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Abstract
Data augmentation is a powerful tool for improving deep learning-based image

classifiers for plant stress identification and classification. However, selecting an

effective set of augmentations from a large pool of candidates remains a key

challenge, particularly in imbalanced and confounding datasets. We propose an

approach for automated class-specific data augmentation using a genetic algorithm.

We demonstrate the utility of our approach on soybean [Glycine max (L.) Merr] stress
classification where symptoms are observed on leaves; a particularly challenging

problem due to confounding classes in the dataset. Our approach yields substantial

performance, achieving a mean-per-class accuracy of 97.61% and an overall accu-

racy of 98% on the soybean leaf stress dataset. Our method significantly improves the

accuracy of the most challenging classes, with notable enhancements from 83.01% to

88.89% and from 85.71% to 94.05%, respectively. A key observation we make in this

study is that high-performing augmentation strategies can be identified in a compu-

tationally efficient manner. We fine-tune only the linear layer of the baseline model

with different augmentations, thereby reducing the computational burden associated

with training classifiers from scratch for each augmentation policy while achieving

exceptional performance. This research represents an advancement in automated data

augmentation strategies for plant stress classification, particularly in the context of

confounding datasets. Our findings contribute to the growing body of research in

tailored augmentation techniques and their potential impact on disease management

strategies, crop yields, and global food security. The proposed approach holds the

potential to enhance the accuracy and efficiency of deep learning-based tools for

managing plant stresses in agriculture.

1 INTRODUCTION

Accurate classification of plant stresses is of utmost impor-

tance for effective crop management and sustainable agricul-

tural practices (Al-Hiary et al., 2011). Both biotic (diseases

and insects) and abiotic plant stresses (drought, salinity,

temperature extremes, and nutrient deficiencies) have detri-
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mental effects on crop growth, yield, and quality (Mosa

et al., 2017). By precisely identifying and classifying these

stresses early, farmers can develop targeted strategies to

mitigate their impact and optimize crop health (Nagasub-

ramanian et al., 2018; Sankaran et al., 2010). Moreover,

accurate stress classification plays a key role in selecting

stress-tolerant crop varieties (Singh et al., 2021) and can make
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a significant impact on improved genomic studies and high-

throughput phenotyping (Singh et al., 2016, 2018; Zhang

et al., 2017). Accurate stress classification can enhance cyber-

agricultural systems, leading to improved crop resilience,

reduced production losses, and sustainable agricultural prac-

tices (Gao et al., 2020; Gill et al., 2022; Gonzalez Guzman

et al., 2022). In this paper, we explore the development

of accurate classifiers for plant stress classification, aiming

to improve downstream plant stress management activities

involving stress identification and enable effective mitigation

strategies.

Traditionally, plant stress identification and quantification

heavily relied on the expertise of human scouts and domain

experts (Singh et al., 2016). However, this manual approach is

time-consuming, subjective, and limited in scalability, posing

challenges in terms of efficiency and accuracy. The emer-

gence of advanced technologies, such as drones (Feng et al.,

2021; Guo et al., 2021; Herr et al., 2023; Xu et al., 2023),

ground robots (Atefi et al., 2021; Gao et al., 2018), and sen-

sors (Parmley et al., 2019; Pieruschka & Schurr, 2019) has

brought high-throughput phenotyping and phenomics to the

forefront (Araus & Cairns, 2014), transforming the measure-

ment of multiple plant traits across various growth stages

and facilitating rapid, precise, and accurate data collection.

Machine learning (ML) and deep learning (DL) techniques

have emerged as effective tools in automating plant stress

classification processes (Ghosal et al., 2018; Singh et al.,

2016). Despite promising outcomes in discerning various

plant stresses, DL models encounter a significant challenge:

the requirement for abundant labeled and diverse data (Kami-

laris & Prenafeta-Boldú, 2018). To address this challenge,

data augmentation (DA) has emerged as a valuable approach

to enhancing model performance by augmenting the avail-

able data through various transformations (Krizhevsky et al.,

2012; Shorten & Khoshgoftaar, 2019; Van Dyk & Meng,

2001). These transformations include rotation, flipping, scal-

ing, cropping, and noise injection, effectively minimizing

performance gaps between training and testing stages, reduc-

ing overfitting, and improving the generalization capability of

DL models (Rebuffi et al., 2021; Shorten & Khoshgoftaar,

2019; Taylor & Nitschke, 2018a). Importantly, data aug-

mentation allows for effectively expanding the training data

without the need for laborious manual labeling or extensive

data collection efforts, making DL models more accessible

and efficient for plant stress classification tasks (Taylor &

Nitschke, 2018a).

