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ABSTRACT

Memory replay based techniques have shown great success for
continual learning with incrementally accumulated Euclidean data.
Directly applying them to continually expanding networks, how-
ever, leads to the potential memory explosion problem due to the
need to buffer representative nodes and their associated topological
neighborhood structures. To this end, we systematically analyze
the key challenges in the memory explosion problem, and present
a general framework, i.e., Parameter Decoupled Graph Neural Net-
works (PDGNNs) with Topology-aware Embedding Memory (TEM),
to tackle this issue. The proposed framework not only reduces the
memory space complexity from O (nd") to O(n) !, but also fully
utilizes the topological information for memory replay. Specifically,
PDGNNs decouple trainable parameters from the computation ego-
subnetwork via Topology-aware Embeddings (TEs), which compress
ego-subnetworks into compact vectors (i.e., TEs) to reduce the mem-
ory consumption. Based on this framework, we discover a unique
pseudo-training effect in continual learning on expanding networks
and this effect motivates us to develop a novel coverage maximiza-
tion sampling strategy that can enhance the performance with a
tight memory budget. Thorough empirical studies demonstrate
that, by tackling the memory explosion problem and incorporating
topological information into memory replay, PDGNNs with TEM
significantly outperform state-of-the-art techniques, especially in
the challenging class-incremental setting.
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1 INTRODUCTION

Traditional machine learning techniques for networks typically
assume the types of nodes and their associated edges to be static 2.
However, real-world networks often expand constantly with emerg-
ing new types of nodes and their associated edges. Consequently,
models trained incrementally on the new node types may experi-
ence catastrophic forgetting (severe performance degradation) on
the old ones as shown in Figure 1. Targeting this challenge, con-
tinual learning on expanding networks [49, 97, 104] has attracted
increasingly more attention recently. It exhibits enormous value
in various practical applications, especially in the case where net-
works are relatively large, and retraining a new model over the
entire network is computationally infeasible. For instance, in a so-
cial network, a community detection model has to keep adapting its
parameters based on nodes from newly emerged communities; in a
citation network, a document classifier needs to continuously up-
date its parameters to distinguish the documents of newly emerged
research fields.

Memory replay [4, 51, 60, 62], which stores representative ex-
amples in a buffer to retrain the model and maintain its perfor-
mance over existing tasks, exhibits great success in preventing
catastrophic forgetting for various continual learning tasks, e.g.,
computer vision and reinforcement learning [3, 44, 47, 61]. Directly
applying memory replay to network data with the popular mes-
sage passing neural networks (MPNNS, the general framework for
most GNNis) [34, 43, 68], however, could give rise to the memory
explosion problem because the necessity to consider the explicit
topological information of target nodes. Specifically, due to the
message passing over the topological connections in networks,
retraining an L-layer GNN (Figure 2, left) with n buffered nodes
would require storing O(nd™) nodes [11, 15] (the number of edges
is not counted yet) in the buffer, where d is the average node de-
gree. Take the Reddit dataset [36] as an example, its average node
degree is 492, and the buffer size will easily be intractable even

2Network is a type of graph. These two terms may be used interchangeably
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Figure 1: Learning dynamics in an expanding network. We
depict new types of nodes with different colors. The new
task consisting of new types of nodes may exhibit a differ-
ent distribution from existing ones. Consequently, as the
model adapts to these new types of nodes, it may undergo
a significant performance degradation on existing tasks, a
phenomenon known as catastrophic forgetting.

with a 2-layer GNN. To resolve this issue, Experience Replay based
GNN (ER-GNN) [104] stores representative input nodes (i.e., node
attributes) in the buffer but ignores the topological information
(Figure 2 a). Feature graph network (FGN) [69] implicitly encodes
node proximity with the inner products between the features of
the target node and its neighbors. However, the explicit topologi-
cal connections are abandoned and message passing is no longer
feasible on the graph. Sparsified Subgraph Memory (SSM) [96]
and Subgraph Episodic Memory (SEM-curvature) [98] sparsify the
computation ego-subnetworks for tractable memory consumption,
which still partially sacrifices topological information, especially
when the computation ego-subnetworks are large and a majority
of nodes/edges is removed after sparsification (Figure 2 b).

To this end, we present a general framework of Parameter De-
coupled Graph Neural Networks (PDGNNs) with Topology-aware
Embedding Memory (TEM) for continual learning on expanding
networks (Figure 2 c). First, we demonstrate that the necessity to
store the complete computation ego-subnetworks arises from the
entanglement between the trainable parameters and the individual
nodes/edges (Section 3.2). Targeting this problem, we design the
PDGNNs, which decouple the trainable parameters from individ-
ual nodes/edges. PDGNNs enable us to develop a novel concept,
Topology-aware Embedding (TE), which is a vector with a fixed size
but contains all necessary information for retraining PDGNNs. Such
TEs are desired surrogates of computation ego-subnetworks to facil-
itate memory replay. After learning each task, a subset of TEs is sam-
pled and stored in the Topology-aware Embedding Memory (TEM).
Because the size of a TE is fixed, the space complexity of a mem-
ory buffer with size n can be dramatically reduced from O(nd") to
O(n). Moreover, different from continual learning on independent
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data without topology (e.g., images), we theoretically discover that
replaying the TE of a single node incurs a pseudo-training effect
on its neighbors, which also alleviate the forgetting problem for
the other nodes in the same computation ego-subnetwork. Pseudo-
training effect suggests that TEs with larger coverage ratio are more
beneficial to continual learning. Based on the theoretical finding,
we develop the coverage maximization sampling strategy, which
effectively enhances the performance for a tight memory budget.
In our experiments, thorough empirical studies demonstrate that
PDGNNSs-TEM outperform the state-of-the-art methods in both
class-incremental (class-IL) [60, 95, 96] and the task-incremental
(task-IL) continual learning scenarios [49, 104].

