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Figure 1: A high-level overview of MELDER. Short overlapping video clips are sliced to extract lip landmarks for character 
prediction, which are appended to a bu�er to reduce the processing time by simultaneously slicing and recognizing them. As 
character predictions are made, the strings are auto-completed with the most probable words, then eventually with the most 
probable phrases. 

ABSTRACT 

Silent speech is una�ected by ambient noise, increases accessibil-
ity, and enhances privacy and security. Yet current silent speech 
recognizers operate in a phrase-in/phrase-out manner, thus are 
slow, error prone, and impractical for mobile devices. We present 
MELDER, a Mobile Lip Reader that operates in real-time by splitting 
the input video into smaller temporal segments to process them in-
dividually. An experiment revealed that this substantially improves 
computation time, making it suitable for mobile devices. We further 
optimize the model for everyday use by exploiting the knowledge 
from a high-resource vocabulary using a transfer learning model. 
We then compare MELDER in both stationary and mobile settings 
with two state-of-the-art silent speech recognizers, where MELDER 
demonstrated superior overall performance. Finally, we compare 
two visual feedback methods of MELDER with the visual feedback 
method of Google Assistant. The outcomes shed light on how these 
proposed feedback methods in�uence users’ perceptions of the 
model’s performance. 
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1 INTRODUCTION 

Speech input, an auditory-based language processing technique 
that transcribes acoustic signals into text, stands out as one of the 
most intuitive and e�cient means of engaging with mobile devices. 
It holds the potential to enhance user comfort and productivity, 
particularly when conventional input methods like touchscreens 
and physical keyboards prove ine�cient, cumbersome, or incon-
venient [89]. Moreover, it serves as a crucial accessibility feature, 
empowering individuals with limited motor skills to seamlessly 
interact with mobile technology without reliance on manual dexter-
ity. This functionality also proves invaluable for those experiencing 
situationally-induced impairments and disabilities (SIID), a cate-
gory encompassing instances where hand use is restricted due to 
concurrent tasks, glove-wearing, or minor injuries [92]. However, 
it is important to acknowledge that while speech input excels in 
numerous interaction scenarios, its suitability may be compromised 
in situations characterized by high ambient noise levels, privacy 
and security considerations, or pre-existing speech impairments 
[26, 27]. 
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Silent speech input, an image-based language processing method 
that translates users’ lip movements into textual content, presents 
a promising solution to address a multitude of challenges [81]. Its 
independence from acoustic cues allows for versatile application, 
thriving even in noisy or sensitive environments like libraries or 
museums. Moreover, it signi�cantly bolsters privacy and security, 
given the limited number of individuals skilled in lip reading. In 
fact, studies indicate that even those skilled in lip reading can typi-
cally comprehend only about 30-45% of spoken English [65], further 
underscoring the privacy and con�dentiality advantages of silent 
speech. Silent speech further promotes inclusivity by accommodat-

ing individuals who are unable to vocalize or have speech disorders, 
thereby making communication with computers more accessible. 

In pursuit of optimal silent speech recognition, researchers have 
explored various sensor-based techniques, achieving high accu-
racy in speech transcription [73, 78, 83, 88, 107]. However, these 
approaches often entail invasive, unwieldy, and non-portable se-
tups, rendering them impractical in real-world scenarios. Recent 
endeavors have aimed to harness video-based recognition, com-

monly referred to as digital lip reading, to facilitate silent speech 
communication [3, 9, 16, 18]. Yet, many of these models are primar-

ily tailored for high-performance computing devices, like desktop 
computers [3, 9, 77]. Even with ample computational resources, 
these models exhibit sluggish response times, susceptibility to er-
rors, and a lack of real-time functionality, making them unsuitable 
for mobile devices. Additionally, existing models tend to support 

only a limited, pre-determined vocabulary, hampering their appli-
cability in everyday conversational interactions. 

A well-known challenge in developing deep learning models is 
the demand for substantial data for training, particularly datasets 
tailored to speci�c vocabularies, a time-consuming and arduous 
process. Thus, the imperative arises to design models robust enough 
to operate e�ectively with modest data quantities, without com-

promising performance. Furthermore, the exploration of interface 
and feedback mechanisms tailored for silent speech interaction on 
mobile devices has remained ignored in the literature. A mobile-

optimized interface is of paramount importance, as it directly im-

pacts user experience and usability. The creation of a swifter, more 
accurate, and real-time silent speech recognition system optimized 
for mobile devices, thus, holds the potential to serve as a versatile 
medium for input and interaction tasks, seamlessly integrating into 
daily routines. 

This paper presents MELDER, a Mobile Lip Reader optimized for 
performance and usability on mobile devices. The contribution of 
the work is �ve-fold. First, it develops a new real-time silent speech 
recognizer that improves recognition performance on mobile de-
vices by splitting the input video into smaller temporal segments, 
then processing them individually. Second, it introduces a transfer 
learning approach aimed at enhancing the performance of silent 
speech recognition models in everyday conversational contexts. 
Through a study, we validate the applicability of this approach, 
demonstrating its e�ectiveness not only with MELDER but also 

Table 1: A summary of experiments conducted in this work, including conditions, number of phrases, sample size, and total 
number of videos used in the experiments. 

Experiment Conditions Phrases Sample Size Total Videos 

1 

Windowing Functions (4) Models (3) 
Linear: ~ = G + 5 LipNet 

30 × 3 = 
90 random [77] 

# = 12 
90 × 12 

= 
1,080 

Linear: ~ = 2G + 5 Transformer 
Non-linear: ~ = G 3 LipType 
Non-linear: ~ = 2G 

2 

Transfer Learning Strategies (3) Models (3) 

30 random [69] # = 12 
30 × 12 

= 
360 

Finetune_Last LipNet 
Finetune_Visual_Frontend Transformer 

Finetune_Sequence LipType 

3 

Models in Stationary Condition (3) 

30 random [110] # = 20 
30 × 20 

= 
600 

RT-LipNet 
RT-Transformer 

MELDER 

4 

Models in Mobile Condition (3) 

30 random [110] # = 6 
30 × 6 
= 
180 

RT-LipNet 
RT-Transformer 

MELDER 

5 

Method + Visual Feedback (3) 

30 random [110] # = 12 
30 × 3 × 12 

= 
1,080 

Google Voice Assistant 
MELDER + Word-level Feedback 
MELDER + Phrase-level Feedback 
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with other pre-trained models. Third, a comparative evaluation 
of MELDER against two state-of-the-art silent speech recognition 
models, assessing their performance in both stationary (seated po-
sition) and mobile settings (while walking). Fourth, it introduces 
two visual feedback methods designed for silent speech recognition 
systems to keep the users informed about the ongoing recognition 
process. These methods are compared with the feedback method of 
Google Assistant in a qualitative study. Fifth, the dataset1 and the 
source code and other material produced in this study2 are freely 
available to download for research and development, encouraging 
replication and further investigations in the area. Table 1 provides 
a summary of all the experiments conducted in this work, detailing 
aspects such as the conditions under which each experiment was 
carried out, the number of phrases used, the sample size of partici-
pants, and the total number of videos utilized in these experiments. 

2 RELATED WORK 

Silent speech input is a form of unspoken communication that 
allows users to interact with mobile devices without making any 
audible sounds. As opposed to speech, this method allows users 
to communicate e�ectively with mobile devices without invading 
their privacy and security or disrupting the environment. There 
have been several previous attempts at achieving silent speech 
communication through sensor-based recognition and video-based 
recognition. 

2.1 Sensor-Based Recognition 

Speech production mechanism is composed of several stages, start-
ing from the conceptual idea, followed by brain signals, muscular 
activity, and, �nally, sound waves. In order to develop silent speech 
interfaces, researchers acquire and process information from dif-
ferent stages of speech production. Some of them have utilized 
ultrasonic imaging to achieve silent speech interaction by measur-

ing mouth and tongue movements through a sensor attached under 
the chin [24, 25, 29, 32, 38, 43, 44, 57, 117]. However, the technique 
requires applying gel to the skin to obtain the echo images, which 
is a complicated and expensive process. 

Several studies have attempted to estimate speech by using elec-
tromyography (EMG) to measure muscle movement around the 
mouth [45, 48–50, 52, 70, 93, 112]. It is, however, di�cult to estimate 
speech with EMG because it uses movement of the oral cavity as a 
basis for gesture recognition. As a result, there are fewer detectable 
commands and the user must learn new gestures instead of us-
ing existing speaking abilities. Another study recognizes tongue 
gestures with an electrostatic sensor array installed in the mouth 
[64]. Since the sensor must be placed in the mouth, it interferes 
with normal activities like eating and conversing. A recent work 
employs electropalatography (EPG) to observe tongue movements 
as users spell out a word to detect individual letters within the word 
[55]. The method uses a hidden Markov model (HMM) to decode 
100Hz 16-dimensional signal from the EPG. Research has indicated 
that EPG is an e�ective approach for detecting individual letters 
in spelling (97% character accuracy), but it is considered intrusive 

1MELDER Dataset: https://www.theiilab.com/resources/MELDER_Data.zip
2MELDER Source Code: https://github.com/theiilab/MELDER 

and not very user-friendly due to its reliance on an arti�cial palate 
equipped with embedded sensors. 

Fukumoto [30] propose the “ingressive speech” method, where a 
microphone is placed very close to the front of the mouth to capture 
soft speech sounds. However, placing the device in front of the 
mouth is obtrusive and hinders social interactions. Several studies 
have also attempted to achieve silent communication with non-
audible murmurs (NAM) [39–41, 72] by using a microphone worn 
on the skin or throat to recognize speech. In this case, the user uses 
articulate respiratory sounds without vibrating their vocal folds 
(i.e., whispering). Whispers are, however, evident to bystanders, 
and a long-term use of whispers could negatively e�ect the vocal 
cords [90]. 

