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Abstract—Recently, various contrastive learning techniques
have been developed to categorize time series data and have
exhibited promising performance for real-world applications. A
general paradigm is to utilize appropriate data augmentation
methods and construct feasible positive samples such that the
encoder can yield robust and discriminative representations by
mapping similar data points closer together in the feature space
while pushing dissimilar data points farther apart. Despite its
efficacy, the fine-grained relative similarity (e.g., rank) information
of positive samples is not fully exploited, especially when labeled
samples are limited. To this end, we present Rank Supervised Con-
trastive Learning (RankSCL) to perform time series classification.
Different from conventional contrastive learning frameworks,
RankSCL augments raw data in a targeted manner in the
embedding space and selects more informative positive and
negative pairs for the targeted sample. Moreover, a novel rank
loss is developed to assign higher weights to more confident
positive pairs and lower weights to less confident positive pairs,
enabling the encoder to extract the same class’s fine-grained
information and produce a clear boundary among different classes.
Thoroughly empirical studies on 128 UCR and 30 UEA datasets
demonstrate that the proposed RankSCL can achieve state-of-the-
art performance compared to existing baseline methods. Code
is available at: https://github.com/UConn-DSIS/Rank-Supervised-
Contrastive-Learning-for-Time-Series-Classification

Index Terms—time series classification, representation learning,
contrastive learning

I. INTRODUCTION

Nowadays, time series data are becoming ubiquitous in

numerous real-world applications. For instance, in a power

plant [1], a large number of sensors can be employed to monitor

the operation status in real time. With a fitness tracking device,

a temporal sequence of actions [2], e.g., walking for 5 minutes

and sitting for 15 minutes, etc, can be recorded and detected

with related sensors. With the huge amount of time series data,

how to categorize and interpret the status becomes a critical

issue to investigate.

Traditionally, one of the most popular time series classifica-

tion approaches is to use the nearest neighbor (NN) classifier

based on a distance measure [3]. For instance, Dynamic Time

Warping (DTW) distance has been used together with an

NN classifier (DTW-NN) to provide a strong baseline [4].

More recently, Collective Of Transformation-based Ensembles

(COTE) combines the strengths of multiple approaches to

* denotes the corresponding author.

handle various aspects of time series data can yield better

classification accuracy. Lines et al. further extended COTE to

create HIVE-COTE [5] by incorporating a hierarchical vote

system. These approaches, however, involve high complexity

for both training and inference.

Deep learning-based time series classification methods, like

InceptionTime [6], have gained popularity for their strong

performance. However, supervised learning often requires

large amounts of labeled data, which can be challenging to

acquire in large-scale time series applications where labeled

data is often scarce or difficult to obtain [7]–[11]. Recently,

contrastive learning techniques have used augmentations to

create positive samples, allowing encoders to produce robust

and discriminative representations by bringing similar data

points closer and pushing dissimilar ones apart. For instance,

TimCLR [12] employs DTW [13] to handle temporal variations

and achieve promising performance. However, these methods do

not fully utilize positive samples’ fine-grained relative similarity

(e.g., rank).

To this end, we propose Rank Supervised Contrastive

Learning (RankSCL) to tackle this issue and yield more

effective representations to facilitate time series classification.

The key idea is to rank the importance of different positive

samples to better understand the potential landscape of feature

space. Specifically, we make full use of the information

of positive samples by leveraging their relatively similarity

information in terms of rank. We encode the rank by taking

account of the number of triplets in which the distance of

anchor-negative pairs is smaller than anchor-positive pairs. A

targeted data augmentation technique is designed to generate

designated samples, aiming to enrich the information for

the same category and enhance the boundary from different

categories. By combining these two techniques, our proposed

RankSCL has been thoroughly evaluated on 128 UCR datasets

and 30 UEA datasets. Our experiment results demonstrate that

the proposed RankSCL can achieve state-of-the-art performance.

Our main contributions include:

• We develop a novel rank supervised contrastive learning

framework and present a novel rank loss that assigns different

weights to different levels of positive samples.

• We propose a targeted data augmentation technique based

on RSCL to generate designated positive samples that can

enrich the information of samples from the same category
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and distinguish the boundary among different categories.