2 RELATED WORKS

2.1 Continual Learning & Continual Learning
on Expanding Networks

Existing continual learning (CL) approaches can be categorized
into regularization, memory replay, and parameter isolation based
methods. Regularization based methods aim to prevent drastic
modification to parameters that are important for previous tasks
[3, 24, 33, 38, 44, 47, 48, 58, 59, 64, 65, 71, 79]. Parameter isolation
methods adaptively allocate new parameters for the new tasks to
protect the ones for the previous tasks [61, 77, 81, 87, 88, 92]. Mem-
ory replay based methods store and replay representative data from
previous tasks when learning new tasks [4, 6, 16, 51, 60, 62, 98].
Recently, CL on expanding networks attracts increasingly more
attention due to its practical importance [2, 7, 8, 18-22, 25, 30, 39, 42,
46, 50, 63, 70, 73, 76, 83, 90, 94, 95, 97, 99]. Existing methods include
regularization ones like topology-aware weight preserving (TWP)
[49] that preserves crucial topologies, parameter isolation methods
like HPNs [97] that select different parameters for different tasks,
and memory replay methods like ER-GNN [104], SSM [96], and
SEM-curvature[98] that store representative nodes or sparsified
computation ego-subnetworks. Our work is also memory based and
its key advantage is the capability to preserve complete topological
information with reduced space complexity, which shows signifi-
cant superiority in class-IL setting (Section 4.4). Finally, it is worth
highlighting the difference between CL on expanding networks
and some relevant research areas. First, dynamic graph learning
[26, 29,37, 41, 52, 55, 72, 89, 106] focuses on the temporal dynamics
with all previous data being accessible. In contrast, CL on expanding
networks aims to alleviate forgetting, therefore the previous data
is inaccessible. Second, few-shot graph learning [35, 66, 86, 105]
targets fast adaptation to new tasks. In training, few-shot learning
models can access all previous tasks (unavailable in CL). In test-
ing, few-shot learning models need to be fine-tuned on the test
classes, while the CL models are tested on existing tasks without
fine-tuning.

2.2 GNNs & Reservoir Computing

Graph Neural Networks (GNNs) are deep learning models designed
to generate representations for graph data, which typically inter-
leave the neighborhood aggregation and node feature transforma-
tion to extract the topological features [10, 14, 34, 36, 43, 68, 74, 75,
80, 82, 84, 85, 93, 100, 102]. GNNs without interleaving the neigh-
borhood aggregation and node feature transformation have been
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Figure 2: (a) ER-GNN [104] that stores the input attributes of individual nodes. (b) Sparsified Subgraph Memory (SSM) [96] that
stores sparsified computation ego-subnetworks. (c) Our PDGNNs with TEM. The incoming computation ego-subnetworks are
embedded as TEs and then fed into the trainable function. The stored TEs are sampled based on their coverage ratio (Section 3.7).

developed to reduce the computation complexity and increase the
scalability [12, 13, 17, 23, 27, 28, 56, 91, 101]. For example, Simple
Graph Convolution (SGC) [78] removes the non-linear activation
from GCN [43] and only keeps one neighborhood aggregation and
one node transformation layer. Approximate Personalized Propaga-
tion of Neural Predictions (APPNP) [45] first performs node trans-
formation and then conducts multiple neighborhood aggregations
in one layer. Motivated by these works, the PDGNNs framework in
this paper is specially designed to decouple the neighborhood ag-
gregation with trainable parameters, and derive the topology-aware
embeddings (TEs) to reduce the memory space complexity and facil-
itate continual learning on expanding networks. Besides, PDGNNs
are also related to reservoir computing [31, 32], which embed the
input data (e.g. graphs) via a fixed non-linear system. The reservoir
computing modules can be adopted in PDGNNs (Equation 4).

3 PARAMETER DECOUPLED GNNS WITH
TOPOLOGY-AWARE EMBEDDING MEMORY

In this section, we first introduce the notations, and then explain
the technical challenge of applying memory replay techniques
to GNNs. Targeting the challenge, we introduce PDGNNs with
Topology-aware Embedding Memory (TEM). Finally, inspired by
theoretical findings of the pseduo-training effect, we develop the
coverage maximization sampling to enhance the performance when
the memory budget is tight, which has shown its effectiveness in
our empirical study. All detailed proofs are provided in Appendix A.

3.1 Preliminaries

Continual learning on expanding networks is formulated as learn-
ing node representations on a sequence of subnetworks (tasks):
S ={G1,G2, ... Gr}. Each G, (i.e., r-th task) contains several new
categories of nodes in the overall network, and is associated with
a node set V; and an edge set E;, which is represented as the
adjacency matrix A; € RIV=IXIV+l v will be used to denote an
arbitrary node set in the following. The degree of a node d refers
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to the number of edges connected to it. In practice, A; is often

normalized as A; = D AT , where D; € RIVeIXIVel g the
degree matrix. Each node v € VT has a feature vector x, € RP. In
classification tasks, each node v has a label y, € {0, l}c, where C
is the total number of classes. When generating the representation
for a target node v, a L-layer GNN typically takes a computation

ego-subnetwork Qf.’f,b , containing the L-hop neighbors of v (i.e.

sub

NE(v)), as the input. For simplicity, is used in the following.