A few researchers have developed intracortical microelectrode 
Brain-Computer Interfaces (BCI) to predict users’ intended speech 
data directly from the brain activity during speech production 
[13, 22, 86, 104, 105]. Several multimodal imaging systems have 
also been employed for speech recognition, mainly focused on 
tongue visualization [44]. Some have employed electromagnetic 
articulography (EMA) [28, 32, 38], electroencephalogram (EEG) 
[86], vibration sensors of glottal activity [73, 83, 88, 107], and speech 
motor cortex implants [10] to recover the speech produced without 
vibration of the vocal folds, by detecting tongue, facial, and throat 
movements. A recent study developed a wearable interface for 
detecting silent speech from neural signals captured by electrodes 
placed above the face [51]. However, the majority of these studies 
employ invasive, impractical, and non-portable setups, rendering 
them unsuitable for real-world applications. 

Recent research has investigated the innovative approach of cap-
turing vocal cord vibrations through millimeter-wave (mmWave) 
sensing [66, 114, 116] and using smartphones’ acoustic sensors to 
detect continuous wave ultrasound signals for analyzing lip move-

ments [31, 118]. While these methods are computationally lighter 
than image-based approaches and can be accurate in ideal scenarios, 
the recognition results can be in�uenced by both static environ-
mental objects and subtle movements of the body or hand. Besides, 
these methods necessitate the device being in close proximity to the 
mouth, sometimes even requiring the user to hold the device near 
their mouth. This requirement could potentially impact usability, 
as it may be inconvenient or uncomfortable for users to maintain 
such close interaction with the device for extended periods or in 
various settings. 

2.2 Video-Based Recognition 

Recently, attempts have been made to enable silent speech commu-

nication using video-based recognition, referred to as lip reading 
or silent speech recognition [103]. It captures lip movements with 
a camera, then recognizes silently spoken words using image pro-
cessing and language models [3, 6, 9, 11, 17, 18, 84, 100]. Initially, lip 
reading methods relied on handcrafted pipelines and statistical mod-

els for visual feature extraction and temporal modelling, limiting 
their generalizability.[34, 67, 75, 82, 87] (refer to [120] for a compre-

hensive review). However, with the advent of deep learning and the 
availability of large-scale lip-reading datasets, such as GRID [21], 
lip reading in-the-wild (LRW) [16], and lip reading sentences in-
the-wild [4, 97], this �eld has been revitalized. Researchers initially 
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Table 2: A high-level overview of recent silent speech recognition methods and their reported performances. 

Research Camera Vocabulary Size WER (%) Mode 

TieLent, Kimura et al. [56] Wearable Command 15 commands 6.0 O�ine 
C-Face, Chen et al. [14] Wearable Command 8 commands 15.3 O�ine 
SpeeChin, Zhang et al. [117] Wearable Command 54 commands 9.5 O�ine 
Lip-Interact, Sun et al. [103] Smartphone Command 44 commands 4.6 O�ine 
LipType, Pandey and Arif [77] Smartphone Sentence 30 phrases/41 words 40.9 O�ine 
LipLearner, Su et al. [101] Smartphone Command 30 commands 1.2 O�ine 

MELDER Smartphone Sentence 30 phrases/122 words 19.7 Real-time 

focused on estimating phoneme-level and word-level recognition 
[16, 100]. Koller et al. [60] trained a convolutional neural network 
(CNN) to di�erentiate between visemes3 on a sign language dataset 
of signers mouthing words. Similarly, Noda et al. [74] used CNN 
to predict phonemes in spoken Japanese. Tamura et al. [106] used 
deep bottleneck features (DBF) to encode shallow input features, 
such as latent dirichlet allocation (LDA) and GA-based informative 
feature (GIF) [108] for word recognition. Petridis and Pantic [84] 
also utilized DBF to encode every video frame and trained a long 
short-term memory (LSTM) classi�er for word-level classi�cation. 
In contrast, Wand et al. [111] used an LSTM with histograms of ori-
ented gradients (HoG) input features to recognize words. Another 
work developed CNN architectures for classifying multi-frame time 
series of lip movements [16]. Kashiwagi et al. [53] introduced a 
method that places emphasis on identifying shared viseme rep-
resentations between normal and silent speech. This is achieved 
by employing metric learning techniques to acquire knowledge 
about visemes across di�erent speech instances and within the 
same speech type. This approach enables the e�cient utilization of 
silent speech data while accommodating variations within speci�c 
speech types. These approaches still cannot be adapted to make 
sentence-level sequence predictions due to their inability to handle 
variable sequence lengths. 

More recently, researchers have focused their attention on adapt-
ing sentence-level recognition by modifying models for automatic 
speech recognition using LSTM-based sequence-to-sequence mod-

els [97] or connectionist temporal classi�cation (CTC) approach 
[9, 94]. Another work has taken a hybrid approach, training an long 
short-term memory (LSTM)-based sequence-to-sequence model 
with an auxiliary CTC loss [85]. Researchers have also explored 
transformer-based architectures [2], convolution block variants 
[119], or hybrid architectures such as conformers [36]. Most of 
these models either make use of spatiotemporal convolutional neu-
ral networks (CNNs) with multiple 3D convolution layers [9, 94] or 
use lightweight approaches that combine a 3D layer applied frame-

by-frame with a 2D one for visual feature extraction and short-term 
dynamic modeling [2, 16, 100]. LipType [77], on the other hand, 
use a hybrid approach by combining a shallow 3D-CNN and a 
deep squeeze and excited 2D-CNN [42], thereby modeling spatial 
and temporal interdependencies between channels, which led to 
a reduction of 57% in word errors compared to existing methods. 
Some have focused on audiovisual speech recognition that uses 

3A viseme is the visual equivalent of a phoneme that represents the position of the 
face and the mouth when making a sound. 

both acoustic and video channels to recognize speech using deep 
learning models [61]. 

Despite these improvements, existing video-based recognition 
models remain slow (refer to [95] for a comprehensive review). 
They take fourteen seconds or more to process a short English 
phrase, which makes them ine�ective for everyday usage. In ad-
dition, these models do not operate in real-time, instead require 
the user to perform an action (e.g., pressing a button) or wait for 
a time-out period after speaking a phrase for the system to start 
processing it. This additional waiting time negatively impacts the 
user’s perception of the model. We address these issues by auto-
matically slicing the input video into shorter clips, processing the 
clips character-by-character in real-time, leveraging the insights 
gained from a high-resource vocabulary through a transfer learn-
ing model, and providing real-time visual feedback on the progress 
of speech recognition. Table 2 presents a summary of recent ad-
vancements in silent speech recognition, with a particular focus 
on its application in human-computer interaction (HCI) through a 
camera-based approach. This table emphasizes the e�orts to utilize 
camera technologies, whether incorporated into wearable devices 
or smartphones, for capturing and interpreting silent speech cues. 

2.3 Silent Command Recognition 

A new research direction is centered around optimizing both sensor-
based and image-based silent speech recognition models speci�-
cally for commands. Pandey and Arif [79], for example, proposed 
a stripped-down version of LipType [77] that can recognize silent 
commands almost as fast as state-of-the-art speech recognition 
models. Su et al. [101] proposed a semi-supervised model trained 
on public datasets that enables customizing commands using a few-
shot silent speech customization framework. Kunimi et al. [62], on 
the other hand, designed a mask-shaped interface containing eight 
�exible and highly sensitive strain sensors to recognize commands 
with an existing EMG-based model [52]. Zhang et al. [118] designed 
EchoSpeech, which utilizes a glass-frame con�guration featuring 
integrated speakers and microphones to project inaudible sound 
waves toward the skin. It employs a deep learning pipeline with 
connectionist temporal classi�cation (CTC) loss to discern speech 
by capturing and analyzing the subtle skin deformations arising 
from silent utterances. Su et al. [102] used a spatiotemporal con-
volution network to enable rapid and precise interacting with big 
displays using gaze and silent commands. Jin et al. [47], in contrast, 
developed a earphone-based model that recognize commands us-
ing the relationship between the deformation of the ear canal and 
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the movements of the articulator. [99] also used an ear-worn sys-
tem to process jaw motion during word articulation to break each 
word signal into its constituent syllables, then each syllable into 
phonemes. These methods are often faster and more accurate than 
general silent speech models, primarily because they are tailored to 
recognize a limited set of speci�c commands and are not intended 
for everyday communication. 

2.4 Applications of Silent Speech in HCI 

Silent speech recognition technology [77, 81] holds signi�cant 
promise for diverse applications in the �eld of HCI. This inno-
vation provides a hands-free communication solution, particularly 
valuable in environments where vocalization may be impracti-

cal or socially discouraged, such as libraries or quiet workspaces. 
Users can seamlessly navigate applications, compose text messages, 
make calls, control smart devices, and perform online searches, all 
achieved through the simple act of forming words silently [101, 118]. 
Its ability to interpret silent lip movements makes it an invaluable 
assistive technology for individuals with speech impairments, en-
abling a more accessible mode of communication. In addition, silent 
speech recognition’s multimodal capabilities �nd practical use in 
wearable devices, enabling users to interact through silent speech 
with devices like smartwatches and desktop computers [103]. Silent 
speech has also been used for hands-free selection with eye-gaze 
pointing [79, 102], o�ering performance, usability, and privacy ben-
e�ts over conventional methods such as speech and dwell. 

Silent speech also holds signi�cant potential for emotion recog-
nition in HCI applications [78]. By analyzing facial expressions and 
lip movements associated with silent speech, the technology could 
infer emotional states in various contexts. For instance, in adaptive 
user interfaces, if frustration is detected during a task, the system 
could o�er additional assistance. This enables virtual agents and 
avatars to express empathy by responding to users with appropriate 
emotional cues. Emotion-aware assistive technologies bene�t from 
recognizing emotional nuances, aiding individuals with autism in 
more e�ective communication. Educational applications could cre-
ate personalized learning environments, adjusting content based 
on the student’s emotional engagement. Silent speech recognition 
could also enhance gaming experiences by dynamically adjusting 
game elements according to the player’s emotional responses. 

