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Abstract—The inertia of the electrical grid is crucial for
ensuring system stability. The increasing integration of renewable
energy resources gradually decreases the inertia of the system,
leading to greater frequency deviation under disturbances. Sim-
ilarly, due to fluctuating demand and intermittent generation,
system inertia varies considerably. In this context, the accurate
estimation of inertia is crucial which is challenging through
conventional mathematical methods. This paper proposes a con-
volution neural network approach for estimating the inertia and
damping of an electrical grid. The neural network-based method
utilizes a non-disruptive test signal to change the dynamics
of the power network and estimates the system inertia and
damping coefficient from the local frequency measurements. The
introduced method determines the inertia and damping with high
accuracy even under the impact of noise and is compared with
the performance of the multilayer perceptron, support vector
machine regressor, and gradient-boosting machine regressor in
terms of accuracy, root mean squared error, and mean absolute
error to validate the results. The proposed technique can assist
system operators in providing fast-frequency support and system
protection schemes.

Index Terms—Convolution neural network, fluctuating de-
mand, frequency support, renewable energy resources.

I. INTRODUCTION

The imbalance between electric power supply and consump-
tion, including system losses, causes deviations in the system’s
frequency. Frequency deviation needs to be maintained within
a certain range for the reliable functioning of the grid. The
inability to return the system to equilibrium after the distur-
bances might increase the chance of under-frequency load-
shedding and cascading failures [1], [2]. Inertia has a direct
impact on frequency deviation when the system encounters
disturbances. Therefore, it can function as an indicator to
determine the severity level of disturbances that a system can
tolerate.

With the growing penetration of converter-dominated gen-
eration, conventional synchronous generators are gradually
decommissioned. This leads to a reduction in system inertia as
the overall inertial contribution of converter-based generation
is negligible to date [3]. In addition, the use of asynchronous
high voltage direct current (HVDC) divides the large power
grids into multiple sub-grids, weakening grid inertia and
decreasing frequency support among AC grids [4]. Under these
circumstances, conventional frequency control techniques are
inadequate to address the changing disturbance dynamics [5].
As a result, a series of failures and disconnections can occur
requiring faster primary control to preserve stability.

Moreover, the gradual increment of deregulated and un-
predictable energy generation is making inertia a dynamic

parameter changing continuously over time and introducing
non-linearity in the system operation [6]. Therefore, it is
difficult for the transmission system operator (TSO) to ac-
curately monitor the system inertia [7], [8]. This limitation
requires excessively cautious operational planning and drives
up operational expenses. Hence, accurate inertia estimation
techniques help TSOs operate the system with lower safety
margins and costs by implementing the appropriate actions
and control strategies. Moreover, inertia and damping constant
estimation have significant advantages including regulated
incorporation of renewable energy resources (RERs), increased
stability and reliability, and improved market structuring for
ancillary services.

In [9], the waveform of the transients has been used for
determining the inertia through a polynomial approximation to
time. However, the order of polynomials was selected based
on the specific dataset. In [10], an improved approach is
established by improving the polynomial approximation that
estimates the inertia constant using frequency information
captured by phasor measurement units (PMUs). However,
PMU data is limited to specific areas like points of common
coupling making this approach unfit for different areas. In [11],
the statistical method is formulated using the Gaussian Markov
model which estimates the inertia in near real-time inertia
by analyzing steady-state conditions and minor frequency
variations. This method requires the collection of past system
data for accurate predictions which makes it less efficient
for an intermediate sampling interval. The Bayesian inference
technique is proposed in [12] which depends upon the poste-
rior probability density function of the events. This approach
is statistically difficult and less suitable for large systems. In
[13], inertia is estimated using an extended Kalman filter but
this approach needs to assume the time of disturbances and is
sensitive to the used time of the filter.

An analytical method using a dynamic mode decompo-
sition is used to estimate inertia for interconnected power
grids in [14]. However, the dependency on eigenvalues and
eigenvectors for estimation makes it less reliable in multi-
area systems. In [15], the closed-loop estimation procedure
is implemented for predicting the inertia at the connection
bus. The measurement unit measures the required frequency
and active power for the feedback-based estimation technique.
However, this method has a higher level of complexity and is
highly sensitive to noise. The authors in [16] have introduced
a time-dependent inertia estimation technique that requires
an actual time of perturbation in the system. This method



might be infeasible to implement due to the uncertainty of
load fluctuation in the real world. In [17], inertia estimation
dependent on electromechanical oscillation was implemented
using iterative filtering. However, his method relies heavily on
statistical calculation and suffers from higher noise. This issue
is partly resolved by [18], where a noise-resistant data-driven
approach for inertia estimation is developed.