Despite the effectiveness of data augmentation in enhanc-

ing the performance of DL models, manually selecting

appropriate augmentation techniques is time-consuming and

challenging. To address this issue, researchers have turned

to automated machine learning (AutoML) (He et al., 2021)

techniques for automatically searching and selecting augmen-

tation policies on datasets (Cubuk et al., 2018; Ho et al., 2019;

Core Ideas
∙ We propose an effective approach for automated

selection of class-specific data augmentations for

precise plant stress classification.

∙ Employing a genetic algorithm for efficient

augmentation strategy selection in challenging

datasets.

∙ Achieving significant performance gains with

reduced computation via fine-tuning only the lin-

ear layer of the convolutional neural network

model.

Lim et al., 2019; Zoph et al., 2020). These include methods

like AutoAugment (Cubuk et al., 2018), Fast AutoAug-

ment (Lim et al., 2019), and Faster AutoAugment (Weng,

2019), which use reinforcement learning or density match-

ing to find optimal augmentation policies (Terrell & Scott,

1992). Additionally, gradient-based methods such as Deep-

AutoAugment (Zheng et al., 2022) automate policy selection

without prior knowledge. These methods directly learn the

augmentation policy without prior knowledge or manual

selection of default transformations such as Marrie et al. Mar-

rie et al. (2023). However, the computational complexity of

these methods limits their feasibility for image classifica-

tion problems with limited computational resources and time

constraints. Population-based augmentation (PBA) is another

promising technique that enables the simultaneous training

and evaluation of multiple augmentation policies, facilitating

efficient policy discovery (Ho et al., 2019). Notably, PBA has

demonstrated effectiveness in discovering diverse and high-

performing augmentation policies while imposing minimal

computational overhead. In our study, we specifically opted

for PBA due to its superior efficiency and effectiveness and

further explored its potential for augmentation policy selec-

tion on a class-specific basis. It is important to note that

while these methods search for policies suitable for the entire

dataset, the class-dependent nature of augmentation policies

has received limited attention in current research. Although

the generation of class-dependent data has been studied in

the context of GANs (Mirza & Osindero, 2014), to our

knowledge, only a few works have explored class-dependent

data augmentation (Hauberg et al., 2016; Rommel et al.,

2021).

While data augmentation is commonly employed to

enhance model performance, different classes within a

dataset may exhibit varying sensitivities to specific trans-

formations (Balestriero et al., 2022). This discrepancy in

sensitivity becomes especially pronounced in scenarios where

certain classes are subjected to per-class favoritism, leading
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F IGURE 1 Class-specific effects of augmentations: ”horizontal flip” distorts a brain cell image, ”vertical flip” transforms a “6” into a “9” in

MNIST, and “cutout” masks disease in a soybean leaf. These instances reveal that tailored strategies are essential, as not all augmentations benefit

all classes.

to biased predictions and arbitrary inaccuracies on specific

classes. For example, in the context of object recognition in

images, using color transformations can benefit the model’s

ability to recognize objects such as cars or lamps, but this

same augmentation strategy may have a detrimental effect

on classes that are strongly defined by their color, such

as apples or oranges. Similarly, applying “vertical flip”

augmentation in the MNIST dataset (Deng, 2012) alters the

visual representation of classes 6 and 9, as illustrated with

some other examples in Figure 1.

