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Abstract: Automated canopy stress classification for field crops has traditionally relied on single-
perspective, two-dimensional (2D) photographs, usually obtained through top-view imaging using
unmanned aerial vehicles (UAVs). However, this approach may fail to capture the full extent of
plant stress symptoms, which can manifest throughout the canopy. Recent advancements in LIDAR
technologies have enabled the acquisition of high-resolution 3D point cloud data for the entire
canopy, offering new possibilities for more accurate plant stress identification and rating. This study
explores the potential of leveraging 3D point cloud data for improved plant stress assessment. We
utilized a dataset of RGB 3D point clouds of 700 soybean plants from a diversity panel exposed
to iron deficiency chlorosis (IDC) stress. From this unique set of 700 canopies exhibiting varying
levels of IDC, we extracted several representations, including (a) handcrafted IDC symptom-specific
features, (b) canopy fingerprints, and (c) latent feature-based features. Subsequently, we trained
several classification models to predict plant stress severity using these representations. We exhaus-
tively investigated several stress representations and model combinations for the 3-D data. We also
compared the performance of these classification models against similar models that are only trained
using the associated top-view 2D RGB image for each plant. Among the feature-model combinations
tested, the 3D canopy fingerprint features trained with a support vector machine yielded the best
performance, achieving higher classification accuracy than the best-performing model based on
2D data built using convolutional neural networks. Our findings demonstrate the utility of color
canopy fingerprinting and underscore the importance of considering 3D data to assess plant stress in
agricultural applications.

Keywords: iron deficiency chlorosis; terrestrial laser scanning; virtual phenotyping; canopy
fingerprints

1. Introduction

Soybean (Glycine max (L.) Merr.) is one of the most important crops globally, with
significant nutritional and economic impact. It is a powerhouse of essential nutrients
that offers a complete protein profile consisting of vital vitamins and minerals, making it
indispensable in vegetarian and vegan diets. Beyond direct human consumption, soybeans
play a pivotal role in the industry, from serving as a primary ingredient in many processed
foods to their transformation into biodiesel [1]. Moreover, a large fraction of the soybean
harvest worldwide is utilized as high-protein livestock feed, underpinning the poultry,
swine, and aquaculture sectors.

Plant stress is a state of plant growth under non-ideal environmental conditions
caused by various biotic (pathogen, insect, pest, and weed) and abiotic (temperature stress,
nutrient deficiency, toxicity, herbicide) factors [2]. It is a constant threat to global food
security, and the ongoing challenge is to prevent and protect against yield losses due to
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these stresses. Iron Deficiency Chlorosis (IDC) in soybeans is an abiotic stress that can
significantly impact plant health and yield. When soybean plants suffer from IDC, they
display characteristic interveinal chlorosis in young leaves, with leaf tissue yellowing while
the veins stay green [3]. The disorder predominantly arises in high pH, calcareous soils that
impede iron’s bioavailability to the plant, even if the soil’s overall iron content is abundant.
Froehlich et al. [4] reported a robust linear association between soybean yield reductions
and both visual chlorosis ratings and stunted growth. Specifically, each increment in
chlorosis rating corresponded to a 90% increase in average yield loss. Additionally, for
every 1% decrease in plant height, a yield reduction of 1.6% was observed. Interestingly,
increased chlorosis severity led to decreased lodging due to shorter plant stature and also
delayed maturity [4]. Peiffer et al. [5] estimated that the annual yield loss to farmers
due to IDC in the USA alone is around $260 million. The substantial yield reductions
attributed to IDC can result in significant economic losses for farmers, underlining the need
for effective management strategies, including cultivating IDC-tolerant soybean varieties.
Addressing IDC is critical not only for the agronomic and economic ramifications but also to
ensure the nutritional quality of the soybean crop. The conventional method of evaluating
IDC stress symptoms is performed manually by visually evaluating the stress symptoms
across the canopy. However, this approach is subjective, time-consuming, and prone to
inter- and intra-rater inaccuracies [2]. Therefore, the past decade has seen multiple efforts
toward developing a high-throughput phenotyping system for automated IDC rating using
machine learning.

To phenotype soybean canopy biotic or abiotic stresses, various 2D imaging modalities,
including RGB [6,7], hyperspectral [8-10], and thermal images [9,10] are used. Among these
modalities, RGB imaging has been extensively employed for IDC symptom detection [11-14].
For instance, Bai et al. [11] investigated the utility of RGB images captured under field
conditions for IDC scoring, achieving an accuracy of 81%. In the same way, Dobbels
et al. [14] used UAS with an RGB camera to improve screening in the field for soybean IDC
tolerance, obtaining an accuracy of 77%. In another study, Hassnijalilian et al. [13] utilized
ground-based RGB images of plots and achieved an F1 score accuracy of 0.78. Image-
based phenotyping systems are also packaged as smartphone apps designed to classify
plant stresses in field environments [12]. However, while 2D methods offer reliability and
versatility, they struggle to capture stress expression in the lower parts of the plant canopy.