Most of the previous methods rely on mathematical model-
based inertia estimation. Very few studies have focused on
a model-free data-centric approach that can capture the un-
certainty of modern grids. Similarly, the damping constant
estimation has been ignored in the previous works which need
to be considered for the real-time assessment and deployment
of control strategies for effective response to disturbances.
Therefore, this paper presents a data-driven approach that does
not depend on predefined models for predicting system inertia
and damping constant using a convolution neural network. The
contributions of this paper are described below.

1) Develop a micro perturbation-based technique for es-
timating system inertia and damping constant using a
convolution neural network. The proposed approach uti-
lizes frequency measurements obtained from arbitrary
disturbances that occur in the system for estimating these
parameters of the system. Hyperparameter optimization
is done to ensure the optimal performance of the CNN
model.

2) The proposed technique will consider the influence of
measurement noise on inertia and damping constant esti-
mation. This has been ignored in most existing works.

The remaining work of the paper is as follows. An overview
of the frequency dynamics of single-area power networks is
explained in Section II. Section III describes the concepts of
a convolution neural network and its utilization for estimating
inertia and damping constant. A simulation model and results
are described in section IV. The conclusion is in Section V.

II. POWER SYSTEM FREQUENCY DYNAMICS

The inertia and damping constant are estimated considering
a single-area power grid. The transfer function-based model
is used to represent the system dynamics. Synchronous gen-
erators are considered the main source of power generation.
All the generating units of the single-area network are repre-
sented by one equivalent generator. This simplifies the overall
problem and the frequency response can be represented by the
swing equation [19], [20].

A. Swing Equation: Inertia and Damping Constant

Multiple generators that are interconnected in the single area
network will serve the load according to the consumption level.
The frequency and inertia can be represented in terms of center
of inertia (COI) [21]. Thus, the average frequency is defined
as follows:
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quency of k" generator. The number of generators is denoted
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S denotes apparent power rating. From these above equations,
the swing equation of the single area can be modeled as
follows [22]:
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Aw indicates average frequency deviation. Aw gives the rate
of change of frequency (ROCOF), and M = 2H is the inertia
constant of the equivalent generator. AP,, and AP, denote a
change in mechanical and electrical power output, respectively,
damping constant, D represents the impacts of frequency-
dependent loads and other damping mechanisms. Typically,
D indicates the percentage change in load resulting from a
1% change in the system’s frequency.

B. Frequency Control Loop

The turbine-governor and load-generator dynamics for the
frequency control of the single-area electrical grid are il-
lustrated in Fig. 1. An abrupt change of load triggers the
frequency event which is initially responded to through the
primary control. The turbine-governor dynamics act to bring
the system to a stable condition.
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Fig. 1: Frequency control loop of single area power system.

The secondary frequency control loop reinstates the system
frequency to its original form after disturbances. The integral
controller block integrates the accumulated frequency devi-
ation over time to ensure the secondary control removes the
steady-state error, thus restoring the nominal frequency. In Fig.
1, K; represents the proportional gain, T, denotes the turbine-
generator time constant, and the block Ri is speed-regulation
droop. This system is subjected to disturbances to obtain the
frequency measurements for the implementation of CNN.

A probing signal can be applied to the power system
without affecting the system stability to understand system
dynamics. In this work, an excitation signal AP, is employed
for perturbing the above-modeled power system to study
the frequency dynamics and system inertia. The following



test signal consists of pulses with amplitude and frequency
equivalent to 0.01 p.u. and 1Hz, respectively. Fig. 2. shows
the resulting measurements of Aw and Aw for these values.
Multiple samples for Aw and Aw are obtained using the
different values of M, AP,, and D. The Gaussian noise is
introduced to mimic the measurements noise in Aw and Aw.
Once multiple samples of Aw and Aw are obtained, the
sampling time is defined to estimate the inertia in which the
inertial response is significant.

III. CONVOLUTION NEURAL NETWORK FOR INERTIA AND
DAMPING ESTIMATION

A convolution neural network is a multi-layered neural
network capable of dealing with sequential data models. Other
neural network architectures such as long short-term memory
(LSTM) can also deal with sequential data models. However,
CNNSs can excel the LSTM at capturing local patterns in data
using convolution filters. The accelerated learning capabilities
of CNNs have been one of the key features for its extensive
use over LSTM [23]. This work uses 1D-CNN to predict
the inertia and damping in a single-area power network. The
convolution layers in the CNN have the good property of
extracting sequential features that make CNN suitable for
inertia and damping estimation.

