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Supergrowth occurs when the local amplitude growth rate
of a wave is greater than that predicted by the band limit.
While generating supergrowth on demand requires precise
source modulation, we demonstrate that supergrowth occurs
naturally in a sum of random plane waves. We measure the
supergrowing fractional area of transverse, monochromatic,
fully developed speckle patterns. For speckle with a disk
spectrum, we find that the average fractional supergrowing
area approaches 20%. We compare the supergrowing and
superoscillating fractional areas and find great similarity in
behavior. Our results inform on the ubiquity of superphe-
nomena in speckle patterns and are relevant to imaging and
estimation. © 2024 Optica Publishing Group. All rights, includ-
ing for text and data mining (TDM), Artificial Intelligence (Al) training,
and similar technologies, are reserved.
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Transverse optical fields are band limited by the optical systems
they propagate through. The band limit determines the highest
spatial frequency that makes it through the system, and con-
ventionally limits the smallest features of the fields that exit the
system [1]. Any band limited wave is said to be superoscillat-
ing locally wherever it exhibits oscillations faster than the band
limit [2]. The discovery of such waves has led to advances in
superresolved imaging and subwavelength focusing [3,4]. There
is no theoretical resolution limit because any local behavior
can be achieved irrespective of band limit, but at the cost of
undesired high-energy regions, making the energy in the super-
oscillating region relatively small [5]. The high-energy regions
make superoscillations challenging to synthesize and measure
experimentally. A phenomenon distinct from superoscillations,
supergrowth, may be applicable to superresolved imaging with
the benefit that supergrowing regions can contain exponentially
larger irradiance compared to superoscillatory regions [6].
Supergrowth occurs wherever a band limited wave exhibits
growth surpassing the band limit [7]. A reconstructive superres-
olution imaging modality that uses supergrowing point spread
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functions has been proposed [6]. In addition, a systematic route
to designing supergrowing optical fields with any local behavior
has been demonstrated [5]. Supergrowth has also been syn-
thesized experimentally in Ref. [8], which reports the first
experimental realization of engineered supergrowing fields.

A natural question to ask is if supergrowth exists naturally,
or if it must always require field engineering. Reference [9]
has shown that superoscillations can be found in the superposi-
tion of isotropic Gaussian random waves, or in speckle patterns.
Speckle occurs when coherent light is reflected by or transmitted
through optically rough surfaces and is characterized by bright
and dark spots caused by interference [10]. Optical speckle has
arich history of applications in coherent imaging [10], interfer-
ometry [11], and spectroscopy [12]. In addition, the dark spots
in speckle are collections of optical vortices [13] that act as
hotspots for superbehavior.

In this work, we experimentally generate speckle patterns
with varying power spectra and find that supergrowth can occur
over a significant fractional area of a wave. On average, the
fractional supergrowing area approaches 20% for speckle with
a disk spectrum. To directly compare the nature of supergrowth
and superoscillations, we simulate speckle fields and compare
the fractional supergrowing and superoscillating areas. We apply
the theoretical treatment of the fractional superoscillatory area
from Ref. [9] to supergrowth and find that superoscillations and
supergrowth should occur at the same rates in random waves.

Mathematical background. In this work, we analyze band
limited speckle patterns with a band limit k,,,. The wave is
composed of a superposition of Gaussian random plane waves,
resulting in the field ¥/ (p) with p = (&, v) in the detector plane.
Let us define a local wavenumber k(p) and local growth rate
k(p) such that our scalar field y is

superoscillatory, where

k= Im{V log()}>kpa, (1)
and supergrowing, where

k = |Re{V1ogW)}|>kpr-  (2)
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Fig. 1. (a) A 4f system is used to generate band limited speckle
fields. L, and L, are lenses with focal lengths of f; and f>, respec-
tively. (b) Elements at the Fourier plane, including the incident
Gaussian beam with amplitude A, ground glass with surface height
Z, and pinhole with transmittance P. (c) Cross sections of the power
spectra most and least resembling a disk spectrum in the experiment.
The beam irradiance |A|? is truncated by the pinhole P, producing an
approximate Gaussian spectrum (top, D = 0.19) or a disk spectrum
(bottom, D =0.84).

Experimentally, we measure the irradiance that has a doubled
local growth rate [8]:

Viog(y'y) = 2«. (3

The irradiance has no phase information, so the local wavenum-
ber cannot be extracted. In the simulation, we have access to the
field, so all three definitions are used and a comparison of the
local wavenumber and local growth rate can be made.

