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Abstract—Recently, various contrastive learning techniques
have been developed to categorize time series data and have
exhibited promising performance for real-world applications. A
general paradigm is to utilize appropriate data augmentation
methods and construct feasible positive samples such that the
encoder can yield robust and discriminative representations by
mapping similar data points closer together in the feature space
while pushing dissimilar data points farther apart. Despite its
efficacy, the fine-grained relative similarity (e.g., rank) information
of positive samples is not fully exploited, especially when labeled
samples are limited. To this end, we present Rank Supervised Con-
trastive Learning (RankSCL) to perform time series classification.
Different from conventional contrastive learning frameworks,
RankSCL augments raw data in a targeted manner in the
embedding space and selects more informative positive and
negative pairs for the targeted sample. Moreover, a novel rank
loss is developed to assign higher weights to more confident
positive pairs and lower weights to less confident positive pairs,
enabling the encoder to extract the same class’s fine-grained
information and produce a clear boundary among different classes.
Thoroughly empirical studies on 128 UCR and 30 UEA datasets
demonstrate that the proposed RankSCL can achieve state-of-the-
art performance compared to existing baseline methods. Code
is available at: https://github.com/UConn-DSIS/Rank-Supervised-
Contrastive-Learning-for-Time-Series-Classification

Index Terms—time series classification, representation learning,
contrastive learning

I. INTRODUCTION

Nowadays, time series data are becoming ubiquitous in
numerous real-world applications. For instance, in a power
plant [1], a large number of sensors can be employed to monitor
the operation status in real time. With a fitness tracking device,
a temporal sequence of actions [2], e.g., walking for 5 minutes
and sitting for 15 minutes, efc, can be recorded and detected
with related sensors. With the huge amount of time series data,
how to categorize and interpret the status becomes a critical
issue to investigate.

Traditionally, one of the most popular time series classifica-
tion approaches is to use the nearest neighbor (NN) classifier
based on a distance measure [3]. For instance, Dynamic Time
Warping (DTW) distance has been used together with an
NN classifier (DTW-NN) to provide a strong baseline [4].
More recently, Collective Of Transformation-based Ensembles
(COTE) combines the strengths of multiple approaches to
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handle various aspects of time series data can yield better

classification accuracy. Lines et al. further extended COTE to

create HIVE-COTE [5] by incorporating a hierarchical vote
system. These approaches, however, involve high complexity
for both training and inference.

Deep learning-based time series classification methods, like
InceptionTime [6], have gained popularity for their strong
performance. However, supervised learning often requires
large amounts of labeled data, which can be challenging to
acquire in large-scale time series applications where labeled
data is often scarce or difficult to obtain [7]-[11]. Recently,
contrastive learning techniques have used augmentations to
create positive samples, allowing encoders to produce robust
and discriminative representations by bringing similar data
points closer and pushing dissimilar ones apart. For instance,
TimCLR [12] employs DTW [13] to handle temporal variations
and achieve promising performance. However, these methods do
not fully utilize positive samples’ fine-grained relative similarity
(e.g., rank).

To this end, we propose Rank Supervised Contrastive
Learning (RankSCL) to tackle this issue and yield more
effective representations to facilitate time series classification.
The key idea is to rank the importance of different positive
samples to better understand the potential landscape of feature
space. Specifically, we make full use of the information
of positive samples by leveraging their relatively similarity
information in terms of rank. We encode the rank by taking
account of the number of triplets in which the distance of
anchor-negative pairs is smaller than anchor-positive pairs. A
targeted data augmentation technique is designed to generate
designated samples, aiming to enrich the information for
the same category and enhance the boundary from different
categories. By combining these two techniques, our proposed
RankSCL has been thoroughly evaluated on 128 UCR datasets
and 30 UEA datasets. Our experiment results demonstrate that
the proposed RankSCL can achieve state-of-the-art performance.
Our main contributions include:

« We develop a novel rank supervised contrastive learning
framework and present a novel rank loss that assigns different
weights to different levels of positive samples.

