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Abstract

Data augmentation is a powerful tool for improving deep learning-based image
classifiers for plant stress identification and classification. However, selecting an
effective set of augmentations from a large pool of candidates remains a key
challenge, particularly in imbalanced and confounding datasets. We propose an
approach for automated class-specific data augmentation using a genetic algorithm.
We demonstrate the utility of our approach on soybean [Glycine max (L.) Merr] stress
classification where symptoms are observed on leaves; a particularly challenging
problem due to confounding classes in the dataset. Our approach yields substantial
performance, achieving a mean-per-class accuracy of 97.61% and an overall accu-
racy of 98% on the soybean leaf stress dataset. Our method significantly improves the
accuracy of the most challenging classes, with notable enhancements from 83.01% to
88.89% and from 85.71% to 94.05%, respectively. A key observation we make in this
study is that high-performing augmentation strategies can be identified in a compu-
tationally efficient manner. We fine-tune only the linear layer of the baseline model
with different augmentations, thereby reducing the computational burden associated
with training classifiers from scratch for each augmentation policy while achieving
exceptional performance. This research represents an advancement in automated data
augmentation strategies for plant stress classification, particularly in the context of
confounding datasets. Our findings contribute to the growing body of research in
tailored augmentation techniques and their potential impact on disease management
strategies, crop yields, and global food security. The proposed approach holds the
potential to enhance the accuracy and efficiency of deep learning-based tools for

managing plant stresses in agriculture.

mental effects on crop growth, yield, and quality (Mosa
et al., 2017). By precisely identifying and classifying these

Accurate classification of plant stresses is of utmost impor-
tance for effective crop management and sustainable agricul-
tural practices (Al-Hiary et al., 2011). Both biotic (diseases
and insects) and abiotic plant stresses (drought, salinity,
temperature extremes, and nutrient deficiencies) have detri-

stresses early, farmers can develop targeted strategies to
mitigate their impact and optimize crop health (Nagasub-
ramanian et al., 2018; Sankaran et al., 2010). Moreover,
accurate stress classification plays a key role in selecting
stress-tolerant crop varieties (Singh et al., 2021) and can make

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2024 The Author(s). The Plant Phenome Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy and Crop Science Society of America.

The Plant Phenome J. 2024;7:€20112.
https://doi.org/10.1002/ppj2.20112

wileyonlinelibrary.com/journal/ppj2 1of13


https://orcid.org/0000-0001-6191-9238
https://orcid.org/0000-0002-7522-037X
https://orcid.org/0000-0002-8931-4852
mailto:baskarg@iastate.edu
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/ppj2
https://doi.org/10.1002/ppj2.20112
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fppj2.20112&domain=pdf&date_stamp=2024-07-12

20f13 The Plant Phenome Journal ..

a significant impact on improved genomic studies and high-
throughput phenotyping (Singh et al., 2016, 2018; Zhang
etal., 2017). Accurate stress classification can enhance cyber-
agricultural systems, leading to improved crop resilience,
reduced production losses, and sustainable agricultural prac-
tices (Gao et al., 2020; Gill et al., 2022; Gonzalez Guzman
et al., 2022). In this paper, we explore the development
of accurate classifiers for plant stress classification, aiming
to improve downstream plant stress management activities
involving stress identification and enable effective mitigation
strategies.

Traditionally, plant stress identification and quantification
heavily relied on the expertise of human scouts and domain
experts (Singh et al., 2016). However, this manual approach is
time-consuming, subjective, and limited in scalability, posing
challenges in terms of efficiency and accuracy. The emer-
gence of advanced technologies, such as drones (Feng et al.,
2021; Guo et al., 2021; Herr et al., 2023; Xu et al., 2023),
ground robots (Atefi et al., 2021; Gao et al., 2018), and sen-
sors (Parmley et al., 2019; Pieruschka & Schurr, 2019) has
brought high-throughput phenotyping and phenomics to the
forefront (Araus & Cairns, 2014), transforming the measure-
ment of multiple plant traits across various growth stages
and facilitating rapid, precise, and accurate data collection.
Machine learning (ML) and deep learning (DL) techniques
have emerged as effective tools in automating plant stress
classification processes (Ghosal et al., 2018; Singh et al.,
2016). Despite promising outcomes in discerning various
plant stresses, DL models encounter a significant challenge:
the requirement for abundant labeled and diverse data (Kami-
laris & Prenafeta-Boldd, 2018). To address this challenge,
data augmentation (DA) has emerged as a valuable approach
to enhancing model performance by augmenting the avail-
able data through various transformations (Krizhevsky et al.,
2012; Shorten & Khoshgoftaar, 2019; Van Dyk & Meng,
2001). These transformations include rotation, flipping, scal-
ing, cropping, and noise injection, effectively minimizing
performance gaps between training and testing stages, reduc-
ing overfitting, and improving the generalization capability of
DL models (Rebuffi et al., 2021; Shorten & Khoshgoftaar,
2019; Taylor & Nitschke, 2018a). Importantly, data aug-
mentation allows for effectively expanding the training data
without the need for laborious manual labeling or extensive
data collection efforts, making DL models more accessible
and efficient for plant stress classification tasks (Taylor &
Nitschke, 2018a).

