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Abstract—The inertia of the electrical grid is crucial for
ensuring system stability. The increasing integration of renewable
energy resources gradually decreases the inertia of the system,
leading to greater frequency deviation under disturbances. Sim-
ilarly, due to fluctuating demand and intermittent generation,
system inertia varies considerably. In this context, the accurate
estimation of inertia is crucial which is challenging through
conventional mathematical methods. This paper proposes a con-
volution neural network approach for estimating the inertia and
damping of an electrical grid. The neural network-based method
utilizes a non-disruptive test signal to change the dynamics
of the power network and estimates the system inertia and
damping coefficient from the local frequency measurements. The
introduced method determines the inertia and damping with high
accuracy even under the impact of noise and is compared with
the performance of the multilayer perceptron, support vector
machine regressor, and gradient-boosting machine regressor in
terms of accuracy, root mean squared error, and mean absolute
error to validate the results. The proposed technique can assist
system operators in providing fast-frequency support and system
protection schemes.

Index Terms—Convolution neural network, fluctuating de-
mand, frequency support, renewable energy resources.

I. INTRODUCTION

The imbalance between electric power supply and consump-

tion, including system losses, causes deviations in the system’s

frequency. Frequency deviation needs to be maintained within

a certain range for the reliable functioning of the grid. The

inability to return the system to equilibrium after the distur-

bances might increase the chance of under-frequency load-

shedding and cascading failures [1], [2]. Inertia has a direct

impact on frequency deviation when the system encounters

disturbances. Therefore, it can function as an indicator to

determine the severity level of disturbances that a system can

tolerate.

With the growing penetration of converter-dominated gen-

eration, conventional synchronous generators are gradually

decommissioned. This leads to a reduction in system inertia as

the overall inertial contribution of converter-based generation

is negligible to date [3]. In addition, the use of asynchronous

high voltage direct current (HVDC) divides the large power

grids into multiple sub-grids, weakening grid inertia and

decreasing frequency support among AC grids [4]. Under these

circumstances, conventional frequency control techniques are

inadequate to address the changing disturbance dynamics [5].

As a result, a series of failures and disconnections can occur

requiring faster primary control to preserve stability.

Moreover, the gradual increment of deregulated and un-

predictable energy generation is making inertia a dynamic

parameter changing continuously over time and introducing

non-linearity in the system operation [6]. Therefore, it is

difficult for the transmission system operator (TSO) to ac-

curately monitor the system inertia [7], [8]. This limitation

requires excessively cautious operational planning and drives

up operational expenses. Hence, accurate inertia estimation

techniques help TSOs operate the system with lower safety

margins and costs by implementing the appropriate actions

and control strategies. Moreover, inertia and damping constant

estimation have significant advantages including regulated

incorporation of renewable energy resources (RERs), increased

stability and reliability, and improved market structuring for

ancillary services.

In [9], the waveform of the transients has been used for

determining the inertia through a polynomial approximation to

time. However, the order of polynomials was selected based

on the specific dataset. In [10], an improved approach is

established by improving the polynomial approximation that

estimates the inertia constant using frequency information

captured by phasor measurement units (PMUs). However,

PMU data is limited to specific areas like points of common

coupling making this approach unfit for different areas. In [11],

the statistical method is formulated using the Gaussian Markov

model which estimates the inertia in near real-time inertia

by analyzing steady-state conditions and minor frequency

variations. This method requires the collection of past system

data for accurate predictions which makes it less efficient

for an intermediate sampling interval. The Bayesian inference

technique is proposed in [12] which depends upon the poste-

rior probability density function of the events. This approach

is statistically difficult and less suitable for large systems. In

[13], inertia is estimated using an extended Kalman filter but

this approach needs to assume the time of disturbances and is

sensitive to the used time of the filter.

An analytical method using a dynamic mode decompo-

sition is used to estimate inertia for interconnected power

grids in [14]. However, the dependency on eigenvalues and

eigenvectors for estimation makes it less reliable in multi-

area systems. In [15], the closed-loop estimation procedure

is implemented for predicting the inertia at the connection

bus. The measurement unit measures the required frequency

and active power for the feedback-based estimation technique.