• Our empirical studies on 128 UCR datasets and 30 UEA

datasets demonstrate that the proposed RankSCL outperforms

the state-of-the-art.

II. RELATED WORK

A. Contrastive Time Series Representation Learning

In contrastive learning, enriching the representation space

through the appropriate generation of positive and negative

pairs is crucial. Traditionally, positive pairs are closely aligned,

while negative pairs are distanced, as in SimCLR [14], where

different augmentations of the same sample are positive, and

different samples are negative. Recent works have introduced

new pair designs to capture invariant features. For example,

TimCLR [12] uses DTW [13] for phase-shift and amplitude-

change augmentations suited to time series. TS2Vec [15]

defines contrastive loss at both instance-wise and patch-wise

levels, separating time series into patches, while TS-TCC

[16] introduces a temporal task to predict future sequences

from augmentations. CoST [17] applies contrastive loss across

time and frequency domains to capture seasonal and trend

patterns, and TF-C [18] focuses on optimizing time and

frequency-based representations. InfoTS [19] maximizes fidelity

and variety in augmentations through information-theoretic

principles. However, these approaches rarely leverage fine-

grained relative similarity (e.g., rank) of positive samples.

B. Time Series Classification

Time series classification is a rapidly advancing field.

Traditional non-deep learning methods like TS-CHIEF [20],

ROCKET [21], and DTW-NN [22] have been foundational.

However, deep learning models now outperform these methods

by pursuing better representations. InceptionTime [6] applied

inception networks to time series to capture local patterns.

MACNN [23] used attention mechanisms to enhance the

classification performance of multi-scale CNNs. For multivari-

ate TSC, CA-SFCN [24] incorporated variable and temporal

attention modulation.

C. Time Series Data Augmentation

Data augmentation is critical for deep learning in time

series. Traditional methods fall into time, frequency, and time-

frequency domains. In the time-frequency domain, Yao et al.

[25] applied short Fourier transforms (STFT) to generate fea-

tures from sensor data, enhancing human activity classification

using a deep LSTM network.

III. METHOD

A. Notations and Problem Definition

A time series instance xi is represented by a T × F matrix,

where T is the time step and F is the feature dimension. With

F = 1, x is a univariate instance, otherwise x is known as a

multivariate instance. Given a set of N time series instances

X = {x1, x2, x3, ..., xN}, the objective is to learn a nonlinear

function fθ that maps each x to a D dimensional vector

v ∈ R
D, which preserves its semantics and D j T × F .

In supervised settings, we have a subset of X, denoted by XL,

where each instance x is associated with a label y.

B. Framework

The overall architecture is shown in Figure 1. Raw time

series data is input into an encoder network, fθ, to learn

low-dimensional representations, which are then passed to a

projection head. Each sample serves as an anchor, with positive

samples defined by label similarity [26]; those with different

labels are negative. Data augmentation is applied to embeddings

to enrich intra-class information. A rank-supervised contrastive

loss is used to train both the encoder and projection head. For

classification, we follow contrastive learning frameworks [14],

discarding the projection head and using the encoder’s hidden

representations.

C. Model Architecture

The key components of our method include the encoder

network and projection head.

Encoder Network fθ(·). As shown in Figure 1, we use a

3-layer Fully Convolutional Network (FCN) to map the input

time series xi to the representation ri = fθ(xi). Each layer

consists of a convolutional layer, batch normalization, and

ReLU activation, followed by global average pooling to reduce

weights.

Projection Head gθ(·). Inspired by SimCLR [14], we use

a small MLP projection head to transform r to zi = gθ(ri),
followed by a normalization function to map the representations

on a unit hypersphere. The projection head is used only during

training and discarded during inference.

D. Data Augmentation on the Embedding Space

The selection of a suitable augmentation strategy for con-

trastive learning frameworks stands as a crucial challenge. A

common approach involves selecting augmented data points

that are substantially divergent from the original data, thereby

introducing increased variability to foster a more robust encoder.

Yet, this strategy often leads to issues of distributional shifts,

as highlighted in recent studies [15].