« We propose a targeted data augmentation technique based
on RSCL to generate designated positive samples that can
enrich the information of samples from the same category
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and distinguish the boundary among different categories.

e Our empirical studies on 128 UCR datasets and 30 UEA
datasets demonstrate that the proposed RankSCL outperforms
the state-of-the-art.

II. RELATED WORK
A. Contrastive Time Series Representation Learning

In contrastive learning, enriching the representation space
through the appropriate generation of positive and negative
pairs is crucial. Traditionally, positive pairs are closely aligned,
while negative pairs are distanced, as in SimCLR [14], where
different augmentations of the same sample are positive, and
different samples are negative. Recent works have introduced
new pair designs to capture invariant features. For example,
TimCLR [12] uses DTW [13] for phase-shift and amplitude-
change augmentations suited to time series. TS2Vec [15]
defines contrastive loss at both instance-wise and patch-wise
levels, separating time series into patches, while TS-TCC
[16] introduces a temporal task to predict future sequences
from augmentations. CoST [17] applies contrastive loss across
time and frequency domains to capture seasonal and trend
patterns, and TF-C [18] focuses on optimizing time and
frequency-based representations. InfoTS [19] maximizes fidelity
and variety in augmentations through information-theoretic
principles. However, these approaches rarely leverage fine-
grained relative similarity (e.g., rank) of positive samples.

B. Time Series Classification

Time series classification is a rapidly advancing field.
Traditional non-deep learning methods like TS-CHIEF [20],
ROCKET [21], and DTW-NN [22] have been foundational.
However, deep learning models now outperform these methods
by pursuing better representations. InceptionTime [6] applied
inception networks to time series to capture local patterns.
MACNN [23] used attention mechanisms to enhance the
classification performance of multi-scale CNNs. For multivari-
ate TSC, CA-SFCN [24] incorporated variable and temporal
attention modulation.

C. Time Series Data Augmentation

Data augmentation is critical for deep learning in time
series. Traditional methods fall into time, frequency, and time-
frequency domains. In the time-frequency domain, Yao et al.
[25] applied short Fourier transforms (STFT) to generate fea-
tures from sensor data, enhancing human activity classification
using a deep LSTM network.

III. METHOD
A. Notations and Problem Definition

A time series instance z; is represented by a 1" x F' matrix,
where T is the time step and F' is the feature dimension. With
F =1, x is a univariate instance, otherwise x is known as a
multivariate instance. Given a set of [N time series instances
X = {x1, 2,23, ..., 2N}, the objective is to learn a nonlinear
function fy that maps each x to a D dimensional vector
v € RP, which preserves its semantics and D < T x F.

In supervised settings, we have a subset of X, denoted by X,
where each instance x is associated with a label y.

B. Framework

The overall architecture is shown in Figure 1. Raw time
series data is input into an encoder network, fg, to learn
low-dimensional representations, which are then passed to a
projection head. Each sample serves as an anchor, with positive
samples defined by label similarity [26]; those with different
labels are negative. Data augmentation is applied to embeddings
to enrich intra-class information. A rank-supervised contrastive
loss is used to train both the encoder and projection head. For
classification, we follow contrastive learning frameworks [14],
discarding the projection head and using the encoder’s hidden
representations.

C. Model Architecture

The key components of our method include the encoder
network and projection head.

Encoder Network fy(-). As shown in Figure 1, we use a
3-layer Fully Convolutional Network (FCN) to map the input
time series x; to the representation r; = fp(x;). Each layer
consists of a convolutional layer, batch normalization, and
ReLU activation, followed by global average pooling to reduce
weights.

Projection Head gy(-). Inspired by SimCLR [14], we use
a small MLP projection head to transform r to z; = gg(r;),
followed by a normalization function to map the representations
on a unit hypersphere. The projection head is used only during
training and discarded during inference.

D. Data Augmentation on the Embedding Space

The selection of a suitable augmentation strategy for con-
trastive learning frameworks stands as a crucial challenge. A
common approach involves selecting augmented data points
that are substantially divergent from the original data, thereby
introducing increased variability to foster a more robust encoder.
Yet, this strategy often leads to issues of distributional shifts,
as highlighted in recent studies [15].