Despite the effectiveness of data augmentation in enhanc-
ing the performance of DL models, manually selecting
appropriate augmentation techniques is time-consuming and
challenging. To address this issue, researchers have turned
to automated machine learning (AutoML) (He et al., 2021)
techniques for automatically searching and selecting augmen-
tation policies on datasets (Cubuk et al., 2018; Ho et al., 2019;
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Core Ideas

* We propose an effective approach for automated
selection of class-specific data augmentations for
precise plant stress classification.

* Employing a genetic algorithm for efficient
augmentation strategy selection in challenging
datasets.

* Achieving significant performance gains with
reduced computation via fine-tuning only the lin-
ear layer of the convolutional neural network
model.

Lim et al., 2019; Zoph et al., 2020). These include methods
like AutoAugment (Cubuk et al., 2018), Fast AutoAug-
ment (Lim et al., 2019), and Faster AutoAugment (Weng,
2019), which use reinforcement learning or density match-
ing to find optimal augmentation policies (Terrell & Scott,
1992). Additionally, gradient-based methods such as Deep-
AutoAugment (Zheng et al., 2022) automate policy selection
without prior knowledge. These methods directly learn the
augmentation policy without prior knowledge or manual
selection of default transformations such as Marrie et al. Mar-
rie et al. (2023). However, the computational complexity of
these methods limits their feasibility for image classifica-
tion problems with limited computational resources and time
constraints. Population-based augmentation (PBA) is another
promising technique that enables the simultaneous training
and evaluation of multiple augmentation policies, facilitating
efficient policy discovery (Ho et al., 2019). Notably, PBA has
demonstrated effectiveness in discovering diverse and high-
performing augmentation policies while imposing minimal
computational overhead. In our study, we specifically opted
for PBA due to its superior efficiency and effectiveness and
further explored its potential for augmentation policy selec-
tion on a class-specific basis. It is important to note that
while these methods search for policies suitable for the entire
dataset, the class-dependent nature of augmentation policies
has received limited attention in current research. Although
the generation of class-dependent data has been studied in
the context of GANs (Mirza & Osindero, 2014), to our
knowledge, only a few works have explored class-dependent
data augmentation (Hauberg et al., 2016; Rommel et al.,
2021).

While data augmentation is commonly employed to
enhance model performance, different classes within a
dataset may exhibit varying sensitivities to specific trans-
formations (Balestriero et al., 2022). This discrepancy in
sensitivity becomes especially pronounced in scenarios where
certain classes are subjected to per-class favoritism, leading
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FIGURE 1

Class-specific effects of augmentations: “horizontal flip” distorts a brain cell image, "vertical flip” transforms a “6” into a “9” in

MNIST, and “cutout” masks disease in a soybean leaf. These instances reveal that tailored strategies are essential, as not all augmentations benefit

all classes.

to biased predictions and arbitrary inaccuracies on specific
classes. For example, in the context of object recognition in
images, using color transformations can benefit the model’s
ability to recognize objects such as cars or lamps, but this
same augmentation strategy may have a detrimental effect
on classes that are strongly defined by their color, such
as apples or oranges. Similarly, applying “vertical flip”
augmentation in the MNIST dataset (Deng, 2012) alters the
visual representation of classes 6 and 9, as illustrated with
some other examples in Figure 1.