The fractional supergrowing area f can be predicted using the
same formalism as was used in Ref. [9] where we use the local
growth rate rather than the local wavenumber:

4k, k k>
K= ,
2 (2ho + K2)? ky +2k2 .

f= @

where k, is the normalized second moment of the power spec-
trum. Note that the power spectrum is proportional to the
magnitude squared of the angular spectrum of the speckle.
Spectrum refers to power spectrum unless otherwise specified.
The integrand in Eq. (4) is the probability that a particular
growth rate x will occur in a speckle pattern. The symmetry
between superoscillations and supergrowth arises from the fact
that this probability is the same for both x (supergrowth) and k
(superoscillation) in Gaussian random waves.

Experiment. To generate speckle patterns with a controllable
spectrum, we use a 4f optical system with a precision pinhole
and ground glass diffuser at the Fourier plane; see Fig. 1(a). The
system images a Gaussian beam profile in the front focal plane
onto a detector. The pinhole at the Fourier plane is the stop of the
system and the ground glass imposes a phase in the stop. Lenses
with focal lengths of 300 mm and 500 mm were interchanged
for L, and L, to control the spot size at the Fourier plane. Both
lenses have a 1 in. diameter. The system numerical aperture
set by the pinhole is smaller than the numerical apertures of
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both lenses for all system configurations, confirming that the
pinhole is the limiting aperture. A 600-grit ground glass diffuser
is used (Thorlabs DG10-600). The precision pinholes used have
diameters between 40 um and 150 pm.

The illumination source is a fiber-coupled Fabry—Perot laser
operating at a wavelength of 635 nm (Thorlabs SIFC635). The
laser light is collimated out of a single-mode fiber using a 15
mm focal length lens. To precisely control the spectrum of the
speckle, the illumination needs to be well-known. It was theoret-
ically calculated that the Gaussian beam radius (w,, the distance
from the beam axis where the irradiance drops to 1/¢? the max-
imum value) is between 2.0 mm and 3.4 mm after collimation
and was experimentally determined to be 2.19 mm [14]. A Trius
Camera SX-814 was used to image the speckle patterns.

To determine the fractional area of a typical speckle pattern
that is supergrowing, 100 randomly generated speckle patterns
were recorded and their supergrowing fractional areas averaged.
We determined that averaging 100 speckle realizations was suf-
ficient using the simulation. A set of random speckle patterns
with the same spectrum is created by illuminating a new region
of the ground glass by manual rotation of the glass.

To calculate the supergrowing regions of each speckle real-
ization, we first subtract the background from each image. Since
a discrete gradient is required, it is highly susceptible to noise.
To circumvent the noise, we perform a Gaussian convolution on
the image with a convolution kernel smaller than the diffraction-
limited spot size at the detector plane. Next, the local growth rate
is discretely calculated in accordance with Eq. (3). The result-
ing supergrowing regions have a tendency to be grouped into
smaller sections than in the simulations, which we attribute to
the noise in the collection. To group contiguous supergrowing
regions, the local growth array is also convolved with a Gaus-
sian kernel. The sum of the FWHMs of the two Gaussian kernels
is smaller than the diffraction-limited spot size. The simulation
confirms that the convolutions do not affect the supergrowing
areas.

Simulation. The speckle recorded by the detector is equiv-
alent to a Fraunhofer propagation of the field at the Fourier
plane [1]. To simulate the speckle patterns produced by the
experiment, descriptions of the pinhole P(r), the incident beam
amplitude A(r), and the ground glass surface height Z(r) are
required, where r = (x,y) is a coordinate at the Fourier plane.
The pinhole transmittance P(r) is unity within the clear aper-
ture of the pinhole and zero outside. We approximate the beam
amplitude as Gaussian since the fundamental mode of a fiber
can be approximated as a Gaussian with 96% accuracy [14].
Letting the Gaussian beam radius be w, after collimation, at the
Fourier plane, the beam radius will be w, = Af; /(7w,).

