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Abstract—Current methods for solving optimal power flow
have difficulties obtaining real-time solutions due to the complex-
ity and nonlinearity of large power systems. Taking advantage
of machine learning (ML) algorithms, trained machine-learning
models are viable alternatives to tackle the challenges of online
OPF-solving. This paper proposes the application of neural
network models with self-attention to reduce an inductive bias
and overcome the drawbacks of traditional ML-based approaches
in solving OPF. By incorporating all power system parameters
into a multiple-channel matrix akin to an image, the proposed
weighing-convolutional neural network (WCNN) can extract
typical features from training data and learn the underlying
patterns. The high computational burden is alleviated through
the training phase, and an OPF solution can be produced
instantly by inference of the trained model. The proposed method
is implemented on three IEEE standard systems to prove its
efficacy. The experiment results show that the proposed WCNN
algorithm obtains a high level of accuracy, which facilitates its
potential capability for deployment in the practical operation of
complex power systems.

Index Terms—Convolutional neural network, cost of genera-
tion, AC optimal power flow, self-attention.

I. INTRODUCTION

To solve OPF problems in power systems, linearization,

convex relaxation, and approximation techniques are pop-

ularly used [1]–[8]. However, achieving an OPF solution

using these methods is often time-consuming and sometimes

infeasible for large-scale and intricate power systems or on-

line OPF calculation due to the system’s nonlinearity and

complexity [9]. A typical approximation technique utilizes

distributed/decentralized methods, which split the main prob-

lem into numerous smaller problems, to solve OPF problems

efficiently through parallel processes. A solution to solve

semi-definite programming in a distributed manner by utiliz-

ing the alternating direction method of multipliers (ADMM)

was proposed in [5], [10]. An alternative to ADMM called

Augmented Lagrangian-based Alternating Direction Inexact

Newton method (ALADIN) was used to handle non-convex

OPF in a distributed manner in [6]. Notwithstanding, these

approximation methods take advantage of the relaxation to

obtain the possible optimal solution, resulting in an uncertainty

of the globally optimal solution and unlikely feasibility in real-

time operational conditions [11]. Despite reducing the colossal

computational amount based on the relaxation, OPF-solving

is complicated to handle, especially when the OPF problems

become non-convex.

Multiple realms of technological fields have resorted to

the advantages of machine learning to solve optimization

problems. Numerous ML-based approaches are proposed to

handle various emerging problems of electric power systems.

In [12]–[17], deep-learning models are built to alleviate the

arduous computation burden of classical OPF-solving. These

ML-based models have shown a significant improvement in

computational speed compared to traditional methods. Nev-

ertheless, learning models, which are built on a background

of multilayer perception (MLP) with each layer constructed

by nodes (neurons), have a critical shortcoming of whopping

trainable parameters to large-scale power systems [18]. To

dodge that point, these learning-based end-to-end works take

some power systems’ information to extract features and learn

mapping rules from given datasets. For instance, load demand

or power generation is collected as input to feed to learning

models for decreasing the number of trainable parameters

[12], [13]. Consequently, the generalization of trained neural

networks would be oppressed due to the lack of comprehensive

input. In other ML-based hybrid frameworks, deep learning

algorithms are utilized as alternative solvers for conventional

OPF-solving through power flow equations [15]–[17]. The

from-ML-achieved results would be a successive input to

compute power systems’ parameters.

By a convolution of a weighted small matrix over an image

patch, a convolutional neural network (CNN) comprehensively

captures all information, unlike earlier machine learning mod-

els that tend to selectively focus on a limited subset. CNN is

emerging as a potential candidate to tackle the difficulty of vast

trainable parameters. CNN excels at capturing spatial hierar-

chies and is particularly effective for image-related tasks due

to the capability of learning relevant features from the data.

This paper takes the apparent advantages of CNN to develop

a learning model that could cover all essential information of

electric power systems by arranging the input under an image-

like shape to solve OPF. The proposed approach is conducted

by excelling the conception of DenseNet [19], accompanied by

a self-attention mechanism [20]. A decoder block comprised

of fully connected layers helps transform extracted patterns

into expected results. The main contribution of the paper is as

follows:

• Propose an approachable solution of leveraging convo-

lutional neural networks and a self-attention mechanism

to find the solution of AC OPF efficiently without any

constraint on the input size of a case study.

• Embed the entire electric power system information into

the learning process to drive the proposed ML model to

reflect the nature of the inner variation of elements such



as load demands, generation power, and topology changes

straightforwardly.

