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Abstract

Motivated by applications to monotonicity testing, Lehman and Ron (JCTA, 2001) proved the

existence of a collection of vertex disjoint paths between comparable sub-level sets in the directed

hypercube. The main technical contribution of this paper is a new proof method that yields a

generalization of their theorem: we prove the existence of two edge-disjoint collections of vertex

disjoint paths. Our main conceptual contributions are conjectures on directed hypercube flows with

simultaneous vertex and edge capacities of which our generalized Lehman-Ron theorem is a special

case. We show that these conjectures imply directed isoperimetric theorems, and in particular, the

robust directed Talagrand inequality due to Khot, Minzer, and Safra (SIAM J. on Comp, 2018).

These isoperimetric inequalities, that relate the directed surface area (of a set in the hypercube)

to its distance to monotonicity, have been crucial in obtaining the best monotonicity testers for

Boolean functions. We believe our conjectures pave the way towards combinatorial proofs of these

directed isoperimetry theorems.
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1 Introduction

We let d ≥ 2 denote a natural number. The directed d-dimensional hypercube graph H has

vertices V (H) which correspond to bit-vectors x ∈ ¶0, 1♢d, and edges E(H) corresponding

to pairs of bit-vectors (x, y) that differ in exactly one coordinate. Edges point from lower

Hamming weight vectors to larger ones. We use xi to denote the ith coordinate of vertex x.

There is a natural partial order on the vertices/elements of the Boolean hypercube: x ⪯ y iff

∀i, xi ≤ yi. Note that the directed hypercube is precisely the Hasse diagram of this partial

order. Equivalently, one can consider the vertices as subsets of [d], and the partial order is

given by containment.

Two subsets S, T of V (H) are called a matched pair if there exists a bijection ϕ : S → T

such that s ≺ ϕ(s) for all s ∈ S; we denote a matched pair by (S, T ; ϕ). An early writeup of

Goldreich-Goldwasser-Ron [30] posed a routing question, inspired by questions in monotonicity

testing, which was solved by Lehman and Ron [36]. (More discussion in §4.) They were

interested in the following natural question: given any matched pair (S, T ; ϕ), can one find

(edge or vertex) disjoint directed paths1 from S to T? Remarkably, they proved that if all

1 In their paper, Lehman and Ron consider these paths to be disjoint chains of subsets.
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points in S (resp. T ) have the same Hamming weight, then the answer is affirmative: one

can find vertex disjoint paths from S to T ! More precisely, for an integer 0 ≤ i ≤ d, let Li

denote the ith layer of H, that is, Li := ¶x ∈ V (H) : ♣♣x♣♣1 = i♢. We refer to this beautiful

statement as the “Lehman-Ron (LR) theorem”.

▶ Theorem 1 (Lehman-Ron Theorem [36]). Fix any two integers i < j. Let (S, T ; ϕ) be

a matched pair with S ⊆ Li and T ⊆ Lj. Then, there are ♣S♣ = ♣T ♣ vertex disjoint paths

between S and T . We refer to such a set of vertex disjoint paths as an LR solution.

▶ Remark. The paths may not respect the bijection ϕ. More precisely, the above doesn’t pre-

scribe vertex disjoint paths from s to ϕ(s) for all s ∈ S. There exist concrete counterexamples

(one is given in Lehman and Ron’s paper attributed to Dan Kleitman) for such paths. A

follow-up work by proves that edge-disjoint paths from s to ϕ(s) don’t exist either [16].

We give an alternate proof of this theorem. But more importantly, we use our new proof

technique to strengthen the LR theorem. If the terminals are at distance at least 2, there

exist two edge-disjoint LR solutions.

▶ Theorem 2. Fix any two integers i < j with j − i ≥ 2. Let (S, T ; ϕ) be a matched pair

with S ⊆ Li and T ⊆ Lj. Then, there are 2 collections of vertex disjoint paths between S

and T , such that their union is edge disjoint.

Lehman-Ron’s proof of Theorem 1 is by induction on ♣S♣ and on the quantity (j − i), the

distance between the layers in which S and T lie. The base case of j − i = 1 is obvious as the

bijection gives us the matching between S and T . The heart of the proof essentially shows

the existence of a set of vertices U either in layer Lj−1 or Li+1 and two bijections ϕ′ : S → U

and ϕ′′ : U → T such that (S, U ; ϕ′) and (U, T ; ϕ′′) are matched pairs. This last part is a

neat argument which uses Menger’s theorem, which is a special case of the max-flow-min-cut

theorem, on an auxiliary graph that they create. But how can one get two edge disjoint LR

solutions? The reader may notice that even the “base case” of j − i = 2, that is, when S and

T are two levels apart is itself non-trivial (indeed, we don’t really know a much simpler way

to solve this than the general case). And so, a new idea is needed to prove Theorem 2.