However, this method has a higher level of complexity and is

highly sensitive to noise. The authors in [16] have introduced

a time-dependent inertia estimation technique that requires

an actual time of perturbation in the system. This method



might be infeasible to implement due to the uncertainty of

load fluctuation in the real world. In [17], inertia estimation

dependent on electromechanical oscillation was implemented

using iterative filtering. However, his method relies heavily on

statistical calculation and suffers from higher noise. This issue

is partly resolved by [18], where a noise-resistant data-driven

approach for inertia estimation is developed.

Most of the previous methods rely on mathematical model-

based inertia estimation. Very few studies have focused on

a model-free data-centric approach that can capture the un-

certainty of modern grids. Similarly, the damping constant

estimation has been ignored in the previous works which need

to be considered for the real-time assessment and deployment

of control strategies for effective response to disturbances.

Therefore, this paper presents a data-driven approach that does

not depend on predefined models for predicting system inertia

and damping constant using a convolution neural network. The

contributions of this paper are described below.

1) Develop a micro perturbation-based technique for es-

timating system inertia and damping constant using a

convolution neural network. The proposed approach uti-

lizes frequency measurements obtained from arbitrary

disturbances that occur in the system for estimating these

parameters of the system. Hyperparameter optimization

is done to ensure the optimal performance of the CNN

model.

2) The proposed technique will consider the influence of

measurement noise on inertia and damping constant esti-

mation. This has been ignored in most existing works.

The remaining work of the paper is as follows. An overview

of the frequency dynamics of single-area power networks is

explained in Section II. Section III describes the concepts of

a convolution neural network and its utilization for estimating

inertia and damping constant. A simulation model and results

are described in section IV. The conclusion is in Section V.

II. POWER SYSTEM FREQUENCY DYNAMICS

The inertia and damping constant are estimated considering

a single-area power grid. The transfer function-based model

is used to represent the system dynamics. Synchronous gen-

erators are considered the main source of power generation.

All the generating units of the single-area network are repre-

sented by one equivalent generator. This simplifies the overall

problem and the frequency response can be represented by the

swing equation [19], [20].

A. Swing Equation: Inertia and Damping Constant

Multiple generators that are interconnected in the single area

network will serve the load according to the consumption level.

The frequency and inertia can be represented in terms of center

of inertia (COI) [21]. Thus, the average frequency is defined

as follows:

ω =

Ng∑

k=1

Hkωk

H
(1)

where Hk and wk are the inertia constant and angular fre-

quency of kth generator. The number of generators is denoted

by Ng . The inertia constant H is defined as:

H =

Ng∑

k=1

HkSk

S
(2)

Sk denotes apparent power rating. From these above equations,

the swing equation of the single area can be modeled as

follows [22]:

∆ω̇ =
ω0

2H

(∆Pm −∆Pl)

S
(3)

M∆ω̇ +D∆ω = ∆Pm −∆Pl (4)

∆ω indicates average frequency deviation. ∆ω̇ gives the rate

of change of frequency (ROCOF), and M = 2H is the inertia

constant of the equivalent generator. ∆Pm and ∆Pl denote a

change in mechanical and electrical power output, respectively,

damping constant, D represents the impacts of frequency-

dependent loads and other damping mechanisms. Typically,

D indicates the percentage change in load resulting from a

1% change in the system’s frequency.

B. Frequency Control Loop

The turbine-governor and load-generator dynamics for the

frequency control of the single-area electrical grid are il-

lustrated in Fig. 1. An abrupt change of load triggers the

frequency event which is initially responded to through the

primary control. The turbine-governor dynamics act to bring

the system to a stable condition.
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Fig. 1: Frequency control loop of single area power system.

The secondary frequency control loop reinstates the system

frequency to its original form after disturbances. The integral

controller block integrates the accumulated frequency devi-

ation over time to ensure the secondary control removes the

steady-state error, thus restoring the nominal frequency. In Fig.