This observation extends to plant stress classification,
where distinguishing between different stress types and
healthy plants can be challenging due to subtle visual dif-
ferences. Several works have aimed to enhance detection
accuracy using practical data augmentation technique (Cap
et al., 2020; Pawara et al., 2017; Zhu et al., 2020). For
instance, in cases of potassium deficiency, early identifica-
tion is crucial as leaf yellowing starts from the tip of soybean
leaflets. However, using cutout (DeVries & Taylor, 2017)
augmentation targeting the tip of the potassium-stressed leaf
might compromise the model’s ability to identify potassium
deficiency early on. Additionally, datasets with confound-
ing classes (classes that are difficult to distinguish from one
another due to overlapping visual characteristics or shared
features) pose an additional challenge, as data augmenta-
tion can potentially worsen performance disparities among
classes. Thus, applying transformations that emphasize tex-
ture or shape features to classes that are difficult to distinguish
can be beneficial. Consequently, class-specific data augmen-
tation emerges as a potent tool for enhancing ML model
performance, particularly in scenarios with challenging
classes.

To address the challenges posed by class-dependent invari-
ances and to enhance classifier performance, particularly
for confounding classes, we propose a novel approach that
customizes augmentation strategies to capture the unique
characteristics of each class. By fine-tuning a pre-trained
image classification model and optimizing augmentation poli-
cies for individual classes, our class-specific approach aims to
improve mean-per-class accuracy (MPCA), particularly in the
context of confounding classes in the dataset. The automated
process of class-specific data augmentation, driven by an

evolutionary optimization algorithm, genetic algorithm (GA;
Katoch et al., 2021), selects the most effective augmentation
policies for each class.

The effectiveness of our approach is demonstrated in
Figure 2, where transformed images using the most and
least likely augmentations for each stress class are visual-
ized. These results highlight the efficacy of class-specific data
augmentation in improving model performance. This tailored
strategy strikes a balance between efficiency and effective-
ness, providing a promising solution to address limitations of
conventional augmentation techniques.

Specific contributions of this paper are summarized below
as follows:

* We propose an effective approach based on GA to find the
best set of augmentations for each class on a target dataset.

* We demonstrate the efficacy of our approach by showing
that our per-class augmentations significantly improved the
accuracy of the two worst-performing classes in the target
dataset, increasing from 83.01% to 88.89% and 85.71% to
94.05%. Additionally, our approach significantly increased
the MPCA of the dataset from 95.09% to 97.61% compared
to the accuracy of the non-augmented model.

In our implementation, a well-trained classifier is used as a
baseline, and it is fine-tuned for only five epochs with various
sets of augmentations whose probabilities are the population
created by GA. This approach significantly reduces the com-
putational cost of searching for optimal augmentation policies
while maintaining competitive performance.

2 | MATERIALS AND METHODS

2.1 | Dataset

The dataset used in this study is a publicly available dataset
comprising 16,573 RGB images of soybean leaflets across
nine distinct classes, eight different soybean stresses and
healthy soybean leaflets, covering a broad range of biotic
and abiotic foliar stresses (Ghosal et al., 2018). Figure 3
demonstrates the imaging setup and the nine soybean leaf
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Original Image Most Likely Augmentations Least Likely Augmentations
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ShearX Color Rotate Posterize Cutout Solarize

Abiotic Stress ¥
Rotate TranslateY Color Equalize Posterize

Healthy Leaf

\__ Invert Cutout Brightness ) Equalize Solarize Posterize

FIGURE 2 For different stress classes in the soybean stress (biotic and abiotic) dataset, we present an image from each category (left) and thin
automating plant stress classification processes e corresponding image transformed using the three most likely augmentations (middle) and the three
least likely augmentations (right) for that stress class, as determined by our class-specific automated data augmentation method.

0- Bacterial  1- Septoria 2- Frogeye 3- Healthy 4- Herbicide
Blight Brown Spot Leaf Spot Injury

5-1ron 6- Potassium 7- Bacterial 8- Sudden Death
Deficiency Deficiency Pustule Syndrome
Chlorosis

FIGURE 3 Image examples of the nine classes (healthy leaflet and eight different soybean stresses) in the dataset.

stress classes included in the analysis. The training, vali- 2.2 | Baseline model

dation, and test datasets were composed of 13,420 (80%),

1,491 (9%), and 1,662 (11%), respectively (Table S1). More ~ To establish a fair and comprehensive baseline for soy-
information on the dataset is available in Ghosal et al. bean stress classification, we followed the methodology
(2018). outlined in Ghosal et al. (2018), utilizing the same dataset
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Predicted: 0
True: 7

