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Abstract—Current methods for solving optimal power flow
have difficulties obtaining real-time solutions due to the complex-
ity and nonlinearity of large power systems. Taking advantage
of machine learning (ML) algorithms, trained machine-learning
models are viable alternatives to tackle the challenges of online
OPF-solving. This paper proposes the application of neural
network models with self-attention to reduce an inductive bias
and overcome the drawbacks of traditional ML-based approaches
in solving OPF. By incorporating all power system parameters
into a multiple-channel matrix akin to an image, the proposed
weighing-convolutional neural network (WCNN) can extract
typical features from training data and learn the underlying
patterns. The high computational burden is alleviated through
the training phase, and an OPF solution can be produced
instantly by inference of the trained model. The proposed method
is implemented on three IEEE standard systems to prove its
efficacy. The experiment results show that the proposed WCNN
algorithm obtains a high level of accuracy, which facilitates its
potential capability for deployment in the practical operation of
complex power systems.

Index Terms—Convolutional neural network, cost of genera-
tion, AC optimal power flow, self-attention.

I. INTRODUCTION

To solve OPF problems in power systems, linearization,
convex relaxation, and approximation techniques are pop-
ularly used [1]-[8]. However, achieving an OPF solution
using these methods is often time-consuming and sometimes
infeasible for large-scale and intricate power systems or on-
line OPF calculation due to the system’s nonlinearity and
complexity [9]. A typical approximation technique utilizes
distributed/decentralized methods, which split the main prob-
lem into numerous smaller problems, to solve OPF problems
efficiently through parallel processes. A solution to solve
semi-definite programming in a distributed manner by utiliz-
ing the alternating direction method of multipliers (ADMM)
was proposed in [5], [10]. An alternative to ADMM called
Augmented Lagrangian-based Alternating Direction Inexact
Newton method (ALADIN) was used to handle non-convex
OPF in a distributed manner in [6]. Notwithstanding, these
approximation methods take advantage of the relaxation to
obtain the possible optimal solution, resulting in an uncertainty
of the globally optimal solution and unlikely feasibility in real-
time operational conditions [11]. Despite reducing the colossal
computational amount based on the relaxation, OPF-solving
is complicated to handle, especially when the OPF problems
become non-convex.

Multiple realms of technological fields have resorted to
the advantages of machine learning to solve optimization
problems. Numerous ML-based approaches are proposed to

handle various emerging problems of electric power systems.
In [12]-[17], deep-learning models are built to alleviate the
arduous computation burden of classical OPF-solving. These
ML-based models have shown a significant improvement in
computational speed compared to traditional methods. Nev-
ertheless, learning models, which are built on a background
of multilayer perception (MLP) with each layer constructed
by nodes (neurons), have a critical shortcoming of whopping
trainable parameters to large-scale power systems [18]. To
dodge that point, these learning-based end-to-end works take
some power systems’ information to extract features and learn
mapping rules from given datasets. For instance, load demand
or power generation is collected as input to feed to learning
models for decreasing the number of trainable parameters
[12], [13]. Consequently, the generalization of trained neural
networks would be oppressed due to the lack of comprehensive
input. In other ML-based hybrid frameworks, deep learning
algorithms are utilized as alternative solvers for conventional
OPF-solving through power flow equations [15]-[17]. The
from-ML-achieved results would be a successive input to
compute power systems’ parameters.

By a convolution of a weighted small matrix over an image
patch, a convolutional neural network (CNN) comprehensively
captures all information, unlike earlier machine learning mod-
els that tend to selectively focus on a limited subset. CNN is
emerging as a potential candidate to tackle the difficulty of vast
trainable parameters. CNN excels at capturing spatial hierar-
chies and is particularly effective for image-related tasks due
to the capability of learning relevant features from the data.
This paper takes the apparent advantages of CNN to develop
a learning model that could cover all essential information of
electric power systems by arranging the input under an image-
like shape to solve OPF. The proposed approach is conducted
by excelling the conception of DenseNet [19], accompanied by
a self-attention mechanism [20]. A decoder block comprised
of fully connected layers helps transform extracted patterns
into expected results. The main contribution of the paper is as
follows:

« Propose an approachable solution of leveraging convo-
lutional neural networks and a self-attention mechanism
to find the solution of AC OPF efficiently without any
constraint on the input size of a case study.

« Embed the entire electric power system information into
the learning process to drive the proposed ML model to
reflect the nature of the inner variation of elements such



as load demands, generation power, and topology changes
straightforwardly.