3.2 Memory Replay Meets GNNs

In traditional continual learning, a model f(-; ) parameterized by 6
is sequentially trained on T tasks. Each task 7 (r € {1, ..., T}) corre-
sponds to a dataset Dy = {(x;, y,) =1} To avoid forgetting, memory
replay based methods store representative data from the old tasks
in a buffer 8. When learning new tasks. A common approach to
utilize B is through an auxiliary loss:

L= ) IEGis0),y) +4 ) 1E;0Ly), (1)

x;€D, x;€8B

L;:loss of the current task L qux: auxiliary loss

where (-, ) denotes the loss function, and A > 0 balances the
contribution of the old data. Instead of directly minimizing £y,
the buffer 8 may also be used in other ways to prevent forget-
ting [51, 60]. In these applications, the space complexity of a buffer
containing n examples is O(n).

However, to capture the topological information, GNNs obtain
the representation of a node v based on a computation ego-subnetwork
surrounding v. We exemplify it with the popular MPNN framework
[34], which updates the hidden node representations at the I + 1-th
layer as:
mit = 3 My(hl, b xS,:0M), BT = U (k) mi6p),
we N1 (v)

@)



KDD ’24, August 25-29, 2024, Barcelona, Spain

where hl, h!, are hidden representations of nodes at layer /, X 18
the edge feature, M; (-, -, -; @™) is the message function to integrate
neighborhood information, and U; (-, ; 8Y) updates m*! into hl,

(hY is the input features). In a L-layer MPNN, the representation of
a node v can be simplified as,

hl = MPNN(x,, G5*0; @), 3)

where Qj"b contains the L-hop neighbors (N L(v)), MPNN(., -; ©)
is the composition of all My(-, -, -; OM) and U; (-, BU) at different
layers. Since N'X(v) typically contains O(d") nodes, replaying n
nodes requires storing O(nd") nodes (the edges are not counted
yet), where d is the average degree. Therefore, the buffer size will be
easily intractable in practice (e.g. the example of Reddit dataset in In-
troduction), and directly storing the computation ego-subnetworks
for memory replay is infeasible for GNNGs.

3.3 Parameter Decoupled GNNs with TEM

As we discussed earlier, the key challenge of applying memory re-
play to network data is to preserve the rich topological information
of the computation ego-subnetworks with potentially unbounded
sizes. Therefore, a natural resolution is to preserve the crucial topo-
logical information with a compact vector such that the memory
consumption is tractable. Formally, the desired subnetwork repre-
sentation can be defined as Topology-aware Embedding (TE).

DEFINITION 1 (TOPOLOGY-AWARE EMBEDDING). Given a specific
GNN parameterized with 0 and an input Qf,“b, an embedding vector
ey is a topology-aware embedding for qub with respect to this GNN,
if optimizing 6 with Qf}”b or ey for this specific GNN are equivalent,
i.e. e, contains all necessary topological information ofgf,”b for

training this GNN.

However, TEs cannot be directly derived from the MPNNs due to
their interleaved neighborhood aggregation and feature transforma-
tions. According to Section 3.2, whenever the trainable parameters
get updated, recalculating the representation of a node v requires
all nodes and edges in Qf,“b . To resolve this issue, we formulate the
Parameter Decoupled Graph Neural Networks (PDGNNs) frame-
work, which decouples the trainable parameters from the individual
nodes/edges. PDGNNs may not be the only feasible framework to
derive TEs, but is the first attempt and is empirically effective. Given

g“b , the prediction of node v with PDGNNS consists of two steps.
First, the topological information of qub is encoded into an em-
bedding e, via the function f;op,(-) without trainable parameters
(instantiations of f;op0 () are detailed in Section 3.4).

€y = ftopo (Qf,ub) 4)

Next, e, is further passed into a trainable function fy,; (+; @) param-
eterized by 0 (instantiations of f5,;(-; 0) are detailed in Section 3.4)
to get the output prediction ¥,

Vo = fout (€05 0). (5
With the formulations above, e, derived in Eq. (4) clearly satisfies
the requirements of TE (Definition 1). Specifically, since the train-
able parameters acts on e, instead of any individual node/edge,

optimizing the model parameters 6 with either e, or gg“” are
equivalent. Therefore, to retrain the model, the memory buffer

4329

Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao

only needs to store TEs instead of the original computation ego-
subnetworks, which reduces the space complexity from O(nd")
to O(n). We name the buffer to store the TEs as Topology-aware
Embedding Memory (T EM). Given a new task 7, the update of
TEM is:

TEM=TEM U sampler({e, | v € V;},n), (6)

where sampler(-, -) is the adopted sampling strategy to populate the
buffer, | denotes the set union, and n is the budget. According to the
experimental results (Section 4.3), as long as 7 &M is maintained,
PDGNNSs-TEM can perform reasonably well with different choices
of sampler(-, -), including the random sampling. Nevertheless, in
Section 3.7, based on the theoretical insights in Section 3.5, we
propose a novel sampling strategy to better populate 7EM when
the memory budget is tight, which is empirically verified to be
effective in Section 4.3. Besides, Equation (6) assumes that all data
of the current task are presented concurrently. In practice, the
data of a task may come in multiple batches (e.g., nodes come in
batches on large networks), and the buffer update have to be slightly
modified by either storing sizes of the computational ego-networks
and recalculating the multinomial distribution or adopting reservoir
sampling. For task 7 with network G, the loss with 7EM then
becomes:

L= 3 our(e;0).y0) +1 Y Wfour(ew; 0).yw) .

veV, en,€TEM

L, loss of the current task 7 L aux: auxiliary loss

)

A balances the contribution of the data from the current task and the
memory, and is typically manually chosen in traditional continual
learning works. However, on network data, we adopt a different
strategy to re-scale the losses according to the class sizes to counter
the bias from the severe class imbalance, which cannot be handled
on networks by directly balancing the datasets.