Predicted: 0
True: 7

Predicted: 7

Predicted: 7
True: 0 True: 0
FIGURE 4 Examples of wrongly classified images by baseline
model.

and model. However, to explore potential improvements,
we experimented with different DL architectures to enhance
the baseline accuracy. Our findings, detailed in Table S2,
revealed that ResNet50 (He et al., 2016) achieved the high-
est accuracy (95.09%) surpassing the previously reported
94.13%, prompting its selection for further evaluation. The
baseline model was trained for 350 epochs on the dataset
without any data augmentations to ensure unbiased perfor-
mance (Balestriero et al., 2022). During training, we utilized
the categorical cross-entropy loss function, Adam optimizer
with a momentum of 0.9, weight decay of 0.0001, and a batch
size of 256.

Despite the promising results obtained with the baseline
model, a consistent observation akin to the study’s findings
emerged, wherein the model encountered difficulties in accu-
rately classifying the challenging categories of bacterial blight
and bacterial pustule with per-class accuracies of 83.01%
and 85.71%, respectively. Discriminating between these two
stresses is challenging even for expert plant pathologists due
to confounding symptoms (Hartman et al., 2015).

A few examples of misclassified images by the baseline
model are provided in Figure 4, and from the figure, it is
evident that these two stresses are hard to classify even for
human experts. These findings highlight the need for fur-
ther refinement and optimization, as an ideal classifier should
excel in accurately predicting all classes, including those
that pose significant challenges. To address this, our primary
focus was to enhance the accuracy of the worst-performing
classes, particularly targeting bacterial blight and bacterial
pustule. The proposed GA-optimized automated DA algo-

The Plant Phenome Journal Sof13
rithm is evaluated using our enhanced baseline model as
a foundation.

2.3 | Genetic algorithm for optimizing data
augmentations

We utilized GA, a search algorithm inspired by natural selec-
tion and genetic inheritance, to drive the evolutionary process
in our study (Katoch et al., 2021). It is a method used to
find the best solution to an optimization problem by explor-
ing a population of potential solutions. Each individual in
the population represents a potential solution to the problem.
Through successive generations, GA iteratively explores and
evolves the population, aiming to converge toward the optimal
or near-optimal solution. The effectiveness of GA in achiev-
ing this goal relies on the incorporation of elitism. Elitism
ensures that the best individuals from the current generation
are preserved and directly transferred to the next genera-
tion without alteration. This strategy helps maintain diversity
within the population while safeguarding promising solutions
from premature elimination due to the randomness of genetic
operations such as mutation and crossover.

In the context of our soybean leaf stress dataset, we employ
GA to optimize the probability of each augmentation for the
nine classes. Our data augmentation search space is composed
of the standard pool of 15 transformations; ShearX/Y, Trans-
late X/Y, Rotate, AutoContrast, Invert, Equalize, Solarize,
Posterize, Contrast, Color, Brightness, Sharpness, and Cutout.
These augmentations, closely aligning with those utilized in
AutoAugment (Kingma & Ba, 2014), have emerged as popu-
lar choices for exploring optimal data augmentation policies
in image classification tasks.

The search space for this optimization problem consists of
all possible combinations of augmentation for each of the nine
classes. To streamline our optimization process, we consider
probabilities ranging from 0 to 1 with a step size of 0.1 for
applying each augmentation to the respective class. By defin-
ing the augmentation magnitude as the mean of the possible
values, we maintain consistency in the augmentation’s influ-
ence. Our primary objective is to determine the most effective
combination of augmentation probabilities for each class that
maximizes the MPCA of our target dataset.

Our GA operators include:

* Initialization: Create an initial population set of probabili-
ties ranging from O to 1 for each augmentation strategy.

* Evaluation: Assess the fitness of each augmentation strat-
egy by evaluating its MPCA on the test dataset.