Diverging from traditional contrastive learning approaches

that apply data augmentation directly to raw time series data,

our method addresses these challenges within the embedding

space. For each training instance and its corresponding label

(xi, yi) in the labeled dataset XL, we utilize the encoder

network coupled with a projection head to generate a compact

embedding zi of xi within a unit hypersphere. We introduce

jittering with scale α, denoted by tα as a selected augmentation

operation. An augmented instance is then obtained through

z′i = tα(z).
To further enhance diversity, we consider a set of two jittering

operations with distinct scales, T = {tα1 , tα2}. In practice, we

set α1 = 0.03 and α2 = 0.05. As indicated in prior research

[15], augmentations performed in the hidden space effectively

preserve label information. Consequently, both the augmented

instances and their original labels are incorporated into the

current training batch.
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Fig. 1: Overview of RankSCL framework, consisting of three components: (1) a Fully Convolutional Network that captures

the embeddings of raw time series instances, (2) targeted data augmentation that generates more samples in the embedding

space, (3) selection of valid triplets and calculation of rank loss to train the encoder network. Even though this figure shows a

univariate time series instance as an example, the architecture supports multivariate instances.

By applying small-scale jittering to embeddings in a compact

unit hypersphere, our augmentation technique not only enriches

valid information but also mitigates potential issues related to

distribution drift or the creation of outliers.

E. Selection of Valid Triplet Pairs

In contrastive learning, the primary goal is to maximize the

similarity between positive samples while keeping negative

samples distinct. Early models used a single positive and neg-

ative pair per minibatch. Recent advancements, incorporating

multiple positive and negative pairs [26], [27], have led to

progress in fields like computer vision [26] and NLP [28].

However, these approaches often require considering all anchor-

negative pairs, which can be computationally intensive.

To optimize this process, we propose the novel concept

of a “valid hard negative pair” for contrastive learning. In

this context, for an anchor instance xa and a corresponding

positive sample xp, a negative sample xn is deemed “valid hard”

if the distance dist(xa, xn) between the anchor xa and the

negative sample xn is less than the distance between the anchor

and the positive sample, i.e., dist(xa, xn) < dist(xa, xp). A

triplet formed by these criteria, (xa, xp, xn), is then defined

as a valid triplet pair. This approach focuses on more

challenging and informative negative examples during training,

thereby enhancing the discriminative power of the resultant

representations.

F. Rank Supervised Contrastive Learning Loss

In traditional contrastive learning, a key overlooked aspect

is the variable distances of different positive samples from

the anchor. Treating all positive samples equally, without

considering their proximity to the anchor, may not effectively

capture the nuanced potential representations of a class.

Fig. 2: Valid Triplet Selection

Additionally, this approach is susceptible to the influence of

outliers, potentially introducing noise into the learning process.

To address this issue, we introduce the concept of ranking

different positive samples and propose a novel rank-supervised

contrastive learning loss function. This function differentially

weights positive samples based on their utility in training the

model. We first define the set of valid hard negative samples

for an anchor-positive pair (xa, xp) as:

X
(n)
ap = {xn|dist(xa, xn) < dist(xa, xp)} (1)

The intuition behind this approach is that a positive sample

with fewer valid hard negative samples is likely closer to

the anchor and therefore more informative for the class

representation. Such samples should be given more weight.

Conversely, a positive sample with a larger X
(n)
ap might be

distant from the class centroid and treated with lower weight,

as it could potentially be an outlier introducing noise. To

implement this, we rank positive samples based on the count

of their valid hard negative samples. In this framework,

distinct positive samples receive different weights during the
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learning process. A high-rank positive sample, indicating a

larger number of valid hard negatives, may offer less valuable

information for the class and is more likely to be an outlier.

In contrast, a low-rank positive sample, with fewer valid hard

negatives, is weighted more heavily, suggesting it provides

more relevant information for the class.

Formally, we define the rank of a pair (xa, xp) based on the

size of its valid hard negative sample set:

R(xa, xp) =

|X(n)
ap |∑

n

1(dist(xa, xn) f dist(xa, xp)). (2)

Here, 1(·) is an indicator function. This rank-based approach

aims to enhance the model’s ability to discern between more

and less informative positive samples, thereby refining the

training process and improving the quality of representations.