The structure of the paper is as follows. Section II de-

velops a weighing-convolution neural network for OPF and

the process of transforming the OPF problem into a machine-

learning model. Section III presents the simulation results with

discussions. Finally, the conclusion is in Section IV.

II. A WEIGHING-CONVOLUTIONAL NEURAL NETWORK

FOR OPF-SOLVING

Neural networks are structured to mimic the decision-

making process of the human brain. It comprises multiple

layers, each containing artificial neurons, arranged sequentially

one after the other. Machine learning (ML) algorithms are

mathematical conceptions that express the calculation between

interconnected neurons. The ultimate goal is to figure out the

mapping rules or mathematical functions to depict the most

accurate relation between input and output. Considering the

complexity of a problem, opting for an appropriate structure

of a neural network is crucial to ensure the extraction is

successful or that the most approximate mapping function is

obtained.

A. The residual network and its variants

The proposed learning model is a renewal of predecessors

of the CNN family, and it has all distinctive characters whose

previous models were devised, such as Residual Networks -

ResNet [21], and DenseNet [19].

The residual network has a significant impact on the field

of computer vision when a deep learning process should not

lead to lower accuracy due to the information transformation

after feeding multiple layers. The core idea is to maintain a

skip connection or interactive connection between the model

input and the model output to ensure the accuracy of the entire

model that is not far lower than the original one.

The operation of ResNet is abstracted as follows:

f(X) = X + g(X) (1)

where X is a given input added to g(X). g(X) is the mapping

rule of interactive connection to form f(X), and f(X) is the

expected mapping function. It is shown in equation (1) that

ResNet is a combination of two separate elements: an affine

one and a non-linear one.

The distinction of ResNet is the addition operation arising

in its forward feeding where the input is transmitted directly

to the output via a shortcut connection, specifically shown in

Fig. 1. This approach forms a kind of interactive connection

to ensure the enlarging of the model not to lower the training

accuracy [18].

The residual network resolves the risk of lower accuracy as

expanding learning models deeper due to the additional task.

Notwithstanding, some underlying patterns are dropped out or

in other words, they are merged through the additional task

of mapping function. Consequently, not all low-level features

are extracted which leads to a high discrepancy in predictions

and ‘ground truth’ values. To that end, the densely connected

Fig. 1: The principle of the residual network ResNet.

network DenseNet - a variant of the residual network was

introduced in [19] to fix the residual network’s drawback of

missing out latent information.

Instead of the addition, the task of concatenation is used as

an alternative for preserving the input information during the

entire forward process. The principle of DenseNet is depicted

in Fig. 2 and Equation (2).

Fig. 2: The basic principle of a Dense Block. The concatena-

tion operation is an alternative to ResNet’s addition one.

X −→ {X, f1(X), f2(X, f1), f3(X, f1, f2), ...} (2)

Due to the concatenation task, DenseNet not only retains

the patterns of input data but also filters the correlation of

a variety of channels out during the process of enlarging the

network architecture deeper. As a matter of fact, DenseNet out-

performs the daunting tasks of image processing compared to

ResNet [19]. Specifically, the densely connected network feeds

forward an input X to the output, simultaneously gathering

underlying patterns extracted at each dense block. As a result,



the latent patterns inside of the data are accumulated gradually

according to the model depth instead of being transformed

under the addition task. Based on that, DenseNet leverages the

exceptional attributes of CNNs for image processing efficiently

rather than previous predecessors.

B. Application of a self-attention mechanism

A self-attention mechanism is a crucial part of natural

language processing models, machine translation, text sum-

marization, and sentiment analysis [20]. It helps to raise

the efficiency compared to previous RNN models, such as

Gated Recurrent Unit (GRU) and Long Short Term Memory

(LSTM). It weighs all individual elements within an entire

context to evaluate each element’s significance. Noteworthily,

the individual’s weighing is helpful in capturing latent patterns

and features hidden in spatial-positioned grids like electric

power systems.

The triple of a self-attention mechanism includes:

• The query: q = Wqx to set up the weights for its input.

• The key: k = Wkx to set up the weights for its

correlation.

• The value: v = Wvx to set up the weights for its output.

The weight matrices Wq,Wk, and Wv are updated during

the learning process to weigh the individual’s significance.

The output y<t> is a total of weighted vectors v<1>, ..., v<t>

expressed as follows [22]:

y<t> =
∑

u⩽t

αtuv
<u> (3)

with αtu = exp (score(q<t>,k<u>))
∑

t
v=1

exp (score(q<t>,k<v>))
∀u ⩽ t and the score

function is the dot-product function.