Our proof of the Lehman-Ron theorem brings the flow-cut duality idea front and center.

We note that Theorem 1 is actually a statement about the structure of flows and cuts in the

directed hypercube. More precisely, it states the existence of ♣S♣ units of flow from vertices

in S to vertices in T when all vertices have vertex capacity 1 unit. We exploit the duality

between cuts and flows, and more precisely the notion of complementary slackness, to give

an alternate proof of the LR Theorem. In this flow-cut language, Theorem 2 states the

existence of 2♣S♣ units of flow when both edges and vertices have capacities (1 and 2 units

each, respectively). The existence of the two kinds of capacities makes the argument slightly

more involved, but the essence is still the same. For completeness, we show proofs of both

Theorem 1 and Theorem 2 in Section 2 and Section 3, respectively.

We end our introduction with a natural conjecture that our techniques have been unable

to solve. We discuss the connections between this conjecture and monotonicity testing

in Section 4. As the layers Li and Lj move further apart, there should exist more collections

of edge-disjoint LR solutions between S and T .

▶ Conjecture 3. Fix any two integers i < j with r := j − i. Let (S, T ; ϕ) be a matched pair

with S ⊆ Li and T ⊆ Lj. Then, there are r collections of vertex disjoint paths between S

and T , such that their union is edge disjoint.
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Other LR connections. Recent work has generalized the LR theorem different directions

in [3]. These results find vertex disjoint paths that “cover” any collection of points specifying

certain properties. Consider a subset X of the hypercube that is partitioned into subsets of

paths (or chains). Meaning, we partition X =
⋃

i Xi such that, the vertices of Xi can be

ordered according to ≺. (Moreover, this is the partition that minimizes the number of sets.)

In the vanilla LR setting, each Xi is just (s, ϕ(s)) for each s ∈ S. The main theorem of [3]

shows that X can be covered by a collection of vertex disjoint paths. A nice implication of

their result is that Theorem 1 holds even if S and T were not contained in levels, but were

antichains.

We also note that the routing perspective in §4 answers a question of Sachdeva from a

collection of open problems on Boolean functions [27] (Pg 19, “Routing on the hypercube”).

We discuss more in §4.

2 Alternate proof of the Lehman-Ron Theorem

As a warm-up, we set up the main idea with a proof of the Lehman-Ron theorem. We begin

with an important definition.

▶ Definition 4. Given two sets S and T of the directed hypercube, the cover graph GS,T is

formed by the union of all paths from S to T .

In other words, the cover graph is the subset of the hypercube, that contains all vertices v

such that s ≺ v ≺ t (for s ∈ S, t ∈ T ). The cover graph inherits “layers” via intersection with

the original hypercube layers. In particular, layer Li of the cover graph is only S and layer

Lj is only T .

For the sake of contradiction, consider the minimal counterexample of Theorem 1 in terms

of ♣S♣ + ♣T ♣. Consider the following flow network which contains V (H) and also supernodes

S⃝ and T⃝. S⃝ has a directed edge to every vertex in s ∈ S, and every vertex t ∈ T has a

directed edge to T⃝. We construct a flow network by setting the following vertex capacities

to GS,T : the supernodes have infinite capacity while every vertex in V (H) has capacity 1.

Since (S, T ) is a counterexample, by the theory of flows and cuts, the maximum S⃝, T⃝ flow

in this vertex-capacitated network is < ♣S♣. And so, using flow-cut duality, we know that

there exists a cut C ⊆ V (H) such that (a) ♣C♣ < ♣S♣, (b) every path from S⃝ to T⃝ contains a

C-vertex. Call a path cut-free if it doesn’t contain a vertex from C. We can partition all

vertices into three sets S, C, T , where S contains all vertices that are reached by a cut-free

path from S⃝, and vertices of T can reach T⃝ by a cut-free path. In particular, there is no

edge from a vertex in S to a vertex in T ; all edges leaving S enter C, and all edges entering T
originate from C. We make a quick observation using the minimality of our counterexample.

▶ Lemma 5. C is disjoint from S ∪ T .