There are various other interesting directions one could explore 
with silent speech recognition. For example, in robotics, silent 
speech recognition could facilitate more intuitive human-robot 
interaction, o�ering users the ability to convey commands with-
out audible speech. Additionally, the technology holds promise in 
security applications, serving as a unique identi�er for biometric 
authentication. In virtual and augmented reality settings, silent 
speech recognition could enhance user experiences by allowing 
silent communication with virtual characters and interfaces. Finally, 
in training scenarios, silent speech recognition could provide a plat-
form for individuals to practice and re�ne their communication 
skills without the need for vocalization, making it a versatile tool in 
education and skill development. As this technology continues to 
evolve, its integration into HCI promises more inclusive, adaptable, 
and natural interaction paradigms. 

3 MELDER: A MOBILE LIP READER 

MELDER leverages LipType as its foundational model. LipType 
[77], an established end-to-end sentence-level model, translates a 
variable-length sequence of video frames into text. It achieves this 
through the integration of a shallow 3D-CNN (1-layer) with a deep 
2D-CNN (34-layer ResNet [37]), enhanced by squeeze and excita-
tion (SE) blocks (SE-ResNet). This con�guration e�ectively captures 
both spatial and temporal information. The choice of SE-ResNet 
is strategic, as it adaptively recalibrates channel-wise feature re-
sponses by explicitly modeling the inter-dependencies between 
channels, thereby re�ning the quality of feature representations. 
Moreover, SE-ResNet is notable for its computational e�ciency, 
adding only a minimal increase in model complexity and computa-

tional demands. For additional details, please refer to Section 4.1. 
First, MELDER enhances the model by introducing innovative tran-
scriber and reviewer channels that run in parallel. This structure 
not only enables real-time processing but also provides users with 
continuous visual feedback during the recognition of silent speech. 

3.1 The Transcriber Channel 

The proposed transcriber channel consists of three sub-modules: a 
windowing frontend that splits the input video into smaller tempo-

ral segments, a spatiotemporal feature extraction module that takes 
a sequence of frames and outputs one feature vector per frame, and 
a sequence modeling module that inputs the sequence of per-frame 
feature vectors and outputs a sentence character by character. The 
model appends the sliced clip to the bu�er for parallel processing. 
This cycle continues until the end of a video clip is detected. We 
must emphasize that the transcriber channel operates on a server, 
as modern smartphones do not possess the necessary storage and 
processing capacity to work with large datasets. Consequently, the 
results presented in this study may not be directly comparable to 
models that were tested exclusively on smartphones. Additionally, 
we acknowledge the concerns some users might have regarding 
the security of sending video clips to a server. Nonetheless, it is 
pertinent to point out that nearly all sophisticated real-time recogni-
tion systems, including Google Lens, Google Speech, Google Home, 
and Amazon Alexa, employ a similar server-based approach for 
processing signi�cant volumes of data [33]. 

3.1.1 Windowing. The channel slices video input into smaller seg-
ments. In order to determine the best windowing function in the 
de�ned context, we studied two linear (~ = G + 5, ~ = 2G + 5) and 
two non-linear (~ = G 3 , ~ = 2G ) windowing functions, where G 
= window start frame and ~ = window end frame. Each function 
has an overlapping window of two frames. This was decided in lab 
trials with an existing silent speech recognition model [77], where 
we compared speed-accuracy trade-o�s between 1–4 overlapping 
windows. We did not examine more than four frames because the 
average time per phoneme with silent speech is 176 ms [80], which 
corresponds to four frames (video frame rate is 25 frames per sec-
ond). Since the model was already slicing a video into small chunks 
(∼5 frames), reprocessing a large overlapped window increased 
the processing time without improving accuracy. However, using 
two frames as an overlapped window improved accuracy without 
substantially slowing the processing time (Table 3). The overlap 
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Figure 2: The architecture of MELDER. It consists of a transcriber channel and a reviewer channel, which run simultaneously. 
The transcriber channel slices a video and passes it to a 1-layer 3D CNN, followed by a 34-layer 2D SE-ResNet for spatiotemporal 
feature extraction. The features are then processed by two Bi-GRUs, a linear layer, and a softmax. Finally, the softmax output 
is decoded with a left-to-right beam search. The reviewer channel corrects both character-level and word-level errors and 
provides real-time visual feedback on the system’s silent speech recognition process. 

between the clips assures that any lost phonemes due to the slicing 
process are recovered using the information in the overlap frames. 

Table 3: Performance of a silent speech recognition model 
with varying windowing size. 

LipType 
Windowing Size 

1 2 3 4 

Word Error Rate (WER) 28.9% 22.6% 22.5% 22.1% 
Computation Time (CT) 0.4s 0.6s 1.1s 1.4s 

We selected the windowing function based on certain assump-

tions. We chose linear functions because they have constant win-
dow sizes, possibly resulting in faster computations. For instance, 
~ = G + 5 has a �xed length, thus likely to have a faster processing 
time, but the accuracy can su�er due to limited context. While 
larger window sizes, such as those used in ~ = 2G + 5, may increase 
accuracy, but may lead to extended processing times. Alternatively, 
for non-linear functions, the window size increases gradually rather 
than being constant. They may initially have a faster processing 
time with a lower accuracy. However, as the window size increases, 
the processing time will slow down and the accuracy is likely to 
rise. For this work, we selected non-linear functions based on their 
window interval size. For instance, ~ = 2 ∗ G has a gradual increase 
in the window size, while ~ = G ∗ 3 has a steeper increase in the 
window size. Because the optimal windowing function for real-time 

processing within this context is unclear, we validated our choice 
in an experiment described in Section 4. 

3.1.2 Spatiotemporal Feature Extraction. This module takes the 
sliced video chunk and extracts the mouth-centred cropped image 
of size H:100 × W:50 pixels per video frame. For this, videos are 
�rst pre-processed using the DLib face detector [58] and the iBug 
face landmark predictor [91] with 68 facial landmarks combined 
with Kalman �ltering. Then, a mouth-centred cropped image is 
extracted by applying a�ne transformations. The sequence of ) 
mouth-cropped frames are then passed to 3D-CNN, with a kernel 
dimension of T:5 × W:7 × H:7, followed by Batch Normalization 
(BN) [46] and Recti�ed Linear Units (ReLU) [5]. The extracted fea-
ture maps are then passed through a 34-layer 2D SE-ResNet that 
gradually decreases the spatial dimensions with depth, until the 
feature becomes a single dimensional tensor per time step. 

3.1.3 Sequence Modeling. The extracted features are processed by 
2-Bidirectional Gated Recurrent Units (Bi-GRUs) [15]. Each time-

step of the GRU output is processed by a linear layer, followed 
by a softmax layer over the vocabulary and an end-to-end model 
is trained with connectionist temporal classi�cation (CTC) loss 
[35]. The softmax output is then decoded with a left-to-right beam 
search [20] using the Stanford-CTC decoder [68] to recognize the 
spoken utterance. The model appends the recognized character to 
the bu�er for post-processing. This cycle continues until the end 
of a phrase is detected. The model predicts the end of phrase when 
the newline character is detected. 
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3.2 The Reviewer Channel 

The proposed reviewer channel corrects both character-level and 
word-level errors and provides real-time feedback by displaying the 
most probable candidate words and phrases for auto-completion. 
The process comprises of the following two steps. 

3.2.1 Character-Level Corrector. The character-level model enables 
real-time word completion based on the sequence of characters 
or a pre�x string obtained from the transcriber channel. As soon 
as the transcriber channel recognizes a character ( , the model 

auto-completes the string with its most probable word ((̂). The 
conditional probability can be formulated as: 

% (( = 
1 ) = % ( (̂ |( ) = % (completion | pre�x) (1) 

Consider, (1:< as the �rst < characters in string ( and all comple-

tions must contain the pre�x exactly, i.e., 

(̂1:< = (1:< and % ( (̂1:= |(1:< ) = 

% ((̂<+1:= |(1:< ) = 

% ((̂<+1:= | (̂1:< ) 

(2) 

where = is the total length of a completion. As probabilities in the 
sequence domain contain exponentially many candidate strings, 
we simpli�ed the model by calculating conditional probabilities 
recursively: 

% (( = 
1 ) = % ( (̂<+1:= | (̂1:< ) = 0A6<0G 

(1,...,(= 

=−1 

C =< 

% ( (̂C +1 |(̂1:C ) (3) 

This requires modelling only % ((̂C +1 |(̂1:C ), which is the probability 
of the next character under the current pre�x. For this, it computes 

0A6<0G% ((̂C +1 |(̂1:C ) using the pre�x tree (Trie) data structure. Upon 
�nding the most probable completion for the current pre�x, the 
model automatically displays the auto-completion. 

3.2.2 Word-Level Corrector. The module is activated only when 
a space character is detected. Upon detection, the sequence recog-
nized so far is passed to the word-level =-gram language model 
(LM). First, it extracts the last word , from the recognized text, 
calculates edit distances [63] between , and each dictionary word 
3 , then replaces , with a word that has the minimum edit dis-
tance. Second, it auto-completes the sentence by modelling the 
joint probability distribution of the given words and future words. 

