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Abstract: Recent advances in generative artificial
intelligence (Al) and multimodal leaming analytics
(MMLA) have allowed for new and creative ways of
leveraging Al to support K12 students' collaborative
leaming in STEM+C domains. To date, there is lit-
tle evidence of Al methods supporting students' col-
laboration in complex, open-ended environments. Al
systems are known to underperform humans in (1)
interpreting students' emotions in leaming contexts,
(2) grasping the nuances of social interactions and (3)
understanding domain-specific information that was
not well-represented in the training data. As such,
combined human and Al (ie, hybrid) approaches are
needed to overcome the current limitations of Al sys-
tems. In this paper, we take a first step towards in-
vestigating how a human-Al collaboration between
teachers and reg archers using an Al-generated mul-
timodal timeline can guide and support teachers' feed-
back while addressing students' STEM+C difficulties
as they work collaboratively to build computational
models and solve problems. In doing so, we present
a framework characterizing the human component of
our human-Al partnership as a collaboration between
teachers and ree archers. To evaluate our approach,
we present our fimeline to a high school teacher
and discuss the key insights gleaned from our dis-
cussions. Our case study analysis reveals the effec-
tiveness of an iterative approach to using human-Al
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collaboration to address students' STEM+C chal-
lenges: the teacher can ug the Al-generated time-
line to guide formative feedback for students, and the
ree archers can leverage the teacher's feedback to
help improve the multimodal timeline. Additionally, we
characterize our findings with respect to two events
of interest to the teacher: (1) when the students cross
a difficulfy threshold, and (2) the point of intervention,
that is, when the teacher (or system) should intervene
o provide effective feedback. It is important to note
that the teacher explained that there should be a lag
between (1) and (2) to give students a chance to re-
solve their own difficulties. Typically, such a lag is not
implemented in computer-based learning environ-
ments that provide feedback.

KEYWORDS

human-Al collaboration, K12 education, MMLA, multimodal
learning analyticz, STEM+C leaming, teacher supports, timeline
dashboard

INTRODUCTION

Recent studies show that STEM4+C (Science, Technology, Engineering, Math and Computing)
open-ended leamning environments enhance conceptual understanding and practice (eg,
Hutchins, Biswas, Mardti, et al, 2020). These environments promote the synergistic leaming
of science and computing concepts by engaging students in contextualized, problem-based
leamning (Astuti et al, 2021; Grover & Pea, 2013). The next-generation science standards
(NGSS) advocate for the integration of science and engineering, and emphasize computa-
tional thinking (CT) as a critical skill (Mational Research Council, 2012; NGSS, Next genera-
tion science standards: For states, by states, 2013). However, integrating multiple knowledge
domains introduces complexities, which may cause students to encounter difficulties span-
ning multiple domains (Basu et al., 2016; Hutchins, Biswas, Mardti, et al_, 2020).

Building computational models of scientific processes is effective in fostering integrated
STEM+C learning (Sengupta et al., 2013). In the C2STEM environment, students collabo-
ratively translate scientific concepts into computational models using block-based program-
ming, guided by domain-specific modelling languages (DSML) that support the interplay
between science and computing (Hutchins, Biswas, Mardti, et al., 2020).

In previous work, researchers have studied how students synergistically learn kinematics
and computational thinking while working on a Truck Task in C2STEM. Pairs of students
model a fruck's accelerated motion, speeding up from rest, cruising at a speed limit and
decelerating to stop at a stop sign. Students apply kinematic laws that connect physics
concepts like position, velocity and acceleration with computing concepts such as variables,
loops and conditional statements to build a computational model that simulates the truck's
movement. C2STEM facilitates this process by providing a domain-specific, block structured
environment that allows students to construct computational models, and offers execution,
visualization and debugging tools to help students build and refine their models (Hutchins,
Biswas, Mardti, et al., 2020; Hutchins, Biswas, Zhang, et al., 2020). An example solution for
the Truck Task is provided in Figure 1.
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Practitioner notes

What is already known about this topic

Collaborative, open-ended leaming environments enhance students' STEM+C
conceptual understanding and practice, but they introduce additional complexities
when students learn concepts spanning multiple domains.

Recent advances in generative Al and MMLA allow for integrating multiple da-
tastreams to derive holistic views of students' states, which can support more
informed feedback mechanisms to address students' difficulties in complex
STEM+C environments.

Hybrid human-Al approaches can help address collaborating students' STEM+C
difficulties by combining the domain knowledge, emotional intelligence and social
awareness of human experts with the general knowledge and efficiency of Al

What this paper adds

We extend a previous human-Al collaboration framework using a hybrid
intelligence approach to characterize the human component of the partnership
as a researcher-teacher partnership and present our approach as a teacher-
researcher-Al collaboration.

We adapt an Al-generated multimodal timeline to actualize our human-Al collabo-
ration by pairing the timeline with videos of students encountering difficulties, en-
gaging in active discussions with a high school teacher while watching the videos
to discern the timeline's utility in the classroom.

From our discussions with the teacher, we define two types of inflection points to
address students' STEM+C difficulties—the difficulfy threshold and the interven-
tion point—and discuss how the feedback fafency interval separating them can
inform educator interventions.

We discuss two ways in which our teacher-researcher-Al collaboration can help
teachers support students encountering STEM+C difficulties: (1) teachers using
the multimodal timeline to guide feedback for students, and (2) researchers using
teachers' input to iteratively refine the multimodal timeline.

Implications for practice and/or policy

Our case study suggests that timeline gaps (ie, disengaged behaviour identified
by off-screen students, pauses in discourse and lulls in environment actions) are
particularly important for identifying inflection points and formulating formative
feedback.

Human-Al collaboration exists on a dynamic spectrum and requires varying de-
grees of human control and Al automation depending on the context of the leamn-
ing task and students' work in the environment.

Our analysis of this human-Al collaboration using a multimodal timeline can be
extended in the future to support students and teachers in additional ways, for
example, designing pedagogical agents that interact directly with students, devel-
oping intervention and reflection tools for teachers, helping teachers craft daily
lesson plans and aiding teachers and administrators in designing curricula.

While working on the Truck Task, students face challenges such as translating kinematic
equations into computational structures and calculating the look head distance for deceler-
ation. As an example, not using the correct conditional forms when modelling the look head
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FIGURE 1 C2STEM Truck Task (Sng er et al., 2024).

distance to slow down and stop the truck can lead to the truck moving backwards, and
students struggle to associate this movement with negative velocity values. Additionally, stu-
dents often misconstrue the differences between updating variables incrementally (‘change
by* block) and setting variable values (‘set’ block). These issues underscore the complexity
of STEM+C learning and the need to understand student thought processes and problem-
solving approaches, and help them overcome their difficulties. To gain insights into student
behaviours and outcomes, we collect and analyse multimodal data including video (via Open
Broadcaster Software; OBS), screen recordings, audio (captured with lapel microphones
and transcribed using Otter ai; hitps./otter ai/) and C2STEM system logs to understand stu-
dents' collaborative problem-solving behaviours. This comprehensive data collection en-
ables nuanced analysis of student interactions and leamning experiences.

