoupled GNNs with TEM
	3.4 Instantiations of PDGNNs
	3.5 Pseudo-training Effects of TEs
	3.6 Pseudo-training Effect and Network Homophily
	3.7 Coverage Maximization Sampling

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup and Model Evaluation
	4.3 Studies on the Buffer Size & Performance vs. Coverage Ratio (RQ1, 2, and 3)
	4.4 Class-IL and Task-IL Scenarios (RQ4)
	4.5 Memory Consumption Comparison (RQ1)
	4.6 Interpretation of Node Embeddings (RQ5)

	5 Conclusion
	6 Acknowledgement
	References
	A Theoretical Analysis