* Selection: Choose augmentation strategies with higher
accuracy as parents for the next generation, using fitness
proportionate selection or other selection strategies.
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Baseline Model

ee——) EEE——) . )
A single GA Selection Crossover
candidate .
05 1.0.. . .01 Parents
09 05. .. 07 Fitness
‘ Finetune evaluation
09 05.. .07 e—) Rand the ':Z‘i\el
Selection andom with
9 classes x 15 Parent Mutation candidates
augmentations
9x15 vector [
Inlt'la! Offspring Population
Population

FIGURE 5

Illustration of a single generation in the genetic algorithm (GA) framework. The baseline classifier is fine-tuned with each

candidate from the GA population, which represents the probabilities of augmentations for each class. These selected candidates undergo mutation

and crossover operations, generating the next generation of augmentation probabilities for improved performance.

* Crossover: Combine probabilities of two augmentation
sets to create offspring individuals with a mix of their
characteristics.

* Mutation: Introduce random changes or modifications to
the probabilities of augmentations to maintain diversity and
explore new regions of the search space.

Formally, let p = (p;;) be a 9 X 15 matrix, where p;; rep-
resents the probability of applying the j-th augmentation
technique to samples from the i-th class during training. The
optimization problem can be defined as follows:

Maximize: MPCA
Subject to:

Constraint: 0<p;; <1, Vi,j

The objective is to maximize the MPCA and the constraints
ensure that the augmentation probabilities remain within the
feasible range for each decision variable. The illustration
of our GA framework for a single generation is shown in
Figure 5. By employing GA, we aim to effectively explore
and navigate this search space, searching for the set of aug-
mentation probabilities that leads to the highest classification
accuracy on our dataset. To evaluate the performance of
the classifiers, we employ commonly used evaluation met-

rics, including overall accuracy, MPCA, and confusion matrix
analysis:

N
Mean-per-class accuracy (MPCA) = % Z Accuracy;
i=1

2.4 | Fine-tuning baseline model with
augmentation probabilities

Figure 6 illustrates the flowchart of the overall workflow for
optimizing augmentation probabilities using GA. After gener-
ating a population of augmentation probabilities, the baseline
model is fine-tuned for each augmentation probability in the
population. The fine-tuning process involves applying the
augmentation probabilities to the training data, evaluating the
resulting classifier on the test set, and using the MPCA as
the fitness score for each chromosome. Based on these fitness
scores, GA performs selection, crossover, and mutation oper-
ations to generate a new population of chromosomes. This
process continues iteratively until a termination criterion is
met or the best solution is obtained. It is worth noting that
the child networks in this study undergo a concise fine-tuning
process of only five epochs, which is significantly shorter
compared to other automated data augmentation strategies.
We selected five epochs based on the observation of limited
performance improvement beyond this point.
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FIGURE 6 Flowchart depicting the overall workflow for optimizing augmentation probabilities using genetic algorithm.

2.5 | Implementation details

The experiments were conducted on a GPU cluster at lowa
State University, featuring four A100 NVIDIA GPUs, each
equipped with 80 GB of memory. This configuration allowed
us to concurrently fine-tune eight models by utilizing two
models on each GPU, significantly reducing the overall pro-
cessing time by running GA in parallel across 8 GPUs. On
average, one generation took approximately 4.5 h to com-
plete. As a future work, further optimization can be achieved
by distributing the workload across multiple nodes, which
would result in even faster processing times. Our proposed
method requires less computation than traditional automated
DA methods since we only fine-tune the base model using a
set of augmentation probabilities for five epochs.

To implement the GA, we employed PyGAD (Gad, 2021)
and configured with a maximum of 100 generations. Ter-
mination criteria were defined as either completing 100
generations or observing no improvement in fitness scores
for 10 consecutive generations. Hyperparameters were opti-
mized using the Rastrigin function, known for its challenging
landscape characterized by multimodality and high oscillation
(Pohlheim, 2007). A population size of 100 individuals was
chosen for the GA, employing steady-state selection, random
mutation, and single-point crossover to maintain diversity and
explore the search space effectively.

3 | RESULTS

The primary goal of our experiments is to assess the effec-
tiveness of automated class-specific data augmentation using

a GA-based approach in improving MPCA and the accu-
racy of worst-performing classes. We demonstrate this by
evaluating the performance of the models across each class,
examining the corresponding confusion matrices, analyzing
augmentations selected by GA, and the impact of the order
of augmentations in classification accuracy. To ensure the
robustness and generalization of our model, we conducted
fivefold cross-validation on our dataset. The outcomes of this
cross-validation, presented in Table S3, guided our selection
of the most effective model for further investigation.