Proof. If C contains a vertex S ∪T , then one obtains a smaller counterexample. If v ∈ C ∩S,

then S′ := S \ ¶v♢, T ′ := T \ ¶ϕ(v)♢ and ϕ′ := ϕ♣
S′

forms a matched pair (S′, T ′; ϕ′) which

is also a counterexample: the cut (C − ¶v♢) is a valid cut of value ♣C♣ < ♣S♣ − 1 = ♣S′♣. So,

C ∩ S = ∅. The proof of C ∩ T = ∅ is analogous. ◀

Our setup so far is a restructuring of the original Lehman-Ron proof. The following lemma

is where we start to differ. This lemma is a consequence of complementary slackness from

the theory of linear optimization, and is the central tool for our new proof.

ITCS 2025



34:4 Directed Hypercube Routing, a Generalized Lehman-Ron Theorem

▶ Lemma 6. There exists a collection of vertex disjoint paths P where every path p ∈ P
begins at a vertex in S and ends at a vertex in T and

Every path p ∈ P contains exactly one vertex in C.

Every vertex v ∈ C is in exactly one path in P.

Note that all these paths are in the cover graph GS,T . Using the above collection of paths,

we make a key definition.

▶ Definition 7. A vertex v is a gateway if (i) v ∈ S, (ii) v doesn’t lie on any path in P, and

(iii) there is at least one edge (v, w) in the cover-graph.

The Lehman-Ron theorem, Theorem 1, follows directly from the following lemma.

▶ Lemma 8. For all i ≤ k ≤ j − 1, the kth layer Lk of the cover-graph contains a gateway

vertex.

Proof of Theorem 1. Consider the gateway vertex v ∈ Lj−1 ∩ S with edge (v, w) in the

cover-graph. Note w ∈ T and therefore in T . There is an edge from S to T . Contradiction.

Hence, there is no (minimal) counterexample to Theorem 1. ◀

Before giving the formal proof of Lemma 8 directly, let us describe the main idea which

uses the symmetry of the hypercube. First, let us observe the layer Li, that is S, contains a

gateway vertex s. Indeed, there are ≤ ♣S♣ − 1 paths in P and so there is some s ∈ S not in

any of these paths. Furthermore, all edges that lead s to ϕ(s) lie in the cover-graph.

Now, let’s see how to get a gateway in the next layer Li+1. Consider any edge (s, x(1)) in

GS,T , and suppose this edge corresponds to projecting according to some dimension r. That

is sr = 0 and x
(1)
r = 1. If x(1) is not in any path in P , we have discovered the desired gateway

in Li+1. Otherwise, x(1) lies on some path, say, P ∈ P. Follow P forwards for a single edge

from x(1), to get to x(2). Note that x(2) ∈ Li+2 and has rth-coordinate 1. Now, one can

project “down” on the r-coordinate to get x(3) ∈ Li+1. Observe that (s, x(3)) is a projection

of the edge (x(1), x(2)) along the rth-dimension and hence is an edge of the cover-graph.

Next, observe that x(3) cannot be in T , so either x(3) ∈ S or x(3) ∈ C. If x3 ∈ S and not on

any path in P, we are done. Otherwise x(3) lies on some other path Q ∈ P. We now walk

backwards along Q, to get x(4) ∈ S. Noting that x(4) has r-coordinate 0, we can redo the

entire process above. Observe that each “step” proceeds along a matching. Either we project,

walk from Li+1 to Li+2 using a path in P , or walk backward from Li+1 to Li using a path in

P. Each of these is using a matching edge, and no vertex is ever visited twice in the entire

process. Hence, this process must terminate, at which point a gateway is discovered. And

then one uses the same idea to obtain a gateway vertex in Li+2, and so on. One can convert

this idea into a formal proof, but it becomes notationally cumbersome. A cleaner proof

method is to consider a potential “fixed point” of this process, and prove a contradiction.

Proof of Lemma 8. Fix a collection of paths P as given by Lemma 6. As argued above,

Li has a gateway vertex. Let k ∈ [i, j − 1] be the largest value such that Lk contains a

gateway vertex. If k = j − 1, we are done. So suppose that k < j − 1. We now engineer

a contradiction. Let v⋆ be a gateway in Lk. So v⋆ ∈ S and has an edge (v⋆, w) leaving it.

Let r be the dimension of this edge implying v⋆
r = 0 and wr = 1. Let Πr be the projection

operator which flips the rth coordinate; so Πr(v⋆) = w and vice versa. Define the following

sets; we give a illustration for convenience where the pink highlighted edges participate in

paths of P.
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vertices into three sets S, C, T , where S contains all vertices that are reached by a cut-free

path from S, and vertices of T can reach T by a cut-free path. Note that the edges of F are

from vertices in S to vertices in T . And, as before, by minimality of the counter-example,

the following simple observation holds.