Diverging from traditional contrastive learning approaches
that apply data augmentation directly to raw time series data,
our method addresses these challenges within the embedding
space. For each training instance and its corresponding label
(24,9;) in the labeled dataset X, we utilize the encoder
network coupled with a projection head to generate a compact
embedding z; of x; within a unit hypersphere. We introduce
jittering with scale «, denoted by ¢, as a selected augmentation
operation. An augmented instance is then obtained through
2l =ta(2).

To further enhance diversity, we consider a set of two jittering
operations with distinct scales, 7 = {t,,, ta, }- In practice, we
set @; = 0.03 and s = 0.05. As indicated in prior research
[15], augmentations performed in the hidden space effectively
preserve label information. Consequently, both the augmented
instances and their original labels are incorporated into the
current training batch.
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Fig. 1: Overview of RankSCL framework, consisting of three components: (1) a Fully Convolutional Network that captures
the embeddings of raw time series instances, (2) targeted data augmentation that generates more samples in the embedding
space, (3) selection of valid triplets and calculation of rank loss to train the encoder network. Even though this figure shows a
univariate time series instance as an example, the architecture supports multivariate instances.

By applying small-scale jittering to embeddings in a compact
unit hypersphere, our augmentation technique not only enriches
valid information but also mitigates potential issues related to
distribution drift or the creation of outliers.

E. Selection of Valid Triplet Pairs

In contrastive learning, the primary goal is to maximize the
similarity between positive samples while keeping negative
samples distinct. Early models used a single positive and neg-
ative pair per minibatch. Recent advancements, incorporating
multiple positive and negative pairs [26], [27], have led to
progress in fields like computer vision [26] and NLP [28].
However, these approaches often require considering all anchor-
negative pairs, which can be computationally intensive.

To optimize this process, we propose the novel concept
of a “valid hard negative pair” for contrastive learning. In
this context, for an anchor instance z, and a corresponding
positive sample x,,, a negative sample x,, is deemed “valid hard”
if the distance dist(x,,x,) between the anchor z, and the
negative sample x,, is less than the distance between the anchor
and the positive sample, i.e., dist(xq,T,) < dist(zq,Tp). A
triplet formed by these criteria, (24, Zp, Ty ), is then defined
as a valid triplet pair. This approach focuses on more
challenging and informative negative examples during training,
thereby enhancing the discriminative power of the resultant
representations.

FE. Rank Supervised Contrastive Learning Loss

In traditional contrastive learning, a key overlooked aspect
is the variable distances of different positive samples from
the anchor. Treating all positive samples equally, without
considering their proximity to the anchor, may not effectively
capture the nuanced potential representations of a class.

Fig. 2: Valid Triplet Selection

Additionally, this approach is susceptible to the influence of
outliers, potentially introducing noise into the learning process.

To address this issue, we introduce the concept of ranking
different positive samples and propose a novel rank-supervised
contrastive learning loss function. This function differentially
weights positive samples based on their utility in training the
model. We first define the set of valid hard negative samples
for an anchor-positive pair (x4, z,) as:

X3 = {an|dist(za, ) < dist(za, )} (1)

The intuition behind this approach is that a positive sample
with fewer valid hard negative samples is likely closer to
the anchor and therefore more informative for the class
representation. Such samples should be given more weight.
Conversely, a positive sample with a larger X‘(f;,) might be
distant from the class centroid and treated with lower weight,
as it could potentially be an outlier introducing noise. To
implement this, we rank positive samples based on the count
of their valid hard negative samples. In this framework,
distinct positive samples receive different weights during the
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learning process. A high-rank positive sample, indicating a
larger number of valid hard negatives, may offer less valuable
information for the class and is more likely to be an outlier.
In contrast, a low-rank positive sample, with fewer valid hard
negatives, is weighted more heavily, suggesting it provides
more relevant information for the class.

