
Perspective: A Principled Framework for Pliable and Secure
Speculation in Operating Systems*

Tae Hoon Kim, David Rudo, Kaiyang Zhao,
1
Zirui Neil Zhao, and Dimitrios Skarlatos

Carnegie Mellon University,
1
The University of Texas at Austin

1 Summary of the Paper

1.1 Introduction

Transient execution attacks [3] exploit transient instructions
that may execute but not subsequently commit. The primary
building blocks of these attacks are transient execution gadgets—
code sequences that can speculatively bypass software bounds
checks to access sensitive data and transmit the data through
a microarchitectural covert channel to the attacker. Transient
execution gadgets are potent as a single gadget can leak any

information within the address space in which it resides.

The operating system (OS) kernel is particularly vulnerable
to transient execution attacks. This is because modern OSs
like Linux adopt a monolithic kernel address space, to which
the entire physical address space is mapped. As a result, a

transient execution gadget in the kernel can leak the entire

system memory. This threat is exacerbated by the growing size
and complexity of OS code bases. For example, the Linux
kernel has more than 23 million lines of code, making the task
of eliminating transient execution gadgets in the kernel virtually
impossible. This is evidenced by a continuous stream of new
transient execution vulnerabilities in the kernel.

In general, defenses for transient execution attacks can be
categorized as software-based and hardware-based approaches.
Software-based solutions [1,6] do not require hardware changes
and can be deployed to existing systems. However, they require
recompiling programs and are often “spot mitigations” with
limited protections. Importantly, these solutions incur a high
performance overhead. For example, SLH [1] on the Linux
kernel shows a system call overhead of 65% on average [84].

Hardware-based defenses [4, 5, 7, 8] aim to be software trans-
parent and backward compatible, but this transparency comes
at a cost. Without any information from the software, hardware
defenses must be always-on and conservative, leading to a non-
negligible performance cost. Additionally, the best-performing
hardware solutions require extensive modifications to critical
processor components such as the core pipeline and cache hi-
erarchy. As a result, these designs are impractical for adoption
due to the high implementation and verification cost.
Our contributions. We present Perspective, a principled frame-
work for building efficient, lightweight transient execution de-
fenses for the OS kernel. The key insight of Perspective is to
provide a pliable software-hardware interface that allows the
OS to communicate its security requirements to the underlying
hardware protection mechanisms, enabling selective protection.
As a result, the hardware protection mechanism can be as sim-
ple as blocking speculative execution of vulnerable instructions
while still attaining a low execution overhead.

The design of Perspective is driven by a taxonomy of tran-
sient execution attacks and CVEs in the OS kernel. Specifically,

*The full paper is “Perspective: A Principled Framework for Pliable and
Secure Speculation in Operating Systems”, which appears in proceedings of
the 51st International Symposium on Computer Architecture (ISCA 2024).

we identify two attack scenarios depending on the process that
initiates the speculative access to the secret data. These scenar-
ios are: (i) Active transient execution attacks or active attacks,
where the attacker process exploits its own kernel thread to
speculatively execute a transient execution gadget in the kernel
to access and leak the victim’s data. (ii) Passive transient exe-

cution attacks or passive attacks, where the attacker coerces the
victim process’s kernel thread to speculatively execute a kernel
function containing transient execution gadgets, forcing the vic-
tim to leak their own data. Note that this taxonomy is agnostic
to attack variants, such as Spectre v1, Spectre v2, Retbleed,
BHI, and others.

Based on our taxonomy, Perspective introduces two types of
speculation views, Data Speculation Views (DSVs) and Instruc-
tion Speculation Views (ISVs) to mitigate active and passive
attacks respectively. A speculation view can be associated with
an execution context such as a process or a container.

Intuitively, a DSV defines a set of kernel data owned by each
execution context. If an attacker process speculatively accesses
data outside of its DSV, those accesses are protected—e.g.,
delayed until they are guaranteed to retire. A process’s DSV
is tracked by the kernel and cannot be tampered with by the
attacker process. Therefore, DSVs eliminate the active attacks.

An ISV defines a set of kernel code that an execution context
can speculatively execute. Intuitively, an ISV represents the ker-
nel code trusted by the context to be gadget-free. If a process’s
execution speculatively jumps outside its ISV, the hardware
blocks speculative execution of transmitter instructions, whose
execution can leak secrets, thus mitigating the passive attack.
Unlike DSVs, ISVs are provided by each context and can be
generated through static or dynamic program analysis.

