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Fig. 1. (a) A 4f system is used to generate band limited speckle

fields. L1 and L2 are lenses with focal lengths of f1 and f2, respec-

tively. (b) Elements at the Fourier plane, including the incident

Gaussian beam with amplitude A, ground glass with surface height

Z, and pinhole with transmittance P. (c) Cross sections of the power

spectra most and least resembling a disk spectrum in the experiment.

The beam irradiance |A|2 is truncated by the pinhole P, producing an

approximate Gaussian spectrum (top, D= 0.19) or a disk spectrum

(bottom, D= 0.84).

Experimentally, we measure the irradiance that has a doubled

local growth rate [8]:

∇ log(ψ∗ψ) = 2κ. (3)

The irradiance has no phase information, so the local wavenum-

ber cannot be extracted. In the simulation, we have access to the

field, so all three definitions are used and a comparison of the

local wavenumber and local growth rate can be made.

The fractional supergrowing area f can be predicted using the

same formalism as was used in Ref. [9] where we use the local

growth rate rather than the local wavenumber:

f =

∫ ∞

2kmax

4k2κ

(2k2 + κ
2)2

dκ =
k2

k2 + 2k2
max

, (4)

where k2 is the normalized second moment of the power spec-

trum. Note that the power spectrum is proportional to the

magnitude squared of the angular spectrum of the speckle.

Spectrum refers to power spectrum unless otherwise specified.

The integrand in Eq. (4) is the probability that a particular

growth rate κ will occur in a speckle pattern. The symmetry

between superoscillations and supergrowth arises from the fact

that this probability is the same for both κ (supergrowth) and k

(superoscillation) in Gaussian random waves.

Experiment. To generate speckle patterns with a controllable

spectrum, we use a 4f optical system with a precision pinhole

and ground glass diffuser at the Fourier plane; see Fig. 1(a). The

system images a Gaussian beam profile in the front focal plane

onto a detector. The pinhole at the Fourier plane is the stop of the

system and the ground glass imposes a phase in the stop. Lenses

with focal lengths of 300 mm and 500 mm were interchanged

for L1 and L2 to control the spot size at the Fourier plane. Both

lenses have a 1 in. diameter. The system numerical aperture

set by the pinhole is smaller than the numerical apertures of

both lenses for all system configurations, confirming that the

pinhole is the limiting aperture. A 600-grit ground glass diffuser

is used (Thorlabs DG10-600). The precision pinholes used have

diameters between 40 µm and 150 µm.

The illumination source is a fiber-coupled Fabry–Perot laser

operating at a wavelength of 635 nm (Thorlabs S1FC635). The

laser light is collimated out of a single-mode fiber using a 15

mm focal length lens. To precisely control the spectrum of the

speckle, the illumination needs to be well-known. It was theoret-

ically calculated that the Gaussian beam radius (w0, the distance

from the beam axis where the irradiance drops to 1/e2 the max-

imum value) is between 2.0 mm and 3.4 mm after collimation

and was experimentally determined to be 2.19 mm [14]. A Trius

Camera SX-814 was used to image the speckle patterns.

To determine the fractional area of a typical speckle pattern

that is supergrowing, 100 randomly generated speckle patterns

were recorded and their supergrowing fractional areas averaged.

We determined that averaging 100 speckle realizations was suf-

ficient using the simulation. A set of random speckle patterns

with the same spectrum is created by illuminating a new region

of the ground glass by manual rotation of the glass.

To calculate the supergrowing regions of each speckle real-

ization, we first subtract the background from each image. Since

a discrete gradient is required, it is highly susceptible to noise.

To circumvent the noise, we perform a Gaussian convolution on

the image with a convolution kernel smaller than the diffraction-

limited spot size at the detector plane. Next, the local growth rate

is discretely calculated in accordance with Eq. (3). The result-

ing supergrowing regions have a tendency to be grouped into

smaller sections than in the simulations, which we attribute to

the noise in the collection. To group contiguous supergrowing

regions, the local growth array is also convolved with a Gaus-

sian kernel. The sum of the FWHMs of the two Gaussian kernels

is smaller than the diffraction-limited spot size. The simulation

confirms that the convolutions do not affect the supergrowing

areas.

Simulation. The speckle recorded by the detector is equiv-

alent to a Fraunhofer propagation of the field at the Fourier

plane [1]. To simulate the speckle patterns produced by the

experiment, descriptions of the pinhole P(r), the incident beam

amplitude A(r), and the ground glass surface height Z(r) are

required, where r = (x, y) is a coordinate at the Fourier plane.

The pinhole transmittance P(r) is unity within the clear aper-

ture of the pinhole and zero outside. We approximate the beam

amplitude as Gaussian since the fundamental mode of a fiber

can be approximated as a Gaussian with 96% accuracy [14].

Letting the Gaussian beam radius be wo after collimation, at the

Fourier plane, the beam radius will be wr = λf1/(πwo).