The structure of the paper is as follows. Section II de-
velops a weighing-convolution neural network for OPF and
the process of transforming the OPF problem into a machine-
learning model. Section III presents the simulation results with
discussions. Finally, the conclusion is in Section IV.

II. A WEIGHING-CONVOLUTIONAL NEURAL NETWORK
FOR OPF-SOLVING

Neural networks are structured to mimic the decision-
making process of the human brain. It comprises multiple
layers, each containing artificial neurons, arranged sequentially
one after the other. Machine learning (ML) algorithms are
mathematical conceptions that express the calculation between
interconnected neurons. The ultimate goal is to figure out the
mapping rules or mathematical functions to depict the most
accurate relation between input and output. Considering the
complexity of a problem, opting for an appropriate structure
of a neural network is crucial to ensure the extraction is
successful or that the most approximate mapping function is
obtained.

A. The residual network and its variants

The proposed learning model is a renewal of predecessors
of the CNN family, and it has all distinctive characters whose
previous models were devised, such as Residual Networks -
ResNet [21], and DenseNet [19].

The residual network has a significant impact on the field
of computer vision when a deep learning process should not
lead to lower accuracy due to the information transformation
after feeding multiple layers. The core idea is to maintain a
skip connection or interactive connection between the model
input and the model output to ensure the accuracy of the entire
model that is not far lower than the original one.

The operation of ResNet is abstracted as follows:

f(X) =X +9(X) (D

where X is a given input added to g(X). g(X) is the mapping
rule of interactive connection to form f(X), and f(X) is the
expected mapping function. It is shown in equation (1) that
ResNet is a combination of two separate elements: an affine
one and a non-linear one.

The distinction of ResNet is the addition operation arising
in its forward feeding where the input is transmitted directly
to the output via a shortcut connection, specifically shown in
Fig. 1. This approach forms a kind of interactive connection
to ensure the enlarging of the model not to lower the training
accuracy [18].

The residual network resolves the risk of lower accuracy as
expanding learning models deeper due to the additional task.
Notwithstanding, some underlying patterns are dropped out or
in other words, they are merged through the additional task
of mapping function. Consequently, not all low-level features
are extracted which leads to a high discrepancy in predictions
and ‘ground truth’ values. To that end, the densely connected
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Fig. 1: The principle of the residual network ResNet.

network DenseNet - a variant of the residual network was
introduced in [19] to fix the residual network’s drawback of
missing out latent information.

Instead of the addition, the task of concatenation is used as
an alternative for preserving the input information during the
entire forward process. The principle of DenseNet is depicted
in Fig. 2 and Equation (2).
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Fig. 2: The basic principle of a Dense Block. The concatena-
tion operation is an alternative to ResNet’s addition one.
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Due to the concatenation task, DenseNet not only retains
the patterns of input data but also filters the correlation of
a variety of channels out during the process of enlarging the
network architecture deeper. As a matter of fact, DenseNet out-
performs the daunting tasks of image processing compared to
ResNet [19]. Specifically, the densely connected network feeds
forward an input X to the output, simultaneously gathering
underlying patterns extracted at each dense block. As a result,



the latent patterns inside of the data are accumulated gradually
according to the model depth instead of being transformed
under the addition task. Based on that, DenseNet leverages the
exceptional attributes of CNNs for image processing efficiently
rather than previous predecessors.

B. Application of a self-attention mechanism

A self-attention mechanism is a crucial part of natural
language processing models, machine translation, text sum-
marization, and sentiment analysis [20]. It helps to raise
the efficiency compared to previous RNN models, such as
Gated Recurrent Unit (GRU) and Long Short Term Memory
(LSTM). It weighs all individual elements within an entire
context to evaluate each element’s significance. Noteworthily,
the individual’s weighing is helpful in capturing latent patterns
and features hidden in spatial-positioned grids like electric
power systems.

The triple of a self-attention mechanism includes:

* The query: ¢ = Wyx to set up the weights for its input.

e The key: k = Wyx to set up the weights for its
correlation.

¢ The value: v = W,z to set up the weights for its output.