The security benefits of ISVs are manyfold. First, ISVs offer
an interface for swiftly mitigating newly-discovered gadgets in
the kernel code without patching the kernel. Second, programs
can exclude infrequently used kernel code from their ISVs to re-
duce the attack surface, similar to kernel debloating. Lastly, ISV
limits the scope of and thus speeds up kernel gadget finding, as
an ISV often contains only a small fraction of kernel functions.
We then can exclude the vulnerable functions identified by the
gadget finding process from the old ISV to form a stricter ISV,
further reducing the passive attack surface.

Our security evaluation demonstrates that Perspective elimi-
nates active attacks and reduces the passive attack surface by
95%. It incurs minimal performance overhead: 3.5% on mi-
crobenchmarks and 1.2% on datacenter applications, compared
to an unprotected kernel.

1.2 Transient Execution Attacks in the OS

We first categorize transient execution attacks in the OS into ac-
tive and passive transient execution attacks based on the context
that initiates the speculative access to the secret data. Impor-
tantly, our taxonomy is agnostic to specific variants, such as
Spectre v1, Spectre v2, Spectre RSB, and others.



Active Transient Execution Attacks. The attacker process’s
kernel thread directly initiates unauthorized speculative ac-
cesses to the victim’s secret data. For instance, after the attacker
identifies a transient execution gadget inside a kernel function,
the attacker can exploit it by crafting system call arguments to
trigger the vulnerable function.
Passive Transient Execution Attacks. The attacker coerces
a victim’s kernel thread to execute kernel functions containing
transient execution gadgets and leak the victim’s secrets. This
attack can be achieved by speculatively hijacking the victim’s
control flow into the vulnerable function, using techniques like
Spectre v2 and Retbleed. Unlike active attacks, the victim’s
kernel thread speculatively accesses and transmits its own data
in a passive attack.
Study of Transient Execution Attack CVEs in the Kernel.

To better understand the threats posed by transient execution
attacks, we then examine vulnerabilities in the Linux kernel.
Our study reveals that transient execution gadgets are often
hidden within rarely used code, making them difficult to de-
tect. Moreover, OS defenses against speculative control-flow
hijacking also frequently fall short. These vulnerabilities can
be exploited through both active and passive attacks.

1.3 Perspective Design

Perspective’s design is based on our taxonomy to introduce two
types of speculation views: Data Speculation Views (DSVs) and
Instruction Speculation Views (ISVs). Perspective’s principled
approach based on this taxonomy, instead of attack variants,
enables Perspective to defend against all attack variants.
Data Speculation Views (DSVs). DSVs define which data
can be speculatively accessed by a given execution context.
Any speculative access to data outside the DSV is protected.
For simplicity, we assume a simple but aggressive protection
mechanism that blocks a speculative memory access until it
becomes non-speculative. As the majority of accesses during
kernel execution do not violate ownership, DSVs impose very
low execution overhead even if the protection mechanism is as
aggressive as blocking speculative accesses.

Figure 1 illustrates how DSVs work. The userspace attacker
process Proca and victim process Procv live on the upper
side of the figure, while the monolithic kernel space contains
the kernel code and data. In Figure 1, DSVs are depicted as
a gray pattern with a colored border to represent the process
that owns the data. When process Proca executes vulnerable
function C that contains a transient execution gadget, Proca is
blocked from speculatively accessing and leaking data belong-
ing to Procv . Yet, the speculative access to Proca’s data from
function F is allowed. This mechanism effectively eliminates
active attacks by preventing unauthorized speculative access
across DSV boundaries.

One potential DSV design is to define data ownership based
on memory allocation. Perspective distinguishes two types of
memory allocations: explicit and implicit allocation. Explicit
allocations occur when the kernel directly allocates resources
requested by userspace, such as memory, sockets, or files. Im-
plicit allocations, on the other hand, are made by the kernel for
bookkeeping and metadata management.