▶ Lemma 9. (i) The cut set C is disjoint from S ∪ T . (ii) There exists a mincut (C, F )

such that no vertex participates in more than one edge of F .

Proof. Proof of (i) is exactly as in Lemma 5. Suppose v participates in at least two edges of

F . Observe that any S-T path through any of these edges must go via v. Hence, we can

remove these edges from F , add v to C, and preserve the fact that C ∪ F is an S-T cut.

Moreover, the cut value does not increase. ◀

We can now give the analog of Lemma 6.

▶ Lemma 10. There exists a collection of paths P with the following properties.

Every path p ∈ P begins at a vertex in S and ends at a vertex in T .

The paths are pairwise edge-disjoint and any vertex is in at most two paths.

Every path p ∈ P either contains exactly one vertex in C or exactly one edge in F , but

not both.

Every vertex v ∈ C is in exactly two paths in P and every edge e ∈ F is in exactly one

path of P.

Proof. By complementary slackness (Theeorem A.7 of [23]) , every maximum flow must

saturate the min cut. Together with integrality of flow, this implies the existence of an

integral flow saturating C ∪ F . We give a (simple) formal explanation. By integrality of

flow, there is a maximum flow that can be decomposed into paths. Let P be those paths.

Since these paths form a feasible flow, they satisfy the first two bullet points of the lemma.

By duality, ♣P♣ = 2♣C♣ + ♣F ♣. For each path p ∈ P , let cp be the number of cut elements

in C ∪ F that the path contains. For each cut element e ∈ C ∪ F , let ke be the number

of paths that e participates in. So
∑

p∈P cp =
∑

e∈C∪F ke. Note that ∀p, cp ≥ 1, since

C ∪ F is a valid cut. Thus,
∑

p∈P cp ≥ ♣P♣. Now, observe that ∀e ∈ C, ke ≤ 2 and ∀e ∈ F ,

ke ≤ 1, since C ∪ F must satisfy the flow constraints. Hence,
∑

e∈C∪F ke ≤ 2♣C♣ + F . We

get ♣P♣ ≤ ∑
p∈P cp =

∑
e∈C∪F ke = 2♣C♣ + ♣F ♣ = ♣P♣. Thus, the inequalities above are all

equalities. So ∀p, cp = 1 (third bullet) and ∀e ∈ C, ke = 2 and ∀e ∈ F , ke = 1 (fourth

bullet). ◀

Next we provide the relevant generalization of gateway vertices earlier defined in Definition 7

▶ Definition 11. A vertex v is a gateway if (i) v ∈ S, (ii) v lies on at most one path in P,

and (iii) there is at least one edge (v, w) /∈ F leaving v in GS,T .

As before, the proof of Theorem 2 follows from the following lemma, and the remainder of

this section will prove it.

▶ Lemma 12. For all i ≤ k ≤ j − 1, Lk contains a gateway vertex.

As in the proof of Lemma 8, we proceed via minimal counterexamples. First, we establish

that there is a vertex in Li that is a gateway vertex. There are < 2♣S♣ paths in P . Since any

vertex participates in at most 2 paths, some vertex in s participates in at most 1 path. Since

ϕ(s) is at least distance 2 away from s, s has degree at least 2 in GS,T . (This is where the

distance between S and T is used.) At most one of those edges is in F (Lemma 9), so there

is some edge leaving s that is not in F . Thus, s is a gateway vertex.
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▶ Definition 13. An edge in GA,B is called pink if it lies in P and does not change the r

coordinate. For any subset of vertices W in GA,B, pink(W ) is the number of pink edges W is

incident to. For singleton subsets ¶v♢ we abuse notation and call pink(¶v♢) simply pink(v).

Thus, every pink edge incident to A is incident to Y , and every pink edge incident to X is

incident to B. The following claim is a consequence.

▷ Claim 14. pink(A) = pink(Y ) and pink(X) = pink(B).

Next, observe that the gateway v⋆ participates in at most one path of P. If such a

path existed, we chose the dimension r according to the incident edge of this path. Hence,

pink(v⋆) = 0. This is central to proving the final contradiction.

▷ Claim 15. pink(X) > pink(A).

Proof. There is a perfect matching between A and X. We prove that ∀a ∈ A, pink(Πr(a)) ≥
pink(a). Furthermore, for the gateway v⋆, we get a strict inequality pink(Πr(v⋆)) > pink(v⋆).