The weight matrices W,, Wy, and W, are updated during
the learning process to weigh the individual’s significance.
The output y<* is a total of weighted vectors v<!>, .. v<t>
expressed as follows [22]:

Zam (3)

exp (score(q<'~, k<“>))

L exp (score(q<t> k<v>))
function is the dot- -product function.

with ai,, = ST Vu < t and the score

C. Optimizing AC power flow

AC optimal power flow is a process that allocates pre-
calculated amounts of essential generated power to all partici-
pating generation units. In essence, AC OPF aims to reach the
most efficient cost of allocation of power generation resources
considering various factors such as fuel costs, operating con-
straints, and load demand. OPF is an optimization problem
with an objective function of minimizing the operational cost.
The formulation of the optimal AC power flow could be
expressed as:

min f(x) “
subject to
g(x) =0 ®)
h(z) <0 (6)
Tmin € T < Trmnag (7)
where e
J(Py,Qq) = 3 fp(py) + Fod5) (8)

The cost function f(z) (8) is the polynomial equation of
active generation power and reactive generation power. The

inequality-constrained equations h;(z) encompass the con-
strained power flow of the transmission lines, and =4z,
Tmin are the upper and lower limits of the size of volt-
age magnitudes, voltage angles, and the generator dispatch
capabilities [23]. The inequality-constrained equations can
be the line’s security power-transmitted capability [24]. The
equality-constrained equations g(z) consist of the nonlinear
trigonometric power flow equations below:

Vil Z [(Gik cos i + By sin0.)|[Vi|]] =0 (9)
k=1

|V|Z stinﬁik —BikCOSHik)|Vk|] =0 (10)

where V; = H/Z|402,9k = 0; — 0,7,
1=1,2,..,n

it = Gix + jBi, and

D. Weighing-convolutional neural network

The family of convolutional neural networks is powerful
for grid-structured-relating tasks like image processing and
computer vision. Convolutional computation enhances the
capability of catching features such as edges, margins, and
identities. Additionally, it reduces the number of trainable
parameters in a neural network compared to previous MLP-
based models due to the convolution process causing the
update of trainable parameters to take place on a kernel or
a filter which is a small weight matrix.

The convolutional calculation for two-dimensional matrices
f,g:R? = R, is constructed as follows [25]:

(f*g Zf //7]// 7’_27] _.7 )

1// s11

Y

where the indices for F' are indicated by a pair (¢’,j’), and
likewise a pair (i, j”) indicates for the indices for g. w is a
weight matrix known as a filter or a kernel of the convolution
layer. The indices (i, j") indicate the surrounding area where
a convolution task is manipulated, specifically the vicinity of
(@, 3")-

In mathematical terms, the output of a convolution layer can
be expressed as follows [22]:

2y g1 = Z Wirr 11T (0 4o, (j1457) T D (12)
(@,3")

Equation (12) illustrates that the convolution computation
can reduce the number of trainable parameters and the con-
volution layer is a proper alternative to the fully connected
layer. Specifically, by a dot-product operation of a small
weight matrix - a kernel w over each point of the input, the
output z; ;- is harnessed by the summation of all dot product
calculation results of a kernel and the respective input area that
a kernel scans through. Consequently, it is not contingent on
the input shape of a model that makes CNN models privileged
in solving spatial-structured models.

Based on that, an integration of the self-attention layer right
after convolutional structures is a potential approach to take



advantage of the CNN family for OPF-solving and constrain
its drawbacks, such as weakly reflecting the correlation and
interdependence of patterns extracted by convolution layers.
As mentioned in Subsection II-B, the self-attention layer
can help weigh the significance of each neuron in a layer,
therefore the spatial patterns like topology information and
magnitude fluctuations of input variables like load demand
can be recognized by the weighing task of the self-attention
mechanism.

Hereafter, DenseNet is chosen as a CNN model to combine
the self-attention mechanism to implement on three IEEE
standard systems: IEEE-6, IEEE-9, and IEEE-14.

III. SIMULATION RESULTS

In this section, the process for testing the proposed neural
network on the IEEE standard systems is introduced to illus-
trate the data generation, setting up the learning model, and
conducting experiment.

A. Dataset preparation

MATPOWER Interior Point Solver [23], [26] is exploited
to generate training data for each case study. MATPOWER
Interior Point Solver settings are kept by default and Monte
Carlo simulation is applied to ensure the diversity of the
dataset. A coefficient vector whose dimension is equal to the
number of loads is drawn from the uniform distribution of the
range [0.8,1.2], except for IEEE-6 with the range [0.95, 1.05]
due to the hardship in convergence. Preset load profiles and
the cost of generators are multiplied by the distinct random
vector for every sample to ensure the diversification of the
training dataset. Additionally, to ensure that the model has the
dataset sufficient for training, a set of 10, 000 samples for each
case study is considered.