C. Optimizing AC power flow

AC optimal power flow is a process that allocates pre-

calculated amounts of essential generated power to all partici-

pating generation units. In essence, AC OPF aims to reach the

most efficient cost of allocation of power generation resources

considering various factors such as fuel costs, operating con-

straints, and load demand. OPF is an optimization problem

with an objective function of minimizing the operational cost.

The formulation of the optimal AC power flow could be

expressed as:

min
x

f(x) (4)

subject to

g(x) = 0 (5)

h(x) ⩽ 0 (6)

xmin ⩽ x ⩽ xmax (7)

where

f(Pg, Qg) =

nG∑

i

f i
P (p

i
g) + f i

Q(q
i
g) (8)

The cost function f(x) (8) is the polynomial equation of

active generation power and reactive generation power. The

inequality-constrained equations hi(x) encompass the con-

strained power flow of the transmission lines, and xmax,

xmin are the upper and lower limits of the size of volt-

age magnitudes, voltage angles, and the generator dispatch

capabilities [23]. The inequality-constrained equations can

be the line’s security power-transmitted capability [24]. The

equality-constrained equations g(x) consist of the nonlinear

trigonometric power flow equations below:

Pi − |Vi|
n∑

k=1

[(Gik cos θik +Bik sin θik)|Vk|] = 0 (9)

Qi − |Vi|

n∑

k=1

[(Gik sin θik −Bik cos θik)|Vk|] = 0 (10)

where Vi = |Vi|"θi, θik = θi − θk, Yik = Gik + jBik and

i = 1, 2, ..., n.

D. Weighing-convolutional neural network

The family of convolutional neural networks is powerful

for grid-structured-relating tasks like image processing and

computer vision. Convolutional computation enhances the

capability of catching features such as edges, margins, and

identities. Additionally, it reduces the number of trainable

parameters in a neural network compared to previous MLP-

based models due to the convolution process causing the

update of trainable parameters to take place on a kernel or

a filter which is a small weight matrix.

The convolutional calculation for two-dimensional matrices

f, g : Rd → R, is constructed as follows [25]:

(f ∗ g)(i′, j′) =
∑

i′′,j′′

f(i′′, j′′)g(i′ − i′′, j′ − j′′) (11)

where the indices for F are indicated by a pair (i′, j′), and

likewise a pair (i′′, j′′) indicates for the indices for g. w is a

weight matrix known as a filter or a kernel of the convolution

layer. The indices (i′′, j′′) indicate the surrounding area where

a convolution task is manipulated, specifically the vicinity of

(i′′, j′′).
In mathematical terms, the output of a convolution layer can

be expressed as follows [22]:

zi′,j′ =
∑

(i′′,j′′)

wi′′,j′′x(i′+i′′),(j′+j′′) + b (12)

Equation (12) illustrates that the convolution computation

can reduce the number of trainable parameters and the con-

volution layer is a proper alternative to the fully connected

layer. Specifically, by a dot-product operation of a small

weight matrix - a kernel w over each point of the input, the

output zi′,j′ is harnessed by the summation of all dot product

calculation results of a kernel and the respective input area that

a kernel scans through. Consequently, it is not contingent on

the input shape of a model that makes CNN models privileged

in solving spatial-structured models.

Based on that, an integration of the self-attention layer right

after convolutional structures is a potential approach to take



advantage of the CNN family for OPF-solving and constrain

its drawbacks, such as weakly reflecting the correlation and

interdependence of patterns extracted by convolution layers.

As mentioned in Subsection II-B, the self-attention layer

can help weigh the significance of each neuron in a layer,

therefore the spatial patterns like topology information and

magnitude fluctuations of input variables like load demand

can be recognized by the weighing task of the self-attention

mechanism.

Hereafter, DenseNet is chosen as a CNN model to combine

the self-attention mechanism to implement on three IEEE

standard systems: IEEE-6, IEEE-9, and IEEE-14.

III. SIMULATION RESULTS

In this section, the process for testing the proposed neural

network on the IEEE standard systems is introduced to illus-

trate the data generation, setting up the learning model, and

conducting experiment.