The discrete nature of the indicator function in the rank

function R(xa, xp) presents a challenge for optimization during

the training process. To address this, we replace the indicator

function with a continuous approximation using the sigmoid

function σ(·). Consequently, the revised rank function becomes:

R(xa, xp) =

|X(n)
ap |∑

n

σ(dist(xa, xp)− dist(xa, xn)), (3)

where σ(k) = 1
1+e−k is the sigmoid function.

We introduce a novel objective function that assigns dif-

ferentiated weights to positive samples based on their ranks,

penalizing poorly ranked samples more heavily. Lower-ranked

samples, which have more negative samples closer to the anchor,

receive less weight as they may be outliers and contribute noisy

information. We use the arctan function to map ranks, ensuring

the loss increases less for higher-ranked samples as R grows.

Our final objective function is:

L(R(xa, xp)) =
∑

a

∑

p

arctan(R(xa, xp)) (4)

Remark. The choice of mapping functions significantly affects

our model’s performance. We compared log(1 + z) with

arctan(x) and found arctan(x) performed better. While our

loss function concept is similar to [29], we uniquely apply

the inverse tangent function to adjust the weights of positive

samples.

IV. EXPERIMENTS

A. Datasets and Baselines

The classic two different kinds of benchmark datasets are

used for the evaluation1. For the multivariate time series

classification task we use the UEA archive [30] consists of

30 multivariate datasets, while the UCR archive [31] has 128

univariate time series datasets for the univariate time series

classification task. The extensive experiments are conducted

compared with other SOTAs, such as InfoTS [19], TimesNet

[32], TS2Vec [15], T-Loss [33], TNC [34], TS-TCC [16],

1https://www.cs.ucr.edu/∼eamonn/time series data/

12345678

RankSCL
TS2Vec
T-Loss
InfoTSTimesNet

DTW
TS-TCC

TNC

critdd

Fig. 3: Critical Difference (CD) diagram of Univariate Time

series classification task

12345678

RankSCL
TS2Vec
InfoTS
TimesNetDTW

T-Loss
TS-TCC

TNC

critdd

Fig. 4: Critical Difference (CD) diagram of Multivariate Time

series classification task

TST [35] and DTW [13]. To better test the quality of the

representations, we chose more comprehensive metrics and all

of the baseline models are measured by the same metrics.

B. Univariate Time Series Results

Table II summarizes the experiment results from the UCR

datasets. RankSCL outperforms other baselines in terms of

Precision score, F1 score, and Recall value. It improves 0.1%

classification precision score, 0.4% F1 score, and 0.3% Recall

value. The results of all the experiments are the results obtained

by taking the mean value according to the 5 different seeds.

In particular, the RankSCL model achieves a similar accuracy

score over the best baseline TS2Vec on all 128 UCR datasets.

In terms of ACC, our method outperforms TS2Vec in 72 out of

128 UCR datasets, InfoTS [19] in 96 datasets, and T-loss [33]

in 88 datasets out of 125 datasets. Figure 3 shows the Critical

Difference diagram of different methods on 128 UCR datasets.

This result indicates that RankSCL has similar results with

the TS2Vec [15] model in terms of Accuracy scores, while

significantly outperforming the other methods.

C. Multivariate Time Series Results

Table II presents the results on UEA multivariate time series

datasets, where RankSCL outperforms all baselines across all

metrics. Specifically, RankSCL surpasses the best baseline,

TS2Vec [15], by 2.0% in Accuracy, 3.2% in Precision, 3.3%

in F1 score, and 3.5% in Recall. These results highlight the

effectiveness of RankSCL’s augmentation techniques and rank

loss function, particularly for multivariate time series data.