B. Structure of training dataset

The dataset structure of a sample consists of 2D matrices,

which are concatenated as follows:

- The matrices of load demand Py, xny/@NpxnNg IN
MW/MV Ar, where N is the number of buses.

- The matrices of each element (G, B) of the admittance
Yp in pu.

- N¢ X Ng diagonal matrices of generation cost in
$/MW,$/MV Ar, with N¢ indicates the maximum ex-
ponential index of the objective function (8), and Ng
indicates the number of generators in each case study.

Generally, the dataset I has the shape: [Ny, (4 + N¢ x

NG )ehannetss Ng, Ng]. The detailed dataset size of all case
studies is empirically computed, as shown in Table. I. The
output shape is generalized as (2 X Np + 2 x Ng), which
encompasses all the optimal variables: angles and magnitudes
of voltage, dispatched active and reactive power of generators.
The error function that is used to train the WCNN is the mean
squared error (MSE). For a given i-th sample of I, the MSE
formulation is written as follows [13]:

1 &
meinﬁl;llyi —F (xi:0) |13 (13)

where N7 is the size of I; F (+;6) is the desired mapping rule,
with 6 is symbolized for the optimal variable of the current
model which is a set of trainable parameters. The generator
dispatch optimization problem is illustrated via equations from
(4) to (8), has become simple by finding a set of the WCNN
parameter 6 that satisfies the equation (13) through the WCNN
training.

TABLE I: Case study information (including generators, loads,
buses, and lines)

System Configuration Input Output
IEEE-6 3,3,6, 11 Nr,13,6,6 Ny, 18
IEEE-9 3,3,9,9 Nr,13,9,9 Nr,24
IEEE-14 5, 11, 14, 20 [N1,19,14,14] Ny, 38

C. Configuration of the weighing-convolutional neural net-
work

The weighing-convolutional neural network (WCNN) is
constructed on a base of an encoder block and a decoder block.
The dense blocks of successive convolutional layers, followed
by the self-attention layer, are grouped in an encoder block.
In [27], the WCNN utilizes two stacked dense blocks whose
each dense block has two convolution layers, and the number
of convolution layer’s channels is chosen as 8. The kernel
matrix of the convolution layers has a size of 3 x 3, and
the self-attention layer has multiple heads of 10. With such
a unique structure, the WCNN can dig deeper into hidden
patterns in data structures to extract mapping rules in terms
of the fluctuation of input variables and the correlation of the
like-grid system’s nodes in a given spatial layout.

Specifically, the encoder block is depicted in Fig. 3. It
processes the provided data input to extract the fundamental
properties of data and hidden patterns of the data correlation.
The encoder block effortlessly adapts and summarizes electric
power network parameters, which are structured in an image-
like format, using multiple stacked dense blocks. Following the
dense blocks is the self-attention layer whose task is to weigh
how important each element of the previous layer’s output
contributes to the contextual situation.

The decoder comprises multiple dense layers known as
multilayer perceptron (MLP), as shown in Fig. 4. Herein, there
are 7 hidden dense layers in the WCNN complying with the
principle of a non-linear (relu) activation-function dense layer
(1024 units) followed by a linear activation-function dense
layer (512 units) as a regularization technique of a bottle-
neck to reduce mutual connections for avoiding overfitting and
enhancing the generalization. The WCNN is implemented by
the Python-language programmed Tensorflow library and the
optimization algorithm - Adam is used as an optimizer [28].

D. Advanced adjustment of the WCNN configuration

An advanced adjustment of the hyperparameters of the
WCNN’s encoder and decoder is proposed by increasing the
number of convolutional layers in the encoder’s dense blocks,
simultaneously decreasing the number of dense layers’ units
compared to the original model in Section III-C. Particularly,
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Fig. 3: The encoder block of the base WCNN includes three
parts which are data normalization, making dense blocks,
and implementing a self-attention mechanism. There are 2
convolution layers per dense block [27].
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Fig. 4: The WCNN’s decoder block is akin to a multilayer
perceptron, exceptionally with an additional regularized tech-
nique - a bottle-neck technique.

the number of convolutional layers is shifted up to “8” per
dense block from “2”, while the number of units of the de-
coder’s dense layers is reduced by half. As a result, the number
of trainable parameters is reduced significantly in Table II
which illustrates a considerable benefit obtained by the hyper-
parameter adjustment. Moreover, the hyperparameter-modified
model outperforms its original version as in Table. IIL. It can
be seen that an extension of the WCNN in the depth of dense
blocks in the encoder might enhance the capability of mapping
the rule lying in the complex data pattern of power systems’
collecting information with lower consumption of resources
or the smaller number of model’s parameter, which is shown
in Table. IT for training the model compared to the original
model.