3.1 | Impact of class-specific augmentations
on classification accuracy

The bar chart in Figure 7 provides a clear comparison between
the baseline model and the optimized model after applying
GA-based automated data augmentation. It demonstrates a
substantial improvement in the MPCA, from 95.09% with
the baseline model to an impressive 97.61% with the opti-
mized model. This enhancement across all classes indicates
the efficacy of employing tailored class-specific augmenta-
tions, enabling the model to better recognize and differentiate
between different class characteristics, ultimately leading to
more accurate classification.

Moreover, the iterative nature of the GA in selecting the
most effective augmentations has significantly contributed to
this improvement. Notably, the challenging classes of bac-
terial blight and bacterial pustule have shown substantial
accuracy enhancements, with bacterial blight improving from
83.01% to 88.89%, and bacterial pustule from 85.71% to
94.05%. This underscores the importance of the GA’s role in
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FIGURE 7 Comparison of class-wise accuracies: Bar chart comparing the accuracies of the baseline model and the optimized data

augmentation (optimized-DA) model achieved through a GA-based evolutionary process. The optimized-DA model showcases remarkable

improvements in accuracies for all classes, with particularly notable enhancements observed for the confounding classes—bacterial blight and

bacterial pustule.

TABLE 1 Comparison with other automated augmentation methods.

Augmentation technique Mean-per-class accuracy (%) Sensitivity (%) Specificity (%)
AutoAugment (ImageNet) 95.8 100 91.9
AutoAugment (CIFAR-10) 95.5 97.7 98.5
AutoAugment (SVHN) 95.6 100 93.9
RandAugment 96.2 97.7 96.3
Trivial Augment 95.9 99.0 96.9
AugMix 95.7 98.4 97.7
GA-based optimized DA (proposed method) 97.6 99.2 97.0

Abbreviations: GA, genetic algorithm; DA, data augmentation.

identifying and implementing augmentations specifically tai-
lored to address the unique challenges posed by these classes.
Overall, these results demonstrate the effectiveness of our
class-specific DA approach in overcoming class-specific chal-
lenges and significantly improving classification accuracy.

In a comprehensive comparison with other automated aug-
mentation methods on the soybean disease dataset, as detailed
in Table 1, our method notably surpasses all others in terms
of accuracy. This highlights the effectiveness of our pro-
posed approach. Importantly, our method achieves superior
accuracy while significantly reducing computation require-
ments by only fine-tuning the baseline model for five epochs,
without training any augmentation policy from scratch. This
streamlined approach not only enhances accuracy but also
optimizes computational resources, making it a practical
solution for real-world applications.

3.2 | Impact of class-specific augmentations
on misclassifications

To assess the performance of the models on misclassifica-
tions, we analyzed the confusion matrices of the baseline
model and the augmented model (Figure 8). As mentioned
earlier, the baseline model struggled particularly with pre-
dicting bacterial blight (class 0) and bacterial pustule (class
7), frequently misclassifying them interchangeably (Hart-
man et al., 2015). However, the optimized model exhibited
a noticeable reduction in misclassifications for these chal-
lenging classes. By tailoring augmentations to each class, the
GA automatically selects augmentations that help distinguish
these classes from each other. Consequently, the optimized
model showed improved per-class accuracies, suggesting that
our class-specific DA techniques effectively addressed the
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FIGURE 8 Comparison of classification accuracy confusion matrices:
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(a) Baseline model; (b) optimized data augmentation (optimized-DA)

model. The augmented model demonstrates improved per-class accuracies, as evident from the reduction in misclassifications illustrated in the

confusion matrices. Particularly, in the case of class O (bacterial blight) and class 7 (bacterial pustule), the misclassifications have significantly

reduced, highlighting the effectiveness of our approach in addressing the challenges associated with these classes.