D. Ablation Study

We evaluate different variants of the RankSCL model on

the PigCVP dataset, as shown in Table III, to assess the

effectiveness of our method. To assess the effectiveness of
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Dataset RankSCL InfoTS TS2Vec T-Loss TS-TCC DTW TimesNet TNC

UCR 2.430 3.824 2.465 3.531 5.508 5.277 5.211 7.754
UEA 2.433 3.917 3.650 4.800 5.550 4.483 4.233 6.933

TABLE I: Average Rank values for 128 UCR datasets and 30 UEA datasets

128 UCR 30 UEA

Method ACC ↑ Prec. ↑ F1 ↑ Recall ↑ ACC ↑ Prec. ↑ F1 ↑ Recall ↑

RankSCL 0.821 0.817 0.803 0.789 0.715 0.719 0.705 0.692
InfoTS 0.733 0.723 0.705 0.688 0.669 0.672 0.657 0.643
TS2Vec 0.822 0.816 0.799 0.783 0.695 0.687 0.672 0.657
TS-TCC 0.685 0.603 0.566 0.533 0.617 0.573 0.533 0.499
T-Loss 0.782 0.750 0.743 0.737 0.581 0.572 0.545 0.520
DTW 0.679 0.672 0.668 0.646 0.654 0.645 0.624 0.605

TimesNet 0.688 0.675 0.649 0.625 0.676 0.664 0.639 0.616
TNC 0.406 0.305 0.291 0.279 0.345 0.311 0.286 0.265

TABLE II: Classification results on 128 UCR datasets and 30 UEA datasets

Avg. Accuracy ↑ Avg. Precision ↑ Avg. F1 ↑ Avg. Recall ↑

RankSCL 0.797 0.834 0.793 0.756

w/o Data Augmentation 0.636 0.663 0.62 0.582
w/ Data Augmentation (Raw Data) 0.519 0.550 0.500 0.458
w/o FCN (Resnet Backbone) 0.318 0.319 0.293 0.271
w/o Rank Loss (CE) 0.636 0.663 0.620 0.582
w/o Rank Loss (CTL) 0.676 0.710 0.663 0.622
w/o Rank Loss (TL) 0.506 0.532 0.509 0.488

TABLE III: Ablation studies on PigCVP dataset

Number Avg. Accuracy ↑ Avg. Precision ↑ Avg. F1 ↑ Avg. Recall ↑

0 0.636 0.663 0.62 0.582
5 0.797 0.834 0.793 0.756

10 0.517 0.544 0.503 0.468
15 0.520 0.560 0.504 0.458

TABLE IV: Data Augmentation Analysis on PigCVP dataset

(a) SyntheticControl (b) TS2Vec (c) RankSCL

Fig. 5: The t-SNE visualization of representations of SyntheticControl dataset (with 6 classes). (Best viewed in color)

the data augmentation, we evaluate different numbers of

augmented positive samples. The results demonstrate that

without augmented positive samples, accuracy drops by 16.1%,

with further performance decline in other metrics. Increasing

the number of augmented samples beyond 5 reduces perfor-

mance, indicating that more augmentations do not always

improve results. Augmenting raw time series data (w/o Data

Augmentation (Raw Data)) is less effective than augmenting

in the embedding space, supporting our method. Comparing

encoder architectures, FCN outperforms other options (w/o

FCN (Resnet Backbone)). Additionally, our rank-based arctan

loss function proves superior to cross-entropy (CE), contrastive

loss (CTL), and triplet loss (TL).

E. Qualitative Evaluation

Using t-SNE, we project the SyntheticControl dataset (6

classes) from raw space to two dimensions (Figure 5(a)) and

compare it with the embeddings from TS2Vec and RankSCL.

Both TS2Vec and RankSCL show well-separated clusters, but

TS2Vec forms 7 clusters, while RankSCL correctly forms 6,

matching the number of classes. This indicates that RankSCL

preserves clearer class boundaries.

V. CONCLUSION

In this paper, we propose RankSCL, a supervised contrastive

learning framework for time series classification. We introduce

a new data augmentation method to generate targeted positive

samples, enriching intra-class information. A mining rule

reduces computational complexity by capturing valid triplet
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pairs. Additionally, we propose a rank loss function to optimize

representation learning. Evaluation results demonstrate that with

effective data augmentation, valid triplet pairs, and enriched

intra-class information, RankSCL learns robust representations

applicable to future tasks and other data modalities.
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