Formally, we consider a given string of C words, , = ,1,,2, ..., 
,C and our goal to predict the future word sequence (,C +1,,C +2, ..., 
,C +) ). The conditional probability can be formulated as: 

%2><18=43 (, ) 
1 ) = % (completion | pre�x) (4) 

This model uses bidirectional =-grams to account for both forward 
and reverse directions. The combined probability of a sentence, 
thus, is computed by multiplying the forward and backward =-
gram probability of each word: 

%2><18=43 (, ) 
1 ) = 

% (completion | pre�x) ∗ % (pre�x | completion) = 

% 5 >A F0A3 (,
) 
1 ) ∗ %102: F0A3 (,

) 
1 ) 

(5) 

In a forward =-gram, the conditional probability is estimated de-
pending on the preceding words: 

% 5 >A F0A3 (,
) 
1 ) = 

%5 >A F0A3 ((,C +1,,C +2, ...,,C +) ) |,1,,2, ...,,C ) = 

0A6<0G 
,C +1,...,,C +) 

) 

9 =1 

% (,C +9 |,1, ...,,C +9 −1) 

(6) 

In contrast, in a backward =-gram, the probability of each word is 
estimated depending on the succeeding words: 

%102: F0A3 (,
) 
1 ) = 

%102: F0A3 (,1,,2, ...,,C | (,C +1,,C +2, ...,,C +) )) = 

0A6<0G 
,1,...,,C 

) 

9 =1 

% (,1, ...,,C +9 −1 |,C +9 ) 

(7) 

Applying the values from Eq. 6 and Eq. 7, we get: 

%2><18=43 (, ) 
1 ) = 

(% (,1 | < BC 0A C >) ∗ % (< BC 0A C > |,1))∗ 

(% (,2 |,
1 
1 ) ∗ % (, 1 

1 |,2))∗ 

(% (,3 |,
2 
1 ) ∗ % (, 2 

1 |,3))∗ 

...∗ 

(% (< 4=3 > |,) ) ∗ (,) | < 4=3 >)) 

(8) 

Finally, the model predicts the most probable auto-completion 
of the given words and automatically adds it to the input text. We 
used COCA corpus [23], one of the largest publicly available and 
genre-balanced corpus of English, to train the reviewer modules. 
The dataset contains approximately 1 billion words, however, we 
extracted the top 200,000 sentences as vocabulary to reduce the 
computation time. The average perplexity4 score for the model 
is 42.6, indicating that it is well-trained and can anticipate words 
accurately. 

4 EXPERIMENT 1: SELECTION OF 
WINDOWING FUNCTION 

We conducted an experiment to evaluate the performance of the 
four windowing functions proposed in Section 3.1.1 with three 
state-of-the-art silent speech recognizers. In video processing, win-
dowing functions play a critical role by isolating speci�c sections 
of video frames for detailed analysis. This method signi�cantly im-

proves noise reduction and emphasizes important features within 
the chosen segments. In the context of MELDER, we speci�cally 
explored windowing functions to enable real-time silent speech 

4Perplexity is the multiplicative inverse of the probability assigned to the sentence by 
the language model, normalized by the number of words in the sentence. The lower 
the perplexity the better the language model. 
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processing. This approach is designed to facilitate continuous pro-
cessing without the need for a “stop” cue, such as pausing after 
completing a phrase spoken silently. 

4.1 Silent Speech Recognition Models 

We selected the following three pre-trained silent speech recogni-
tion models for this study. 

(1) LipNet [9] model uses a neural network architecture for 
lip reading that maps variable-length sequences of video 
frames to text sequences, making use of deep 3-dimensional 
convolutions, a recurrent network, and the connectionist 
temporal classi�cation loss [35], trained entirely end-to-end. 
It was trained on the GRID dataset (21,635 videos) [21], which 
comprises of short and formulaic videos that show a well-lit 
person’s face while uttering a highly constrained vocabulary 
in a speci�c order. 

(2) Transformer [3] model comprises of two sub-modules: a 
spatio-temporal visual frontend that takes a sequence of video 
frames to extract one feature vector per frame and a sequence 
processing backend comprised of encoder-decoder structure 
with multi-head attention layers [109] that generates char-
acter probabilities over the vocabulary. It was trained on 
Lip Reading in the Wild (LRW: 500 videos) [16] and the Lip 
Reading Sentences 2 (LRS2: 41,000 videos) [3] datasets. 

(3) LipType [77] model follows the same architecture as LipNet 
except it replaces deep 3-dimensional convolutions with a 
combination of shallow 3-dimensional convolutions (1-layer) 
and deep 2-dimensional convolutions (34-layer ResNet) inte-
grated with squeeze and excitation (SE) blocks (SE-ResNet). 
It was also trained on the GRID dataset (21,635 videos). 

To ensure a fair comparison, we utilized an openly accessible 
dataset consisting of thirty randomly selected phrases from each 
model’s training dataset [77]. 

4.2 Performance Metrics 

We used the following metrics to benchmark the proposed frame-

work. 

• Word error rate is the minimum number of operations re-
quired to transform the predicted text to the ground truth, 
divided by the number of words in the ground truth. It is cal-
culated using the following equation, where ( is the number 
of substitutions, � is the number of deletions, � is the number 
of insertions, # is the number of words in the ground truth. 

Word error rate = 
( + � + � 

# 
(9) 

• Words per minute (wpm) is a commonly used text entry 
metric that signi�es the rate in which words (= 5 chars) are 
entered [8]. It is calculated using the following equation, 
where ) is the number of recognized words, C is the sum of 
speaking time and computation time in seconds, the constant 
60 is the number of seconds per minute, and the factor of 
one �fth accounts for the average length of a word in the 
English language. 

, % " = 
|) | − 1 

C 
× 60 × 

1 

5 
(10) 

• Computation time (s) is the total time required by the 
model to process each window. It does not include the time 
users took to silently speak a phrase. 

4.3 Results 

We evaluated all models on NVIDIA GeForce 1080Ti GPU board. 
Based on the results, ~ = G + 5 results in less computation time for 
processing each sliced clip, thereby resulting in a faster input speed. 
The function, however, is slightly more erroneous than others, 
but since our aim is to show recognition as quickly as possible in 
order to mimic the real-time recognition, we considered it the most 
e�ective method. Fig. 3 shows the performance of each windowing 
function on the three examined silent speech recognition models. 
It can be seen that all pre-trained models performed much better 
with ~ = G + 5 functions in terms of input speed and computation 
time. With LipNet, ~ = G + 5 shows 2.5% increase in word error 
rate, 19.8% increase in words per minute, and 15.9% reduction in the 
computation time than the remaining three windowing functions. 
With Transformer, ~ = G + 5 shows 1.4% increase in word error 
rate, 19.1% increase in words per minute, and 15.5% reduction in the 
computation time than the remaining three windowing functions. 
With LipType, ~ = G + 5 shows 7.3% increase in word error rate, 
10.5% increase in words per minute, and 22.5% reduction in the 
computation time than the remaining three windowing functions. 
Regardless of windowing function, LipType performed better. This 
further strengthens the decision to use LipType as the base model 
for this work. Note that in the proposed model, repetitions of blank 
tokens (> 3) in the recognized sequence are used to determine the 
end of the sentence. The bu�er is cleared if the following sequence 
is detected and bu�ering will begin from scratch. However, since 
we focus on text entry on mobile devices, we did not optimize the 
model on very long sentences. 

5 ADOPTING A TRANSFER LEARNING 
STRATEGY 

Most lip reading datasets contain limited vocabulary and do not sup-
port vocabulary relevant to everyday conversation. A model trained 
on a dataset with speci�c vocabulary performs poorly when applied 
to a dataset other than the training vocabulary words. Furthermore, 
training a deep learning model requires an enormous amount of 
data. Developing large-scale datasets tailored to particular vocab-
ularies is extremely challenging, expensive, and time-consuming. 
To overcome this, we leverage the e�ectiveness of transfer learn-
ing, which exploits existing features (or knowledge) from a model 
trained on a high-resource vocabulary, source model, and generalizes 
it to a new low-resource vocabulary, target model [76, 121]. 

Generally, features transition from general to speci�c charac-
teristics by the last layer of the network, but this transition has 
not been extensively investigated in the context of lip reading. Re-
search in deep learning research showed that standard features 
learned on the �rst layer appear regardless of the dataset and the 
task [96, 115], thus are called general features. In contrast, features 
calculated by the last layer of a trained network is highly depen-
dent on the dataset and the task. It is unclear, however, how this 
transition can be generalized to lip reading, that is, to what ex-
tent features within a network could be generalized and used for 
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(a) Word error rate (%) 

(b) Words per minute 

(c) Computation time (s) per window 

Figure 3: Performance comparison of the three investigated silent speech recognition model with di�erent windowing functions 
in terms of a) word error rate, b) words per minute, and c) computation time per window. Reported values are the average of all 
values. Error bars represent ±1 standard deviation. 

transfer learning. Towards this, we investigated three strategies 
to transfer learning (Fig. 4). Consider a source model composed of 
# layers, with + layers representing visual_frontend and ( layers 
representing sequence_processing. 

(1) Finetune_Last: The network is �rst initialized with the 
weights from the source model, then the top layers (# − 1) 
are frozen, and only the last layer is allowed to modify its 
weights. The model is then trained to �ne-tune the last layer 
for the target vocabulary. During the training process, only 
the weights associated with last layer are changed until they 
converge. Using this method, �ne-tuning only the �nal layer 
is needed to work more e�ectively with the target dataset 

and it makes use of the features learned from the source 
model. 

(2) Finetune_Visual_Frontend: The network is �rst initial-
ized with the weights from the source model, then the se-
quence_processing layers (# − + ) are frozen and only the vi-
sual_frontend layers are allowed to modify their weights. Af-
terwards, the model is trained to �ne-tune the visual_frontend 
for the target vocabulary. During the training process, only 
the weights associated with the visual_frontend are changed 
until they converge. 

(3) Finetune_Sequence: The network is �rst initialized with 
the weights from the source model, then the visual_frontend 
layers (+ ) are frozen and only the sequence_processing layers 
are allowed to modify their weights. Afterwards, the model 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Laxmi Pandey and Ahmed Sabbir Arif 

Figure 4: Transfer learning strategies: a) freeze # − 1 layers and �ne-tune last layer, b) freeze sequence modeling layers and 
�ne-tune visual front-end, and c) freeze visual front-end layers and �ne-tune sequence modeling. 

is trained to �ne-tune the sequence_processing for the target 
vocabulary. During the training process, only the weights 
associated with the sequence_processing are changed until 
they converge. 