To model Z(r), we need to generate statistically accurate, ran-

dom instances of the ground glass surface used. The simulated

ground glass surfaces match the experimentally collected values

for the surface profile arithmetical mean deviation Ra, the surface

profile root mean square deviation Rq, and the transverse corre-

lation length lc. The values for Ra (1.483 µm) and Rq (1.939 µm)

were measured using a contact-type surface roughness measure-

ment instrument in Ref. [15]. A correlation length of 30 µm was

found to mimic the experimentally collected surface profiles. We

match Ra, Rq, and lc by generating an array of random numbers,

convolving it with a Gaussian with the FWHM of lc, scaling to

match Rq, and raising the array by the power of 1.14 to match Ra.

An example simulated ground glass surface profile is depicted

in Fig. 1(b) labeled as Z, where the diameter of the ground
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Fig. 2. Example simulated and experimental speckle patterns for

lens focal lengths f1 = 500 mm and f2 = 300 mm with pinhole radii

of 20 µm in (a) and (c) and 75 µm in (b) and (d). The simu-

lation produces speckle patterns with similar feature sizes as the

experiment.

glass section shown is 150 µm. We found that for all pinhole

sizes used, the speckle produced approximately obeys Gaussian

statistics.

With each element at the Fourier plane accurately modeled,

we can perform a discrete Fraunhofer propagation to find the

field at the detector Ud, ignoring a constant amplitude term:

Ud(ρ) =

∬

A(r)P(r) exp

[

i
2π

λ

(

Z(r) −
r · ρ

f2

)]

d2
r. (5)

It was found that the sampling at Nyquist produced speckle with

experimentally accurate feature sizes, but smaller superbehaved

fractional areas than theoretically predicted [9]. Consequently,

we sample at double the Nyquist rate. Examples of experimental

and simulated speckle patterns are shown in Fig. 2. It is evident

that the feature sizes in the simulation and experiment agree.

In our experiment, the spectrum is a clipped Gaussian that

behaves more Gaussian or more disk-like depending on the pin-

hole and lens combination used. To quantify how close to a disk

spectrum a particular system configuration’s power spectrum is,

we define the following overlap integral:

D =

∬

A(r)A∗(r)P(r)d2
r

A(0)A∗(0)πr2
pin

. (6)

If the incident beam is a uniform plane wave (A(r) constant), the

spectrum is a perfect disk spectrum after passing through the pin-

hole, and the overlap integral has a value of unity. If the incident

beam is Gaussian with a small beam waist relative to the pinhole,

the overlap integral approaches zero. The cross sections of the

spectra with the highest (0.84) and lowest (0.07) overlap inte-

gral values are plotted in Fig. 1(c). The supergrowing behavior

of speckle patterns has not been explored, so we experimentally,

computationally, and theoretically investigate the supergrowing

behavior of speckle patterns as the spectrum changes.

Results. The local wavenumber and local growth rate are

calculated from a simulated speckle pattern using a discrete

Fig. 3. (a) and (b) Local supergrowing strength Γ = |κ/kmax | for

the speckle patterns in Figs. 2(a) and 2(b). The white contours

enclose supergrowing regions. These speckle patterns were chosen

because their fractional supergrowing areas are similar to the aver-

age for their spectral shape. (c) Average fractional supergrowing or

superoscillating area for different spectral shapes, quantified by the

disk spectrum overlap integral D. Each data point is averaged from

100 speckle realizations. The circled data points correspond to the

data sets (a) and (b) to which they belong. The gray curve shows

the theoretical prediction for the superbehaved fractional area.

gradient as in Eqs. (1) and (2). The local growth rate is deter-

mined from an experimentally collected speckle pattern using

Eq. (3). The local growth rates of the experimental speckle

patterns in Figs. 2(a) and 2(b) are depicted in Figs. 3(a) and

3(b). The color bars are quantified by Γ = |κ/kmax |, the super-

growing strength [8]. When Γ is greater than unity, the speckle

pattern is locally supergrowing. White contours enclose such

supergrowing regions. We note that for Fig. 3(a), the color bar

value is intentionally thresholded at 64% of the speckle pat-

tern’s maximum supergrowing strength for better visualization

of the local growth behavior. It has been well documented that

superoscillations occur in low irradiance regions of fields, and

it has been theoretically demonstrated that the fractional energy

in a superoscillating/supergrowing region is limited by the size

of the region and the local rates of oscillation/growth [3,5]. As

such, the supergrowing regions in Figs. 3(a) and 3(b) are in the

low irradiance regions of Figs. 2(a) and 2(b). The supergrowth

and superoscillations tend to overlap but are not identical in the

simulation.

Figure 3(c) contains the results of averaging the super-

growing and superoscillating fractional areas of 100 speckle

realizations for varying spectrum shapes. We also find the

predicted fractional superbehaved area using Eq. (4). Know-

ing the power spectrum of the speckle patterns to be a scaled

version of the irradiance at the Fourier plane, the normalized

second moment of the power spectrum can be calculated as