1, Ki represents the proportional gain, Tg denotes the turbine-

generator time constant, and the block 1

Rp

is speed-regulation

droop. This system is subjected to disturbances to obtain the

frequency measurements for the implementation of CNN.

A probing signal can be applied to the power system

without affecting the system stability to understand system

dynamics. In this work, an excitation signal ∆Pl is employed

for perturbing the above-modeled power system to study

the frequency dynamics and system inertia. The following



test signal consists of pulses with amplitude and frequency

equivalent to 0.01 p.u. and 1Hz, respectively. Fig. 2. shows

the resulting measurements of ∆ω and ∆ω̇ for these values.

Multiple samples for ∆ω and ∆ω̇ are obtained using the

different values of M, ∆Pl, and D. The Gaussian noise is

introduced to mimic the measurements noise in ∆ω and ∆ω̇.

Once multiple samples of ∆ω and ∆ω̇ are obtained, the

sampling time is defined to estimate the inertia in which the

inertial response is significant.

III. CONVOLUTION NEURAL NETWORK FOR INERTIA AND

DAMPING ESTIMATION

A convolution neural network is a multi-layered neural

network capable of dealing with sequential data models. Other

neural network architectures such as long short-term memory

(LSTM) can also deal with sequential data models. However,

CNNs can excel the LSTM at capturing local patterns in data

using convolution filters. The accelerated learning capabilities

of CNNs have been one of the key features for its extensive

use over LSTM [23]. This work uses 1D-CNN to predict

the inertia and damping in a single-area power network. The

convolution layers in the CNN have the good property of

extracting sequential features that make CNN suitable for

inertia and damping estimation.

The architecture of the 1D-CNN network implemented in

this paper is illustrated in Fig. 3. The frequency variations

data, ∆ω and ∆ω̇ derived from the simulation setting of Fig.

1 are used as the input features to train the CNN. In the first

stage, the datasets are categorized into training and testing

data during the training process, and the input features are

selected randomly from the entire dataset with batch size b.

The input features, ∆ω and ∆ω̇ are placed horizontally making

the input b × c to the first convolution layer. The process of

batch training is completed only when all the batches of ∆ω

and ∆ω̇ are fully trained to predict the inertia and damping

constant. During the forward propagation, these input features

are passed to convolution layers where sequential features

of datasets are extracted. The convolution layer responds

with feature mapping, where each output comprises several

convolution results of inputted feature figures. In this section,

the sequential features of ∆ω and ∆ω̇ are learned by the

convolution filters or kernels of the convolution layer. Each

convolution layer is composed of kernel vectors that map the

input features. Similarly, each convolution layer consists of

another parameter called channels which are denoted by p and

q as shown in Fig. 3. The kernel size and number of channels

together serve as the hyperparameter for the convolution layer,

whose values are optimized for best performance of the model.

The dense layer receives the processed features from convo-

lution layer kernels. The convolution layer consists of a series

of convolution filters, also called kernels, that act across the

input features to capture the temporal dependencies at different

intervals of time and learn the relevant features. Similarly,

these layers transform the 2D feature data into 1D, ensuring

all neurons are fully connected to the final layer. This flattened

layer Y as shown in Fig. 3 is connected to the output layer via

(a)

(b)

(c)

Fig. 2: Probing signal, frequency, and ROCOF measurements

for M= 2s and ∆Pl = 0.01.

Input CNN1 CNN2 Flattened layer
Hidden layers 1 and 2

Fully connected layer

Output

b×c p q Y

b×1

Fig. 3: Architecture of 1D CNN.



a hidden layer. The backpropagation updates the weights and

biases according to the difference of error between the result

obtained from CNN and the actual value given by six until

the loss function reaches a minimum value and converges.

The mean square error is evaluated as:

MSE =
1

N

N∑

i=1

(xi − x̃i)
2

(5)

wt+1 = wt − α
∂MSE

∂wt

(6)

The efficacy of the CNN is expressed in terms of root

mean squared error. The frequency data obtained through the

simulation and their implementation through CNN provide the

inertia and damping constant estimation.