This observation extends to plant stress classification,

where distinguishing between different stress types and

healthy plants can be challenging due to subtle visual dif-

ferences. Several works have aimed to enhance detection

accuracy using practical data augmentation technique (Cap

et al., 2020; Pawara et al., 2017; Zhu et al., 2020). For

instance, in cases of potassium deficiency, early identifica-

tion is crucial as leaf yellowing starts from the tip of soybean

leaflets. However, using cutout (DeVries & Taylor, 2017)

augmentation targeting the tip of the potassium-stressed leaf

might compromise the model’s ability to identify potassium

deficiency early on. Additionally, datasets with confound-

ing classes (classes that are difficult to distinguish from one

another due to overlapping visual characteristics or shared

features) pose an additional challenge, as data augmenta-

tion can potentially worsen performance disparities among

classes. Thus, applying transformations that emphasize tex-

ture or shape features to classes that are difficult to distinguish

can be beneficial. Consequently, class-specific data augmen-

tation emerges as a potent tool for enhancing ML model

performance, particularly in scenarios with challenging

classes.

To address the challenges posed by class-dependent invari-

ances and to enhance classifier performance, particularly

for confounding classes, we propose a novel approach that

customizes augmentation strategies to capture the unique

characteristics of each class. By fine-tuning a pre-trained

image classificationmodel and optimizing augmentation poli-

cies for individual classes, our class-specific approach aims to

improve mean-per-class accuracy (MPCA), particularly in the

context of confounding classes in the dataset. The automated

process of class-specific data augmentation, driven by an

evolutionary optimization algorithm, genetic algorithm (GA;

Katoch et al., 2021), selects the most effective augmentation

policies for each class.

The effectiveness of our approach is demonstrated in

Figure 2, where transformed images using the most and

least likely augmentations for each stress class are visual-

ized. These results highlight the efficacy of class-specific data

augmentation in improving model performance. This tailored

strategy strikes a balance between efficiency and effective-

ness, providing a promising solution to address limitations of

conventional augmentation techniques.

Specific contributions of this paper are summarized below

as follows:

∙ We propose an effective approach based on GA to find the

best set of augmentations for each class on a target dataset.

∙ We demonstrate the efficacy of our approach by showing

that our per-class augmentations significantly improved the

accuracy of the two worst-performing classes in the target

dataset, increasing from 83.01% to 88.89% and 85.71% to

94.05%. Additionally, our approach significantly increased

the MPCA of the dataset from 95.09% to 97.61% compared

to the accuracy of the non-augmented model.

In our implementation, a well-trained classifier is used as a

baseline, and it is fine-tuned for only five epochs with various

sets of augmentations whose probabilities are the population

created by GA. This approach significantly reduces the com-

putational cost of searching for optimal augmentation policies

while maintaining competitive performance.

2 MATERIALS AND METHODS

2.1 Dataset

The dataset used in this study is a publicly available dataset

comprising 16,573 RGB images of soybean leaflets across

nine distinct classes, eight different soybean stresses and

healthy soybean leaflets, covering a broad range of biotic

and abiotic foliar stresses (Ghosal et al., 2018). Figure 3

demonstrates the imaging setup and the nine soybean leaf
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Posterize Cutout SolarizeShearX Color Rotate

ShearYRotate TranslateY Color Equalize Posterize

Invert Cutout Brightness Equalize Solarize Posterize

Bio�c Stress

Abio�c Stress

Healthy Leaf

Original Image Most Likely Augmenta�ons Least Likely Augmenta�ons

F IGURE 2 For different stress classes in the soybean stress (biotic and abiotic) dataset, we present an image from each category (left) and thin

automating plant stress classification processes e corresponding image transformed using the three most likely augmentations (middle) and the three

least likely augmentations (right) for that stress class, as determined by our class-specific automated data augmentation method.

0- Bacterial 
Blight

1- Septoria 
Brown Spot

6- Potassium 
Deficiency

2- Frogeye 
Leaf Spot

5- Iron 
Deficiency 
Chlorosis

3- Healthy 4- Herbicide 
Injury

7- Bacterial 
Pustule

8- Sudden Death 
Syndrome

F IGURE 3 Image examples of the nine classes (healthy leaflet and eight different soybean stresses) in the dataset.

stress classes included in the analysis. The training, vali-

dation, and test datasets were composed of 13,420 (80%),

1,491 (9%), and 1,662 (11%), respectively (Table S1). More

information on the dataset is available in Ghosal et al.