6 EXPERIMENT 2: EFFECTS OF TRANSFER 
LEARNING 

In this experiment, we examined how di�erent strategies of transfer 
learning a�ect the performance of silent speech recognition models. 
For the source models, we used the same pre-trained silent speech 
models as described in Section 4.1. For target models, we trained 
these source models from scratch with a low-resource target dataset. 

The experiment calculated the same word error rate and words 
per minute performance metrics as described in Section 4.2. How-
ever, regarding computation time, this experiment speci�cally mea-

sured the average time required by the model to process a phrase. 

6.1 Transfer Learning Dataset 

All source models were trained on their respective training datasets 
(Section 4.1). For target models, we used the publicly available 

dataset [77], which consists of thirty randomly selected phrases 
from the MacKenzie & Soukoref dataset [69]. It comprises of short 
and formulaic video clips of a person’s face when uttering the 
phrases. The selected phrases are a good representation of the 
English language and is highly correlated with Mayzner & Tresselt’s 
letter frequencies [71], thus are more generalizable. Target dataset 
contains 1,080 video clips of twelve speakers uttering thirty phrases. 
For the experiment, we employed a random selection of 720 videos 
for the �ne-tuning phase and 360 videos for the evaluation phase. 
The same evaluation dataset was consistently used for all models 
(Table 4). 

6.2 Implementation 

To avoid any potential confounding factor, we trained all models 
from scratch with the same training parameters used in their respec-
tive source model. For target model, we did not apply any transfer 
learning at all, and let the model train on the given low-resource 
training data. The number of frames was �xed to 75. Since all videos 
are 25 fps with a length of ∼3 seconds, they have 75 frames in total 
(25 fps × 3 seconds = 75 frames). Longer image sequences were 

Table 4: Statistics of dataset used for training and �ne-tuning the models. The values are the total number of video samples. 

Model 
Training Fine-tuning 

Source Target Finetune_Last Finetune_Visual Finetune_Sequence 

LipNet 21,635 720 720 720 720 

LipType 21,635 720 720 720 720 

Transformer 41,500 720 720 720 720 
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(a) Word error rate (%) 

(b) Words per minute 

(c) Computation time (s) per phrase 

Figure 5: Performance comparison of the three investigated silent speech recognition model with di�erent transfer learning 
approaches in terms of a) word error rate, b) words per minute, and c) computation time per phrase. Reported values are the 
average of all values. Error bars represent ±1 standard deviation. 

truncated and shorter sequences were padded with zeros. We ap-
plied a channel-wise dropout [98] of 0.5. The model was trained 
end-to-end by the Adam optimizer [59] for 60 epochs with a batch 
size of 50. The network was implemented based on the Keras deep-
learning platform with TensorFlow [1] as the backend. We trained 
and tested both models on NVIDIA GeForce 1080Ti GPU board. 

6.3 Results 

Results showed that the target model performed the worst, while 
the model that kept visual front-end frozen and sequential module 
�ne-tuned performed the best. With LipNet, Finetune_Sequence 
shows 39.5% decrease in word error rate, 12.1% increase in words 
per minute, and 2.2% reduction in the computation time than the 

other models. With Transformer, Finetune_Sequence shows 26.1% 
decrease in word error rate, 2.3% increase in words per minute, 
and 2.1% reduction in the computation time than the other models. 
With LipType, Finetune_Sequence shows 39.1% decrease in word 
error rate, 5.1% increase in words per minute, and 5.4% reduction 
in the computation time than the other models. Fig. 5 presents the 
�ndings of this experiment. 

This means that performance worsens as we keep bottom lay-
ers �xed when transferring parameters from the source task. We 
speculate that this is because the top layer features are not spe-
ci�c to particular datasets or tasks, but are general in that they 
can be applied to a wide range of datasets and tasks. On the other 
hand, the features computed by the bottom layer of a network are 
highly dependent on the dataset and the task chosen. In addition, 
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(a) The app (b) Three participants taking part in the study 

Figure 6: The custom app (a) and three participants (b) of Experiment 3. 

�ne-tuning only the last layer is not su�cient since the sequential 
module learns transitional probability of characters based on con-
text. Therefore, �ne-tuning only the last layer will not be able to 
model the transition of characters that were not part of the source 
model’s training vocabulary. 

7 EXPERIMENT 3: STATIONARY 
PERFORMANCE 

We conducted a user study to compare MELDER with two state-
of-the-art, pre-trained silent speech models LipNet [9] and Trans-
former [3] with unseen data (data that has not been used to train 
the models) in a stationary setting (in a seated position). Since 
these models do not work in real-time (computes one phrase at a 
time), we equipped these with the ~ = G + 5 windowing function 
and the Finetune_Sequence transfer learning strategy, as MELDER, 
for a fair comparison between the models (henceforth referred to 
as RT-LipNet and RT-Transformer) and to demonstrate that these 
approaches could be used independently with other silent speech 
models to make them real-time. We also disabled the visual feedback 
component of the reviewer channel (described in Section 3.2) in the 
study to eliminate a confounding factor (to remove any potential 
e�ects of feedback on performance). 

7.1 Experimental Dataset 

We used the Enron Mobile Email dataset [110] in this study. It 
contains genuine mobile emails, thus is better suited to evaluate 
mobile text entry. Towards this, �rst, we �ltered the dataset using 
the following rules: 1) exclude phrases with lengths less than three 
or greater than ten, 2) exclude phrases containing common nouns, 
such as general names, places, and things, and 3) exclude phrases 
containing contractions or numeric values. After �ltering, we ran-
domly selected thirty phrases and removed all punctuation and 
non-alphanumeric tokens, and replaced all uppercase letters with 
lowercase letters. The selected phrases are presented in Appendix A. 

7.2 Participants 

Twenty volunteers took part in the study (Fig. 6b). Their age ranged 
from 18 to 41 years (M = 25.55 years, SD = 6.2). Ten of them identi�ed 
as women, nine as men, and one as non-binary. They all owned a 
smartphone for at least �ve years (M = 8.4 years, SD = 2.1). Sixteen 
of them were frequent users of a voice assistant system on their 

smartphones (M = 3 years, SD = 2.3), while the remaining four were 
infrequent or nonusers. They all received U.S. $10 for volunteering. 

7.3 Apparatus 

We developed a custom application for smartphones running on 
Android OS using the default Google Android API (Fig. 6a). The 
application enabled users to record videos of them silently speaking 
the presented phrases using the front camera of a smartphone. In 
the study, we enabled participants to record videos using the front 
camera of their own smartphones to increase the variability of the 
dataset. 

7.4 Design 

The study used a within-subjects design with one independent 
variable “model” with three levels: RT-LipNet, RT-Transformer, and 
MELDER. In total, we collected (20 participants × 30 phrases) = 
600 samples. The dependent variables were the same word error 
rate and words per minute performance metrics as described in 
Section 4.2. However, regarding computation time, this experiment 
measured the average time required by the model to process a 
phrase. 

7.5 Procedure 

The data collection process occurred remotely. We explained the 
purpose of the study and scheduled individual Zoom video calls 
with each participant ahead of time. We instructed them to join 
the call from a quiet room to avoid any interruptions during the 
study. First, we demonstrated the application and collected their 
consents and demographics using electronic forms. We then shared 
the application (APK �le) with them and guided them through the 
installation process on their smartphones. 

Participants were instructed to sit at a desk during the study. 
The application displayed one phrase at a time. Participants pressed 
the “Record/Stop” toggle button, silently spoke the phrase (uttered 
the phrase without vocalizing sound), then pressed the same but-
ton to see the next phrase. We did not instruct them about how 
to hold the device. But most of them held the device with their 
non-dominant hand and pressed the button with their dominant 
hand. Upon completion of the study, participants shared the logged 
data with us by uploading those to a cloud storage under our su-
pervision. For evaluation, we passed the recorded video through 
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(a) Word error rate (stationary) (b) Words per minute (stationary) (c) Computation time (stationary) 

Figure 7: Performance comparisons between RT-LipNet, RT-Transformer, and MELDER models in a stationary setting in terms 
of a) word error rate, b) words per minute, and c) computation time per phrase. Reported values are the average of all values. 
Error bars represent ±1 standard deviation. Red asterisks represent statistically signi�cant di�erences. 

the transcriber channel to obtain recognition, then post-processed 
the recognized text through the reviewer channel to auto-correct 
errors and present the most probable auto-completion of text at 
both word and phrase-level. 

7.6 Results 

A Martinez-Iglewicz test revealed that the response variable resid-
uals were normally distributed. A Mauchly’s test indicated that 
the variances of populations were equal. Therefore, we used a 
repeated-measures ANOVA and a post-hoc Tukey-Kramer multiple-

comparison test for all analysis. We also report e�ect sizes in eta-
squared ([ 2) for all statistically signi�cant results. 

7.6.1 Word Error Rate. An ANOVA identi�ed a signi�cant e�ect 
of model on word error rate (�2,19 = 3632.67, ? < .00001, [ 2 

= 0.94). 
On average, RT-LipNet, RT-Transformer, and MELDER yielded 
20.95% (SD = 0.8), 28.1% (SD = 1.1), and 19.75% (SD = 0.9) word 
error rates, respectively. A Tukey-Kramer test revealed that RT-
Transformer was signi�cantly more error prone than RT-LipNet 
and MELDER. Fig. 7a illustrates this. 

7.6.2 Words per Minute. An ANOVA identi�ed a signi�cant e�ect 
of model on word error rate (�2,19 = 557.08, ? < .00001, [ 2 

= 0.89). 
On average, RT-LipNet, RT-Transformer, and MELDER yielded 4.96 
wpm (SD = 0.3), 4.21 wpm (SD = 0.2), and 5.59 wpm (SD = 0.1), 
respectively. A Tukey-Kramer test revealed that RT-Transformer 
was signi�cantly slower than RT-LipNet and MELDER. Fig. 7b 
illustrates this. 