It is convenient to do a case analysis based on whether x = Πr(a) is in S, C, or T . Note that

pink(a) ≤ 2 by Lemma 10 since any vertex participates in at most 2 paths of P. Note that

all edges of P that leave X lead to B (by construction), so all these edges are in GA,B .

x ∈ C: This is the easiest. By Lemma 10, there are two paths through x. So pink(x) =

2 ≥ pink(a).

x ∈ T : Note that a ∈ S, and so in this case, the r-projection edge (a, x) must be ∈ F .

By Lemma 10, there is a path of P through (a, x), and the next edge leaving x goes into

B. Since the r-coordinate doesn’t change, this edge is pink, and so pink(x) ≥ 1. Since a

participates in the path through projection edge (a, x), which is not pink, it can participate

in at most one other path of P (by Lemma 10, no vertex is in more than 2 paths). Thus, in

this case pink(a) ≤ 1 implying pink(a) ≤ pink(x).

x ∈ S: By our assumption, x cannot be a gateway vertex. So either all edges leaving x

are in F or x is in 2 paths of P. If the latter happens, then pink(x) = 2, completing this

case. So let us assume the former. There must be some edge leaving x in GA,B because x

is in the cover graph GA,B; since x is not a gateway vertex, this edge which must be in F .

By Lemma 10, there is a path P ∈ P containing this and the edge incident to x doesn’t

change the r-coordinate, and thus is pink. So, pink(x) ≥ 1. So, if pink(a) ≤ 1 we are done.

So, suppose pink(a) = 2. That is, there are two distinct edges (a, y) and (a, y′) which are

pink. Consider the r-projection of these edges, (x, Πr(y)) and (x, Πr(y′)); these are present

in GA,B and so by our assumption above, these two must be in F . But again by Lemma 10,

there are two paths in P containing these, and so these edges are pink, implying pink(x) = 2

as well. This settles this case.

All in all, we have proven that pink(x) ≥ pink(a), and note that in all cases, pink(x) ≥ 1.

Since pink(v⋆) = 0, we get the strict inequality pink(Πr(v⋆)) > pink(v⋆), completing the

proof of the claim. ◁

The next claim which, along with Claim 14, contradicts Claim 15, completing our proof

of Lemma 12.

▷ Claim 16. pink(B) ≤ pink(Y ).

Proof. There is a perfect matching between B and Y by the Πr projection. We will show

that for every b ∈ B, pink(b) ≤ pink(y), where y = Πr(b). The proof is analogous to that of

Claim 15, with a subtle difference. All edges of P leaving X are in GA,B by construction.

But all edges of P entering Y might not be in GA,B. In particular, there could be a path

Q ∈ P which contains y and the predecessor, call it z, of y on this path may not be in A.

For instance, this could occur if y ∈ T and z ∈ C (and thus not in A).
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With hindsight, we assert that if y ∈ S ∪ C, then the vertex z indeed lies in A. To see

this note that z ∈ S; this follows from Lemma 10 since the path Q contains exactly one

cut-vertex or cut-edge. Furthermore, Πr(z) must lie in GS,T since (z, Πr(z), b) is present in

the hypercube. In all, z ∈ A. The reader may wonder why this subtlety didn’t arise in the

original Lehman-Ron proof that we showed in the previous section. Well, there is a vertex

a ∈ A such that (a, y) is an edge, and since in the previous section we only had vertex cuts,

we could (and did) assert y ∈ S ∪ C. But now the edge (a, y) could be in F . As we will see,

the case when y ∈ T is actually easy to take care of.

Now for the case analysis. Recall that b ∈ B and y = Πr(w) ∈ Y .

y ∈ C: By Lemma 10 there are two paths entering y, and since y ∈ C due to the

discussion about the subtlety above, pink(y) = 2. Note that pink(b) ≤ 2 since there can be

at most two paths of P incident on b.

y ∈ S: Since y is not a gateway vertex (overall assumption), either y participates in

two paths of P or all edges leaving y are in F . In the former case, since y ∈ S due to the

discussion about the subtlety above, pink(y) = 2. In the latter case, the edge (y, b) must

be in F . So there is at least one path through y and, again since y ∈ S, pink(y) ≥ 1. Now

note that the (y, b) edge is not pink although it is on a path in P because the r-coordinate

changes. So, pink(b) ≤ 1.

y ∈ T : Observe that all edges (z, y) with z ∈ A ⊆ S must be cut, that is (z, y) ∈ F . By