Multimodal learning analytics (MMLA) literature underscores the value of integrating mul-
tiple data types to enhance the understanding of student leaming processes, often reveal-
ing subtleties not apparent in unimodal data (Liu et al, 2019; Olsen et al_, 2020; Vrzakova
et al., 2020). Despite its advantages, multimodal data analysis presents challenges, such
as the labor-intensive tasks of collecting, cleaning, labelling, preprocessing and analysing
(Kubsch et al_, 2022; Liu et al., 2018, 2019). Recent advances in generative Al offer some
relief by streamlining the labelling and analysis of multimodal data, and providing deeper
insights into student behaviours. However, Al models often struggle with domain-specific
tasks that fall outside of the Al model's training (Cohn, 2020). Additionally, they underper-
form humans at interpreting emotions in context and understanding the nuances of social in-
teractions (Jarvela et al., 2023). Therefore, we advocate for a hybrid approach that combines
human expertise in domain knowledge, emotional intelligence and social context with the
efficiency of Al for multimodal analysis, ensuring a comprehensive understanding of student
leaming in rich STEM+C environments.

Our research is driven by the goal of enhancing human capabilities, not replacing them
(AR taetal, 2020). We draw inspiration from Jarvela et al. (2023), who demonstrate the ben-
efits of human-Al collaboration in analysing socially shared regulation in learning (SSRL). By
extending their approach to include researcher-teacher partnerships, we highlight the need
for expertise of diverse stakeholders (Coburn & Penuel, 2016; Thompson et al., 2017) and
aim to deepen the understanding of students' collaborative behaviours and SSRL processes
(Holmlund et al., 2018). In our human-Al collaboration model, we integrate the perspectives
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of teachers and researchers fo create Al tools that provide actionable insights into class-
room studies. This collaborative loop involves teachers identifying pedagogical needs that
inform the development of Al tools by researchers, which are then refined based on teach-
ers' classroom experiences.

This paper seeks to address the following exploratory research question: How can hu-
man-Al collaboration using an Al-generated multimodal timeline assist teachers in identifying
student challenges in STEM+C learning and crafting supportive feedback? We adopt a case
study approach and extend a hybrid intelligence framework (Al ta et al., 2020) to character-
ize human-Al collaboration with two sets of human stakeholders—teachers and research-
ers. To facilitate this collaboration, we use an Al-generated muiltimodal timeline inspired
by previous work (Fonteles et al., 2024) to identify student challenges during the C2STEM
Truck Task. This timeline amalgamates diverse data types: students' emotional responses,
synergy scores, social interaction metrics, prosodic audio cues, verbatim conversation tran-
scripts, prior physics and computing knowledge, log-segmented and -contextualized sum-
maries from a large language model (Snyder et al., 2024), synchronized video and screen
recordings, and detailed logs of student actions within the C2STEM environment. Unlike
prior work, our timeline considers students' collaborative dynamics (via social interaction
metrics, discourse summaries and speaker diarization) and includes the use of synergy
scores and prior domain knowledge. The timeline presented in this work is the direct result
of our previous co-design efforts (Cohn, Snyder, et al_,2024) with a high school physics and
computer science (CS) teacher (the Teacher).

We document our interactions with the Teacher using video and audio recordings as we
review the timeline, analysing these recordings to extract key insights. The Teacher, who de-
signed and taught the C2STEM kinematics curriculum for a high school physics class, has
20years of teaching experience across all levels of high school (and some middle school)
in both low- and high-performing schools, and holds a Bachelor of Science in Electrical
Engineering. In his own words, his pedagogical efforts centre on developing students' tech-
nical k ills and fostering their interest in STEM with the goal of ensuring that a broader, more
diverse range of students leave high school prepared for and interested in pursuing engi-
neering fields. To support this goal, he began collaborating with several Vanderbilt University
laboratories 10years ago to develop integrated CS curricula, addressing the significant gap
in CS education in Tennessee.

To answer our research question, we use the Al-generated timeline to help the Teacher
better understand students' STEM+-C difficulties as they work on the C25TEM Truck Task
and analyse the video and audio recordings to study the researcher, teacher and Al inter-
actions by memoing key findings (Hatch, 2002). Our goal is to support the teacher in gener-
ating actionable insights by identifying students' difficulties and helping students overcome
them. In the following sections, we discuss our hybrid intelligence approach to Al-human
collaboration, present the results of our exploratory analysis and discuss directions for fu-
ture research.

HUMAN-AI COLLABORATION IN EDUCATION

Understanding student learning is a multifaceted endeavour that encompasses metacogni-
tive, cognitive and social dimensions (Baker, 2015; Snyder et al., 2019; Zimmerman, 2002).
To gain a comprehensive understanding of students’ learning processes, teachers and re-
searchers must draw on a broad array of data sources. Teachers in classrooms, for exam-
ple, interpret students' verbal and non-verbal cues and emotional states during interactions,
and are conscious of their students' backgrounds and preferences. Research has shown
that multimodal data, including students' speech, actions and video, can provide a more
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comprehensive view of leaming than individual data modalities (Blikstein & Worsley, 2016;
Emerson et al,, 2020; Nasir et al,, 2021). However, the complexity of analysing such data
necessitates methods, often Al-based, to structure and coordinate the data collection pro-
cess using multiple sensors, and requires developing tools that analyse the data and provide
information that can enhance student learing. Given the recent advances in Al, a natural
question arises about the balance between Al-supported automation, and human oversight
and decision-making (Culs rova, 2024).

Human-Al collaboration in education can adopt varying degrees of human control, in
contrast to Al automation (jllustrated in Figure 2). Intelligent tutoring systems (ITSs) typically
involve high Al automation with limited human control and provide personalized leaming in
a structured format (Graesser et al., 2012). Conversely, open-ended learning environments
(OELES) offer greater human control by varying the levels of exploration and discovery that
students are exposed to (Hannafin et al., 2014). Al is often used to generate feedback on
students' problem-solving processes (Basu et al., 2017; Munshi et al., 2023). Traditional
classroom supports like dashboards represent a lower level of Al automation, where Al
analyses and presents data, leaving interpretation and decision-making to teachers and
students (Hutchins & Biswas, 2024; Molenaar & Knoop-van Campen, 2019).