7.6.3 Computation Time. An ANOVA identi�ed a signi�cant e�ect 
of model on word error rate (�2,19 = 11085.33, ? < .00001, [ 2 

= 0.99). 
On average, RT-LipNet, RT-Transformer, and MELDER required 
12.93s (SD = 0.4), 13.55s (SD = 0.2), and 6.51s (SD = 0.2) to compute 
a phrase, respectively. A Tukey-Kramer test revealed that MELDER 
was signi�cantly faster in computing the phrases than RT-LipNet 
and RT-Transformer. Fig. 7c illustrates this. 

7.7 Discussion 

MELDER outperformed RT-LipNet and RT-Transformer both in 
terms of speed and accuracy. MELDER took 50% less time than RT-
LipNet and 52% less time than RT-Transformer to compute a phrase. 
These e�ects were statistically signi�cant, and resulted in a 13% 
and a signi�cantly 33% faster text entry speed than RT-LipNet and 
RT-Transformer, respectively. MELDER was also the most accurate. 
It committed 6% fewer errors than RT-LipNet and a signi�cantly 
30% fewer errors than RT-Transformer. The statistically signi�cant 
di�erences, accompanied by large e�ect sizes ([ 2 

≥ 0.1 constitutes 
a large e�ect size [7, 19]), indicate their potential generalizability to 
a broader population. These results strengthen our argument that 
MELDER is better suited for use on mobile devices than existing 
models. 

We also compared the original LipNet and Transformer mod-

els with RT-LipNet and RT-Transformer in an ablation study5 . In 
the study, LipNet yielded 97.3% word error rate, 4.6 wpm entry 
speed, and 14.2s computation time. The addition of windowing 
and transfer learning approaches reduced word error rate by 78%, 
improved entry speed by 7%, and reduced computation time by 
9%. Transformer also demonstrated substantial improvements in 
performance when empowered with the proposed windowing and 
transfer learning approaches. The original Transformer yielded 
81.2% word error rate, 5.2 wpm entry speed, and 14.7s computation 
time. RT-Transformer, conversely, demonstrated a 65% reduction in 
word error rate, 19% improvement in entry speed, and 14% reduc-
tion in computation time. These �ndings validate that the suggested 
windowing and transfer learning methods can be employed sepa-
rately with existing silent speech recognizers, not only enabling 
real-time capabilities but also enhancing their overall performance. 

8 EXPERIMENT 4: MOBILE PERFORMANCE 

We conducted a follow-up pilot study to compare MELDER with 
RT-LipNet and RT-Transformer with unseen data in a mobile setting 
(while walking). The study used the same dataset as the previous 
experiment (Appendix A). 

5An ablation study “investigates the performance of an AI system by removing certain 
components to understand the contribution of the component to the overall system” [113]. 
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8.1 Participants 

Six new volunteers took part in the study. Their age ranged from 22 
to 31 years (M = 26.33 years, SD = 3.1). Three of them identi�ed as 
women and three as men. They all owned a smartphone for at least 
four years (M = 6.67 years, SD = 2.4). All of them were frequent 
users of a voice assistant system on their smartphones (M = 2.17 
years, SD = 1.2). They all received U.S. $10 for volunteering. 

8.2 Apparatus, Design, and Procedure 

The study used the same apparatus, design, and procedure as the 
previous experiment (Section 7). However, unlike the previous 
study, participants were instructed to silently speak the phrases 
while walking indoors. They were instructed to walk at a pace they 
would usually walk while using a smartphone. We did not collect 
outdoor data because the risk of slips, trips, and falls is higher 
outdoors, which could have subjected participants to unnecessary 
risks. The study computed the same word error rate, words per 
minute, and computation time performance metrics as outlined in 
Section 7.4. 

8.3 Results 

A Martinez-Iglewicz test revealed that the response variable resid-
uals were normally distributed. A Mauchly’s test indicated that 
the variances of populations were equal. Therefore, we used a 
repeated-measures ANOVA and a post-hoc Tukey-Kramer multiple-

comparison test for all analysis. We also report e�ect sizes in eta-
squared ([ 2) for all statistically signi�cant results. 

8.3.1 Word Error Rate. An ANOVA identi�ed a signi�cant e�ect of 
model on word error rate (�2,5 = 32.25, ? < .00005, [ 2 

= 0.78). On 
average, RT-LipNet, RT-Transformer, and MELDER yielded 27.01% 
(SD = 3.1), 34.24% (SD = 1.8), and 25.34% (SD = 1.3) word error rates, 
respectively. A Tukey-Kramer test revealed that RT-Transformer 
was signi�cantly more error prone than RT-LipNet and MELDER. 
Fig. 8a illustrates this. 

8.3.2 Words per Minute. An ANOVA identi�ed a signi�cant e�ect 
of model on word error rate (�2,5 = 25.76, ? < .0005, [ 2 

= 0.68). 
On average, RT-LipNet, RT-Transformer, and MELDER yielded 5.19 
wpm (SD = 3.1), 4.24 wpm (SD = 1.8), and 5.31 wpm (SD = 1.3), 

respectively. A Tukey-Kramer test revealed that RT-Transformer 
was signi�cantly slower than RT-LipNet and MELDER. Fig. 8b 
illustrates this. 

8.3.3 Computation Time. An ANOVA identi�ed a signi�cant e�ect 
of model on word error rate (�2,5 = 385.09, ? < .00001, [ 2 

= 0.97). 
On average, RT-LipNet, RT-Transformer, and MELDER required 
12.42s (SD = 3.1), 14.85s (SD = 1.8), and 6.73s (SD = 1.3) to compute 
a phrase, respectively. A Tukey-Kramer test revealed that MELDER 
was signi�cantly faster in computing the phrases than RT-LipNet 
and RT-Transformer. Fig. 8c illustrates this. 

8.4 Discussion 

The �ndings of this study parallel those of the previous study, 
which evaluated the models’ performance in a stationary setting. 
MELDER outperformed RT-LipNet and RT-Transformer both in 
terms of speed and accuracy. MELDER was signi�cantly faster 
in computing the phrases than RT-LipNet (46% faster) and RT-
Transformer (55% faster). It also demonstrated a 2% faster text entry 
speed than RT-LipNet and a signi�cantly 25% faster entry speed 
than RT-Transformer. Further, MELDER yielded a 6% lower word 
error rate than RT-LipNet and a signi�cantly 26% lower word error 
rate than RT-Transformer. Most importantly, despite the small sam-

ple size (# = 6), the statistically signi�cant results yielded large 
e�ect sizes ([ 2 ≥ 0.1 constitutes a large e�ect size [7, 19]), which 
suggests the potential for these �ndings to generalize to a wider 
population. 

We conducted an independent-samples t-test to compare the 
results of Experiment 3 and Experiment 4. Table 5 presents the 
�ndings. As anticipated, there were some performance di�erences 
between the experiments not only because they were conducted in 
di�erent settings but also with di�erent samples and sample sizes 
(# = 20, # = 6). A t-test revealed that both RT-LipNet (C (24) = 
−8.16, ? < .00001, 3 = 1.6), RT-Transformer (C (24) = −10.16, ? < 
.00001, 3 = 1.3), and MELDER (C (24) = −11.69, ? < .00001, 3 = 1.03) 
committed signi�cantly more errors in the mobile setting than in 
the stationary setting. This is not surprising, since the videos were 
shakier and more jittery in the mobile condition, which a�ects 

(a) Word error rate (mobile) (b) Words per minute (mobile) (c) Computation time (mobile) 

Figure 8: Performance comparisons between RT-LipNet, RT-Transformer, and MELDER models in a mobile setting (when 
walking) in terms of a) word error rate, b) words per minute, and c) computation time. Reported values are the average of all 
values. Error bars represent ±1 standard deviation. Red asterisks represent statistically signi�cant di�erences. 
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Table 5: Performance di�erences between the three silent speech recognition models in stationary and mobile settings. The up 
and down arrows indicate increments and decrements in the respective values, the colors green and red indicate whether a 
di�erence is an improvement or a decline, respectively, in performance. 

Metric Model Stationary Mobile Di�erence Signi�cance (U = 0.05) 

Word error rate 
RT-LipNet 20.95 27.01 29% ↑ Signi�cant 
RT-Transformer 28.10 34.24 22% ↑ Signi�cant 
MELDER 19.75 25.34 28% ↑ Signi�cant 

Words per minute 
RT-LipNet 4.96 5.19 5% ↑ Not signi�cant 
RT-Transformer 4.21 4.24 1% ↑ Not signi�cant 
MELDER 5.59 5.31 5% ↓ Signi�cant 

Computation time 
RT-LipNet 12.93 12.42 4% ↓ Signi�cant 
RT-Transformer 13.55 14.85 10% ↑ Signi�cant 
MELDER 6.51 6.73 3% ↑ Not signi�cant 

video processing. Nevertheless, MELDER yielded the lowest aver-
age word error rate than the other models when mobile. Text entry 
speed with MELDER was signi�cantly slower in the mobile setting 
compared to the stationary setting (C (24) = 2.3, ? < .05, 3 = 0.3), 
while RT-LipNet and RT-Transformer had relatively similar speeds. 
Likewise, RT-LipNet yielded a signi�cantly faster computation time 
(C (24) = 2.37, ? < .05, 3 = 0.5), while RT-Transformer yielded a sig-
ni�cantly slower computation time (C (24) = −7.05, ? < .00001, 3 = 
0.4) in the mobile setting than in the stationary setting. MELDER’s 
computation time in the two settings were comparable. These signif-
icant di�erences are likely caused by the di�erences in the samples 
or by chance, as we did not identify any other reasons through data 
analysis. Relevantly, these relationships produced small–medium 
e�ect sizes (Cohen’s 3 ≤ 0.2 constitutes a small e�ect size and 
3 ≥ 0.5 constitutes a medium e�ect size [19]), indicating to the 
possibility that these outcomes are likely due to chance. However, 
further investigations are needed to con�rm this assumption. The 
results of this study further solidify our claim that MELDER is 
e�ective not only in stationary settings but also in mobile ones. 