3.4 Instantiations of PDGNNs

Although without trainable parameters, the function f;p,(-) for
generating TEs can be highly expressive with various formulations
including linear and non-linear ones, both of which are studied in
this work. First, the linear instantiations of f;p, (-) can be generally
formulated as,

eo = fropo(G50) = Z Xy - (0, w; A),

weV

®)

where 7(-, -; A) denotes the strategy for computation ego-subnetwork
construction and determines how would the model capture the topo-
logical information. Equation (8) describes the operation on each
node. In practice, Equation (8) could be implemented as matrix
multiplication to generate TEs of a set of nodes V in parallel, i.e.
Ey = IIXy, where each entry IT, ,, = 7 (o, w;A). Ey € RIVIXb g
the concatenation of all TEs (e, € Rb), and Xy € RIVI*? is the con-
catenation of all node feature vectors x, € RY. In our experiments,
we adopt three representative strategies. The first strategy (S1) [78]
is a basic version of message passing and can be formulated as
I = AL. The second strategy (S2) [107] considers balancing the
contribution of neighborhood information from different hops via a
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Figure 3: Illustration of the coverage ratio. Supposing the
network has N nodes, R. ({u}) = %,Rc({v}) = %;Rc({u}) = %’
and R ({u, 0, w}) = %

hyperparameter , i.e. II = % Zle ((1-a)A! +al). Finally, we also
adopt a strategy (S3) [45] that adjusts the contribution of the neigh-
bors based on PageRank [57], i.e. T = ((1 - a)A + aI)L, in which «
also balances the contribution of the neighborhood information.

The linear formulation of f;opo(+) (Equation (8)) yields both
promising experimental results (Section 4) and instructive theoreti-
cal results (Section 3.5, and 3.7). Equation (8) is also highly efficient
especially for large networks due to the absence of iterative neigh-
borhood aggregations. But f;opo () can also take non-linear forms
with more complex mappings. For example, we can also adopt a
reservoir computing module [32] to instantiate f;opo(+), which is
formulated as,

Fopo(G540) = tanh(wf-xg—l > Wy xfgl),i 1,1 (9

weV
where W and Wy are fixed weight matrices, and e, = ftLOpO (Qf,“b).
Since foy¢ (+; 0) simply deals with individual vectors (TEs), it is
instantiated as MLP in this work. The specific configurations of
four(+; 0) is described in the experimental part (Section 4.2).

3.5 Pseudo-training Effects of TEs

In traditional continual learning on independent data without ex-
plicit topology, replaying an example x; (e.g., an image) only re-
inforces the prediction of itself. In this subsection, we introduce
the pseudo-training effect, which implies that training PDGNNs
with e, of node v also influences the predictions of the other nodes
in Qf,"b, based on which we develop a novel sampling strategy to
further boost the performance with a tight memory budget.

THEOREM 1 (PSEUDO-TRAINING). Given a node v, its computation
ego-subnetwork gg”b, the TE ey, and label y, (suppose v belongs to
classk, i.e.y,y = 1), then training PDGNNs with e, has the following
two properties:

1. It is equivalent to training PDGNNs with each node w in G3*?
with gg”b being a pseudo computation ego-subnetwork andy, being a
pseudo label, where the contribution of x,, (via Equation 8) is re-scaled
py 2loh)

(w,w;A)
neighboring nodes, because it is equivalent to that the training is
conducted on each neighboring node (in G3“?) through the pseudo

labels and the pseudo computation ego-subnetworks.

We term this property as the pseudo-training effect on
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2. When £, (+; 0) is linear, training PDGNN s on e, is also equiva-
lent to training foy (+; @) on pseudo-labeled nodes (X, y») for each w
in Q;“b, where the contribution of w in the loss is adaptively re-scaled
four (X130 k7 (0,w;A)
ygub four (xw-ﬂ(v,W;A);O)k '

with a weight

we

The pseudo-training effect essentially arises from the neighbor-
hood aggregation operation of GNNs, of which the rationale is
to iteratively refine the node embeddings with similar neighbors.
Pseudo-training effect implies that replaying the TE of one node
can also strengthen the prediction for its neighbors within the same
computation ego-subnetwork and alleviate the forgetting problem
on them. The above analysis suggests that TEs with larger computa-
tion ego-subnetworks covering more nodes may be more effective,
motivating our coverage maximization sampling strategy in the
next subsection, which is also empirically justified in Section 4.3.

Algorithm 1 Coverage maximization sampling

: Input: G, V, AT, (- -;-), sample size n.
: Output: Selected nodes S
: Initialize S = {}.
: for eachv € V; do
egsub
Re({o}) = Lo ge]

Vel
: end for

: for eachov € V; do
Po= Re({v})

0 ZWEVT Re({w})
: end for

: while n > 0 do

Sample one node v from V, according to {p,, | w € V}.
S=8SU{uv}
Ve =V\{o}
ne—n-1

: end while

[ I N I

® N o

#Sampling without replacement

3.6 Pseudo-training Effect and Network
Homophily

In this subsection, we provide a brief discussion on pseudo-training

and network homophily. Given a network G, the homophily ratio

is defined as the ratio of the number of edges connecting nodes

with a same label and the total number of edges, i.e.

>, 1=y,

(j.k)e&

1

WE) = i

(10)

where & is the edge set, y; is the label of node j, and 1(-) is the
indicator function [53]. For any network, the homophily ratio is
between 0 and 1. For each computation ego-subnetwork, when
the homophily ratio is high, the neighboring nodes tend to share
labels with the center node, and the pseudo training would be
beneficial for the performance. Many real-world networks, i.e. the
social network and citation networks, tend to have high homophily
ratios, and pseudo training will bring much benefit,.