(2018).

2.2 Baseline model

To establish a fair and comprehensive baseline for soy-

bean stress classification, we followed the methodology

outlined in Ghosal et al. (2018), utilizing the same dataset
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Predicted: 0
True: 7

Predicted: 0
True: 7

Predicted: 7
True: 0

Predicted: 7
True: 0

F IGURE 4 Examples of wrongly classified images by baseline

model.

and model. However, to explore potential improvements,

we experimented with different DL architectures to enhance

the baseline accuracy. Our findings, detailed in Table S2,

revealed that ResNet50 (He et al., 2016) achieved the high-

est accuracy (95.09%) surpassing the previously reported

94.13%, prompting its selection for further evaluation. The

baseline model was trained for 350 epochs on the dataset

without any data augmentations to ensure unbiased perfor-

mance (Balestriero et al., 2022). During training, we utilized

the categorical cross-entropy loss function, Adam optimizer

with a momentum of 0.9, weight decay of 0.0001, and a batch

size of 256.

Despite the promising results obtained with the baseline

model, a consistent observation akin to the study’s findings

emerged, wherein the model encountered difficulties in accu-

rately classifying the challenging categories of bacterial blight

and bacterial pustule with per-class accuracies of 83.01%

and 85.71%, respectively. Discriminating between these two

stresses is challenging even for expert plant pathologists due

to confounding symptoms (Hartman et al., 2015).

A few examples of misclassified images by the baseline

model are provided in Figure 4, and from the figure, it is

evident that these two stresses are hard to classify even for

human experts. These findings highlight the need for fur-

ther refinement and optimization, as an ideal classifier should

excel in accurately predicting all classes, including those

that pose significant challenges. To address this, our primary

focus was to enhance the accuracy of the worst-performing

classes, particularly targeting bacterial blight and bacterial

pustule. The proposed GA-optimized automated DA algo-

rithm is evaluated using our enhanced baseline model as

a foundation.

2.3 Genetic algorithm for optimizing data
augmentations

We utilized GA, a search algorithm inspired by natural selec-

tion and genetic inheritance, to drive the evolutionary process

in our study (Katoch et al., 2021). It is a method used to

find the best solution to an optimization problem by explor-

ing a population of potential solutions. Each individual in

the population represents a potential solution to the problem.

Through successive generations, GA iteratively explores and

evolves the population, aiming to converge toward the optimal

or near-optimal solution. The effectiveness of GA in achiev-

ing this goal relies on the incorporation of elitism. Elitism

ensures that the best individuals from the current generation

are preserved and directly transferred to the next genera-

tion without alteration. This strategy helps maintain diversity

within the population while safeguarding promising solutions

from premature elimination due to the randomness of genetic

operations such as mutation and crossover.

In the context of our soybean leaf stress dataset, we employ

GA to optimize the probability of each augmentation for the

nine classes. Our data augmentation search space is composed

of the standard pool of 15 transformations; ShearX/Y, Trans-

late X/Y, Rotate, AutoContrast, Invert, Equalize, Solarize,

Posterize, Contrast, Color, Brightness, Sharpness, and Cutout.

These augmentations, closely aligning with those utilized in

AutoAugment (Kingma & Ba, 2014), have emerged as popu-

lar choices for exploring optimal data augmentation policies

in image classification tasks.

The search space for this optimization problem consists of

all possible combinations of augmentation for each of the nine

classes. To streamline our optimization process, we consider

probabilities ranging from 0 to 1 with a step size of 0.1 for

applying each augmentation to the respective class. By defin-

ing the augmentation magnitude as the mean of the possible

values, we maintain consistency in the augmentation’s influ-

ence. Our primary objective is to determine the most effective

combination of augmentation probabilities for each class that

maximizes the MPCA of our target dataset.

Our GA operators include:

∙ Initialization: Create an initial population set of probabili-
ties ranging from 0 to 1 for each augmentation strategy.