This spectrum also applies to analysis techniques (also illustrated in Figure 2). Fully au-
tomated Al analysis, such as engagement classifiers for student videos, minimizes human
involvement (Stimer et al., 2023). In contrast, techniques like large language model (LLM)
prompt engineering can require more human input to refine and assess Al outputs (Cohn,
Hutchins, et al., 2024). Human-led analysis methods, such as Interaction Analysis (Hall &
Stevens, 2015) or hand-coding discourse, can be augmented by Al to reduce data pro-
cessing time without replacing human judgement. Al is often leveraged to support, but not
replace, human-led analysis methods. As an example, Al algorithms can automatically tran-
scribe student speech to decrease analysis time, but the transcripts are then hand-coded
using qualitative analysis methods (Bokhove & Downey, 2018).

The effectiveness of leaming supports and analysis techniques hinges on a synergistic
relationship between humans and Al. Hybrid intelligence approaches advocate for Al to aug-
ment human intellect, supporting goals unattainable by either alone (Akata et al., 2020). In
education, human-Al collaboration can enhance understanding and support effective leamn-
ing. Our work demonstrates this collaboration in action, showing how it can improve under-
standing students' difficulties and inform the development of future leaming supports.

Human-Al Collaboration in Education

Low Al Automation
High Human Control
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Low Human Controd -
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MULTIMODAL TIMELINE: HUMAN-AI COLLABORATION
IN PRACTICE

To comprehend student learning in STEM+C, we leverage a multimodal visual timeline
representation originally developed in Fonteles et al. (2024). The timeline integrates multiple
data sources—webcam footage, screen recordings, audio of group discussions and
C2STEM system logs—and aligns derived information from the data temporally, offering
a detailed view of student interactions with the system and with each other over time. This
facilitates seamless navigation and visualization of events that combine multiple modalities.
Figure 3 depicts the collaborative efforts of teachers, researchers and Al in creating and
utilizing the timeline. For this project, we adapted the timeline by Fonteles et al. (2024) based
on previous findings by Cohn, Snyder, et al. (2024) that suggest visual timelines may aid
teachers in providing instructional supports to students, and also based on our own expertise

Teacher, Researcher, and Al Collaboration

Student ]
---p»| Problem Solving O;““T >| Multimodal Data ]
in C2STEM J roug

Al | Researcher |

v

: i Analysis Decisions

E ; a;ch#irsaT;:L based on context and
i P goals

' ¥

.-—-i Detect/Analyse ]( l

¥
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Y Features and U|
: Development

Timeline Development

i Usage of Timeline ,
' : h 4

Intervention
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: ' Insights about Validation & Timeline

i ; reqguirements Optimization

| ¥ Y \
i [ Identification of Student Difficulties and Development of Supports

FIGURE 3 Teacher, researcher and Al collaboration framework.
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with multimodal data and Al analysis. The timeline serves as a tool for both researchers and
teachers to meaningfully interpret the analysed data.

As outlined in fourth section, the Teacher employs the timeline to address student chal-
lenges and provides insights to refine it for subsequent applications. The timeline provides
a holistic perspective on students' engagement with the task and helps pinpoint pivotal mo-
ments in students’ model building, social interactions and affective states. By analysing tem-
poral patterns, we can detect key instances of students' struggles and successes. Teachers
can use this information to extract actionable insights and develop additional instructional
strategies and formative feedback to support their students (Hutchins & Biswas, 2024).

Figure 4, adapted from Jarveld et al. (2023), illustrates the multimodal analysis meth-
ods within the timeline and how human-Al collaboration can be applied to enhance our un-
derstanding of student interactions, with teacher feedback shaping the analysis approach.
Students' problem-solving activities are observed across multiple datastreams, specifically
logged actions, audio, video and student assessments. Each datastream can be processed
by either Al, a human or a combination of both. Within our framework, the ‘Human’ role
can be fulfilled by a teacher, researcher or the two working together. In this case study, the
researcher was responsible for the initial data processing (eg, Validation and Correction of
Affect and Transcripts), while the Teacher was responsible for Analysing and Sense Making
and Identification of Student Difficulties and Development of Support. Logged data were
used to construct a hierarchical task-oriented process of student actions, which we used to
segment our videos (Snyder et al., 2024). This segmentation, along with audio transcription
and diarization, was then utilized for segment-specific LLM summarization. Video processing

Human-Al Collaboration in Practice
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FIGURE 5 Al-generated multimodal visual timeline adapted from Fonteles et al. (2024).

was employed to detect affective states. Both Al-generated transcripts and affective states
were subsequently validated and corrected by a human. These validated modalities were
then integrated into a multimodal timeline, which served as a visualization tool for the teacher
to identify students' difficulties and inform his support decisions.

Figure 5 shows the timeline with the human-validated modalities from Figure 4. The in-
tegrated temporal visual representation provides an augmented understanding of student
interactions paired with video watching. The subsections detail the timeline's components
and corresponding collaborative analysis methodologies.

Video and subtitles (1 in Figure 5)

The video data consist of screen recordings and webcam footage, captured via OBS and
laptop webcams, with subtitles from transcribed student speech captured via lapel micro-
phones. Lapel microphones were used to collect audio data instead of laptop webcams
to reduce background noise, and we used Otter.ai to automatically transcribe and diarize
the students' conversations. Transcripts were manually corrected by researchers, blending
human oversight with Al automation.

C2STEM actions (2 in Figure 5)

The timeline provides contextual insights through a ‘track’ that displays visual representa-
tions of students' high-level C2STEM actions, categorized using a hierarchical task-oriented
structure adapted from (Emara et al., 2021). This structure classifies student actions into five
interpretable categories:

*» Build: Students add components to their model.
» Adjust: Students move, edit or remove blocks from their model.
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» Draft: Students move or edit blocks not connected to their executable model (akin to com-
menting code).

» Execute: Students run their executable model.

» Visualize: Students use data tools or inspect variable values.

While developing the hierarchical task-oriented structure involves human expertise, the
processing of C2STEM actions within these categories is fully automated.

Speaker data (3 in Figure 5)

Speaker data are derived from audio data diarized via Otterai (with human correction)
and shown on the timeline with coloured segments indicating individual students as active
speakers. This facilitates the analysis of conversational dynamics, including conversational
pauses. Prosodic audio analysis also contributes insights into conversational dynamics and
speech patterns, particularly when studied in combination with the transcript subtities that
provide semantic information about these interactions. Just as in section ‘Video and sub-
titles (1 in Figure 5)’, this process blends Al automation with human oversight, combining
Al-generated diarization with human validation.