In our work, the homophily ratio of the 4 network datasets
are: CoraFull-CL (0.567), Arxiv-CL (0.655), OGB-Products (0.807),
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Table 1: The detailed statistics of datasets and task splittings

Dataset CoraFull [54] Arxiv [40] Reddit [36] Products [40]
# nodes 19,793 169,343 232,965 2,449,029

# edges 130,622 1,166,243 114,615,892 61,859,140
# classes 70 40 40 47

# tasks 30 20 20 23

Reddit-CL (0.755). These datasets cover the ones with high ho-
mophily (OGB-Products and Reddit), as well as the ones with lower
homophily.

When learning on more heterophilous networks (homophily
ratio close to 0) fropo(-) is required to be constructed specially
constructed. Heterophilous network learning is largely different
from homophilous network learning, and requires different GNN
designs [1, 103, 108]. Therefore, f;0po(-) should also be instantiated
to be suitable for heterophilous networks. The key difference of het-
erophilous network learning is that the nodes belonging to the same
classes are not likely to be connected, and GNNs should be designed
to separately process the proximal neighbors with similar infor-
mation and distal neighbors with irrelevant information, or only
aggregate information from the proximal neighbors [1, 103, 108].
For example, MixHop [1] encodes neighbors from different hops
separately. A given computation ego-subnetwork will be divided
into different hops. For each hop, the model generates a separate
embedding. Finally, the embeddings of different hops are concate-
nated as the final TE. H2GCN [108] only aggregates higher-order
neighbors that are proximal to the center node.

In other words, via constructing fiopo(-) to be suitable for het-
erophilous networks, the neighborhood aggregation is still con-
ducted on the proximal nodes, and so is the pseudo-training. In this
way, the pseudo-training will still benefit the performance.

3.7 Coverage Maximization Sampling

Following the above subsection, TEs with larger computation ego-
subnetworks are preferred to be stored. To quantify the size of the
computation ego-subnetworks, we formally define the coverage
ratio of the selected TEs as the nodes covered by their computation
ego-subnetworks versus the total nodes in the network (Figure 3).
Since a TE uniquely corresponds to a node, we may use ‘node’ and
‘TE’ interchangeably.

DEFINITION 2. Given a network G, node set V, and function
7(+, ;3 A), the coverage ratio of a set of nodes V is:

| Upev, {wlw € Gsv2}|

Re(Vs) = V] ;

(11)

i.e., the ratio of nodes of the entire (training) network covered by the
computation ego-subnetworks of the selected nodes (TEs).

To maximize R (7 EM), anaive approach is to first select the TE
with the largest coverage ratio, and then iteratively incorporate TE
that increases R; (7" E M) the most. However, this requires comput-
ing Rc (7 EM) for all candidate TEs at each iteration, which is time
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consuming especially on large networks. Besides, certain random-
ness is also desired for the diversity of 7E M. Therefore, we pro-

pose to sample TEs based on their coverage ratio. Specifically, in task
R ({2})
ZWGVT Re({w})"
Then the nodes in V; are sampled according to {p, | v € V;}
without replacement, as shown in Algorithm 1. In experiments, we
demonstrate the correlation between the coverage ratio and the

performance, which verifies the benefits revealed in Section 3.5

7, the probability of sampling node v € V; is p, =

4 EXPERIMENTS

In this section, we aim to answer the following research questions:
RQ1: Whether PDGNNs-TEM works well with a reasonable buffer
size? RQ2: Does coverage maximization sampling ensure a higher
coverage ratio and better performance when the memory budget
is tight? RQ3: Whether our theoretical results can be reflected in
experiments? RQ4: Whether PDGNNs-TEM can outperform the
state-of-the-art methods in both class-IL and task-IL scenarios?
RQ5: How to interpret the learned node embedding under contin-
ual learning setting. Due to the space limitations, only the most
prominent results are presented in the main content. For simplicity,
PDGNNs-TEM will be denoted as PDGNN in this section. All codes
are available at github.com/imZHANGxikun/PDGNNs.

4.1 Datasets

Following the public benchmark CGLB [95], we adopted four datasets,
CoraFull [54], OGB-Arxiv [40], Reddit [36], and OGB-Products [40],
with up to millions of nodes and 70 classes. Dataset statistics and
task splittings are summarized in Table 1.

4.2 Experimental Setup and Model Evaluation

Continual learning setting and model evaluation. During train-
ing, a model is trained on a task sequence. During testing, the model
is tested on all learned tasks. Class-IL requires a model to classify a
given node by picking a class from all learned classes (more chal-
lenging), while task-IL only requires the model to distinguish the
classes within each task. For model evaluation, the most thorough
metric is the accuracy matrix M%¢ e RTXT where M?;C denotes
the accuracy on task j after learning task i. The learniné dynamics
can be reflected with average accuracy (AA) over all learnt tasks

after learning each task, i.e., {Z’:lf” li=1,.., T}, which can be
visualized as a curve. Similarly, the average forgetting (AF) after
learning each task reflects the learning dynamics from the per-
LT .
T li= 2,...,T}.T0 use a single
numeric value for evaluation, the AA and AF after learning all T
tasks will be used. These metrics are widely adopted in continual
learning works [9, 49, 51, 97, 104], although the names are different
in different works. We repeat all experiments 5 times on one Nvidia
Titan Xp GPU. All results are reported with average performance
and standard deviations.
Baselines and model settings. Our baselines for continual learn-
ing on expanding networks include Experience Replay based GNN
(ER-GNN) [104], Topology-aware Weight Preserving (TWP) [49],
Sparsified Subgraph Memory (SSM) [96], and Subgraph Episodic
Memory (SEM) [98]. Milestone works for Euclidean data but also

spective of forgetting,
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Table 2: Performance & coverage ratios of different sampling strategies and buffer sizes on OGB-Arxiv (T higher means better).