9 EXPERIMENT 5: VISUAL FEEDBACK 

We conducted a �nal study to compare the visual feedback methods 
of MELDER with the visual feedback method of Google Assistant. 
Note that the feedback methods were not included in Experiments 3 

and 4 to eliminate a potential confounding factor. This study focuses 
on assessing the perceived performance of visual feedback methods 
in MELDER and Google Assistant, rather than directly comparing 
their actual performance. Such a comparison would be unfair due 
to the inherent di�erences between the two systems: MELDER is 
an image-based silent speech recognizer, while Google Assistant’s 
speech-to-text relies on audio processing. These disparities stem 
from the distinct data types they handle (visual for images, auditory 
for audio), resulting in varying complexities in operations and 
feature extraction. 

9.1 Apparatus 

We developed a custom Web application with HTML5, CSS, PHP, 
JavaScript, and Node.js. We hosted the application on GitHub. The 
application was loaded on a Chrome web browser v71.0.3578.98 
running on a Motorola Moto G5 Plus smartphone (150.2x74x7.7 
mm, 155 g). Its built-in front camera (12 megapixel with 1080×1920 
pixel resolution) was used to track lip movements. Through an IP 
webcam Android application [54], we connected the smartphone’s 
camera to the server, which ran the silent speech recognition model. 
The server was running on a MacBook Pro 16" laptop with 2.6 GHz 
Intel Core i7 processor, 16 GB RAM, 3072×1920 at 226 ppi. The 
laptop and the smartphone were connected to a fast and reliable 
Wi-Fi network. There were no network dropouts during the study. 

Figure 9: Four participants taking part in the �nal user study. 
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Figure 10: Real-time visual feedback provided by (a) the default Google Speech recognizer and (b–c) MELDER. In (b), the gray 
circle in the top-right corner indicates that MELDER is unable to track the lips, passively prompting the user to reposition 
the device for a better camera view. In (c), MELDER is providing word-level feedback and in (d) it is providing phrase-level 
feedback. The suggestions are in a greyed-out font. In both (c) and (d), the red blinking circle indicates that MELDER is able to 
track the lips. 

9.2 Participants 

Twelve volunteers participated in the user study (Fig. 9). Their age 
ranged from 21 to 41 years (M = 27.8 years, SD = 5). Eight of them 
identi�ed as women and four as men. They all owned a smartphone 
for at least �ve years (M = 8.2 years, SD = 2.2). Eleven of them were 
frequent users of a voice assistant system on their smartphones 
(M = 3 years, SD = 2.4), while one was an infrequent user. They all 
received U.S. $15 for volunteering. 

9.3 Design 

We used a within-subjects design for the user study with one inde-
pendent variable “feedback” with three levels: Google, word-level 
MELDER, and phrase-level MELDER. In each condition, partici-
pants entered thirty short English phrases from a subset of the 
Enron Mobile Email corpus, presented in Appendix A. In summary, 
the design was 12 participants × 3 conditions × 30 phrases = 1,080 
input tasks in total. The dependent variables were the eight items 
on a questionnaire. The study gathered qualitative data through 
the utilization of a custom questionnaire inspired by the System 
Usability Scale (SUS) [12]. The questionnaire asked participants 
to rate eight statements on the examined methods’ speed (“The 
technique was fast” ), accuracy (“The technique was accurate” ), e�ec-
tiveness (“The feedback method used in the technique was e�ective 
and useful” ), willingness-to-use (“I think that I would like to use this 
system frequently” ), ease-of-use (“I thought the system was easy to 
use” ), learnability (“I would imagine that most people would learn 
to use this system very quickly” ), con�dence (“I felt very con�dent 

using the system” ), and privacy and security (“I think the system 
will be private and secure when using in public places” ) on a 5-point 
Likert scale. 

9.4 Feedback Approaches 

We created two real-time visual feedback methods for silent speech 
recognition models, drawing inspiration from Google Assistant’s 
feedback approach. In Google Assistant, the system starts display-
ing likely letters and words as soon as it detects speech, re�ning 
the output as the speaker continues. These initial predictions are 
presented in a greyed-out font (Fig. 10a) to signify their potential for 
correction as more information becomes available. Unlike sugges-
tions on a virtual keyboard, these predictions in Google Assistant 
are automatically managed by the system and cannot be manually 
selected, discarded, or updated by users. Additionally, the system 
o�ers feedback for sound detection, resembling oscilloscope traces 
or sound waves, presented as four colored vertical lines (Fig. 10a, 
bottom of the display). These lines dynamically change in height to 
indicate when the system detects sound and come to a halt when 
sound detection ceases. 

MELDER also o�ers feedback on lip detection and speech recog-
nition. When the front camera detects the user’s lips, it displays 
a red blinking circle, similar to the video recording indicator on 
mobile devices. The red circle ceases blinking and changes to grey 
when the lips are no longer visible (Fig. 10b). To keep users in-
formed about the speech recognition process, we developed two 
feedback methods: 
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• Word-level feedback: This method o�ers real-time feed-
back on a word-by-word basis. It presents the most probable 
word based on the recognized input. The text remains gray 
until the con�dence level of the word surpasses a speci�ed 
threshold (empirically set at 0.75). Once this condition is 
met, the word turns black, signifying that it is considered 
�nalized and will not be corrected (Fig. 10c). 

• Phrase-level feedback: In this approach, real-time feedback 
is provided by displaying the most likely phrase based on 
the recognized pre�x string. Each word within the phrase 
starts in gray and transitions to black when its con�dence 
level exceeds a speci�c threshold (empirically set at 0.87). 
This change to black indicates that the word is considered 
�xed and will not undergo further correction (Fig. 10d). 

The threshold values were determined empirically through multi-

ple lab trials. During these trials, we tested thresholds ranging from 
0.65 to 1.0 for both feedback methods. We selected the threshold 
values that proved most e�ective in delivering real-time feedback 
based on the experimental results. Similar to Google Assistant, nei-
ther of these feedback methods allowed users to proactively select, 
dismiss, or modify the suggestions; they were merely provided to 
inform users about the recognition process. 

9.5 Procedure 

The study was conducted in a quiet computer laboratory. First, we 
provided the participants with a brief overview of the function-
ing principles behind both speech and silent speech recognition. 
Subsequently, we o�ered practical demonstrations of the three dis-
tinct feedback methods employed in the study. We then collected 
their informed consent forms, and enabled them to practice with 
the three methods for about �ve minutes. They could extend the 
duration of the practice an extra two minutes upon request. 

The main study started after that. In the study, participants en-
tered thirty short English phrases from the Enron set [110] by 
either speaking or silently speaking on a smartphone. All partici-
pants were seated at a desk. The three conditions (Google Assistant, 
MELDER with word-level feedback, and MELDER with phrase-
level feedback) were counterbalanced to eliminate any potential 
e�ect of practice. As each phrase was recognized, the application 

automatically displayed the next phrase, continuing in this manner 
until all phrases within the given condition had been successfully 
completed. Participants were not required to re-speak a phrase in 
the event that it was not accurately recognized by the system. 

Upon the completion of all conditions, participants completed 
a questionnaire that asked them to rate the three methods’ speed, 
accuracy, e�ectiveness, willingness-to-use, ease-of-use, learnability, 
con�dence, and privacy and security on a �ve-point Likert scale 
(Section 9.3). Finally, we concluded the study with a debrief session, 
where participants were given a chance to share their thoughts and 
comments regarding their responses to the questionnaire. 

9.6 Speed and Accuracy 

As discussed in Section 9, the primary aim of this qualitative study 
was not to conduct a direct comparison of the actual speed and accu-
racy of the models. However, it is noteworthy that we did carry out 
a separate study comparing Google Assistant and MELDER. In this 
between-subjects study, 24 participants (average age = 26.25 years, 
SD = 5.9, comprising 12 females, 11 males, and 1 non-binary) were 
evenly distributed into two groups: one using Google Assistant and 
the other using MELDER. Each group employed their designated 
input method in a seated position. A between-subjects ANOVA anal-
ysis revealed a statistically signi�cant impact of the input method 
on both entry speed (�1,22 = 1083.35, ? < .00001, [ 2 

= 0.98) and 
accuracy (�1,22 = 1219.38, ? < .00001, [ 2 

= 0.99). 
As expected, participants using Google Assistant achieved an 

average entry speed of 30.54 wpm (SD = 2.6) and a remarkably low 
word error rate of 2.01% (SD = 0.3). In contrast, those using MELDER 
exhibited signi�cantly slower input speeds, averaging 5.62 wpm 
(SD = 0.1), along with a much higher word error rate of 19.86% (SD = 
1.0). Fig. 11 summarizes these �ndings. It is important to highlight 
that both the word-level and phrase-level versions of MELDER 
utilize the same recognition model and do not necessitate users to 
actively choose suggestions from the feedback. Consequently, they 
are indistinguishable in terms of actual speed and accuracy. 

9.7 Results 

We used a Friedman test and a post-hoc Games-Howell multiple-

comparison test for analysing all non-parametric study data. We 

(a) Word error rate (b) Words per minute 

Figure 11: Performance comparisons between Google Assistant and MELDER in terms of a) word error rate and b) words per 
minute. Reported values are the average of all values. Error bars represent ±1 standard deviation. Red asterisks represent 
statistically signi�cant di�erences. 
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also report e�ect sizes in Kendall’s , for all statistically signi�cant 
results. Kendall’s , uses the Cohen’s interpretation guidelines [19] 
of , < 0.3 as small, , ≥ 0.3 as medium, and , ≥ 0.5 as large 
e�ect sizes. Fig. 12 summarizes the �ndings of the study. 