Emotion detection (4 in Figure 5)

The timeline uses colour-coded segments to depict students' detected emotions. Since these
study data were collected during the COVID pandemic, students wore masks. In addition,
students sometimes moved away from the webcam's view. To make our multimodal emotion
recognition more robust, we combined video and audio data. For video frames, we initially
used multi-task cascaded convolutional networks (MTCNNSs) for face detection, followed
by face re-identification to distinguish individuals (Gupta et al, 2018; Zhang et al., 2016).
We then applied HSEmotion for predicting valence and arousal (Savchenko, 2023), com-
plemented by Lawpanom et al's (2024) model for masked facial expression detection. We
employed Wagner et al's (2023) method to analyse speech valence and arousal. Non-verbal
audio cues, such as pitch and intensity, contributed to assessing emotional valence and
arousal, while sentiment analysis of transcribed text provided additional context.

We fused the valence and arousal data from speech and video using decision-level fu-
sion, aligning the speech data with the corresponding video frames. The values of valence
and arousal ranged from —1 to +1 and were automatically categorized into four emotional
quadrants based on Russell's circumplex model (Russell, 1980). When both valence and
arousal values are positive, they fall under the first quadrant. If arousal is positive and va-
lence is negative, it is considered the second quadrant. If both are negative, it is the third
quadrant, and if valence is positive and arousal is negative, it falls under the fourth quad-
rant. This classification is widely used in the literature, and we followed the same approach
(Mollahosseini et al., 2017, Posner et al,, 2005; Toisoul et al, 2021).

In the absence of speech, facial expressions were summarized at five-second intervals
(Fonteles et al., 2024). Apart from quadrant-based classification, we also recorded the exact
valence and arousal values. The literature indicates that these values can be used to de-
rive learning-centred emotions. We used these values to classify emotions into Engaged
Concentration, Boredom, Confusion, Frustration and Delight (Akpanoko et al, 2024;
Akpancko & Biswas, 2024; Fonteles et al, 2024). We then integrated an LLM (GPT-4;
OpenAl et al, 2024) to assign leaming-centred emotions to each utterance, which were
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fused with the video and speech data to generate the final emotion predictions. For the
textual component, we provided the transcribed text (obtained via Otter.ai, as mentioned in
sections Video and subtitles (1 in Figure 5 and *Speaker data (3 in Figure 5)) to the LLM
via the OpenAl API. Our prompts contained LLM task instructions, study content details (eg,
the specific subject matter discussed), C2STEM task context details, and the sentence for
leamning-centred emotion classification.

Although we had the leaming-centred emotions for the entire dataset, we did not have
ground truth data to verify the accuracy of the model. To address this, we validated our emo-
tion recognition process by having two human annotators independently review a randomly
selected >20% of the instances for each emotion. The inter-rater reliability among the two
annotators, measured by Cohen's Kappa, was 0.94 overall, and a perfect 1 for confusion
and frustration, indicating a high level of agreement and validating our affective state rec-
ognition. Our approach balances human control with Al automation, leveraging Al to derive
valence, affect and speech transcriptions, and using human annotators (ie, researchers) to
validate our emotion recognition process and develop the LLM prompts.

Group information (5 in Figure 5)

Students' prior knowledge influences their social skills and domain-specific collaborative
problem-solving (CPS) behaviours (Yang et al, 2015). To better understand their interac-
tions, we incorporate students' prior physics and computing knowledge into the timeline.
This knowledge was classified as high or low based on pretest scores relative to the median.
Although grading was done manually by our research team (indicating high human control),
advances in LLM-based grading suggest there is potential for increased Al automation in the
future (Cohn, Hutchins, et al_, 2024).

Segment summary information (6 in Figure 5)

We segmented students' multimodal data temporally using a context-specific method based
on the model component the students were working on (Snyder et al., 2024), rather than an
arbitrary segmentation method devoid of educational context (Knight et al., 2017). An LLM
then summarized these segments, providing an overview of the video content and capturing
the evolution of discussions and task interactions. This LLM-based summarization, which
required human oversight, represents a midpoint on the spectrum between human control
and Al automation.

Segment metrics (7 in Figure 5)

We included three segment-level metrics to capture the nature of student dialogue and
collaborative dynamics. The research team manually coded utterances for physics and
computing content, calculating a synergy score to quantify the interweaving of science and
computing content (values near 1 indicate high synergy; values near 0 suggest domain
focus).

We do not currently use Al to calculate synergy scores, but recent work suggests LLMs
may be leveraged towards this end (Cohn, Snyder, et al., 2024). We also measured social
collaboration measures like turn-taking and equity (Rummel et al., 2009) using diarized ut-
terances to assess students' contribution balance.
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CASE STUDY METHOD

We adopted a case study approach to demonstrate how the multimodal timeline further
facilitates human-Al collaboration. In our study, we used the timeline as the basis for
researcher-teacher-Al interactions to (1) understand students' model building and problem-
solving work in the C2STEM environment, (2) identify specific points where students are
having difficulties and (3) make decisions on when to intervene and how to help students
overcome their difficulties. To design and implement the multimodal timeline, we leveraged
previous findings and teacher insights from Cohn, Snyder, et al. (2024). We selected two
scenarios for two groups of high school students working on the C2STEM Truck Task in
a classroom study (see first section). The research team then worked with the Teacher in
two 90-minute sessions to review the two video segments and analyse the data presented
in the timeline. The sessions were recorded and then reviewed by the research team to
extract key findings that we discuss in fifth section.

Scenario details

Scenario 1 involved students S21 (with low physics and high computing prior knowledge)
and S7 (with high physics and low computing prior knowledge). The students worked to-
gether and contributed equally to the discussions. In this scenario, the group was working
on modelling the truck’s cruising motion. They assessed their model utilizing the data tools
(ie, the graph). After having difficulty interpreting the graph, they recognized that the truck's
acceleration never switched to 0 but instead stayed at the initial acceleration value. This was
because they did not set the acceleration value to 0 while updating the velocity variable.
One student suggested the error was due to not initializing the ‘delta_t’ variable. Though the
group had the physics knowledge to recognize that acceleration impacts velocity and must
be set to 0 in order for the truck to cruise at a constant velocity, they had difficulty in debug-
ging the update velocity construct.

Scenario 2 featured students S2 (with low prior knowledge in both domains) and S8
(with high prior knowledge in both domains). Throughout the scenario, S8 took the lead in
discussing the model building process but involved S2 by asking questions and verbally
expressing her thoughts. In the specific segment, we analysed, the students were model-
ling the motion of the truck slowing down to stop at a stop sign. They began by editing their
conditional statement that governed when the truck should start to decelerate (ie, via the
look head distance). They encountered difficulties using the kinematic equations to com-
pute the look head distance and instead used a trial-and-error approach to determine the
value. The errors in their model resulted in the truck moving backwards. Confused as to why
this happened, the group changed a different conditional statement that aimed to stop the
simulation once the truck reached the stop sign. Overall, the group used an ineffective de-
bugging strategy to update the look head distance. They also lacked the physics knowledge
to recognize that the truck began to slow down too early, causing the velocity value to reach
0 before the stop sign, after which the negative acceleration led to a negative velocity that
caused the truck to move backwards.