IV. SIMULATION AND RESULTS

A. Simulation Setup

The single-area power system of Fig. 1 is designed and

simulated using MATLAB/Simulink 2023a. The data samples

for ∆ω and ∆ω̇ are collected through simulation using the

transfer function-based equivalent generator model. The data

samples are collected by varying the inertia value from 2

seconds to 10 seconds with an interval of 0.5 while the

excitation signal changes from 0.001 p.u. to 0.1 p.u., having

a step size of 0.001 p.u. Similarly, the value of D varies from

0.5 to 2 with an increment of 0.15. A total of 1700 data

samples are extracted for the estimation of inertia. The value

of D is assumed to be 1.5 during the estimation of the inertia.

Similarly, 1100 samples are utilized to estimate the coefficient

of damping. The inertia is assumed to be 2.5 s during damping

estimation. To make data more realistic, White Gaussian noise

is implemented while simulating data samples in Simulink.

A signal-to-noise ratio (SNR) of 65 dB, zero mean, and

covariance of 1e-6 is used as explained in [24]. The CNN

for inertia and damping constant is implemented in Python

using Pytorch. The parameters utilized for the experiments are

noted in Table I. The time interval equivalent to 1 second as

described in [25] is chosen to make data measurement more

realistic because it takes the system some duration to attain a

steady state following the perturbation signal.

TABLE I: Simulation Parameters.

Parameters Ranges/Values

Inertia constant (M )
2 s – 10 s

Interval = 0.5 s

Damping coefficient (D)
0.5 – 2

Interval = 0.15 p.u.

Load (∆PL)
0.001 p.u. – 0.1 p.u.

Interval = 0.001 p.u.

Speed regulation droop (R) 5%

Secondary controller gain (K) 2

Turbine-governor time constant (Tg) 0.25 s

B. CNN Structure and Hyperparameters Optimization

The sampling frequency equivalent to 200 Hz provides 200

samples within the inertial time interval of 1 second. The data

obtained from the frequency measurements are standardized

using the MinMax scalar to limit their values to 0 and 1.

The batch size of 40 is maintained while training the entire

dataset in each iteration. The CNN in this paper consists of

one input layer, two convolution layers in the middle with

kernels, three fully linked layers, and a final output layer.

The number of channels and kernel size in each convolution

layer are evaluated using Bayesian optimization. The range

of values for the channels and kernel size are (10, 40) and

(1,6), respectively. From the hyperparameter optimization, the

optimized values for the number of channels are found to be

10 and 25, respectively, and the kernel size of 3 for each layer

gave the optimized results. The kernel size is important since

it determines the convolution filter size that moves across the

input for retrieving the spatial aspects of the input sample.

Thus, the first convolution layer has one input channel and

ten output channels connected to another convolution layer,

with 25 output channels ultimately connected to the first fully

connected layer. The input to the first fully linked layer Y is

calculated to be 9950 and input to the subsequent second and

third levels are 800 and 50, respectively. The ReLU activation

function is used for the convolution layers to add non-linearity

to the model so that it helps in capturing the intricate features

in the data. Similarly, the tangent hyperbolic function is used

in the forward network. The weight update algorithm uses

a momentum-accelerated gradient descent method with the

weight decay factor. The optimized values for momentum,

weight decay, and learning rate are 0.5, 1e-4, and 1e-5,

respectively. In both of the estimations, the total dataset is

divided in the ratio of 0.8/0.2 for training and testing data,

respectively.
The inertia and damping constant training loss for the CNN

are illustrated in Fig. 4. For the training of CNN for inertia

estimation, the validation loss closely follows the training

loss and losses decrease over the epochs, converging to the

minimum value between 190 to 200 epochs as shown in Fig.

4a. Similarly, Fig. 4b demonstrates the MSE loss of training

and validation datasets for the damping constant estimation.