Implicit allocations pose a unique challenge, as they are
managed by the slab allocator, which optimizes memory usage
by packing allocations together. In modern OSs like Linux,
data from mutually distrusting processes may end up allocated
within the same cache line, creating potential security risks. To
address this, Perspective introduces a secure slab allocator that

Procv

Kernel
Userspace

Proca
Transient

Non-transient

Kernel Data

A
B C

F
D

E
Kernel Code

ISV
DSV

Figure 1: An example of data speculation views (DSVs) and
instruction speculation views (ISVs).
ensures strong isolation across contexts.
Instruction Speculation Views (ISVs). ISVs define which ker-
nel instructions can be speculatively executed. To simplify the
discussion, we assume that ISVs are defined at a kernel function
granularity. However, in practice, ISV protection is applied at
an instruction granularity such that any transmitter instructions
from kernel functions outside the ISVs are protected such as
being blocked from speculative execution. The ISV becomes
active when a process transitions from userspace to the kernel
space, e.g., due to a system call or interrupt.

Figure 1 illustrates the ISV of Proca using a call graph at the
bottom left of the figure. Kernel functions that belong to its ISV
are enclosed in the orange line. Now consider the control-flow
edge from function A to function B . Since B is outside
the ISV, the program cannot speculatively execute transmitter
instructions from node B .

Perspective introduces two techniques—static and dy-
namic—to define ISVs for an application, by marrying concepts
from system call interposition used for application sandboxing.
First, we identify the application’s potential entry points to the
kernel. Then, using static or dynamic analysis, we determine
the kernel functions that these entry points may access. These
kernel functions form the application’s trusted ISV. Unlike sys-
tem call interposition, ISVs can be conservative, as the kernel
can non-speculatively execute functions outside the ISV instead
of crashing. Finally, Perspective uses transient execution gadget
detection tools like Kasper [2] to analyze the ISVs, exclude
vulnerable functions, and create a stricter ISV—ISV++.

We discuss the full OS and hardware design and implementa-
tion of DSV and ISVs in Sections V and VI of the paper.

1.4 Evaluation

We build Perspective’s software components in the Linux kernel
and model its hardware in gem5. We evaluate Perspective using
a microbenchmark suite for Linux, as well as a suite of datacen-
ter applications: Redis, Apache, Nginx, and Memcached.
Security Evaluation. Perspective’s DSVs eliminate active
attacks by blocking speculative accesses that violate ownership.
For passive attacks, Perspective’s ISVs dramatically reduce the
attack surface. On average, static ISVs reduce speculatively
executable functions by 91%, while dynamic ISVs reduce this
further to 95%. Our analysis, based on Kasper [2], shows that
Perspective blocks over 91% of potential speculative execution
gadgets with dynamic ISVs, and 100% with stricter ISVs++.
Lastly, by drastically narrowing the gadget search space to ISVs,
Perspective accelerates the Kasper gadget discovery rate by an
average of 1.57→, and up to 2.23→.
Performance Evaluation. Perspective has a minimal execution
overhead over an unprotected kernel of 3.5% on microbench-
marks and 1.2% on datacenter applications, significantly out-
performing other solutions like Fencing.

Please see Sections VIII and IX of the paper for more details.



2 Potential for Long-Term Impact

Perspective introduces the first principled framework for secure
speculation in operating systems. It makes numerous contribu-
tions that cut across security, operating systems, and computer
architecture that can lead to long-term impact.
1. Perspective presents a detailed study of speculative execu-

tion vulnerabilities in Linux since Spectre in 2018.

Perspective offers a comprehensive study of speculative
execution vulnerabilities in Linux, analyzing vulnerabilities
through source code origins, Linux CVEs, and relevant aca-
demic research. Key findings reveal: (i) transient execution
gadgets are often concealed within rarely used code paths, mak-
ing detection challenging. (ii) OS defenses against speculative
control-flow hijacking frequently fall short due to inadequate or
misapplied mitigations. (iii) Patches for vulnerabilities some-
times introduce new gadgets, necessitating multiple updates.
(iv) An attacker can directly exploit, or coerce a victim kernel
thread to exploit, an unpatched transient execution gadget deep
within the 23 million lines of kernel code.
2. Perspective presents a variant-agnostic taxonomy of tran-

sient execution attack scenarios, classifying them into active

and passive types, allowing OS designers and hardware

architects to address mitigations holistically.

Perspective is designed around a taxonomy of transient exe-
cution attacks in the OS kernel, identifying two main scenarios:
(i) active attacks, where an attacker exploits its own kernel
thread to speculatively execute a transient execution gadget,
and (ii) passive attacks, where the attacker induces a victim’s
kernel thread to speculatively execute a vulnerable function.
This taxonomy is variant-agnostic, covering Spectre v1, Spectre
v2, Retbleed, and others, allowing researchers, OS develop-
ers, and hardware architects to systematically address transient
execution attacks and mitigations.
3. Perspective introduces the first principled framework for

pliable and secure speculative execution in the OS.