Formally, we define the rank of a pair (z,,z,) based on the
size of its valid hard negative sample set:

heval

Z 1(dist(zq,xn) < dist(xq,xp)). (2)

n

R(xq,xp) =

Here, 1(-) is an indicator function. This rank-based approach
aims to enhance the model’s ability to discern between more
and less informative positive samples, thereby refining the
training process and improving the quality of representations.

The discrete nature of the indicator function in the rank
function R(z,, x,) presents a challenge for optimization during
the training process. To address this, we replace the indicator
function with a continuous approximation using the sigmoid
function o (-). Consequently, the revised rank function becomes:

XG5
R(zq,xp,) = Z o(dist(zq,zp) — dist(zq, ), (3)
n
where o(k) = 7 + ——¢ is the sigmoid function.

We introduce a novel objective function that assigns dif-
ferentiated weights to positive samples based on their ranks,
penalizing poorly ranked samples more heavily. Lower-ranked
samples, which have more negative samples closer to the anchor,
receive less weight as they may be outliers and contribute noisy
information. We use the arctan function to map ranks, ensuring
the loss increases less for higher-ranked samples as R grows.
Our final objective function is:

Z Z arctan

Remark. The choice of mapping functions significantly affects
our model’s performance. We compared log(l + z) with
arctan(z) and found arctan(z) performed better. While our
loss function concept is similar to [29], we uniquely apply
the inverse tangent function to adjust the weights of positive
samples.

L(R(zq,zp)) (Tasxp)) 4)

IV. EXPERIMENTS
A. Datasets and Baselines

The classic two different kinds of benchmark datasets are
used for the evaluation'. For the multivariate time series
classification task we use the UEA archive [30] consists of
30 multivariate datasets, while the UCR archive [31] has 128
univariate time series datasets for the univariate time series
classification task. The extensive experiments are conducted
compared with other SOTAs, such as InfoTS [19], TimesNet
[32], TS2Vec [15], T-Loss [33], TNC [34], TS-TCC [16],

! https://www.cs.ucr.edu/~eamonn/time_series_data/
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Fig. 3: Critical Difference (CD) diagram of Univariate Time
series classification task
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Fig. 4: Critical Difference (CD) diagram of Multivariate Time
series classification task

TST [35] and DTW [13]. To better test the quality of the
representations, we chose more comprehensive metrics and all
of the baseline models are measured by the same metrics.

B. Univariate Time Series Results

Table II summarizes the experiment results from the UCR
datasets. RankSCL outperforms other baselines in terms of
Precision score, F1 score, and Recall value. It improves 0.1%
classification precision score, 0.4% F1 score, and 0.3% Recall
value. The results of all the experiments are the results obtained
by taking the mean value according to the 5 different seeds.

In particular, the RankSCL model achieves a similar accuracy
score over the best baseline TS2Vec on all 128 UCR datasets.
In terms of ACC, our method outperforms TS2Vec in 72 out of
128 UCR datasets, InfoTS [19] in 96 datasets, and T-loss [33]
in 88 datasets out of 125 datasets. Figure 3 shows the Critical
Difference diagram of different methods on 128 UCR datasets.
This result indicates that RankSCL has similar results with
the TS2Vec [15] model in terms of Accuracy scores, while
significantly outperforming the other methods.

C. Multivariate Time Series Results

Table II presents the results on UEA multivariate time series
datasets, where RankSCL outperforms all baselines across all
metrics. Specifically, RankSCL surpasses the best baseline,
TS2Vec [15], by 2.0% in Accuracy, 3.2% in Precision, 3.3%
in F1 score, and 3.5% in Recall. These results highlight the
effectiveness of RankSCL’s augmentation techniques and rank
loss function, particularly for multivariate time series data.