The early-stopping technique is utilized to stop the training

process at epoch 200 to yield the optimal CNN model for the

damping constant estimation process.

C. Analyzing Test Performance of CNN for Inertia and Damp-

ing Estimation

Fig. 5a shows the predicted values of the inertia constant

on the testing set. The estimated values of the inertia have a

root mean squared error (RMSE) of 0.2269. The scatter plot

represents the distribution of estimated values at particular

inertia points. It can be seen that most of the estimated

values of the inertia are within the range of the actual values,

demonstrating good estimation. However, the performance de-

teriorates towards the higher values of actual inertia, lowering

the overall accuracy of the model. The median and quartile



(a)

(b)

Fig. 4: Training loss function for a) inertia and b) damping

constant estimation.

values in Fig. 5b show a good agreement between the actual

and predicted inertia values.

The scatter graph and box plot for estimated and true

values of the damping constant are shown in Fig. 6. The

model predicted the damping values with RMSE equivalent

to 0.2563. As shown in Fig. 6a, most of the predicted values

of the damping constant follow the actual values. The presence

of outliers and more dispersion of data points affects the

CNN performance. It can be seen that the CNN has a lower

performance while estimating damping constants as there is

a larger difference in predicted and estimated median and

quartile values in Fig. 6b compared to the inertia estimation.

D. Comparision with other Machine Learning Models

Table II shows the performance of different off-the-shelf

regression models in comparison to the proposed CNN model.

It should be noted that while calculating the model accu-

racy, the predicted values of the inertia and damping with

a tolerance of 10% are recognized as true values for all

models. The performance of the CNN model is compared with

the multi-layer perceptron, support vector machine regressor,

and gradient-boosting machine regressor. The proposed CNN

model outperforms the other model for all performance met-

rics. In MLP, each neuron is connected to every other neuron

in the preceding layer, increasing the redundant parameters and

complexity. As a result, MLP has limited ability to generalize

and problems with convergence. The simpler architecture and

limited feature parameters in SVR and GBM may be inad-

(a)

(b)

Fig. 5: a) Scatter graph b) Box plot of predicted and actual

inertia constants.

(a)

(b)

Fig. 6: a) Scatter graph b) Box plot of predicted and actual

damping constants.



equate to reflect the complex relationship between frequency

deviation and inertia. In addition to having significantly higher

performance metrics, CNN uses the same set of weights (filter)

across different input regions that reduce the parameters. This

makes them efficient and scalable, allowing them to be trained

on larger datasets with smaller computational complexity.

TABLE II: Test data performance metrics of different machine-

learning models for inertia and damping estimation.

Parameter Method Accuracy RMSE MAE R
2

Inertia

CNN 96.34% 0.2269 0.0891 0.977

MLP 87.87% 0.2761 0.1924 0.898

SVR 76.82% 0.45 0.3767 0.753

GBM 75.29% 0.52 0.4517 0.748

Damping

CNN 94.32% 0.2563 0.0997 0.952

MLP 85.17% 0.317 0.2178 0.859

SVR 74.38 % 0.477 0.349 0.749

GBM 72.29% 0.55 0.493 0.724

Thus, the proposed CNN model performed well in esti-

mating the damping and inertia of the electrical grid. The

testing accuracy and other matrices evaluated above clearly

demonstrate the superiority of the model.

V. CONCLUSION

In this paper, the inertia, along with the damping, are

estimated using the convolution neural network. The excitation

signal is used to disturb the system’s frequency dynamics, and

frequency measurements obtained from probing are used as

the input samples for the CNN training. The proposed model

that is implemented in this paper is truly dependent upon the

frequency data that has been obtained through disturbance in

the system, making it a data-driven system. The model-free

convolution neural network-based estimator displays high ac-

curacy while estimating inertia and damping values even in the

presence of noise, demonstrating the real-world applicability

of the proposed method. The proposed model-free approach

can also be implemented in the converter-dominated system to

predict unknown inertia and damping constants. Future works

involve extending the model to inherit the characteristics of

renewable energy resources by incorporating their dynamics.
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