Lemma 9, all such edges are on paths in P and are thus pink (they are clearly in GA,B and

don’t change r-coordinate). Suppose pink(b) = t where t ∈ ¶1, 2♢. Then there are t distinct

pink edges of the form (x, b) with these x’s in X. Consider their r-projections, that is, the

t edges of the form (Πr(x), y). Since Πr(x) ∈ A, all these edges must be pink. This shows

that if y ∈ T , pink(y) ≥ pink(b). ◁

4 Connections to monotonicity testing

The motivation for Conjecture 3 (and indeed, Theorem 1) is a deeper understanding of the

problem of monotonicity testing of functions, a problem which, especially over the hypercube

and hypergrid domains, has had a rich history of more than 25 years [38, 25, 31, 24, 36, 29, 32,

1, 33, 2, 28, 40, 6, 16, 26, 13, 39, 7, 18, 19, 21, 5, 14, 20, 17, 35, 4, 22, 8, 9, 12, 34, 15, 11, 10].

A function f : ¶0, 1♢d → ¶0, 1♢ is monotone if ∀x, y ∈ ¶0, 1♢d where x ≺ y, f(x) ≤ f(y).

The distance between two functions f, g is ♣¶x : f(x) ̸= g(x)♢♣/2d, and the distance of f to

monotonicity, denote εf , is the minimum distance of f to a monotone g. A function f is

said to be ε-far from monotone if εf ≥ ε. The aim of a tester is to distinguish a monotone

function from one that is “far” from monotone. There is a special focus on non-adaptive

monotonicity testers with one-sided error. These are testers that (i) always accept monotone

functions, and (ii) make all their queries in advance. After a long line of work, this has been

resolved (up to log d, poly(ε−1) factors) to be Θ(
√

d) [31, 29, 19, 21, 35, 20, 22].

The study of these monotonicity testers led to the discovery of directed isoperimetric

inequalities. Much of the study in this paper came from attempts at an alternate, more

combinatorial proofs of a central isoperimetric inequality, the so-called robust directed

Talagrand theorem due to Khot, Minzer, and Safra [35]. In this section, we give connections

between monotonicity testing, directed isoperimetric inequalities (like the KMS theorem),

and routing on the directed hypercube. Most importantly, we describe another routing

statement, Conjecture 26, which implies the KMS theorem. We believe that Conjecture 26

and Conjecture 3 are closely related, as explained in §4.2.

ITCS 2025
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▶ Definition 17. A pair of vertices of ¶0, 1♢d x ≺ y is called a violation of f(x) > f(y).

This pair is called a violated edge if additionally, (x, y) is an edge of the hypercube. For any

x, the directed influence Inf+
f (x) is the number of violated edges incident to x. The directed

influence of f , denoted I+
f , is 2−d

∑
x Inf+

f (x).

The most basic inequality is the directed Poincare inequality, which directly leads to O(d)

query monotonicity testers (for constant ε).

▶ Theorem 18 ([31]). For any f : ¶0, 1♢d → ¶0, 1♢, I+
f ≥ εf .

The main step towards o(d) query testers (for constant ε) is a stronger isoperimetric

inequality, the directed Margulis bound. Let Γ+
f denote the size of the largest matching of

violated edges, which is a measure of the vertex boundary.

▶ Theorem 19 ([19]). For any f : ¶0, 1♢d → ¶0, 1♢, I+
f · Γ+

f = Ω(ε2
f ).

The culmination of this line of work lead to the robust, directed Talagrand inequality

for KMS, which yielded the (near) optimal Õ(
√

d)-query non-adaptive monotonicity tester.

(The original KMS result lost a log factor, which was removed by Pallavoor-Raskhodnikova-

Waingarten [37].)

▶ Theorem 20 ([35, 37]). Let χ be any bicoloring of the directed hypercube edges, with two

colors 0 and 1. For any f : ¶0, 1♢d → ¶0, 1♢ and for any x ∈ ¶0, 1♢d, let Inf+
f,χ(x) be the

number of violated edges incident to x whose color is f(x). Then,

2−d
∑

x

√
Inf+

f,χ(x) = Ω(εf )

In the next subsection, we give combinatorial interpretations to each of these statements.

The reason for Conjecture 3 and a deeper study of hypercube routing was to get alternate

proofs of Theorem 20. A big mystery of all these directed isoperimetric inequalities is the

appearance of εf , the distance to monotonicity, as a “directed version” of the variance of f .

It appears as if εf is the “right measure” of directed volume. We hope that alternate proofs

of Theorem 20 may shed some light on this mystery.

4.1 From flows to directed isoperimetry

In what follows, all flow networks are over the directed hypercube. There is a source set S,

and the aim is to route flow to the complement S3. In the various routing theorems, we set

different edge/vertex capacities and try to lower bound the maximum flow from S to S. In

all the flow settings, we have unit edge capacities.