Biotic Abiotic Healthy
shear_x 0.4 shear_x 0.6 shear_x 0.8
shear_y 0.4 shear_y 0.6 shear_y 0.8
translate_x 04 translate_x 0.8 translate_x 0.1
translate_y 0.2 translate_y 0.7 translate_y 0.1
rotate 0.2 rotate 0.8 rotate 0.8
auto_contrast 1 0.2 auto_contrast 0.2 auto_contrast 0.1
invert 1 0.5 invert {7 0.1 invert 1 0.8
equalize - 0.4 equalize 4 0.1 equalize A 0.1
solarize {710-1 solarize {71 0.1 solarize {710-1
posterize A 0.1 posterize A 0.1 posterize A 0.1
contrast {771 0.1 contrast {71 0.1 contrast {771 0.1
color 1 0.4 color{70-1 color {710.1
brightness 1 0.5 brightness 0.2 brightness 1 0.5
sharpness A 04 sharpness 0.2 sharpness A 0.4
cutoutro'1 cutout<F0'2 cutout—o-8
0.0 02 0.4 0.6 0.8 0.0 02 0.4 0.6 0.8 0.0 02 0.4 0.6 0.8
FIGURE 9 Optimized augmentation policies for different stress conditions (biotic and abiotic) and healthy leaves. Augmentation techniques

are categorized into three groups: Geometry-based augmentations (red), color-based augmentations (yellow), and the cutout (green).

baseline model’s limitations. These enhancements validate
the effectiveness of our approach in improving classification
performance, especially for the most challenging classes.

3.3 | Comparison of optimized
augmentations on different stresses

In our analysis of the optimized augmentations, we aimed
to understand their impact on different stress conditions,
including biotic and abiotic stresses, as well as healthy leaves.

The optimized augmentation policies, depicted in Figure 9,
shows the preferences for specific augmentation types across
these classes (Gull et al., 2019).

For biotic stress classes, we observed consideration for
both color-based and geometry-based augmentations. How-
ever, specific color augmentations such as solarize, posterize,
and invert were not favored due to their limited relevance
to disease-related visual cues in this context. Conversely, in
the case of abiotic stress classes, geometry-based augmen-
tations were preferred, with shear, translation, and rotation
being prominent choices. Additionally, augmentations like
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TABLE 2  Accuracy comparison of different order of
augmentations.
Order of augmentations Accuracy (%)
Geometry — Color — Cutout 97.6
Geometry — Cutout — Color 96.7
Color — Geometry — Cutout 96.5
Cutout - Geometry — Color 96.4
Color — Cutout — Geometry 96.4
Cutout — Color — Geometry 95.9

sharpness and autocontrast were selected for their effec-
tiveness in capturing the structural changes associated with
abiotic stressors.

In contrast, for the healthy class, geometry-based aug-
mentations were predominantly chosen, with brightness,
sharpness, and autocontrast selected to enhance the natu-
ral appearance of healthy leaves. Interestingly, the cutout
augmentation was exclusively chosen by the healthy class,
while being avoided by other stress classes. This suggests
that cutout augmentation, which masks specific regions in
the images, may inadvertently remove relevant disease-related
information for other classes. Overall, the analysis highlights
the importance of selecting appropriate augmentations tai-
lored to each stress class to improve the accuracy of soybean
stress classification.

3.4 | Does the order of augmentations
matter?

To explore the impact of augmentation order on model
performance, separate GA runs were conducted for each
proposed augmentation sequence, categorized into three: (i)
Geometry—includes augmentations that modify the geomet-
ric properties of the images, such as shearing and rotation; (ii)
Color—comprises augmentations that manipulate the color
and contrast characteristics of the images; and (iii) Cutout.
Table 2 provides a summary of the results obtained from
these runs.

We observed that the augmentation order has a slight influ-
ence on the model’s performance. The highest accuracy of
97.6% was achieved when the augmentations were applied in
the order of Geometry, followed by Color, and then Cutout
(Perez & Wang, 2017). This implies that initiating the aug-
mentation process with geometric transformations, followed
by color manipulations, and concluding with cutout tech-
niques can lead to superior accuracy in the context of our
dataset. It is important to note that these findings are spe-
cific to our dataset, and results may vary for different datasets.
Despite a small relative change in accuracies, the overall
performance remained consistently high across all orders,

SALEEM ET AL.

indicating that the choice of augmentation order may not be
critical in achieving strong results, and further research is
needed in other datasets. These findings suggest that while
the order of augmentations may have a marginal impact
on the model’s performance, the selection and combination
of augmentation techniques play a more significant role in
improving accuracy.

4 | DISCUSSION

DL models often struggle to achieve consistent high perfor-
mance across all classes within a dataset, despite achieving
high overall accuracy. Data imbalances and lack of diver-
sity in the training data are among the key reasons for this
phenomenon. Data augmentation, which aims to enhance
model performance and mitigate the challenges imposed by
data imbalances and diversity, has emerged as an effective
approach to address these issues. In this study, we demon-
strate that by tailoring augmentations specific to each class
in a dataset, these limitations can be effectively mitigated.