Teacher-researcher-timeline interactions
In the first meeting, we introduced the Teacher to our multimodal timeline, discussing its

components and some of the possible inferences that we could derive from it. The Teacher
first observed each scenario without the timeline and then interacted with the timeline to
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identify student difficulties and consider possible interventions. The discussion was gener-
ally open-ended, but we provided some guidance by asking the Teacher the following ques-
tions: (1) how do you identify students' difficulties? (2) how do you decide whether or not to
intervene? and (3) if you intervene, what guides your interventions?

In the second meeting, we went through the two scenarios again but focused on the feed-
back the Teacher would give the students. We extended the video viewing past the original
stopping points to give the Teacher a more complete picture of how the students worked
further to address their difficulties. In both scenarios, the students summoned a researcher
who provided help. We inquired about the Teacher's views on the researcher's feedback and
his own feedback strategies. We also wanted to know what guided the Teacher's feedback
strategies. At the end of each interview, we sought the Teacher's impressions of the timeline
and his suggestions for improving its utility in identifying and supporting student difficulties
in C25TEM.

RESULTS

Pursuant to the Figure 3 framework, our findings reveal two primary ways in which our
teacher-researcher-Al collaboration using the multimodal timeline can help identify students'
challenges and craft supportive feedback: (1) the Teacher can use the multimodal timeline
to derive a more holistic view of students' problem-solving processes from which to better
guide his feedback, and (2) the researchers can leverage the Teacher's feedback towards
iteratively refining the multimodal timeline to make it more useful to the Teacher. We discuss
both of these in the subsections that follow.

Teacher: Using Al timeline to support student feedback

During discussions about the Al-generated multimodal timeline, the Teacher identi-
fied key moments for its use to support student learning. We refer to these moments
as inflection points (Munshi et al., 2023) and highlight two pivotal ones: (1) a difficulty
threshold when students encounter a challenge, and (2) an intervention point when a
teacher decides to provide feedback. Al-based pedagogical agents often merge these
inflection points, using strategy-based triggers for intervention (eg, Basu et al, 2017).
Contrary to this approach, the Teacher emphasized the importance of allowing students
to navigate through difficulties. He discussed the idea of productive failure and students'
need to develop debugging skills—key elements in open-ended learning environments
(Kapur, 2008; Land, 2000).

An important consideration is the gap between the difficulty threshold and interven-
tion point, that is, the feedback latency interval that allows teachers to observe student
behaviour and craft tailored feedback based on their observations of students' domain
understanding and problem-solving approaches. In our case, this involved the teacher
reviewing students' timelines after the fact, but in the future we envision teachers sitting
at their classroom desks, monitoring students' work on aggregated timelines as they work
on their problem-solving tasks in the C2STEM environment. Importantly, leveraging the
feedback latency interval to more effectively support students has broader implications
for teachers' instructional practices, which we discuss in sixth section. We explore the
dynamics of the difficulty threshold and intervention point in the paragraphs that follow,
along with the specific modalities the Teacher found most useful for informing his inflec-
tion point determinations and decisions.
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Scenario 1

Using our multimodal timeline, we can leverage the collaboration between the teacher,
researchers and Al to identify the point at which students begin to experience difficulties
in C2STEM. With both Scenarios (see section ‘Scenario details’), the Teacher was asked
to identify what he believed to be the difficulty threshold, and he highlighted specific com-
ponents (ie, modalities) of the timeline that he felt best helped him identify these inflection
points:

...the words on its own, the timeline, looks like one of the good indicators here is
that they're actually talking more.__but with very few actions. ..

| mean, watching the screen, | could also see that they were just puzzling over
what was going on there without doing anything...

.50 the lack of action might be a good indicator. .

In these examples from Scenario 1, the Teacher recognized the transcript, speech (audio),
students' video and actions in the C2STEM environment as influencing his determination of
the difficulty threshold. He also recognized frustration and boredom (disengaged behaviour)
as being particularly useful for making his determination (eg, ‘I'd like to know if there's some
way to identify.. that frustration point, somebody like disengaging from the computer..’).
Disengagement included situations where the students looked off screen (identified by gaps
in affect detection; *.._he's frustrated, and she's off screen here_."). Students repeating ac-
tion sequences without making adjustments to the model (eg, repetitive ‘visualize + execute’
seqguences) could also indicate a lack of progress, he remarked (*._.it was just running the
same thing over and over. .").

In Scenario 1, students encountered the difficulty threshold when they demonstrated a
misunderstanding about the relationship between position, velocity and acceleration while
translating these relations into computational form. The students used C2STEM's graph tool
to assess the truck's velocity and acceleration but were unable to figure out how to make the
truck slow down. In this instance, the teacher relied heavily on the students' conversations
to identify the difficulty threshold: ‘.. they are misaligning in their speech (the acceleration,
the velocity)..”. Leveraging the feedback latency interval, the Teacher remarked that the stu-
dents' difficulties ‘are occurring in lulls of their interest or their competence’ (determined by
their speech). He then inquired about whether the students had figured out how to make the
truck cruise at a constant velocity. At this point, he realized the students ‘.. are not changing
velocity, and they're not actually using the velocity to mark the positions..’, which was illus-
trated via the students' computational model on the screen.

The Teacher emphasized timeline gaps as being particularly informative. He mentioned
that these gaps are important for detecting difficulty thresholds and could similarly be used
to inform his specific intervention decisions. His continued focus on these gaps from both
this and previous work (Cohn, Snyder, et al., 2024) is notable:

.. think going just away from the screen. . _just the gap is enough of an indicator
already if that is in fact away from the screen._ .| still think just in general, being
away from the screen means something else is going on. That means enough
to me right now. ..
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...I'd like to know if there's some way to identify that kind of, that lull...

_that was the lull where | should be intervening because now they're, they are
just stuck...