A. Dataset preparation

MATPOWER Interior Point Solver [23], [26] is exploited

to generate training data for each case study. MATPOWER

Interior Point Solver settings are kept by default and Monte

Carlo simulation is applied to ensure the diversity of the

dataset. A coefficient vector whose dimension is equal to the

number of loads is drawn from the uniform distribution of the

range [0.8, 1.2], except for IEEE-6 with the range [0.95, 1.05]
due to the hardship in convergence. Preset load profiles and

the cost of generators are multiplied by the distinct random

vector for every sample to ensure the diversification of the

training dataset. Additionally, to ensure that the model has the

dataset sufficient for training, a set of 10, 000 samples for each

case study is considered.

B. Structure of training dataset

The dataset structure of a sample consists of 2D matrices,

which are concatenated as follows:

- The matrices of load demand PNB×NB
/QNB×NB

in

MW/MV Ar, where NB is the number of buses.

- The matrices of each element (G,B) of the admittance

YB in pu.

- NC × NG diagonal matrices of generation cost in

$/MW, $/MV Ar, with NC indicates the maximum ex-

ponential index of the objective function (8), and NG

indicates the number of generators in each case study.

Generally, the dataset I has the shape: [NI , (4 + NC ×
NG)channels, NB , NB]. The detailed dataset size of all case

studies is empirically computed, as shown in Table. I. The

output shape is generalized as (2 × NB + 2 × NG), which

encompasses all the optimal variables: angles and magnitudes

of voltage, dispatched active and reactive power of generators.

The error function that is used to train the WCNN is the mean

squared error (MSE). For a given i-th sample of I , the MSE

formulation is written as follows [13]:

min
θ

1

NI

NI∑

i

∥yi −F (xi; θ) ∥
2
2 (13)

where NI is the size of I; F (·; θ) is the desired mapping rule,

with θ is symbolized for the optimal variable of the current

model which is a set of trainable parameters. The generator

dispatch optimization problem is illustrated via equations from

(4) to (8), has become simple by finding a set of the WCNN

parameter θ that satisfies the equation (13) through the WCNN

training.

TABLE I: Case study information (including generators, loads,

buses, and lines)

System Configuration Input Output

IEEE-6 3, 3, 6, 11 [NI , 13, 6, 6] [NI , 18]
IEEE-9 3, 3, 9, 9 [NI , 13, 9, 9] [NI , 24]
IEEE-14 5, 11, 14, 20 [NI , 19, 14, 14] [NI , 38]

C. Configuration of the weighing-convolutional neural net-

work

The weighing-convolutional neural network (WCNN) is

constructed on a base of an encoder block and a decoder block.

The dense blocks of successive convolutional layers, followed

by the self-attention layer, are grouped in an encoder block.

In [27], the WCNN utilizes two stacked dense blocks whose

each dense block has two convolution layers, and the number

of convolution layer’s channels is chosen as 8. The kernel

matrix of the convolution layers has a size of 3 × 3, and

the self-attention layer has multiple heads of 10. With such

a unique structure, the WCNN can dig deeper into hidden

patterns in data structures to extract mapping rules in terms

of the fluctuation of input variables and the correlation of the

like-grid system’s nodes in a given spatial layout.

Specifically, the encoder block is depicted in Fig. 3. It

processes the provided data input to extract the fundamental

properties of data and hidden patterns of the data correlation.

The encoder block effortlessly adapts and summarizes electric

power network parameters, which are structured in an image-

like format, using multiple stacked dense blocks. Following the

dense blocks is the self-attention layer whose task is to weigh

how important each element of the previous layer’s output

contributes to the contextual situation.

The decoder comprises multiple dense layers known as

multilayer perceptron (MLP), as shown in Fig. 4. Herein, there

are 7 hidden dense layers in the WCNN complying with the

principle of a non-linear (relu) activation-function dense layer

(1024 units) followed by a linear activation-function dense

layer (512 units) as a regularization technique of a bottle-

neck to reduce mutual connections for avoiding overfitting and

enhancing the generalization. The WCNN is implemented by

the Python-language programmed Tensorflow library and the

optimization algorithm - Adam is used as an optimizer [28].

D. Advanced adjustment of the WCNN configuration

An advanced adjustment of the hyperparameters of the

WCNN’s encoder and decoder is proposed by increasing the

number of convolutional layers in the encoder’s dense blocks,

simultaneously decreasing the number of dense layers’ units

compared to the original model in Section III-C. Particularly,



Fig. 3: The encoder block of the base WCNN includes three

parts which are data normalization, making dense blocks,

and implementing a self-attention mechanism. There are 2
convolution layers per dense block [27].