To achieve this, we deployed tailored augmentations for
each class in our soybean disease dataset using GA-based
optimization. We fine-tuned a well-trained baseline model for
each data augmentation policy generated by the GA. Through
comprehensive evaluation of MPCA and confusion matrices,
we observed significant improvements in the accuracy of each
class in the dataset. Notably, the accuracy of confounding
classes, such as bacterial blight and bacterial pustule, has also
been substantially improved.

The key mechanism behind our approach lies in the uti-
lization of GA to automatically select augmentations tailored
to each class. The GA iteratively explores the augmenta-
tion space and identifies the most effective augmentations
that maximize the MPCA. By fine-tuning the baseline model
with these augmentations for a limited number of epochs,
we efficiently enhance the model’s ability to distinguish
between different classes and improve overall classifica-
tion performance. This adaptive and iterative approach bears
resemblance to boosting techniques in ML (Tanha et al.,
2020). Just as boosting algorithms iteratively train weak learn-
ers to create a strong ensemble model that excels in classifying
difficult instances, our method iteratively refines the baseline
model by selecting augmentations tailored to address the chal-
lenges posed by specific classes. The GA’s exploration of the
augmentation space parallels the boosting process of focusing
on misclassified instances in successive iterations, ultimately
leading to improved classification performance.

Moreover, our approach offers two distinct advantages over
existing techniques (Cubuk et al., 2018; Ho et al., 2019;
Lim et al., 2019; Marrie et al., 2023). First, unlike pre-
vious methods that optimize augmentations for the entire
dataset, we tailor augmentations specific to each class in
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the dataset. This class-specific nature allows our approach to
address the unique characteristics and challenges associated
with individual classes, resulting in improved performance
across all classes. Second, our method significantly reduces
computation requirements by only fine-tuning the last layer
of the model for a limited number of epochs for each aug-
mentation policy generated by the GA. This streamlined
approach not only enhances accuracy but also optimizes
computational resources, making it a practical solution for
real-world applications

Furthermore, our analysis of the augmentations selected
by the optimized model reveals interesting insights into the
preferences of specific stresses (biotic, abiotic, and healthy)
for particular augmentation types. This verifies that classes
within a dataset can indeed have different preferences for
augmentations, highlighting the importance of class-specific
augmentation strategies.

Additionally, we investigated the effect of the order in
which augmentations are applied on model performance. Our
results indicate that while the augmentation order may have a
slight influence on performance, the selection and combina-
tion of augmentation techniques play a more significant role in
improving accuracy. Initiating the augmentation process with
geometric transformations, followed by color manipulations,
yielded superior accuracy in our dataset.

Overall, our study underscores the effectiveness of tailored
class-specific data augmentations in enhancing DL model
performance for soybean stress classification. By address-
ing class-specific challenges and optimizing the augmentation
process, our approach offers a promising solution for accurate
disease diagnosis and management in agricultural applica-
tions. Future research directions may involve exploring the
application of our method to different crops and stress con-
ditions, as well as investigating the integration of advanced
ML techniques for further performance enhancement.

S | CONCLUSION

This study demonstrates the efficacy of a GA-based approach
in identifying class-specific augmentations to improve plant
stress classification accuracy. By fine-tuning a baseline
model with tailored augmentations, we achieved a notable
increase in MPCA, with the optimized model achieving an
impressive average per-class accuracy of 97.61%, surpass-
ing the performance of existing automated augmentation
methods. Particularly, previously challenging classes such
as bacterial blight and bacterial pustule showed signifi-
cant accuracy enhancements, with bacterial blight accuracy
increasing from 83.01% to 88.89% and bacterial pustule accu-
racy jumping from 85.71% to 94.05%. These improvements
highlight the effectiveness of our approach in addressing
class-specific challenges.

The Plant Phenome Journal :: 110f13
The findings of this study underscore the importance of tai-
lored augmentation strategies for individual classes in plant
stress classification tasks. Leveraging GA optimization, we
showcased significant improvements in accuracy, providing
valuable insights for the development of class-specific aug-
mentation techniques. These results have implications beyond
soybean disease classification, offering guidance for similar
classification tasks in agriculture and other domains.
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