We start with a notion of the “directed volume” of a set.

▶ Definition 21. For S ⊆ ¶0, 1♢d, the directed volume of S, denoted µ+(S) is

max
S′⊆S

T ′⊆S

{
♣S′♣

∣∣∣ ∃ϕ, (S′, T ′; ϕ) is a matched pair
}

Any matched pair (S′, T ′; ϕ) that attains the maximum is called a directed volume certificate.

3 Formally, one creates a supernode S⃝ that connects to S, and a supernode T⃝ with connections from T .
All these connections have infinite capacity.
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We now explain why the directed Poincare inequality of Theorem 18 essentially shows that

one can send µ+(S) units of flow from S to S with unit edge capacities. This is a simple

application of the max-flow-min-cut theorem, and we provide the proof for completeness.

▶ Theorem 22. Consider the directed hypercube flow network with unit edge capacities, and

source set S. The maxflow is at least µ+(S).

Proof. Consider the indicator Boolean function f : ¶0, 1♢d → ¶0, 1♢ where f(x) = 1 iff x ∈ S.

Using a standard connection between distance to monotonicity (Corollary 2 of [29]) one can

argue that εf = µ+(S)/2d. Any S⃝- T⃝ cut must remove all edges from S to S. These are

precisely the violated edges of f , which are at least εf 2d = µ+(S) many (Theorem 18). The

theorem follows from the duality between max-flow and min-cut. ◀

Thus, the basic directed Poincare inequality basically gives a flow bound for the directed

hypercube flow network. We will now interpret the more sophisticated isoperimetric theorems

as more general flow statements. A crucial notion is the separation distance of a set.

▶ Definition 23. For any matched pair (S, T ; ϕ), the separation distance is

♣S♣−1
∑

s∈S(♣ϕ(s)♣ − ♣s♣) = ♣S♣−1
 ∑

t∈T ♣t♣ − ∑
s∈S ♣s♣


. Here ♣x♣ denotes the number of

1s in x ∈ ¶0, 1♢d. The separation distance of S is the smallest separation distance over

directed volume certificates of S.

A key theorem of [19] shows that larger separation distance implies more (edge disjoint)

flow. This theorem is a strengthening of the directed Poincare inequality of Theorem 18, and

essentially a flow rewording of Lemma 2.6 of [19]. The proof is entirely analogous to that of

Theorem 22 and is omitted.

▶ Theorem 24 (Lemma 2.6, [19]). Consider the directed hypercube flow network with unit

edge capacities, with source set S having separation distance r. The maxflow is at least

rµ+(S).

What if we desire vertex disjoint paths? Lemma 2.5 of [19] answers this question, and the

central tool is the Lehman-Ron theorem. Together, the two theorems above directly imply

the directed Margulis statement of Theorem 19.

▶ Theorem 25 (Lemma 2.5, [19]). Consider a flow network with unit vertex capacities, with

source set S having separation distance r. The maxflow is at least µ+(S)/32r.

This brings us to a sort of “intellectual starting point” for this paper. The theorems above

clearly show how directed isoperimetry and flows are intimately connected. Moreover,

statements like Theorem 19 suggest relations between flows with edge capacities, and flow

with vertex capacities. We were motivated to see if the KMS theorem (Theorem 20) could be

proven from a flow perspective.

▶ Conjecture 26. Let source set S have separation distance r. Consider a flow network with

unit edge capacities and vertex capacities r2. The maxflow is at least Ω(rµ+(S)).

Note that the above is a simultaneous strengthening of Theorem 24 and Theorem 25; if we

remove either the edge capacity restriction or the vertex capacity restriction, then we get

the above theorems. We show that Conjecture 26 implies the robust Talagrand isoperimetry

theorem.

▷ Claim 27. Conjecture 26 implies Theorem 20.
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Proof. Consider a Boolean function f : ¶0, 1♢d → ¶0, 1♢. Consider any bicoloring χ of the

violated edges. Our aim is to lower bound
∑

x

√
Inf+

f,χ(x).

Let S be the set of 1-valued points. By Conjecture 26 and the maxflow-mincut theorem,

the mincut of the flow network (where edges have capacity 1 and vertices have capacity r2)

is at least Crµ+(S) for some constant C > 0. Note that all edges from S to S must be cut;

moreover any separation of (the endpoints of) these edges is a valid (S, S) cut. In terms of f ,

these are precisely the violated edges.