Fig. 4: The WCNN’s decoder block is akin to a multilayer

perceptron, exceptionally with an additional regularized tech-

nique - a bottle-neck technique.

the number of convolutional layers is shifted up to “8” per

dense block from “2”, while the number of units of the de-

coder’s dense layers is reduced by half. As a result, the number

of trainable parameters is reduced significantly in Table II

which illustrates a considerable benefit obtained by the hyper-

parameter adjustment. Moreover, the hyperparameter-modified

model outperforms its original version as in Table. III. It can

be seen that an extension of the WCNN in the depth of dense

blocks in the encoder might enhance the capability of mapping

the rule lying in the complex data pattern of power systems’

collecting information with lower consumption of resources

or the smaller number of model’s parameter, which is shown

in Table. II for training the model compared to the original

model.

E. Simulation Results

The proposed WCNN is conducted on three IEEE standard

systems: IEEE-6, IEEE-9, and IEEE-14. For each case study,

a training dataset of 10, 000 samples is provided to train

the WCNN before testing on a 1, 000-sample testing dataset

TABLE II: The number of parameters of the original WCNN

(base) [27] and the advanced WCNN (advance).

System Type of Model

Base Advance

IEEE-6 3, 001, 590 1, 125, 554
IEEE-9 3, 151, 656 1, 323, 938

IEEE-14 3, 582, 034 1, 906, 658

that has not ever been seen. All the datasets are generated

following the procedure mentioned in Subsection. III-A. The

mean absolute error function (MAE) of optimal variables such

as angles/magnitudes of voltage, and active/reactive power

yields the accuracy level of the estimated values from the

WCNN. The discrepancy does not vary significantly between

the case studies. However, there is a remarkable difference

in the accuracy when the complex level of a case study

grows. Particularly, there is the same tendency of rising for

both values of voltage regarding the angle and magnitude, ac-

tive/reactive power. Nevertheless, this phenomenon is natural

in essence when the WCNN faces the increasingly intricate

level of case studies but its hyperparameters and structure

remain unchanged. It can be understood that the WCNN can

learn well about different electric power systems if there

is an infrastructure of hardware resources equivalent to the

complicated issues it will encounter. The detailed MAE error

is displayed in Table III.

By increasing the depth of dense blocks, the proposed

model has captured easily latent features under different data

patterns, thus leveraging the WCNN’s decoder configuration

which would make the model training resource-saving and

faster. It merges the convolution properties and the attention

mechanism, which are supplemented to extract features from

the given dataset whose characteristics are intricated and espe-

cially untractable as to the large-scale power systems. With a

structure arranged in a like-image shape, a convolution kernel

could sweep through the entire context of power systems to

obtain profound features such as topology changes, variation

of load demand, and the generating cost, without concern

about the number of the input dimension. Therefore, the pro-

posed model may outperform MLPs (multilayer perceptrons)

which are popular in recent ML-related works in an aspect of

the scalability to complex power systems with a significant

computing resource saving in an exponential reduction of

trainable parameters [18]. Furthermore, the functional task

of the attention mechanism supports the feature extraction

capability of the proposed model by weighing the importance

of each neuron in the neural network. As a result, the proposed

model can overcome the disadvantages of MLPs in figuring

out the patterns underlying the input data with a considerably

smaller number of trainable parameters. Additionally, the

computation time of machine learning inference is better than

that of OPF problems solved by numerical methods, which

are usually time-consuming [27]. The forward process of a

neural network is simply the multiplication between parameter

matrices. Thus it is faster to compute than the iterative loops

done by numerical methods.



TABLE III: Mean absolute error (MAE) of the original model (Base) [27] and the proposed model (Advance) across the testing

dataset.

System IEEE-6 IEEE-9 IEEE-14

Model Type Base Advance Base Advance Base Advance

σ (degree) 8.539× 10−4 2.161× 10−3 8.443× 10−3 8.785× 10−3 1.151× 10−2 1.080× 10−2

|V| (pu) 4.058× 10−4 1.090× 10−3 1.644× 10−3 1.857× 10−3 7.674× 10−3 4.716× 10−3

PG (pu) 8.629× 10−3 9.593× 10−3 6.577× 10−2 5.788× 10−2 5.516× 10−2 5.445× 10−2

QG (pu) 3.546× 10−3 8.694× 10−3 3.058× 10−2 2.740× 10−2 1.436× 10−2 1.315× 10−2

TABLE IV: Mean absolute error (MAE) of the proposed model across the testing dataset with and without noise added.