To model Z(r), we need to generate statistically accurate, ran-
dom instances of the ground glass surface used. The simulated
ground glass surfaces match the experimentally collected values
for the surface profile arithmetical mean deviation R,,, the surface
profile root mean square deviation R,, and the transverse corre-
lation length [.. The values for R, (1.483 um) and R, (1.939 pum)
were measured using a contact-type surface roughness measure-
ment instrument in Ref. [15]. A correlation length of 30 pm was
found to mimic the experimentally collected surface profiles. We
match R,, R,, and /. by generating an array of random numbers,
convolving it with a Gaussian with the FWHM of [, scaling to
match R,, and raising the array by the power of 1.14 to match R,.
An example simulated ground glass surface profile is depicted
in Fig. 1(b) labeled as Z, where the diameter of the ground
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Fig. 2. Example simulated and experimental speckle patterns for
lens focal lengths f; = 500 mm and f; = 300 mm with pinhole radii
of 20 um in (a) and (¢) and 75 wm in (b) and (d). The simu-
lation produces speckle patterns with similar feature sizes as the
experiment.

glass section shown is 150 pm. We found that for all pinhole
sizes used, the speckle produced approximately obeys Gaussian
statistics.

With each element at the Fourier plane accurately modeled,
we can perform a discrete Fraunhofer propagation to find the
field at the detector U,, ignoring a constant amplitude term:

Uyp) = // A(r)P(r) exp [,27” (Z(r)— r];—zp)]dzr. (5)

It was found that the sampling at Nyquist produced speckle with
experimentally accurate feature sizes, but smaller superbehaved
fractional areas than theoretically predicted [9]. Consequently,
we sample at double the Nyquist rate. Examples of experimental
and simulated speckle patterns are shown in Fig. 2. It is evident
that the feature sizes in the simulation and experiment agree.

In our experiment, the spectrum is a clipped Gaussian that
behaves more Gaussian or more disk-like depending on the pin-
hole and lens combination used. To quantify how close to a disk
spectrum a particular system configuration’s power spectrum is,
we define the following overlap integral:

~ ff A(r)A*(r)P(r)d’r
b= A0)A*(O)rr?, ()

pin

If the incident beam is a uniform plane wave (A(r) constant), the
spectrum is a perfect disk spectrum after passing through the pin-
hole, and the overlap integral has a value of unity. If the incident
beam is Gaussian with a small beam waist relative to the pinhole,
the overlap integral approaches zero. The cross sections of the
spectra with the highest (0.84) and lowest (0.07) overlap inte-
gral values are plotted in Fig. 1(c). The supergrowing behavior
of speckle patterns has not been explored, so we experimentally,
computationally, and theoretically investigate the supergrowing
behavior of speckle patterns as the spectrum changes.

Results. The local wavenumber and local growth rate are
calculated from a simulated speckle pattern using a discrete
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Fig. 3. (a) and (b) Local supergrowing strength I' = |k/kyua| for
the speckle patterns in Figs. 2(a) and 2(b). The white contours
enclose supergrowing regions. These speckle patterns were chosen
because their fractional supergrowing areas are similar to the aver-
age for their spectral shape. (c) Average fractional supergrowing or
superoscillating area for different spectral shapes, quantified by the
disk spectrum overlap integral D. Each data point is averaged from
100 speckle realizations. The circled data points correspond to the
data sets (a) and (b) to which they belong. The gray curve shows
the theoretical prediction for the superbehaved fractional area.

gradient as in Eqs. (1) and (2). The local growth rate is deter-
mined from an experimentally collected speckle pattern using
Eq. (3). The local growth rates of the experimental speckle
patterns in Figs. 2(a) and 2(b) are depicted in Figs. 3(a) and
3(b). The color bars are quantified by I' = |«/k,..|, the super-
growing strength [8]. When I is greater than unity, the speckle
pattern is locally supergrowing. White contours enclose such
supergrowing regions. We note that for Fig. 3(a), the color bar
value is intentionally thresholded at 64% of the speckle pat-
tern’s maximum supergrowing strength for better visualization
of the local growth behavior. It has been well documented that
superoscillations occur in low irradiance regions of fields, and
it has been theoretically demonstrated that the fractional energy
in a superoscillating/supergrowing region is limited by the size
of the region and the local rates of oscillation/growth [3,5]. As
such, the supergrowing regions in Figs. 3(a) and 3(b) are in the
low irradiance regions of Figs. 2(a) and 2(b). The supergrowth
and superoscillations tend to overlap but are not identical in the
simulation.