E. Simulation Results

The proposed WCNN is conducted on three IEEE standard
systems: IEEE-6, IEEE-9, and IEEE-14. For each case study,
a training dataset of 10,000 samples is provided to train
the WCNN before testing on a 1,000-sample testing dataset

TABLE II: The number of parameters of the original WCNN
(base) [27] and the advanced WCNN (advance).

System Type of Model

Base Advance
IEEE-6 3,001, 590 1,125,554
IEEE-9 3,151,656 1,323,938
IEEE-14 3,582,034 1,906, 658

that has not ever been seen. All the datasets are generated
following the procedure mentioned in Subsection. III-A. The
mean absolute error function (MAE) of optimal variables such
as angles/magnitudes of voltage, and active/reactive power
yields the accuracy level of the estimated values from the
WCNN. The discrepancy does not vary significantly between
the case studies. However, there is a remarkable difference
in the accuracy when the complex level of a case study
grows. Particularly, there is the same tendency of rising for
both values of voltage regarding the angle and magnitude, ac-
tive/reactive power. Nevertheless, this phenomenon is natural
in essence when the WCNN faces the increasingly intricate
level of case studies but its hyperparameters and structure
remain unchanged. It can be understood that the WCNN can
learn well about different electric power systems if there
is an infrastructure of hardware resources equivalent to the
complicated issues it will encounter. The detailed MAE error
is displayed in Table III.

By increasing the depth of dense blocks, the proposed
model has captured easily latent features under different data
patterns, thus leveraging the WCNN’s decoder configuration
which would make the model training resource-saving and
faster. It merges the convolution properties and the attention
mechanism, which are supplemented to extract features from
the given dataset whose characteristics are intricated and espe-
cially untractable as to the large-scale power systems. With a
structure arranged in a like-image shape, a convolution kernel
could sweep through the entire context of power systems to
obtain profound features such as topology changes, variation
of load demand, and the generating cost, without concern
about the number of the input dimension. Therefore, the pro-
posed model may outperform MLPs (multilayer perceptrons)
which are popular in recent ML-related works in an aspect of
the scalability to complex power systems with a significant
computing resource saving in an exponential reduction of
trainable parameters [18]. Furthermore, the functional task
of the attention mechanism supports the feature extraction
capability of the proposed model by weighing the importance
of each neuron in the neural network. As a result, the proposed
model can overcome the disadvantages of MLPs in figuring
out the patterns underlying the input data with a considerably
smaller number of trainable parameters. Additionally, the
computation time of machine learning inference is better than
that of OPF problems solved by numerical methods, which
are usually time-consuming [27]. The forward process of a
neural network is simply the multiplication between parameter
matrices. Thus it is faster to compute than the iterative loops
done by numerical methods.



TABLE III: Mean absolute error (MAE) of the original model (Base) [27] and the proposed model (Advance) across the testing

dataset.
System TEEE-6 TEEE-O TEEE-14
Model Type Base Advance Base Advance Base Advance
o (degree) 8.539 x 10~42 2.161 x 10—3 8.443 x 1073 8.785 x 10~3 1.151 x 102 1.080 x 102
[V] (pu) 4.058 x 10~% 1.090 x 1073 1.644 x 10~3 1.857 x 10~3 7.674 x 1073 4716 x 10=3
Pg (pu) 8.629 x 10~3 9.593 x 10~3 6.577 x 10~ 2 5.788 x 10~ 2 5.516 x 10~ 2 5.445 x 1072
Qg (pu) 3.546 x 10~3 8.694 x 10~ 3 3.058 x 102 2.740 x 102 1.436 x 102 1.315 x 10~ 2

TABLE IV: Mean absolute error (MAE) of the proposed model across the testing dataset with and without noise added.