Given the ‘lulls’ (ie, timeline gaps), and the students' failure to connect position and ve-
locity computationally, the Teacher ultimately decided he would intervene. It is worth noting
that the Teacher supplemented the use of this timeline with his own teaching experience,
stating, “.. listening to them, | feel instinctually called to intervene’. He used the timeline to
augment (not supplant or suppress) this experiential instinct by considering facets of the stu-
dents' behaviour and understanding to help guide his intervention strategy. As discussed,
the Teacher referenced several reasons, derived from several modalities, for wanting to
intervene (eg, timeline gaps and conceptual misunderstandings in their speech). However,
he also used the timeline's screen recording to recognize that the students were exhibiting
an effective debugging strategy by using the graph tool ("...they've been using the graph
effectively...”). He weighed all of this information before ultimately deciding the students in
Scenario 1 required an intervention, at which point he chose his intervention point by scroll-
ing to a particular point in the video, saying, *...it's in this range right here that I feel like |
need to intervene_ "

Scenario 2

In Scenario 2, the students first tested different look head distance values using a trial-
and-error approach. They were unable to debug the truck moving backwards systemati-
cally, that is, by isolating variables to pinpoint the source of the truck's erroneous behaviour.
Interestingly, the Teacher remarked that students’ ‘delight’ on the timeline could play a role
in identifying the students’ difficulty threshold, as they exhibited positive valence (likely ‘sur-
prise’) when their model performed in a manner other than intended (*...we hit the same
delight and then kind of, dropping curve, into inattention, which actually makes me think
that delight is the surprise.. you found something unexpected..’). The Teacher also noted
boredom and off-screen behaviour as signs of disengagement (°.._the [student] on the right's
affect is boredom, while the student on the left is off screen._’). Just as in Scenario 1, the
Teacher used the timeline to help formulate his understanding of the difficulty students were
experiencing (‘l got the sense that that was as much because she was irritated, it wasn't
working, and was just trying something’). Unlike Scenario 1, the Teacher's focus on student
affect in Scenario 2 suggests a reliance on emotion over discourse for gauging difficulty
thresholds (although the Teacher did refer to students' emotions in both Scenarios).

The Teacher opted not to intervene in Scenario 2. He stated he would allow students
to continue problem-solving, as he believed their issue lay in their computational model
development (derived from the screen recording) rather than their physics understanding
(derived from discourse audio; ‘1 don't think that necessarily means anything was wrong
with their physics, | think it does mean that they hadn't fleshed out the computational model
in the code for themselves’). Despite encountering the difficulty, the students continued to
problem-solve and investigate the source of their misunderstanding. The Teacher felt the
students should be afforded the opportunity to continue debugging their code as long as
they continued to interact with the environment meaningfully (ie, by performing new actions
in the environment and not random or repeated ones; ‘I don't think I'd want to intervene here
unless something about that never went back to a new action’).
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TABLE 1 Timeline modalities considered by the Teacher for identifying inflection points in both Scenarios.

Difficulty threshold Intervention point
Scenario 1 Student Emotions Discourse Audio
Student Video Environment Screen
Discourse Transcript Recording
Discourse Audio
Environment Actions
Scenario 2 Student Emotions Discourse Audio
Student Video Environment Screen
Recording
Emvironment Actions

Nate: Modalities used in more tham one context are colour-coded accordingly. ltems in bold highlight similarities across
Scenarios for that particular inflection point.

Use of data modalities and timeline features to support student
problem-solving

The Teacher considered multiple modalities and timeline features to identify both sets of in-
flection points (ie, difficulty thresholds and intervention points), and these modality sets dif-
fered across Scenarios. Table 1 presents the primary modalities considered by the Teacher
in various contexts, based on our findings above.

Table 1 illustrates the diverse array of modalities the Teacher considered while identifying
inflection points across Scenarios. The shift in modalities considered by the Teacher in dif-
ferent contexts highlights the dynamic interpretability of the timeline. In each Scenario, and
for each inflection point, the Teacher was able to focus on the modalities he deemed most
informative. For instance, the Teacher relied on Student Emotions and Student Video for
identifying difficulty thresholds in both Scenarios. Similarly, he focused on Discourse Audio
and Environment Screen Recordings for determining intervention points. This suggests that
the Teacher prioritized students' affective states, and their visual appearances and interac-
tions, more heavily while determining if they were experiencing difficulties. Conversely, the
content of the students' discourse and their computational models (shown via the screen
recording) played a larger role in his intervention decisions.

Just as in previous work (Cohn, Snyder, et al., 2024), the Teacher emphasized the impor-
tance of being able to visualize student data, which was the original impetus for our timeline
(“...it's just a good indicator; it's a nice visual way to see when things went wrong..’). This is
further evidenced by his reliance on the Student Video, Student Emotions and Environment
Screen Recording modalities in bold in Table 1. Additionally, the Teacher suggested creat-
ing graphical representations of student knowledge states: *.._a matrix or even a web idea,
and you're just trying to figure out how far in any direction they can take the knowledge that
would be like this holistic idea. Like this is what their knowledge is..". This suggests that
the Teacher values visual tools not only for tracking students' progress and understanding
their difficulties, but also their potential to offer comprehensive, multidimensional views of
students' domain knowledge.

Crucially, the Teacher expressed interest in being aware of difficulty thresholds (even
when interventions were not required), especially if they recur across groups, to inform po-
tential future interventions: °.__.| wouldn't want to intervene here, but would want to know
that this had happened, and how much it happened across groups’. In a real-time class-
room setting, we envision the Teacher monitoring students' timelines from his desk. When
students encounter a difficulty threshold, that specific timeline could be highlighted on the
screen to alert the Teacher to the specific student(s) encountering the difficulty. At that
point, the Teacher could use the timeline to observe students and decide whether and how
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to intervene. This approach would also allow for aggregated metrics and reporting, as we
could use Al to analyse information from every timeline to alert the teacher to difficulties and
misunderstandings that permeate the classroom.

In both Scenarios, the Teacher used insights from the Al-generated multimodal timeline to
determine intervention timing and type, differentiating between classroom-level interventions
that address the entire class and group-level interventions tailored to specific groups or indi-
viduals. Classroom-level interventions were deemed important by the Teacher, as a single
group's struggles often reflect widespread misconceptions. For example, when students in
Scenario 1 misunderstood the velocity-acceleration relationship, the Teacher preferred to offer
corrective, formative feedback to all students instead of just those encountering the difficulty:

_the baseline stuff's not happening, and so that feels like a thing that the whole
class also needs to have reminded of_._so from a formative standpoint, | feel
like I need to go back and rehash the simulation steps and how the acceleration
affecting velocity expecting position. ..

.1 think | would suspect.. that there's plenty of other people that need similar
fixes. ..

At the group level, the Teacher considered intervening in Scenario 1 when students strug-
gled with velocity and acceleration concepts, as previously discussed. In Scenario 2, he
chose not to intervene, allowing students to problem-solve independently (though they even-
tually sought help on their own). The Teacher discussed effective feedback strategies for
intervention points, such as prompting students to articulate their difficulties and goals (*...I
think 1'd still want them to have to articulate first, just to get an idea of what's going on.."). He
suggested recalling past successes to connect current challenges to previous knowledge:
* I think calling back to previous knowledge to try to get them to connect something that
had been done successfully and try to remember why it was successful is the right move._".
He also recommended crafting reflective questions based on observed difficulties to guide
students before intervening, deciding whether feedback should address domain knowledge
or problem-solving strategies (‘What's the right question to ask in that context to get them
thinking about what they're doing'?).