∙ Evaluation: Assess the fitness of each augmentation strat-

egy by evaluating its MPCA on the test dataset.

∙ Selection: Choose augmentation strategies with higher

accuracy as parents for the next generation, using fitness

proportionate selection or other selection strategies.
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F IGURE 5 Illustration of a single generation in the genetic algorithm (GA) framework. The baseline classifier is fine-tuned with each

candidate from the GA population, which represents the probabilities of augmentations for each class. These selected candidates undergo mutation

and crossover operations, generating the next generation of augmentation probabilities for improved performance.

∙ Crossover: Combine probabilities of two augmentation

sets to create offspring individuals with a mix of their

characteristics.

∙ Mutation: Introduce random changes or modifications to

the probabilities of augmentations to maintain diversity and

explore new regions of the search space.

Formally, let 𝐩 = (𝑝𝑖𝑗) be a 9 × 15 matrix, where 𝑝𝑖𝑗 rep-

resents the probability of applying the 𝑗-th augmentation

technique to samples from the 𝑖-th class during training. The

optimization problem can be defined as follows:

Maximize: MPCA

Subject to:

Constraint: 0 ≤ 𝑝𝑖𝑗 ≤ 1, ∀𝑖, 𝑗

The objective is to maximize the MPCA and the constraints

ensure that the augmentation probabilities remain within the

feasible range for each decision variable. The illustration

of our GA framework for a single generation is shown in

Figure 5. By employing GA, we aim to effectively explore

and navigate this search space, searching for the set of aug-

mentation probabilities that leads to the highest classification

accuracy on our dataset. To evaluate the performance of

the classifiers, we employ commonly used evaluation met-

rics, including overall accuracy, MPCA, and confusion matrix

analysis:

Mean-per-class accuracy (MPCA) = 1
𝑁

𝑁∑

𝑖=1
Accuracy𝑖

2.4 Fine-tuning baseline model with
augmentation probabilities

Figure 6 illustrates the flowchart of the overall workflow for

optimizing augmentation probabilities using GA. After gener-

ating a population of augmentation probabilities, the baseline

model is fine-tuned for each augmentation probability in the

population. The fine-tuning process involves applying the

augmentation probabilities to the training data, evaluating the

resulting classifier on the test set, and using the MPCA as

the fitness score for each chromosome. Based on these fitness

scores, GA performs selection, crossover, and mutation oper-

ations to generate a new population of chromosomes. This

process continues iteratively until a termination criterion is

met or the best solution is obtained. It is worth noting that

the child networks in this study undergo a concise fine-tuning

process of only five epochs, which is significantly shorter

compared to other automated data augmentation strategies.

We selected five epochs based on the observation of limited

performance improvement beyond this point.
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Operators

F IGURE 6 Flowchart depicting the overall workflow for optimizing augmentation probabilities using genetic algorithm.

2.5 Implementation details

The experiments were conducted on a GPU cluster at Iowa

State University, featuring four A100 NVIDIA GPUs, each

equipped with 80 GB of memory. This configuration allowed

us to concurrently fine-tune eight models by utilizing two

models on each GPU, significantly reducing the overall pro-

cessing time by running GA in parallel across 8 GPUs. On

average, one generation took approximately 4.5 h to com-

plete. As a future work, further optimization can be achieved

by distributing the workload across multiple nodes, which

would result in even faster processing times. Our proposed

method requires less computation than traditional automated

DA methods since we only fine-tune the base model using a

set of augmentation probabilities for five epochs.

To implement the GA, we employed PyGAD (Gad, 2021)

and configured with a maximum of 100 generations. Ter-

mination criteria were defined as either completing 100

generations or observing no improvement in fitness scores

for 10 consecutive generations. Hyperparameters were opti-

mized using the Rastrigin function, known for its challenging

landscape characterized bymultimodality and high oscillation

(Pohlheim, 2007). A population size of 100 individuals was

chosen for the GA, employing steady-state selection, random

mutation, and single-point crossover to maintain diversity and

explore the search space effectively.