Ratio of dataset /% ‘ 0.02 0.1 1.0 5.0 40.0
Uniform samp. | 12.0+1.1 24117 42.2+0.3 50.4+0.4 53.3+0.4
AA/% Mean of feat. 12.6+0.1 25.3+0.3 42.8+0.3 50.4+0.7 53.3+0.2
Cov. Max. 14.9+0.8 26.8+1.8 43.7+0.5 50.5+0.4 53.4+0.1
Cov. Uniform samp. | 0.1+0.1 0.3+0.0 3.5+£0.9  159+1.1 84.8+1.5
i ./7 Mean of feat. 0.2+0.4 0.6+0.3 7.1+0.6 29.6+1.7 91.1+0.1
Talor®l Cov. Max. 05+1.1 2.9+1.8 22.5+1.6 46.3+0.6 92.8+0.0

Table 3: Performance comparisons under class-IL on different datasets (T higher means better).

CLT CoraFull OGB-Arxiv Reddit OGB-Products
e AA/% T AF/% T AA/%T AF/%T | AA/%T AF/%T | AA/%T AF/%7
Fine-tune 2.940.0 -94.7+0.1 | 4.9+0.0 -87.0+1.5 | 51403 -94.5+2.5 | 3.4+0.8 -82.5+0.8
EWC (2017) 15.240.7 -81.1+1.0 | 4.9+0.0 -88.9+0.3 | 10.6£1.5 -92.9+1.6 | 3.3x1.2  -89.6+2.0
MAS (2018) 12.3+3.8 -83.7+4.1 | 4.9+0.0 -86.840.6 | 13.1+2.6 -35.243.5 | 15.0+2.1 -66.3+1.5
GEM (2017) 7.9+2.7 -84.8+2.7 | 4.8+0.5 -87.8+0.2 | 28.4+3.5 -71.9+4.2 | 55+0.7 -84.3£0.9
TWP (2021) 20.9+3.8 -73.3+4.1 | 4.9£0.0 -89.0£0.4 | 13.5+2.6 -89.7+2.7 | 3.0£0.7 -89.7+1.0
LwF (2017) 2.040.2  -95.0+0.2 | 4.9+0.0 -87.9+1.0 | 4.5+0.5 -82.1+1.0 | 3.1+0.8 -85.9+1.4
ER-GNN (2021) 3.040.1  -93.840.5 | 30.3+1.5 -54.0+1.3 | 88.5+2.3 -10.8+2.4 | 24.5+1.9 -67.4+1.9
SSM (2022b) 75.4+0.1 -9.740.0 | 48.3+0.5 -10.7+0.3 | 94.4+0.0 -1.3£0.0 | 63.3%x0.1 -9.6+0.3
SEM-curvature (2023b) || 77.7£0.8 -10.0+1.2 | 49.940.6 -8.4+13 | 96.3+0.1 -0.6+0.1 | 65.1+1.0 -9.5+0.8

Joint | 80.6+0.3 - | 46.4£14 - | 99302 - | 715507 -

PDGNN’s | 81.9£0.1  -3.9+0.1 | 53.240.2 -147£0.2 | 947204  -3.0+0.4 | 73.9£0.1 -10.9+0.2

applicable to GNNs include Elastic Weight Consolidation (EWC)
[44], Learning without Forgetting (LwF) [47], Gradient Episodic
Memory (GEM) [51], and Memory Aware Synapses (MAS) [3]), are
also adopted. HPNs [97] is designed to work under a stricter task-
IL setting, and cannot be properly incorporated for comparison.
The results of the baselines are adopted from the original works
[95, 96, 98]. Besides, joint training (without forgetting problem)
and fine-tune (without continual learning technique) are adopted
as the upper and lower bound on the performance. We instantiate
fout (+; 0) as a multi-layer perceptron (MLP). All methods including
four(+; 0) of PDGNNs are set as 2-layer with 256 hidden dimen-
sions, and L in Section 3.3 is set as 2 for consistency. As detailed in
Section 4.3, f;opo(+) is chosen as strategy S1 (Section 3.4).

4.3 Studies on the Buffer Size & Performance vs.
Coverage Ratio (RQ1, 2, and 3)
In Table 2, based on PDGNNs, we compare the proposed coverage
maximization sampling with uniform sampling and mean of feature
(MoF) sampling in terms of coverage ratios and performance when
the buffer size (ratio of the dataset) varies from 0.0002 to 0.4 on
the OGB-Arxiv dataset. Our proposed coverage maximization sam-
pling achieves a superior coverage ratio, which indeed enhances
the performance when the memory budget is tight. In real-world
applications, a tight memory budget is a very common situation,
making the coverage maximization sampling a favorable choice.
We also notice that the average accuracy for coverage maximization
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Table 4: Additional space consumption of different memory-
replay techniques

CLT. ‘ CoraFull OGB-Arxiv Reddit OGB-Products
Full Subnetwork | 7,264M 35M 2,184,957M 5,341M
GEM [51] 7,840M 86M 329M 82M
ER-GNN [104] 61M 2M 12M 3M
SSM [96] 732M 41M 193M 37M
SEM [98] 732M 41M 193M 37M
PDGNNs-TEM 37M 2M IM 2M

sampling is positively related to the coverage ratio in general, which
is consistent with the Theorem 1.

Table 2 also demonstrates the high memory efficiency of TEM.
No matter which sampling strategy is used, the performance can
reach ~50% average accuracy (AA) with only 5% data buffered. In
Section 4.5, we provide the comparison of the space consumption
of different memory based strategies to demonstrate the efficiency
of PDGNNs-TEM.