System IEEE-6 IEEE-9 IEEE-14

Without Noise With Noise Without Noise With Noise Without Noise With Noise

σ (degree) 2.161× 10−3 1.391× 10−2 8.785× 10−3 6.008× 10−3 1.080× 10−2 1.087× 10−2

|V| (pu) 1.090× 10−3 2.214× 10−3 1.857× 10−3 1.711× 10−3 4.716× 10−3 4.461× 10−3

PG (pu) 9.593× 10−3 1.529× 10−1 5.788× 10−2 7.892× 10−2 5.445× 10−2 5.646× 10−2

QG (pu) 8.694× 10−3 6.036× 10−2 2.740× 10−2 2.417× 10−2 1.315× 10−2 1.280× 10−2

TABLE V: Mean absolute error (MAE) of the proposed model (WCNN) compared to the multilayer-perceptron-based model

(MLP) [13].

System IEEE-6 IEEE-9 IEEE-14

WCNN MLP WCNN MLP WCNN MLP

σ (degree) 4.962× 10−3 1.495× 10−2 9.062× 10−3 8.215× 10−2 1.737× 10−2 3.766× 10−2

|V| (pu) 2.148× 10−3 6.134× 10−3 3.707× 10−3 1.258× 10−2 6.550× 10−3 3.679× 10−3

PG (pu) 2.076× 10−2 1.300× 10−1 4.042× 10−2 5.027× 10−2 6.615× 10−2 8.276× 10−2

QG (pu) 1.772× 10−2 1.154× 10−1 1.659× 10−2 1.794× 10−1 1.820× 10−2 2.239× 10−2

In addition, a multilayer-perceptron-based method (MLP)

has recently become popular for solving AC-OPF. To reflect

the efficacy of the WCNN and MLP, the MLP is configured

identically to the decoder of WCNN, with the input only

including active/reactive power at loads similar to the method

in [13]. Both the MLP and WCNN are trained and tested

on the identical dataset which includes numerous samples

reflecting various scenarios such as power fluctuation at load

buses, N-1 contingencies, and the variety of power generation

prices. The results achieved after running experiments for three

IEEE test cases are shown in Table. V. The trained MLP

has a worse prediction than the trained WCNN on the same

testing data due to the higher value of most MAE errors. It

can indicate that the previous methods such as MLP-based

models, which do not cover all power systems’ information, do

not have a comprehensive performance in intricate scenarios.

Conversely, the WCNN, which has lower values of MAE error,

proves its capability not only to synthesize all power systems’

information without any concerns regarding the power system

scalability but also to perform prediction reliably close to truth

values in a diversified scope of scenarios.

Regarding the proposed model’s robustness, multiple reg-

ularization techniques are applied to enhance the reliability

when predicting unseen data. ‘Dropout’ layers are added into

the model along with ‘batch normalization’ layers to prevent

the model from overfitting or getting stuck at local optimal

solutions. Furthermore, a non-Gaussian noise was added to the

testing datasets, but not to the training datasets to inspect the

variation of the prediction under noise-added circumstances

representing the uncertainty of data or measurement errors.

Measurement errors were emulated randomly, and a random

noise of size 0−5% of the original active/reactive load demand

was generated and added to the testing datasets. In Table. IV,

the results generally show that MAE errors are still within an

accepted threshold when predicting on the noise-added testing

dataset. Therefore, the proposed model is robust enough to

encounter stochastic data or common errors in collecting data.

The simulation results show that the WCNN is adaptive and

open to adjustments and fine-tuning for improving the model

efficacy. Although being modified from the base model, the

proposed model still inherits all of its original characteristics

such as extracting fundamental correlation of spatial features

such as the topology information, load demand, or grid struc-

ture. Hence, the proposed model is flexible and reliable to

apply for various tasks in power system research fields.

IV. CONCLUSION

This paper has proved that the weighing-convolutional

neural network has a strong potential application in electric

power systems, particularly in OPF. Furthermore, the WCNN

is adaptive, scalable, and potentially improved when it has

utilized the pros of a powerful family of CNN whose cons

are reduced by integrating the self-attention mechanism. The

proposed model provides an advanced insight into the way

how to enhance the efficiency of the WCNN based on making

changes to its hyperparameters. The simulation results have

proved that the proposed method obtains a high accuracy level

and effective resource consumption compared to the original

WCNN by making it deeper in regard to feature extraction

of data patterns. Thus, it is promising that machine learning

algorithms can handle intricate OPF problems with multiple

objective functions and security constraints in the real world

and support contingency screening and rapid decision-making.



The method will not only support the system operators in

improving the efficiency of the complex power systems but

also facilitate the development of intelligence resources and

their applications in other aspects of power systems in the

future.
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