Researcher: Using teacher feedback to improve Al timeline

Just as we analysed how the Teacher used the Al-generated timeline to support students,
we studied how researchers can leverage the Teacher's feedback to identify additional
useful features for the timeline, as well as refine existing ones, with the goal of improv-
ing the timeline’s utility and functionality to more effectively support students. The teacher
frequently highlighted how he found Al-generated features, actualized through the timeline
modalities, useful to support student learning. In particular, he focused on the intuitiveness
of the timeline's visual components and Al's ability to provide a holistic view of student
problem-solving:

_it's very intuitive just to follow along. ..

.| think it's a crucial point, and it's also the inflection point marked again, by
Al___so._| think that's a good sign that the Al is picking up on things changing. ..

_..the segmentation was nice to compare what the Al was doing. .
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In addition to the Teacher using the timeline to identify difficulty thresholds and inform
intervention points, he also alluded to using the timeline to plan subsequent class instruction
(orchestration). In instances where classroom-level interventions are required, but immediate
interventions may be disruptive to students' problem-solving, the Teacher highlighted how
he could address students' difficulties post hoc by solidifying their understanding of domain
knowledge and encouraging the use of more effective problem-solving strategies:

.1 think that given those misunderstandings, and the code, that would be some-
thing | would watch for would be my formative feedback to want to go back and
address on the next lesson with a whole class...

| think | would want to do that with everyone just to make sure that we're all fol-
lowing the same steps that would essentially be something | would do before we
tackle this again the next day. ..

Overall, our findings demonstrate that the Teacher found the timeline useful for support-
ing students through classroom orchestration. This goes beyond identifying their inflection
points and crafting real-time feedback and suggests that the teacher-researcher-Al collab-
oration may similarly be worth investigating in future work for curating lesson plans or even
designing and refining curricula fo better meet student needs.

Our discussions with the Teacher also revealed several insights into how we can improve
the timeline. While the Teacher remarked that he found the LLM summaries useful as a
reference, he revealed that he did not rely on them for identifying inflection points or guiding
interventions. Instead, he found other timeline components (such as the emotion tracks,
synergy and social metrics and transcripts) more useful:

_.I'm not opposed to summaries per se, it's just | don't find myself reading them
often. .

_..even just the timestamps and scores, but surely tum-taking and synergy
scores would probably be more than enough. ..

...it"'s nice to see the scores at the bottom. ..
.. like all the text, | tend to go to the visual bars at the bottom first...

The Teacher's underutilization of LLM summaries during this case study is in stark con-
trast to previous work, where he relied on students' discourse segment summaries to char-
acterize students' synergistic learning (Cohn, Snyder, et al., 2024). This suggests that, in
addition to the Teachers' modality preferences differing across scenarios and inflection
points (as shown in Table 1), they can similarly differ across tasks depending on the specific
needs of the teacher. For this case study, the Teacher remarked that the LLM summaries
would be more useful for real-time feedback if they instead characterized students' difficul-
ties (ie, what exactly the students were struggling with), as opposed to summarizing their
discourse and actions.

The Teacher also expressed interest in knowing which student was more active in an as-
signed task, stating it would be helpful to know if one student was doing most of the talking
or controlling the laptop more (*.. who's running the mouse? Is there a way to tell that'?).
Knowing this, he could encourage the less involved student by asking him or her reflective
questions while allowing the more involved student to continue leading and imparting infor-
mation to the less involved partner. In addition, he recommended the transcripts be click ble
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and scrollable, and that they should highlight the specific physics and computing concepts
students discuss: *...1 do like to use the transcript to skip...| can scan for the words I'm
looking for and if they were already highlighted in some fashion.._have a filter to jump to the
regions of the video | want to pay attention to._".

Overall, these findings demonstrate how the human-Al partnership with a multimodal
timeline can produce effective teacher-researcher-Al collaboration and drive the iterative
refinement of technology-based multimodal analytics to support teachers in addressing stu-
dents' STEM+C difficulties. From the Teacher's quotes, we can conclude that he found
multiple timeline features useful. The Teacher also suggested improvements. His use of
the timeline for identifying inflection points and guiding feedback, along with his timeline
critiques, have implications beyond the specific use case we describe in this work (illustrated
in Figure 4). We discuss these implications in sixth section.

DISCUSSION AND CONCLUSIONS

Our teacher-researcher-Al collaboration offers insights into leveraging a multimodal time-
line for identifying student difficulties and formulating feedback in STEM+C leaming. The
Teacher's distinction between difficulty thresholds and intervention points was very reveal-
ing, as was his using the feedback latency interval to inform decisions on whether and how
to intervene. In another example of a human-Al partnership, intelligent tutoring systems are
often designed to trigger instructional support immediately upon the detection of a prede-
termined event (Azevedo et al., 2022; Munshi et al_, 2023; Sottilare et al., 2014), treating the
difficulty threshold and intervention point as a single inflection point. However, little research
has investigated whether refining ITS triggering mechanisms to make use of the lag be-
tween these two events would positively affect student behaviours and outcomes.

This deliberate lag also has implications beyond Al-driven educational development and
may speak more broadly to teachers' instructional practices. In their work characterizing
the micro-zone of proximal development (ie, the optimal moment for intervention), Shvarts
and Abrahamson (2019) discuss a tutor who chooses not to intervene immediately despite
the student's actions deviating from the tutor's perceived ideal actions. By waiting, the tutor
allowed the student to solve the problem on her own and was able to select a more optimal
intervention point to encourage student reflection and introduce a new conceptualization of
the problem to advance the student's understanding. This suggests that defining the diffi-
culty threshold and intervention point as two distinct inflection points may have benefits be-
yond human-Al educational partnerships, extending to instructional support practices more
broadly and calling for further research exploration.

Overall, the Teacher found the Al-generated timeline to be useful in understanding student
problem-solving behaviours and their difficulties, and providing more informed feedback,
within the context of our framework. As discussed in third section (illustrated in Figure 4), this
paper relied more heavily on researchers to address the initial ‘Human® tasks (tinted blue in
Figure 4; eg, Transcript Validation and Correction) that drove our timeline's creation and im-
plementation, while the researchers primarily relied on the Teacher to address the Analysing
and Sense Making and Identification of Siudent Difficulties and Development of Support
components. Importantly, we envision our Figure 3 framework extending beyond the specific
use case illustrated in Figure 4 to include continued co-design where teachers and research-
ers work in tandem to perform tasks like Aufo-Segmentation, LLM-Summarization and Hand
Coding, allowing teachers greater agency in the design process (Hutchins & Biswas, 2024,
Sarmiento & Wise, 2022). Just as our human-Al collaboration spectrum in Figure 2 illustrates
the balance between Al automation and human control, a similar spectrum could be used to
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highlight the balance between teacher and researcher contributions, and highlight how vari-
ous contexts may demand different inputs from both sets of stakeholders.