D. Ablation Study

We evaluate different variants of the RankSCL model on
the PigCVP dataset, as shown in Table III, to assess the
effectiveness of our method. To assess the effectiveness of
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Dataset RankSCL  InfoTS TS2Vec T-Loss TS-TCC DTW  TimesNet TNC
UCR 2.430 3.824 2.465 3.531 5.508 5.277 5.211 7.754
UEA 2.433 3917 3.650 4.800 5.550 4.483 4.233 6.933

TABLE I: Average Rank values for 128 UCR datasets and 30 UEA datasets

128 UCR 30 UEA
Method ACC?T Prec.t FI1T Recalt ACC?T Prec.?T F171T Recall 1
RankSCL  0.821 0.817 0.803 0.789 0.715 0.719  0.705 0.692
InfoTS 0.733 0.723  0.705 0.688 0.669 0.672  0.657 0.643
TS2Vec 0.822 0.816  0.799 0.783 0.695 0.687  0.672 0.657
TS-TCC 0.685 0.603  0.566 0.533 0.617 0.573  0.533 0.499
T-Loss 0.782 0.750  0.743 0.737 0.581 0.572  0.545 0.520
DTW 0.679 0.672  0.668 0.646 0.654 0.645  0.624 0.605
TimesNet  0.688 0.675  0.649 0.625 0.676 0.664  0.639 0.616
TNC 0.406 0.305 0291 0.279 0.345 0311  0.286 0.265

TABLE II: Classification results on 128 UCR datasets and 30 UEA datasets

Avg. Accuracy T Avg. Precision T Avg. F1 T Avg. Recall 1

RankSCL 0.797 0.834 0.793 0.756
w/o Data Augmentation 0.636 0.663 0.62 0.582
w/ Data Augmentation (Raw Data) 0.519 0.550 0.500 0.458
w/o FCN (Resnet Backbone) 0.318 0.319 0.293 0.271
w/o Rank Loss (CE) 0.636 0.663 0.620 0.582
w/o Rank Loss (CTL) 0.676 0.710 0.663 0.622
w/o Rank Loss (TL) 0.506 0.532 0.509 0.488

TABLE III: Ablation studies on PigCVP dataset

Number Avg. Accuracy T Avg. Precision T Avg. F1 1 Avg. Recall T
0 0.636 0.663 0.62 0.582
5 0.797 0.834 0.793 0.756
10 0.517 0.544 0.503 0.468
15 0.520 0.560 0.504 0.458

TABLE IV: Data Augmentation Analysis on PigCVP dataset
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Fig. 5: The t-SNE visualization of representations of SyntheticControl dataset (with 6 classes). (Best viewed in color)

the data augmentation, we evaluate different numbers of
augmented positive samples. The results demonstrate that
without augmented positive samples, accuracy drops by 16.1%,
with further performance decline in other metrics. Increasing
the number of augmented samples beyond 5 reduces perfor-
mance, indicating that more augmentations do not always
improve results. Augmenting raw time series data (w/o Data
Augmentation (Raw Data)) is less effective than augmenting
in the embedding space, supporting our method. Comparing
encoder architectures, FCN outperforms other options (w/o
FCN (Resnet Backbone)). Additionally, our rank-based arctan
loss function proves superior to cross-entropy (CE), contrastive
loss (CTL), and triplet loss (TL).
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E. Qualitative Evaluation

Using t-SNE, we project the SyntheticControl dataset (6
classes) from raw space to two dimensions (Figure 5(a)) and
compare it with the embeddings from TS2Vec and RankSCL.
Both TS2Vec and RankSCL show well-separated clusters, but
TS2Vec forms 7 clusters, while RankSCL correctly forms 6,
matching the number of classes. This indicates that RankSCL
preserves clearer class boundaries.

V. CONCLUSION

In this paper, we propose RankSCL, a supervised contrastive
learning framework for time series classification. We introduce
a new data augmentation method to generate targeted positive
samples, enriching intra-class information. A mining rule
reduces computational complexity by capturing valid triplet
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pairs. Additionally, we propose a rank loss function to optimize
representation learning. Evaluation results demonstrate that with
effective data augmentation, valid triplet pairs, and enriched
intra-class information, RankSCL learns robust representations
applicable to future tasks and other data modalities.
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