3 RESULTS

The primary goal of our experiments is to assess the effec-

tiveness of automated class-specific data augmentation using

a GA-based approach in improving MPCA and the accu-

racy of worst-performing classes. We demonstrate this by

evaluating the performance of the models across each class,

examining the corresponding confusion matrices, analyzing

augmentations selected by GA, and the impact of the order

of augmentations in classification accuracy. To ensure the

robustness and generalization of our model, we conducted

fivefold cross-validation on our dataset. The outcomes of this

cross-validation, presented in Table S3, guided our selection

of the most effective model for further investigation.

3.1 Impact of class-specific augmentations
on classification accuracy

The bar chart in Figure 7 provides a clear comparison between

the baseline model and the optimized model after applying

GA-based automated data augmentation. It demonstrates a

substantial improvement in the MPCA, from 95.09% with

the baseline model to an impressive 97.61% with the opti-

mized model. This enhancement across all classes indicates

the efficacy of employing tailored class-specific augmenta-

tions, enabling the model to better recognize and differentiate

between different class characteristics, ultimately leading to

more accurate classification.

Moreover, the iterative nature of the GA in selecting the

most effective augmentations has significantly contributed to

this improvement. Notably, the challenging classes of bac-

terial blight and bacterial pustule have shown substantial

accuracy enhancements, with bacterial blight improving from

83.01% to 88.89%, and bacterial pustule from 85.71% to

94.05%. This underscores the importance of the GA’s role in
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F IGURE 7 Comparison of class-wise accuracies: Bar chart comparing the accuracies of the baseline model and the optimized data

augmentation (optimized-DA) model achieved through a GA-based evolutionary process. The optimized-DA model showcases remarkable

improvements in accuracies for all classes, with particularly notable enhancements observed for the confounding classes—bacterial blight and

bacterial pustule.

TABLE 1 Comparison with other automated augmentation methods.

Augmentation technique Mean-per-class accuracy (%) Sensitivity (%) Specificity (%)
AutoAugment (ImageNet) 95.8 100 91.9

AutoAugment (CIFAR-10) 95.5 97.7 98.5

AutoAugment (SVHN) 95.6 100 93.9

RandAugment 96.2 97.7 96.3

Trivial Augment 95.9 99.0 96.9

AugMix 95.7 98.4 97.7

GA-based optimized DA (proposed method) 97.6 99.2 97.0

Abbreviations: GA, genetic algorithm; DA, data augmentation.

identifying and implementing augmentations specifically tai-

lored to address the unique challenges posed by these classes.

Overall, these results demonstrate the effectiveness of our

class-specific DA approach in overcoming class-specific chal-

lenges and significantly improving classification accuracy.

In a comprehensive comparison with other automated aug-

mentation methods on the soybean disease dataset, as detailed

in Table 1, our method notably surpasses all others in terms

of accuracy. This highlights the effectiveness of our pro-

posed approach. Importantly, our method achieves superior

accuracy while significantly reducing computation require-

ments by only fine-tuning the baseline model for five epochs,

without training any augmentation policy from scratch. This

streamlined approach not only enhances accuracy but also

optimizes computational resources, making it a practical

solution for real-world applications.

3.2 Impact of class-specific augmentations
on misclassifications

To assess the performance of the models on misclassifica-

tions, we analyzed the confusion matrices of the baseline

model and the augmented model (Figure 8). As mentioned

earlier, the baseline model struggled particularly with pre-

dicting bacterial blight (class 0) and bacterial pustule (class

7), frequently misclassifying them interchangeably (Hart-

man et al., 2015). However, the optimized model exhibited

a noticeable reduction in misclassifications for these chal-

lenging classes. By tailoring augmentations to each class, the

GA automatically selects augmentations that help distinguish

these classes from each other. Consequently, the optimized

model showed improved per-class accuracies, suggesting that

our class-specific DA techniques effectively addressed the
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(a) (b)

F IGURE 8 Comparison of classification accuracy confusion matrices: (a) Baseline model; (b) optimized data augmentation (optimized-DA)

model. The augmented model demonstrates improved per-class accuracies, as evident from the reduction in misclassifications illustrated in the

confusion matrices. Particularly, in the case of class 0 (bacterial blight) and class 7 (bacterial pustule), the misclassifications have significantly

reduced, highlighting the effectiveness of our approach in addressing the challenges associated with these classes.