Perspective is the first framework for efficient, lightweight
speculative execution in the OS kernel, offering a flexible in-
terface for the OS to communicate security requirements to
hardware protection mechanisms. It achieves this with two
types of Speculation Views: Data Speculation Views (DSVs)
and Instruction Speculation Views (ISVs), which mitigate active
and passive attacks, respectively. DSVs define permissible data
access during speculative execution based on data ownership,
while ISVs allow an execution context to specify trusted kernel
functions, blocking speculative execution of instructions out-
side these functions. Perspective opens a new design space for
tailored protection, reducing unnecessary safeguards, reducing
hardware complexity, and minimizing overhead.
4. Perspective provides robust security and performance

benefits while drastically simplifying hardware.

Perspective delivers strong security guarantees with minimal
performance overhead. DSVs fully eliminate active attacks in
the OS kernel, a primary attack surface. ISVs add multiple lay-
ers of security: they offer a swift interface for mitigating newly
discovered vulnerabilities in kernel functions, essential given
the ongoing identification of speculative execution vulnerabili-
ties. ISVs also allow a victim program to exclude rarely used
kernel functions, similar to kernel debloating, thereby reducing
passive attack surfaces. Furthermore, by blocking speculative
execution outside of specified ISVs, security audits can focus
on a smaller subset of kernel functions, streamlining the pro-
cess and allowing the exclusion of identified gadgets, further
strengthening security.

5. Perspective is receiving major interest from Intel. Since
publishing the paper, we’ve engaged in discussions and presen-
tations with Intel security researchers and architects. We are
now exploring ways to upstream standalone software compo-
nents of Perspective into Linux, focusing on deployable DSV
elements like the secure slab allocator, which can be integrated
into current architectures without hardware changes.
6. Perspective opens avenues for future work on static anal-

ysis of Instruction Speculation Views.

The Perspective ISV security model significantly reduces
the Linux codebase needing audit—from 23 MLOC to a few
functions, reducing the attack surface by 95%. In Perspec-
tive, we explored techniques like fuzzing and taint tracking
for identifying gadgets. ISVs greatly accelerate the auditing
process and can enable previously intractable analyses, such
as symbolic execution, for finding gadgets in the kernel. We
believe this approach can drive the elimination of gadgets in
large codebases.
7. Perspective is a versatile framework applicable to multi-

domain environments, including userspace libraries and

runtimes.

Perspective can extend beyond OS-level applications to
other multi-domain sandboxing environments, such as inter-
net browsers (e.g., Chrome), language runtimes (e.g., JVM)
and sandboxing technologies (e.g., WebAssembly). We believe
Perspective will catalyze research into principled and secure
speculation across these platforms.
8. Perspective paves the way for future development of

leakage-free operating systems and hypervisors.

We believe Perspective opens a promising research path to-
ward a leakage-free operating system by design. Perspective out-
lines key requirements for redesigning or developing clean-slate
OSs and hypervisors to eliminate speculative vulnerabilities.
Specifically, Perspective advocates for strict data ownership
and can enable the use of high-level languages (e.g., Rust) to
prevent both active and passive attacks from the ground up.

Citation for the paper if it won the test of time award:

This paper introduced Perspective, the first principled frame-
work for secure speculation in operating systems.

REFERENCES

[1] C. Carruth, “Speculative Load Hardening.” https://llvm.org/

docs/SpeculativeLoadHardening.html, 2018.
[2] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,

“Kasper: Scanning for Generalized Transient Execution Gadgets in the
Linux Kernel,” in NDSS, Apr. 2022.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in IEEE S&P, 2019.

[4] E. M. Koruyeh, S. Haji Amin Shirazi, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, “SpecCFI: Mitigating Spectre attacks using CFI in-
formed speculation,” in IEEE S&P, 2020.

[5] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An “undo” approach to
safe speculation,” in MICRO, 2019.

[6] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection.” https://support.google.com/faqs/answer/

7625886, 2018.
[7] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas,

“Invisispec: Making speculative execution invisible in the cache hierarchy,”
in MICRO, 2018.

[8] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A comprehensive protection for specu-
latively accessed data,” in MICRO, 2019.