Let us use χ to construct a cut. For convenience, let d(x) denote Inf+
f,χ(x). If d(x) ≤ r2,

we cut all violated edges incident to x. Otherwise, we cut the vertex x. The total cut value is∑
x:d(x)≤r2 d(x) + r2♣¶x ♣ d(x) > r2♢♣. By Conjecture 26, the cut value is at least Crµ+(S).

We split into two cases.

Case 1,
∑

x:d(x)≤r2 d(x) ≥ Crµ+(S)/2. Observe that
∑

x:d(x)≤r2

√
d(x) · d(x) ≤

r
∑

x:d(x)≤r2

√
d(x). Thus,

∑
x

√
Inf+

f,χ(x) ≥ Cµ+(S)/2 = Cεf 2d/2.

Case 2,
∑

x:d(x)≤r2 d(x) < Crµ+(S)/2. So r2♣¶x ♣ d(x) > r2♢♣ ≥ Crµ+(S)/2, implying

♣¶x ♣ d(x) > r2♢♣ ≥ Cµ+(S)/(2r). We can lower bound
∑

x

√
d(x) ≥ r

∑
x:d(x)>r2 ≥

Cµ+(S)/2 = Cεf 2d/2. ◁

We believe that Conjecture 26 is stronger than Theorem 20, because it explicitly involves

the separation distance of S.

As an aside, the connection between flows and directed isoperimetry resolves an open

question in [27] (Pg 19, “Routing on the hypercube”). It is actually a direct consequence of

Theorem 18.

▶ Theorem 28. Let (S, T, ϕ) be a matched pair where S and T are disjoint. There exist ♣S♣
monotone edge disjoint paths from S to T .

Proof. Consider the directed hypercube and take a mincut separating S from T . Construct a

Boolean function that assigns 1 to the “S-side”, and 0 to the “T -side”. All remaining vertices

can be assigned values such that they do not participate in any monotonicity violation. Note

that these vertices cannot be on a directed path from S to T . (Process vertices according

to the partial order. For x, set f(x) to be maxy≺x:f(y) assigned f(y). If no f(y) is assigned,

set f(x) = 0. Observe that if f(x) is assigned value 1, then x must be greater than some

point in S. This means that x cannot be less than any point in T , and hence does not create

monotonicity violations.)

This function has distance to monotonicity at least ♣S♣/2n. So by Theorem 18, there are

at least ♣S♣ edges which have value (1, 0). These are precisely cut edges, from the S-side

to the T -side. Hence, the cut value is at least ♣S♣. Set up a flow problem on the directed

hypercube where every edge has unit capacity, vertices in S are sources, and vertices in T

are sinks. By the maxflow-mincut theorem, there is a flow of value at least ♣S♣. This flow

gives edge-disjoint paths from S to T. ◀

4.2 Connections between conjectures

From the perspective of monotonicity testing and directed isoperimetry, Conjecture 26 is more

important. From a purely combinatorial (and maybe aesthetic) viewpoint, Conjecture 3 is

more appealing. We believe that a proof of Conjecture 3 will shed light on Conjecture 26. This

section is speculative, but gives some of the original motivations for studying Conjecture 3.

An uncrossing argument of [19] relates general matched pairs to matched pairs contained in

level sets. (These arguments are in Section 2.4 of [19], especially Claim 2.7.2 and Claim 2.7.3.)
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▶ Lemma 29. Consider a set S with separation distance r. There exist a collection of

matched pairs (S1, T1, ϕ1), (S2, T2, ϕ2), . . . with the following properties.⋃
i Si ⊆ S,

⋃
i Ti ⊆ S.∑

i ♣Si♣ ≥ µ+(S)/4.

Each Si (and Ti) is contained in a level set.

No vertex is present in more than 2r cover graphs GSi,Ti
.

The main upshot of this lemma is that one can “break up” the (S, S) routing problem

into a collection of (Si, Ti) routing problems, where the Si, Ti are level subsets. Moreover,

the interaction between the various cover graphs is limited, because of the last bullet point.

Given that the separation distance of S is r, we believe that for a constant fraction (by total

size) of the matched pairs (Si, Ti; ϕi), the distance of these pairs is Ω(r). If Conjecture 3

is true, we can route Ω(r♣Si♣) units of edge disjoint flow with vertex congestion r. Any

vertex participates is at most 2r such flow. We had hoped to overlay such flows and get an

overall vertex congestion of O(r2). Unfortunately, a direct overlay of flows leads to an edge

congestion of O(r), which is not useful for Conjecture 26. Nonetheless, it felt that a proof of

Conjecture 3 with the proof techniques of Theorem 24 might yield insight into Conjecture 26.
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