System TEEE-6 TEEE-9 IEEE-14
‘Without Noise With Noise Without Noise With Noise Without Noise With Noise
o (degree) 2.161 x 10~3 1.391 x 10~2 8.785 x 10~3 6.008 x 10~3 1.080 x 10~2 1.087 x 10~ 2
[V] (pu) 1.090 x 10~3 2.214 x 1073 1.857 x 10~3 1.711 x 10~3 4.716 x 10~3 4.461 x 10~3
Pg (pu) 9.593 x 10~3 1.529 x 10~ T 5.788 x 10~2 7.892 x 10~2 5.445 x 10~2 5.646 x 10~2
Q¢ (pu) 8.694 x 10~3 6.036 x 10~2 2.740 x 1072 2.417 x 1072 1.315 x 102 1.280 x 102
TABLE V: Mean absolute error (MAE) of the proposed model (WCNN) compared to the multilayer-perceptron-based model
(MLP) [13].
System TEEE-6 TEEE-9 IEEE- 14
WCNN MLP WCNN MLP WCNN MLP
o (degree) 4.962 x 103 1.495 x 102 9.062 x 10~3 8.215 x 10~ 2 1.737 x 102 3.766 x 10~ 2
[V] (pu) 2.148 x 10~3 6.134 x 10~3 3.707 x 10~3 1.258 x 10~2 6.550 x 10~3 3.679 x 10~3
Pg (pu) 2.076 x 10~2 1.300 x 10~ T 4.042 x 10~2 5.027 x 10~ 2 6.615 x 10~ 2 8.276 x 10~2
Q¢ (pu) 1.772 x 10~ 2 1.154 x 10~ T 1.659 x 102 1.794 x 10~ T 1.820 x 102 2.239 x 10~2

In addition, a multilayer-perceptron-based method (MLP)
has recently become popular for solving AC-OPF. To reflect
the efficacy of the WCNN and MLP, the MLP is configured
identically to the decoder of WCNN, with the input only
including active/reactive power at loads similar to the method
in [13]. Both the MLP and WCNN are trained and tested
on the identical dataset which includes numerous samples
reflecting various scenarios such as power fluctuation at load
buses, N-1 contingencies, and the variety of power generation
prices. The results achieved after running experiments for three
IEEE test cases are shown in Table. V. The trained MLP
has a worse prediction than the trained WCNN on the same
testing data due to the higher value of most MAE errors. It
can indicate that the previous methods such as MLP-based
models, which do not cover all power systems’ information, do
not have a comprehensive performance in intricate scenarios.
Conversely, the WCNN, which has lower values of MAE error,
proves its capability not only to synthesize all power systems’
information without any concerns regarding the power system
scalability but also to perform prediction reliably close to truth
values in a diversified scope of scenarios.

Regarding the proposed model’s robustness, multiple reg-
ularization techniques are applied to enhance the reliability
when predicting unseen data. ‘Dropout’ layers are added into
the model along with ‘batch normalization’ layers to prevent
the model from overfitting or getting stuck at local optimal
solutions. Furthermore, a non-Gaussian noise was added to the
testing datasets, but not to the training datasets to inspect the
variation of the prediction under noise-added circumstances
representing the uncertainty of data or measurement errors.
Measurement errors were emulated randomly, and a random

noise of size 0—5% of the original active/reactive load demand
was generated and added to the testing datasets. In Table. IV,
the results generally show that MAE errors are still within an
accepted threshold when predicting on the noise-added testing
dataset. Therefore, the proposed model is robust enough to
encounter stochastic data or common errors in collecting data.
The simulation results show that the WCNN is adaptive and
open to adjustments and fine-tuning for improving the model
efficacy. Although being modified from the base model, the
proposed model still inherits all of its original characteristics
such as extracting fundamental correlation of spatial features
such as the topology information, load demand, or grid struc-
ture. Hence, the proposed model is flexible and reliable to
apply for various tasks in power system research fields.

IV. CONCLUSION

This paper has proved that the weighing-convolutional
neural network has a strong potential application in electric
power systems, particularly in OPF. Furthermore, the WCNN
is adaptive, scalable, and potentially improved when it has
utilized the pros of a powerful family of CNN whose cons
are reduced by integrating the self-attention mechanism. The
proposed model provides an advanced insight into the way
how to enhance the efficiency of the WCNN based on making
changes to its hyperparameters. The simulation results have
proved that the proposed method obtains a high accuracy level
and effective resource consumption compared to the original
WCNN by making it deeper in regard to feature extraction
of data patterns. Thus, it is promising that machine learning
algorithms can handle intricate OPF problems with multiple
objective functions and security constraints in the real world
and support contingency screening and rapid decision-making.



The method will not only support the system operators in
improving the efficiency of the complex power systems but
also facilitate the development of intelligence resources and
their applications in other aspects of power systems in the
future.
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