Figure 3(c) contains the results of averaging the super-
growing and superoscillating fractional areas of 100 speckle
realizations for varying spectrum shapes. We also find the
predicted fractional superbehaved area using Eq. (4). Know-
ing the power spectrum of the speckle patterns to be a scaled
version of the irradiance at the Fourier plane, the normalized
second moment of the power spectrum can be calculated as
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follows:

27 fhmax 1o 02 jw?
L L7 ke ik, dk,d6 W R @)
2= 20 phmar 042 2 - 2 Iw? ’
—2k; [w 2 2Kinax /Wy —
fo f0 e ik dk.do e -1

where k, = 27r/(Af) is a spatial frequency, @ is an angle in the
Fourier plane, w; = 2f;/(wyf>) is the beam radius in k-space,
and k. = 271, /(Af>). If A was constant, then our speckle
would have a disk spectrum and k, = k2, /2, which results in the
fractional supergrowing and superoscillating areas being 20%.
Substituting Eq. (7) into Eq. (4) for all values of D returns the
gray prediction curve in Fig. 3(c).

The superoscillating and supergrowing fractional areas in
the experiment and the simulation have the same behavior as
the theoretical curve. The fractional areas approach 20% as D
approaches unity and diminish as D approaches zero. The reason
for the latter is as D goes to zero, the spectrum becomes more
Gaussian, implying that the highest spatial frequencies allowed
through the system have low relative amplitudes compared to the
lower spatial frequencies as is shown in Fig. 1(c). As a result,
the field resembles a field with a smaller band limit (speckle
blobs are large) but with a higher value of k,,,,, making it hard to
locally achieve superoscillations. The supergrowing and super-
oscillating regions of the fields tend to occur near phase vortices
in the speckle pattern, causing large overlap regions and subse-
quently similar average fractional superbehaved areas. We find
that supergrowth and superoscillations occur at the same rates
in random waves. For the experimental data set with the highest
overlap integral value, D = 0.84, the average fractional super-
growing area is 18.18% with a standard deviation of 7.28%.
The peak supergrowing fractional area of this data set is 41.8%,
so individual speckle realizations can have higher supergrowing
areas. Overall, a significant fractional area of a wave can be
supergrowing.

For lower D values, the experimental fractional supergrow-
ing areas are higher than the theoretical curve. Lower D values
imply larger pinhole sizes, which create smaller speckle pat-
terns. Upon comparing Figs. 3(a) and 3(b), it is evident that the
total perimeter of the contours is larger for the case with smaller
speckle patterns. The borders of the supergrowing regions are
susceptible to noise, which causes higher supergrowing regions
to be detected for smaller values of D. We also see the least
agreement between the simulation and the theoretical curve for
the highest D value, 0.84. For large D values, the decreased pin-
hole size causes the speckle to deviate from Gaussian statistics.
The smallest pinhole used has a diameter of 40 pm because this
is a cutoff for generating fully developed speckle for the ground
glass used. Simulated speckle patterns using smaller pinholes
were not fully developed and were not accurately predicted by the
theoretical curve. As long as the phase imparted by the ground
glass is random, the particular glass surface profile features do
not affect the final supergrowth statistics.

Concluding remarks. In summary, we experimentally syn-
thesized band limited speckle patterns with varying spectra to
explore the average fractional supergrowing area of random
Gaussian waves. The speckle patterns were created by using
a 4f optical system with ground glass and a precision pinhole
at the Fourier plane, illuminated by a Gaussian beam. Eight
different power spectra were generated by using different com-
binations of lenses and pinholes. We compared experimental and
theoretical results to a simulation in order to bridge superoscil-
lations and supergrowth in speckle patterns without measuring
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the full field of the experimentally recorded speckle patterns.
The simulation modeled the experiment, particularly by model-
ing the optically rough ground glass surface. To find the average
superbehaved fractional area for a given spectrum, 100 or more
speckle patterns were recorded or simulated and their individual
superbehaved fractional areas averaged.

Our results have potential biophotonic applications utilizing
speckle statistics. Laser speckle contrast analysis is a technique
that utilizes the spatial variations of speckle patterns to deter-
mine capillary blood flow [16]. Supergrowth calculations are
also dependent on the spatial variations of speckle patterns and
may have the capacity to yield similar information.

Superoscillations are already a rich area of research for
superresolution modalities, and supergrowth holds promise for
opening new avenues in superresolution research. Our results
suggest that supergrowth, like superoscillation, is intrinsic to
speckle patterns and that it can occur in high fractional areas
of fields. Our results provide support for the viability of super-
growth in superresolution imaging, parameter estimation, and
ranging [6,7,17]. Speckle occurs ubiquitously in optics, so this
investigation of its fundamental physics sheds new light on the
robustness of supergrowth in the natural world.
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