9.7.1 Perceived Speed and Accuracy. A Friedman test identi�ed a 
signi�cant e�ect of feedback on perceived speed (j 2 

= 9.83, df = 
2, ? < .01, , = 0.4) and accuracy (j 2 

= 6.4, df = 2, ? < .05, , = 
0.3). A Games-Howell test revealed that participants found Google 
Assistant to be signi�cantly faster than both word-level and phrase-
level MELDER. But interestingly, the pairwise test was unable to 
identify any signi�cant di�erence between the three methods in 
terms of accuracy. 

9.7.2 E�ectiveness. A Friedman test failed to identify a signi�cant 
e�ect of feedback on e�ectiveness (j 2 

= 4.69, df = 2, ? = .09). Addi-
tionally, a Games-Howell test con�rmed that participants perceived 
all three examined feedback approaches to be relatively equally 
e�ective. 

9.7.3 Willingness-to-Use. A Friedman test identi�ed a signi�cant 
e�ect of feedback on willingness-to-use (j 2 

= 7.0, df = 2, ? < 
.05, , = 0.3). An analysis using the Games-Howell test demon-

strated that participants expressed a signi�cantly stronger prefer-
ence for phrase-level feedback over word-level feedback. However, 
there was no statistically signi�cant di�erence in their preference 
between these feedback types and Google Assistant. 

9.7.4 Ease-of-Use and Learnability. A Friedman test failed to iden-
tify a signi�cant e�ect of feedback on either ease-of-use (j 2 

= 
6.0, df = 2, ? = .05) or learnability (j 2 

= 6.0, df = 2, ? = .05). A 
Games-Howell test also con�rmed that participants found the three 
examined methods relatively comparable in terms of ease-of-use 
and learnability. 

9.7.5 Confidence. A Friedman test identi�ed a signi�cant e�ect 
of feedback on con�dence (j 2 

= 12.56, df = 2, ? < .01, , = 0.5). 
A Games-Howell test indicated that participants exhibited a no-
tably higher level of con�dence when utilizing Google Assistant 

compared to both work-level and phrase-level MELDER. Their con-
�dence levels in using the two variations of MELDER appeared to 
be relatively similar. 

9.7.6 Privacy and Security. A Friedman test identi�ed a signi�cant 
e�ect of feedback on privacy and security (j 2 

= 24.0, df = 2, ? < 
.0001, , = 1.0). A Games-Howell test revealed that participants 
found both word-level and phrase-level MELDER to be signi�cantly 
more secure and private than Google Assistant. 

9.8 Discussion 

MELDER was notably slower and displayed a higher error rate 
compared to Google Assistant. The discrepancy in text entry speed 
between the two methods was readily observed by all participants. 
They universally perceived MELDER, regardless of the feedback 
method, to be slower than Google Assistant. This a�ected their 
con�dence in both variants of MELDER. This notably in�uenced 
participants’ con�dence levels. Participants reported feeling signif-
icantly more con�dent when using Google Assistant compared to 
both word-level and phrase-level MELDER. One participant (male, 
26 years) commented, “’I think silent speech is slower, and speed is 
really important in some cases. Apart from this, I think it is going to 
be an extremely cool piece of technology.” 

Interestingly, participants found MELDER with phrase-level feed-
back to be relatively faster than MELDER with word-level feedback, 
even though both variants used the same underlying model. The 
majority of participants agreed with the statement that MELDER 
with phrase-level feedback is fast (N = 8), while a few remained neu-
tral (N = 3), and only one participant disagreed with the statement. 
These results indicate that phrase-level feedback enhanced users’ 
perception of the method’s speed, despite the actual performance 
being similar. 

Participants’ perception of the accuracy of the examined meth-

ods yielded surprising results. Despite the fact that both variants 
of MELDER, with either word-level or phrase-level feedback, dis-
played signi�cantly higher error rates compared to Google Assis-
tant, participants did not perceive them as notably error-prone. In 

Figure 12: Average user ratings of the three methods on a 5-point Likert scale, where 1–5 signi�es disagree–agree. Error bars 
represent ±1 standard deviation (SD). Red asterisks represent statistically signi�cant di�erences. 
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fact, the vast majority of participants agreed with the statement 
that the method is accurate (N = 11), with only one participant ex-
pressing a neutral opinion on the matter. It is important to note that 
while a Friedman test identi�ed a statistically signi�cant di�erence 
in error rates between the methods, a post-hoc multiple-comparison 
analysis did not con�rm this signi�cance. This suggests that partic-
ipants’ perceptions of accuracy may not align with the quantitative 
error rates, highlighting an interesting aspect of user perception in 
human-computer interaction studies. 

Participants’ perception of the performance of MELDER with 
phrase-level feedback had a clear impact on their willingness to 
use the di�erent methods. They expressed a signi�cantly higher 
willingness to use both Google Assistant and MELDER with phrase-
level feedback compared to MELDER with word-level feedback. 
This observation underscores the potential e�ectiveness of the 
proposed methods and the feedback approaches employed in the 
study. Participants’ willingness to use MELDER with phrase-level 
feedback was also positively in�uenced by their perception of the 
method’s security and privacy features. They viewed both variants 
of MELDER as signi�cantly more private and secure compared to 
Google Assistant, primarily because bystanders could not overhear 
their interactions. Some participants even indicated that they would 
consider using the method primarily for its privacy and security 
bene�ts. For instance, one participant (female, 21 years) stated, 
“Due to its privacy bene�ts, it is extremely useful.” These �ndings 
align with prior research on the perceived privacy and security 
advantages of speech and silent speech-based input methods [81]. 

The results showed that participants found both Google Assistant 
and the two variations of MELDER to be relatively comparable in 
terms of e�ectiveness, ease of use, and learnability. While there were 
slight variations in the ratings for these three methods, a Friedman 
test did not detect any statistically signi�cant di�erences in these 
aspects. Furthermore, participants expressed that both variants of 
MELDER were easy to use, and they believed that their performance 
would improve with practice. As one participant (female, 21 years) 
noted, “Adapting to silent speech was challenging at �rst, but became 
easier as I progressed.” This feedback suggests that users may require 
some time to acclimate to silent speech input but can become more 
pro�cient with practice. 

10 CONCLUSION 

In this comprehensive work, we have successfully developed a real-
time silent speech recognition system tailored for mobile devices. 
Our approach involves breaking down the input video into smaller 
temporal segments, processing them individually, and utilizing 
advanced language models to auto-correct output at both character 
and word-levels. Additionally, our system o�ers users valuable 
feedback on the silent speech recognition process. 

The work began with an experiment where we explored four dif-
ferent windowing functions for segmenting video lips, ultimately 
determining that a linear function (~ = G + 5) yielded the best 
performance. Building upon this, we introduced a transfer learn-
ing approach aimed at enhancing the capabilities of silent speech 
recognition models for everyday conversational contexts. We in-
vestigated three strategies for transferring learning with three ex-
isting silent speech models, with the Finetune_Sequence strategy 

emerging as the most e�ective, showcasing its potential for im-

proving the performance of existing pre-trained models. Equipped 
with the linear slicing function and the Finetune_Sequence trans-
fer learning approach, we compared our system, MELDER, with 
two state-of-the-art silent speech models in two user studies–one 
in a stationary (seated position) and another in a mobile setting 
(while walking). The results demonstrated that MELDER outper-
formed both methods, establishing its feasibility for mobile device 
use. Furthermore, we conducted a qualitative study comparing our 
proposed word-level and phrase-level visual feedback methods with 
Google Assistant’s feedback mechanism. Interestingly, the study re-
vealed that users’ perceived performance did not always align with 
actual performance. Notably, the phrase-level feedback signi�cantly 
enhanced users’ perception of the silent speech model. 

In conclusion, this work �rmly establishes silent speech as a 
viable and e�ective method for interacting with mobile devices. 
As part of our commitment to advancing research in this �eld, we 
have made the dataset, source code, and other materials generated 
during this study freely available for download. We hope that this 
will encourage further investigations and replication e�orts in this 
promising area of study. 

11 FUTURE WORK 

In future work, we plan to investigate various manual error correc-
tion strategies, empowering users to e�ectively correct recognition 
errors. Additionally, our aim is to further optimize the algorithm, 
enhancing its speed, accuracy, and adaptability, especially for indi-
viduals with diverse speech disorders. We also intend to conduct 
more in-depth studies to thoroughly examine the usability, adap-
tiveness, and robustness of the model. Moreover, testing the method 
in varied settings, such as under di�erent lighting conditions and 
noise levels, is also part of our future research agenda. 
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A EXPERIMENTAL DATASET 

This appendix lists the phrases chosen from the Enron Mobile Email 
corpus [110] for evaluating the proposed silent speech model. 

(1) are you going to join us for lunch 
(2) thanks for the quick turnaround 
(3) please call tomorrow if possible 
(4) are you getting all the information you need 

(5) she has absolutely everything 
(6) we can have wine and catch up 
(7) i agree since i am at the bank right now 
(8) i wanted to go drinking with you 
(9) both of us are still here 
(10) we need to talk about this month 
(11) this seems fine to me 
(12) is this the only time available 
(13) do you want to fax it to my hotel 
(14) i hope he is having a fantastic time 
(15) can you help get this cleared up 
(16) i would be glad to participate 
(17) i worked on the grade level promotion 
(18) that would likely be an expensive option 
(19) we are waiting on the cold front 
(20) you have a nice holiday too 
(21) what is the cost issue 
(22) i changed that in one prior draft 
(23) we must be consistent 
(24) we just need a sitter 
(25) thanks for your concern 
(26) has anyone else heard anything 
(27) take what you can get 
(28) call me to give me a heads up 
(29) they are more efficiently pooled 
(30) i am out of town on business tonight 
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