The Teacher's enthusiasm for using visual representations as mechanisms for under-
standing learners' problem-solving behaviours is also informative, supporting findings from
previous work (Cohn, Snyder, et al., 2024) that inspired our timeline's creation. Given his
reliance on the timeline's visual components, one promising avenue for further research
is exploring the use of learner models (Dillenbourg & Self, 1992) and knowledge graphs
(Abu-Rasheed et al, 2024) to model both classroom- and group-level representations of
students’ understanding visually. Echeverria et al. (2019) extend this idea of visualizing stu-
dents' domain understanding to also include collaboration. Their approach, collaborative
transiucence, presents key features of group activity visually, which they ground theoreti-
cally (in the physical, epistemic, social and affective dimensions of group activity) and con-
textually (using domain-specific concepts in the domain of nursing training). We see a similar
application to students collaborating in C2STEM, based on the Teacher's insights.

Another point that the Teacher focused on both here and in previous work was using
gaps in problem-solving (like pauses or disengagement) to support students. His emphasiz-
ing this point across multiple interviews and tasks underscores the significance he places
on these gaps for understanding students' problem-solving behaviours, contextualizing the
difficulties they encounter and guiding intervention decisions and strategies. Cossavella
and Cevasco (2021) previously studied the importance of ‘filled’ pauses (ie, using filler
words such as ‘uh’ and ‘um’) in the construction of coherent representations of spoken lan-
guage discourse. Historically, these pauses were largely considered performance errors
(Chomsky, 1965); however, Cossavella and Cevasco (2021) point out that filled pauses are
often used to focus listeners' attention on upcoming speech, which is not necessarily indica-
tive of a lack of knowledge or understanding. This speaks to the importance of distinguishing
productive pauses (ie, those encouraging further engagement) from those signalling disen-
gagement or a lack of conceptual understanding.

The Teacher's emphasis on student disengagement and its identification across multiple
modalities motivates the need for collecting and using multimodal data for analysing student
leamning in open-ended learning environments. His interest in effectively navigating through
videos (see Section 5) highlights an opportunity for future work to enhance the Al-generated
timeline using LLM-based event identification, which we are actively pursuing in our current
research. By allowing teachers to query the LLM for instances of student disengagement,
these moments can be automatically marked on the timeline for further exploration to help
differentiate productive pauses from conceptual misunderstandings. Leveraging Al-driven
insights from teachers to refine educational technologies extends beyond our timeline and
can similarly be used to embed adaptive feedback mechanisms in learming environments,
automatically responding to students' needs and reducing the instructor's workload in the
classroom. This automated scaffolding allows teachers to engage more deeply in analysing
and enhancing their pedagogical approaches. As a result, they can focus their attention
on struggling students who require direct human interventions, ensuring that all students
progress through the curriculum effectively. While many ITSs employ adaptive scaffolding
to varying degrees (Anwar et al., 2022; Azevedo et al., 2022 Koike et al., 2021), iteratively
refining scaffolding using teacher input remains largely unexplored.

Limitations and future work
Our case study interviews with the Teacher mark an exploratory first step in examining the

teacher-researcher-Al partnership and are not intended to present generalizable findings.
Instead, we aim to shed light on the notable gap in educational research that characterizes
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human-Al collaboration in terms of Al and two key stakeholders by demonstrating that in-
corporating all three perspectives allows (1) teachers to leverage Al tools to provide more
informed feedback to students, and (2) researchers to leverage teacher input for improving
Al tools for teachers. We also acknowledge that the Teacher's pedagogical approach highly
influences his timeline usage and intervention strategy (eg, leveraging productive failure).
This raises questions with regard to the specificity—scalability trade-off in human-centred
design (HCD), which involves balancing the degree of user specification and customizability
against the broader need for scalable solutions (Lyon et al, 2020). Teachers' needs vary,
and their sense-making relies heavily on pedagogical standpoint. In the future, we will ex-
plore the generalizability and scalability of this partnership with other teachers whose peda-
gogical standpoints may differ from that of our Teacher.

Additionally, our case study does not involve a teacher using this tool while working in
a real-world classroom. In the future, we envision our timeline dashboard being available
to help teachers monitor students' problem-solving behaviours during class instruction and
immediately after, alerting teachers to students encountering difficulties and allowing teach-
ers to make more informed decisions on whether and how to intervene. Going forward, we
will (1) leverage the Teacher's insights from this case study and others to refine our timeline
through continued co-design with both teachers and students; (2) investigate the ways in
which our timeline may be deployed live in a real-life classroom and (3) develop other Al-
driven approaches to identify difficulty thresholds and provide explicit, actionable guidance
for educator use in the classroom (as indicated by the dotted lines in Figure 3). We will also
extend our analysis supporting the multimodal timeline to inform teacher reflection and de-
velop intervention tools that support student problem-solving, whether via a timeline dash-
board for teachers, or pedagogical agents that interact directly with students and provide
adaptive feedback informed by teacher input.

Finally, the way in which humans interact with technology is not unilateral. As discussed,
how teachers interact with technology is largely a product of pedagogical standpoint (eg,
the specific timeline modalities our Teacher focused on), and students are likely to adapt
to what they perceive as intelligent systems' routines, abilities and weaknesses. While rec-
ommending future research directions for spoken language interaction with robots, Marge
et al. (2022) state, ‘people invariably form mental models of the artifacts they interact with'.
As technology evolves, so do humans' behaviours and expectations, which in tum inspires
further technological innovation (eg, mechanisms to reduce ChatGPT hallucinations, tox-
icity and misuse). Both parties influence and adjust to each other, adapting and changing
based on the other's actions and needs. This co-regulation creates a complex and dynamic
interaction, emphasizing the need to investigate how introducing a multimodal timeline (and
other technologies) in the classroom affects both teacher and learner behaviour.

Conclusion

This case study characterizes human-Al collaboration in terms of a partnership between
teachers, researchers and Al. Using our multimodal timeline, the teacher-researcher-Al col-
laboration offers a comprehensive view of students' experiences while working on tasks,
enabling researchers and teachers to identify inflection points and derive actionable insights.
Our findings encourage further exploration into the potential for human-Al collaboration in
education. By examining temporal patterns and trends, it is possible to identify critical mo-
ments of difficulty, success and collaboration. Connections between data modalities offer a
deeper understanding of the interplay between affective states, social dynamics and leaming
outcomes. Emotion labelling enables nuanced analysis of students' emotional states and
their impact on leaming, highlighting opportunities for emotional regulation and support. We
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believe that this work will inspire future multimodal research exploring the richness and ben-
efits of human-Al collaboration in terms of teachers, researchers and other stakeholders.
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