4.4 Class-IL and Task-IL Scenarios (RQ4)

Class-IL Scenario. As shown in Table 3, under the class-IL sce-
nario, PDGNN:Ss significantly outperform the baselines and are even
comparable to joint training on all 4 public datasets. The learning
dynamics are shown in Figure 4. Since the curve of PDGNNS is
very close to that of joint training, we conclude that the forgetting
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Figure 4: Dynamics of average accuracy in the class-IL scenario.(a) CoraFull, 2 classes per task, 35 tasks. (b) OGB-Arxiv, 2 classes
per task, 20 tasks. (c) Reddit, 2 classes per task, 20 tasks. (d) OGB-Products, 2 classes per task, 23 tasks.
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Figure 5: From left to right: accuracy matrix of PDGNNs, ER-GNN, LwF, and Fine-tune on OGB-Arxiv dataset.

Table 5: Performance comparisons under task-IL on different datasets (T higher means better).

CLT CoraFull OGB-Arxiv Reddit OGB-Products
T AA/% T AF/% T AA/%T  AF/%T | AA/%T AF/%T | AA/%T AF/%7
Fine-tune 58.0+1.7 -38.4+1.8 | 61.7+3.8 -28.2+33 | 73.6+3.5 -26.9+3.5 | 67.6£1.6 -254+1.6
EWC (2017) 789424 -155+23 | 78.8+2.7 -5.0+3.1 | 91.5+42 -8.1%4.6 | 90.1x0.3  -0.7+0.3
MAS (2018) 93.040.5 -0.6+0.2 | 88.4+0.2 -0.0£0.0 | 98.6+0.5 -0.1£0.1 | 91.24#0.6 -0.5+0.2
GEM (2017) 91.6+0.6 -1.8+0.6 | 87.3+0.6  2.8+0.3 | 91.6+5.6 -8.1+58 | 87.8£0.5 -2.9+0.5
TWP (2021) 922405 -0.9+0.3 | 86.0£0.8 -2.8+0.8 | 87.4+3.8 -12.6+4.0 | 90.3£0.1  -0.5%0.1
LwF (2017) 56.1+2.0 -37.5+1.8 | 84.2+0.5 -3.7£0.6 | 80.9+43 -19.1%4.6 | 66.5+2.2 -26.3%2.3
ER-GNN (2021) 90.6+£0.1  -3.7+0.1 | 86.7+0.1 11.4+0.9 | 98.9+0.0  -0.1+0.1 | 89.0+0.4 -2.5+0.3
SSM (2022b) 95.840.3  0.6+0.2 | 88.4+0.3 -1.1+0.1 | 99.3+0.0  -0.2+0.0 | 93.2£0.7  -1.9+0.0
SEM-curvature (2023b) || 95.9+0.5 0.7+0.4 | 89.9+0.3 -0.1£0.5 | 99.3+0.0 -0.2+0.0 | 93.2+0.7 -1.8+0.4

Joint | 95.2+0.2 - | 90.3+0.2 - | 99.4x0.1 - | 91.8+0.2 -

PDGNNs | 946201  0.6£1.0 | 89.8+04 -0.0£0.5 | 98.9+0.0 -0.5£0.0 | 93.5£0.5 -2.1x0.1

problem is nearly eliminated by PDGNNs. In Table 3 and Figure 4,
PDGNNs sometimes outperform joint training. The reasons are
two-fold. First, PDGNNSs learn the tasks sequentially while joint
training optimizes the model for all tasks simultaneously, resulting
in different optimization difficulties [5]. Second, when learning new
tasks, joint training accesses all previous data that may be noisy,
while replaying the representative TEs may help filter out noise.
To thoroughly understand different methods, we visualize the ac-
curacy matrices of 4 representative methods, including PDGNNs
(memory replay with topological information), ER-GNN (memory
replay without topological information), LwF (relatively satisfying
performance without memory buffer), and Fine-tune (without con-
tinual learning technique), in Figure 5. Compared to the baselines,

PDGNNSs maintain stable performance on each task even though
new tasks are continuously learned.

Task-IL Scenario. The comparison results under the task-IL sce-
nario are shown in Table 5. We can observe that PDGNN:s still out-
perform most baselines on all different datasets and is comparable
to SEM [98] and SSM [96], even though task-IL is less challenging
than the class-IL as we discussed in Section 4.2.

4.5 Memory Consumption Comparison (RQ1)

Memory-replay based methods outperform other methods, but also
consume additional memory space. In this subsection, we compare
the space consumption of different memory designs to demonstrate
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Figure 6: Visualization of the node embeddings of different classes of Reddit, after learning 1, 10, and 20 tasks. From the top to
the bottom, we show the results of Fine-tune, ER-GNN, and PDGNNs-TEM. Each color corresponds to a class.

the memory efficiency of PDGNNs-TEM. The final memory con-
sumption (measured by the number of float32 values) after learning
each entire dataset is shown in Table 4. As a reference, the memory
consumption of storing full computation ego-subnetwork is also
calculated. According to Table 4, storing full subnetworks costs
intractable memory usage on dense networks like Reddit, and the
strategy to buffer gradients also incurs high memory cost (GEM).
SSM could significantly reduce memory consumption with the
sparsification strategy. Both PDGNNs-TEM and ER-GNN are highly
efficient in terms of memory space usage. While PDGNNs-TEM
exhibits superior performance compared to ER-GNN.