F IGURE 9 Optimized augmentation policies for different stress conditions (biotic and abiotic) and healthy leaves. Augmentation techniques

are categorized into three groups: Geometry-based augmentations (red), color-based augmentations (yellow), and the cutout (green).

baseline model’s limitations. These enhancements validate

the effectiveness of our approach in improving classification

performance, especially for the most challenging classes.

3.3 Comparison of optimized
augmentations on different stresses

In our analysis of the optimized augmentations, we aimed

to understand their impact on different stress conditions,

including biotic and abiotic stresses, as well as healthy leaves.

The optimized augmentation policies, depicted in Figure 9,

shows the preferences for specific augmentation types across

these classes (Gull et al., 2019).

For biotic stress classes, we observed consideration for

both color-based and geometry-based augmentations. How-

ever, specific color augmentations such as solarize, posterize,

and invert were not favored due to their limited relevance

to disease-related visual cues in this context. Conversely, in

the case of abiotic stress classes, geometry-based augmen-

tations were preferred, with shear, translation, and rotation

being prominent choices. Additionally, augmentations like
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TABLE 2 Accuracy comparison of different order of

augmentations.

Order of augmentations Accuracy (%)
Geometry→ Color→ Cutout 97.6

Geometry→ Cutout → Color 96.7

Color→ Geometry→ Cutout 96.5

Cutout → Geometry→ Color 96.4

Color→ Cutout → Geometry 96.4

Cutout → Color→ Geometry 95.9

sharpness and autocontrast were selected for their effec-

tiveness in capturing the structural changes associated with

abiotic stressors.

In contrast, for the healthy class, geometry-based aug-

mentations were predominantly chosen, with brightness,

sharpness, and autocontrast selected to enhance the natu-

ral appearance of healthy leaves. Interestingly, the cutout

augmentation was exclusively chosen by the healthy class,

while being avoided by other stress classes. This suggests

that cutout augmentation, which masks specific regions in

the images, may inadvertently remove relevant disease-related

information for other classes. Overall, the analysis highlights

the importance of selecting appropriate augmentations tai-

lored to each stress class to improve the accuracy of soybean

stress classification.

3.4 Does the order of augmentations
matter?

To explore the impact of augmentation order on model

performance, separate GA runs were conducted for each

proposed augmentation sequence, categorized into three: (i)

Geometry—includes augmentations that modify the geomet-

ric properties of the images, such as shearing and rotation; (ii)

Color—comprises augmentations that manipulate the color

and contrast characteristics of the images; and (iii) Cutout.

Table 2 provides a summary of the results obtained from

these runs.

We observed that the augmentation order has a slight influ-

ence on the model’s performance. The highest accuracy of

97.6% was achieved when the augmentations were applied in

the order of Geometry, followed by Color, and then Cutout

(Perez & Wang, 2017). This implies that initiating the aug-

mentation process with geometric transformations, followed

by color manipulations, and concluding with cutout tech-

niques can lead to superior accuracy in the context of our

dataset. It is important to note that these findings are spe-

cific to our dataset, and results may vary for different datasets.

Despite a small relative change in accuracies, the overall

performance remained consistently high across all orders,

indicating that the choice of augmentation order may not be

critical in achieving strong results, and further research is

needed in other datasets. These findings suggest that while

the order of augmentations may have a marginal impact

on the model’s performance, the selection and combination

of augmentation techniques play a more significant role in

improving accuracy.

4 DISCUSSION

DL models often struggle to achieve consistent high perfor-

mance across all classes within a dataset, despite achieving

high overall accuracy. Data imbalances and lack of diver-

sity in the training data are among the key reasons for this

phenomenon. Data augmentation, which aims to enhance

model performance and mitigate the challenges imposed by

data imbalances and diversity, has emerged as an effective

approach to address these issues. In this study, we demon-

strate that by tailoring augmentations specific to each class

in a dataset, these limitations can be effectively mitigated.