The architecture of the 1D-CNN network implemented in
this paper is illustrated in Fig. 3. The frequency variations
data, Aw and Aw derived from the simulation setting of Fig.
1 are used as the input features to train the CNN. In the first
stage, the datasets are categorized into training and testing
data during the training process, and the input features are
selected randomly from the entire dataset with batch size b.
The input features, Aw and Aw are placed horizontally making
the input b x ¢ to the first convolution layer. The process of
batch training is completed only when all the batches of Aw
and Aw are fully trained to predict the inertia and damping
constant. During the forward propagation, these input features
are passed to convolution layers where sequential features
of datasets are extracted. The convolution layer responds
with feature mapping, where each output comprises several
convolution results of inputted feature figures. In this section,
the sequential features of Aw and Aw are learned by the
convolution filters or kernels of the convolution layer. Each
convolution layer is composed of kernel vectors that map the
input features. Similarly, each convolution layer consists of
another parameter called channels which are denoted by p and
q as shown in Fig. 3. The kernel size and number of channels
together serve as the hyperparameter for the convolution layer,
whose values are optimized for best performance of the model.

The dense layer receives the processed features from convo-
lution layer kernels. The convolution layer consists of a series
of convolution filters, also called kernels, that act across the
input features to capture the temporal dependencies at different
intervals of time and learn the relevant features. Similarly,
these layers transform the 2D feature data into 1D, ensuring
all neurons are fully connected to the final layer. This flattened
layer Y as shown in Fig. 3 is connected to the output layer via
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Fig. 2: Probing signal, frequency, and ROCOF measurements
for M= 2s and AP, = 0.01.
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Fig. 3: Architecture of 1D CNN.



a hidden layer. The backpropagation updates the weights and
biases according to the difference of error between the result
obtained from CNN and the actual value given by six until
the loss function reaches a minimum value and converges.
The mean square error is evaluated as:

N

_ 1 PR— ~. 2
MSE = — ; (z; — ;) 5)
OMSE
W41 = W — & ow (6)
t

The efficacy of the CNN is expressed in terms of root
mean squared error. The frequency data obtained through the
simulation and their implementation through CNN provide the
inertia and damping constant estimation.

IV. SIMULATION AND RESULTS
A. Simulation Setup

The single-area power system of Fig. 1 is designed and
simulated using MATLAB/Simulink 2023a. The data samples
for Aw and Aw are collected through simulation using the
transfer function-based equivalent generator model. The data
samples are collected by varying the inertia value from 2
seconds to 10 seconds with an interval of 0.5 while the
excitation signal changes from 0.001 p.u. to 0.1 p.u., having
a step size of 0.001 p.u. Similarly, the value of D varies from
0.5 to 2 with an increment of 0.15. A total of 1700 data
samples are extracted for the estimation of inertia. The value
of D is assumed to be 1.5 during the estimation of the inertia.
Similarly, 1100 samples are utilized to estimate the coefficient
of damping. The inertia is assumed to be 2.5 s during damping
estimation. To make data more realistic, White Gaussian noise
is implemented while simulating data samples in Simulink.
A signal-to-noise ratio (SNR) of 65 dB, zero mean, and
covariance of le-6 is used as explained in [24]. The CNN
for inertia and damping constant is implemented in Python
using Pytorch. The parameters utilized for the experiments are
noted in Table I. The time interval equivalent to 1 second as
described in [25] is chosen to make data measurement more
realistic because it takes the system some duration to attain a
steady state following the perturbation signal.

TABLE I: Simulation Parameters.

Parameters Ranges/Values

2s-10s

Inertia constant (M)
Interval = 0.5 s

05-2

Damping coefficient (D)
Interval = 0.15 p.u.

0.001 p.u. — 0.1 p.u.

Load (APr)
Interval = 0.001 p.u.
Speed regulation droop (R) 5%
Secondary controller gain (K) 2

Turbine-governor time constant (7) 0.25 s

B. CNN Structure and Hyperparameters Optimization

The sampling frequency equivalent to 200 Hz provides 200
samples within the inertial time interval of 1 second. The data
obtained from the frequency measurements are standardized
using the MinMax scalar to limit their values to O and 1.
The batch size of 40 is maintained while training the entire
dataset in each iteration. The CNN in this paper consists of
one input layer, two convolution layers in the middle with
kernels, three fully linked layers, and a final output layer.
The number of channels and kernel size in each convolution
layer are evaluated using Bayesian optimization. The range
of values for the channels and kernel size are (10, 40) and
(1,6), respectively. From the hyperparameter optimization, the
optimized values for the number of channels are found to be
10 and 25, respectively, and the kernel size of 3 for each layer
gave the optimized results. The kernel size is important since
it determines the convolution filter size that moves across the
input for retrieving the spatial aspects of the input sample.
Thus, the first convolution layer has one input channel and
ten output channels connected to another convolution layer,
with 25 output channels ultimately connected to the first fully
connected layer. The input to the first fully linked layer Y is
calculated to be 9950 and input to the subsequent second and
third levels are 800 and 50, respectively. The ReLLU activation
function is used for the convolution layers to add non-linearity
to the model so that it helps in capturing the intricate features
in the data. Similarly, the tangent hyperbolic function is used
in the forward network. The weight update algorithm uses
a momentum-accelerated gradient descent method with the
weight decay factor. The optimized values for momentum,
weight decay, and learning rate are 0.5, le-4, and le-5,
respectively. In both of the estimations, the total dataset is
divided in the ratio of 0.8/0.2 for training and testing data,
respectively.