4.6 Interpretation of Node Embeddings (RQ5)

To interpret the learning process of PDGNNs-TEM, we visualize
the node embeddings of different classes with t-SNE [67] while
learning on a task sequence of 20 tasks over the Reddit dataset.
In Figure 6, besides PDGNNs-TEM that replay data with topologi-
cal information, we also include two representative baselines for
comparison, i.e., ER-GNN to show how the lack of topological in-
formation may affect the node embeddings, and Fine-tune to show
the results without any continual learning technique. As shown in
Figure 6, PDGNNs-TEM can well separate the nodes from different
classes even when node types of nodes are continuously been in-
volved (in new tasks). In contrast, for ER-GNN and Fine-tune, the
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boundaries of different classes are less clear, especially when more
tasks are continuously learned.

5 CONCLUSION

In this work, we propose a general framework of Parameter De-
coupled Graph Neural Networks (PDGNNs) with Topology-aware
Embedding Memory (TEM) for continual learning on expanding
networks. Based on the Topology-aware Embeddings (TEs), we
reduce the space complexity of the memory buffer from O(nd’) to
O(n), which enables PDGNN:Ss to fully utilize the explicit topologi-
cal information sampled from the previous tasks for retraining. We
also discover and theoretically analyze the pseudo-training effect of
TEs. The theoretical findings inspire us to develop the coverage max-
imization sampling strategy, which has been demonstrated to be
highly efficient when the memory budget is tight. Finally, thorough
empirical studies, including comparison with the state-of-the-art
methods in both class-IL and task-IL continual learning scenarios,
demonstrate the effectiveness of PDGNNs with TEM.
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A THEORETICAL ANALYSIS

In this section, we give proofs and analysis of the theoretical results.
Proor oF THEOREM 1.1. Given a node v, the prediction is:
(12)

ey = Zwer]‘b X4y - 7(0, W;A), where Vf,“b denotes the node set

}A’u = fout(ev; 9)

sub
[

of the computation ego-subnetwork G34?, and A is the adjacency

matrix of G540
Fo=tour( D xwm(o,wA);6) (13)
weysub

Given the label of node v (), the objective function of training the
model with node v is formulated as:

Z Xy - (0, w; A); 0),yv),

b
weVgt

-Ev = l(fout( (14)

where I could be any loss function. Since V$#? contains both the
features of node v and its neighbors, Equation 14 can be further
expanded to separate the contribution of node v and its neighbors:

2,

Ly=1 fout‘( XU‘H(U,U;A) +
weVEP\ {0}

information from node v

neighborhood information

(15)

Given an arbitrary node g € V5% but g # v € V3#® (the adjacency
matrix A stays the same), we can similarly obtain the loss of training
the model with node g:

-Eq:l

2,

wevg\(q}

Xy - 7(q, W;A);O),

fout( Xq - 7(q, q;A) +
—_——

information from node g

neighborhood information

(16)

Since q € Vf,”b\{v}, we rewrite Equation 15 as:

2,

weV\{q}

Xq - (0, q;A) +
—_—

information from node g

Ly = l(fout (

neighborhood information

(17)

By comparing Equation 17 and 16, we could observe the similarity
in the loss of node v and g, and the difference lies in the contribution
(weight 7 (-, -; A)) of each node and the neighboring nodes (V;“b

b

and V34°). |
ProoF oF THEOREM 1.2. In this part, we choose the loss func-

tion [ as cross entropy CE(,-), which is the common choice for
classification problems. In the following, we will first derive the

Xu - (0, w; A); 9),yu),

)

Xa - (0, w; A); 9),)'0),
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gradient of training the PDGNNs with (e, yy). For cross entropy,

we denote the one-hot vector form label as y,, of which the y,-th
element is one and other entries are zero. Given the loss of a node

v as shown in the Equation 14, the gradient is derived as:

VoL, = VgCE( Z fout (xw - (v, W;A); 9),y0) (18)
weysub
=Vy (Yv,k -log Z fout (XW - 7 (v, W;A); G)k) (19)
wer,“b
VO( Zwer,“b four (Xw - (o, w; A), O)k)
=Youk - N (20)
2 evser fout(xw - 7(0, wi A); 9)k
ZWEVf,ub Vefout (XW . 7[(1), w; A)’ O)k
=Yok - R (21)
S evges four (%o - 7(0. 5 4):0)
ZweV;}“b Votour (Xw; 0) - 7 (v, W;A)
=Youk - (22)

Zwer,“b four (Xw . ﬂ(l), W;A); G)k

Vofour (Xw:0)k
four (Xw;0)k

Lwevsub fout (Xw - 7(0, w3 A); O)k

Zwevzub Yok - fout (Xw; e)k -7 (o, W;A)

(23)
Zwer,”b VBCE(fout(Xw§ 0), YU,k) ~fout (Xaw; 0) - (o, W§A)

Zwevgub four (Xw - (o, W§A)? 0)

(24)

_ Z fout (Xw; 0) - 7 (v, W§A)A . (25)
wevsub Zwevzub four (XW - (v, w; A); 0)

VGCE(fout(XW; 9),Yv)~ (26)

The loss of training foy (X4y; @) with pairs of feature and pseudo-
label (x4, yy) of all nodes of gg”b is:

Lo = ) CE(four (%3 0),¥0) (27)
weysub
(28)
Then, the corresponding gradient of £ Gsub 18
V@ngs]ub = Z VGCE(fout(Xw§0),YU)~ (29)

weysub

By comparing Equation 26 and 29, we can see that training PDGNNs

with a topology-aware embedding e, equals to training the function

fout (+;0) on all nodes of the computation ego-subnetwork gg“b
four (X4v30) ‘”(U,W;A)

wevsub four (Xw'”(U, W;A) ;0

the contribution dynamically.

with a weight ] on each node to rescale

O
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