To achieve this, we deployed tailored augmentations for

each class in our soybean disease dataset using GA-based

optimization. We fine-tuned a well-trained baseline model for

each data augmentation policy generated by the GA. Through

comprehensive evaluation of MPCA and confusion matrices,

we observed significant improvements in the accuracy of each

class in the dataset. Notably, the accuracy of confounding

classes, such as bacterial blight and bacterial pustule, has also

been substantially improved.

The key mechanism behind our approach lies in the uti-

lization of GA to automatically select augmentations tailored

to each class. The GA iteratively explores the augmenta-

tion space and identifies the most effective augmentations

that maximize the MPCA. By fine-tuning the baseline model

with these augmentations for a limited number of epochs,

we efficiently enhance the model’s ability to distinguish

between different classes and improve overall classifica-

tion performance. This adaptive and iterative approach bears

resemblance to boosting techniques in ML (Tanha et al.,

2020). Just as boosting algorithms iteratively train weak learn-

ers to create a strong ensemblemodel that excels in classifying

difficult instances, our method iteratively refines the baseline

model by selecting augmentations tailored to address the chal-

lenges posed by specific classes. The GA’s exploration of the

augmentation space parallels the boosting process of focusing

on misclassified instances in successive iterations, ultimately

leading to improved classification performance.

Moreover, our approach offers two distinct advantages over

existing techniques (Cubuk et al., 2018; Ho et al., 2019;

Lim et al., 2019; Marrie et al., 2023). First, unlike pre-

vious methods that optimize augmentations for the entire

dataset, we tailor augmentations specific to each class in
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the dataset. This class-specific nature allows our approach to

address the unique characteristics and challenges associated

with individual classes, resulting in improved performance

across all classes. Second, our method significantly reduces

computation requirements by only fine-tuning the last layer

of the model for a limited number of epochs for each aug-

mentation policy generated by the GA. This streamlined

approach not only enhances accuracy but also optimizes

computational resources, making it a practical solution for

real-world applications

Furthermore, our analysis of the augmentations selected

by the optimized model reveals interesting insights into the

preferences of specific stresses (biotic, abiotic, and healthy)

for particular augmentation types. This verifies that classes

within a dataset can indeed have different preferences for

augmentations, highlighting the importance of class-specific

augmentation strategies.

Additionally, we investigated the effect of the order in

which augmentations are applied on model performance. Our

results indicate that while the augmentation order may have a

slight influence on performance, the selection and combina-

tion of augmentation techniques play amore significant role in

improving accuracy. Initiating the augmentation process with

geometric transformations, followed by color manipulations,

yielded superior accuracy in our dataset.

Overall, our study underscores the effectiveness of tailored

class-specific data augmentations in enhancing DL model

performance for soybean stress classification. By address-

ing class-specific challenges and optimizing the augmentation

process, our approach offers a promising solution for accurate

disease diagnosis and management in agricultural applica-

tions. Future research directions may involve exploring the

application of our method to different crops and stress con-

ditions, as well as investigating the integration of advanced

ML techniques for further performance enhancement.

5 CONCLUSION

This study demonstrates the efficacy of a GA-based approach

in identifying class-specific augmentations to improve plant

stress classification accuracy. By fine-tuning a baseline

model with tailored augmentations, we achieved a notable

increase in MPCA, with the optimized model achieving an

impressive average per-class accuracy of 97.61%, surpass-

ing the performance of existing automated augmentation

methods. Particularly, previously challenging classes such

as bacterial blight and bacterial pustule showed signifi-

cant accuracy enhancements, with bacterial blight accuracy

increasing from 83.01% to 88.89% and bacterial pustule accu-

racy jumping from 85.71% to 94.05%. These improvements

highlight the effectiveness of our approach in addressing

class-specific challenges.

The findings of this study underscore the importance of tai-

lored augmentation strategies for individual classes in plant

stress classification tasks. Leveraging GA optimization, we

showcased significant improvements in accuracy, providing

valuable insights for the development of class-specific aug-

mentation techniques. These results have implications beyond

soybean disease classification, offering guidance for similar

classification tasks in agriculture and other domains.
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