The inertia and damping constant training loss for the CNN
are illustrated in Fig. 4. For the training of CNN for inertia
estimation, the validation loss closely follows the training
loss and losses decrease over the epochs, converging to the
minimum value between 190 to 200 epochs as shown in Fig.
4a. Similarly, Fig. 4b demonstrates the MSE loss of training
and validation datasets for the damping constant estimation.
The early-stopping technique is utilized to stop the training
process at epoch 200 to yield the optimal CNN model for the
damping constant estimation process.

C. Analyzing Test Performance of CNN for Inertia and Damp-
ing Estimation

Fig. 5a shows the predicted values of the inertia constant
on the testing set. The estimated values of the inertia have a
root mean squared error (RMSE) of 0.2269. The scatter plot
represents the distribution of estimated values at particular
inertia points. It can be seen that most of the estimated
values of the inertia are within the range of the actual values,
demonstrating good estimation. However, the performance de-
teriorates towards the higher values of actual inertia, lowering
the overall accuracy of the model. The median and quartile
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Fig. 4: Training loss function for a) inertia and b) damping
constant estimation.

values in Fig. 5b show a good agreement between the actual
and predicted inertia values.

The scatter graph and box plot for estimated and true
values of the damping constant are shown in Fig. 6. The
model predicted the damping values with RMSE equivalent
to 0.2563. As shown in Fig. 6a, most of the predicted values
of the damping constant follow the actual values. The presence
of outliers and more dispersion of data points affects the
CNN performance. It can be seen that the CNN has a lower
performance while estimating damping constants as there is
a larger difference in predicted and estimated median and
quartile values in Fig. 6b compared to the inertia estimation.

D. Comparision with other Machine Learning Models

Table II shows the performance of different off-the-shelf
regression models in comparison to the proposed CNN model.
It should be noted that while calculating the model accu-
racy, the predicted values of the inertia and damping with
a tolerance of 10% are recognized as true values for all
models. The performance of the CNN model is compared with
the multi-layer perceptron, support vector machine regressor,
and gradient-boosting machine regressor. The proposed CNN
model outperforms the other model for all performance met-
rics. In MLP, each neuron is connected to every other neuron
in the preceding layer, increasing the redundant parameters and
complexity. As a result, MLP has limited ability to generalize
and problems with convergence. The simpler architecture and
limited feature parameters in SVR and GBM may be inad-
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equate to reflect the complex relationship between frequency
deviation and inertia. In addition to having significantly higher
performance metrics, CNN uses the same set of weights (filter)
across different input regions that reduce the parameters. This
makes them efficient and scalable, allowing them to be trained
on larger datasets with smaller computational complexity.

TABLE II: Test data performance metrics of different machine-
learning models for inertia and damping estimation.

Parameter | Method | Accuracy | RMSE | MAE R?
CNN 96.34% 0.2269 | 0.0891 | 0.977
. MLP 87.87% 0.2761 | 0.1924 | 0.898
Inertia
SVR 76.82% 0.45 0.3767 | 0.753
GBM 75.29% 0.52 0.4517 | 0.748
CNN 94.32% 0.2563 | 0.0997 | 0.952
. MLP 85.17% 0.317 | 0.2178 | 0.859
Damping
SVR 74.38 % 0.477 0.349 | 0.749
GBM 72.29% 0.55 0.493 | 0.724

Thus, the proposed CNN model performed well in esti-
mating the damping and inertia of the electrical grid. The
testing accuracy and other matrices evaluated above clearly
demonstrate the superiority of the model.

V. CONCLUSION

In this paper, the inertia, along with the damping, are
estimated using the convolution neural network. The excitation
signal is used to disturb the system’s frequency dynamics, and
frequency measurements obtained from probing are used as
the input samples for the CNN training. The proposed model
that is implemented in this paper is truly dependent upon the
frequency data that has been obtained through disturbance in
the system, making it a data-driven system. The model-free
convolution neural network-based estimator displays high ac-
curacy while estimating inertia and damping values even in the
presence of noise, demonstrating the real-world applicability
of the proposed method. The proposed model-free approach
can also be implemented in the converter-dominated system to
predict unknown inertia and damping constants. Future works
involve extending the model to inherit the characteristics of
renewable energy resources by incorporating their dynamics.
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