To capture the full canopy, including the lower parts, LIDAR-equipped 3D scanners
have been added to modern phenotyping systems [15-18]. These scanners capture com-
prehensive, three-dimensional point clouds of the canopy, including the complete lower
part of the canopy, providing improved input features for stress classification algorithms
and enhancing classification models. Though more expensive than image-based 3D recon-
structions such as structure-from-motion (SFM) [19-21], LiDAR systems have provided
more accurate measurements of plant phenotypes such as height and biomass as a result of
their finer spatial resolution compared to SFM [22]. LiDAR systems were utilized to esti-
mate structural traits including height [21,23,24], leaf area index [25-27], biomass [19,20]
and biotic or abiotic stresses that are expressed mostly via a change in the structural
traits [15,28-30]. LiDAR-based high-throughput phenotyping systems have been deployed
for situations where the stress is expressed via the change in canopy color and have primar-
ily been limited to applications in controlled environments. Combining three-dimensional
point clouds of the canopy with RGB and hyperspectral information has shown promise in
limited indoor settings. Studies have explored the use of multimodal 3D data for assessing
abiotic and biotic stress, including IDC, in controlled environments [15,31-34]. Anesley
et al. [34] employed LiDAR in a greenhouse setting to identify drought tolerance markers in
potato breeding. They leveraged LiDAR data to estimate plant height, 3D leaf area, leaf area
projection on the ground, and leaf angle to assess drought response across 64 genotypes.
Similarly, Khanna et al. [31] developed a pipeline that employed reconstructed 3D hyper-
spectral images alongside 2D color and infrared stereo images to predict water, nitrogen,
and weed stress on greenhouse sugarbeets. Rios-Toledo et al. [35] utilized RGB and 3D
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point cloud data to analyze various abiotic stressors, highlighting the superiority of 3D
over 2D imaging in stress prediction. However, these studies are proof-of-concept, and
despite their potential, most 3D stress-related multi-modal phenotyping systems remain
confined to controlled environments, posing limitations for field-based experiments.

Extracting meaningful representations from large field-based datasets is a bottleneck
in phenotyping. Studies have underscored the importance of feature representation [36,37].
While traditional models typically rely on handcrafted representation features, promising
results have been demonstrated with canopy fingerprints [38-41] and latent features [3,42].
Previous studies have utilized these features for soybean stresses but focused exclusively
on 2D images. In this research, we aim to leverage the potential of 3D point clouds
with RGB color to enhance stress classification algorithms and significantly improve the
understanding and detection of IDC stress in soybean plants.

The main goal of this study is to explore different ways of measuring IDC stress
severity in soybean plants, such as fingerprints, hand-crafted features, and latent features,
using both 3D point cloud data and 2D image data. We aim to train multiple classification
models using these representations and conduct a comprehensive performance comparison
to generate insights into the usage of 3D data for stress phenotyping. Additionally, we
want to conduct experiments to assess the impact of data balancing on model training. Our
contributions to this work are as follows:

¢  Developed an in-field scanning and automated plot extraction process for high-
throughput phenotyping of soybean canopies.

*  Generated handcrafted color and fingerprint features from 3D point cloud for each
extracted plot.

¢ Explored the impact of different feature representations on the classification results,
showing that 3D handcrafted features exhibited superior class separation compared
to 2D handcrafted features. Achieved 95% and 97% classification accuracy for 3D
handcrafted and fingerprint features, respectively.

2. Materials and Methods
2.1. Location and Field Scanning

The data for this study were collected from field experiments performed in iron-
deficient soil at Iowa State University’s Agricultural Engineering/Agronomy Research
Farm, IA, USA (latitude of 42.025, longitude of —93.778). The soil type is Harps Series
with a pH range of 7.5 to 8. The field experiment consisted of soybean cultivars from
multiple countries with diverse maturities, seed weights, and stem terminations. We
planted 109 cultivars with two checks (Clark and Iso-Clark). All the entries were replicated
twice. In May 2021, the cultivars were hand-planted in hill plots, with three seeds per hill
and 0.76 m spacing between each hill. Each plot consisted of a single, unbounded hill. No
plants were thinned, and weeding was conducted manually as needed. The entire field
measures 40 by 40 feet, which is equivalent to 0.04 acres.

Beginning on 6 July 2021, point cloud scans of the field were captured twice a week, up
until 2 August 2021, using a Faro Focus S350 Terrestrial Laser Scanner (TLS). The scanner
can produce dense point clouds (2 mm (about 0.08 in) resolution) and capture RGB images
with up to 70 MP resolution via a built-in camera. The scanner was mounted on a 4-foot
tripod, and point cloud scanning was performed from four sides and the center of the field
to capture the entire canopy, as shown in Figure 1A. The field scanning period occurred
during the V4-V5 and R1 growth stages of the plants.
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Figure 1. (A) Scanning and Plot Extraction Process: The illustration shows the field image with
scanning positions, covering five distinct locations, including four sides and near the center of the
field. After capturing the point cloud data, we cleaned, processed, and registered it using Faro SCENE
2021® software. Subsequently, our in-house Python script was utilized to extract individual plots
from the registered point cloud data and remove the ground [43] (B) Rating: Following the removal
of the ground portion, all plots were visualized using CloudCompare 2.11.3% and an expert assessed
each plot’s IDC stress on a scale of 1 to 5. (C) Visualization: Representative canopies for each IDC
stress rating.

2.2. Plot Extraction and IDC Rating

Using the Faro SCENE 2021® software [44], we performed color mapping and regis-
tration of the five-point clouds captured from the field. Following the registration process,
we conducted post-processing on the registered point cloud. This involved removing
noise and achieving point uniformity through voxelization. The color of the voxel is the
average of all the RGB values for the points within a voxel, as described in Open3D’s user
documentation [45]. We segmented ground points from canopy points and saved each
canopy as a separate file. We cannot directly segment plant canopies by color because plants
and soil often appear identical near the ground. To overcome this, we first create a rough
separation. We fit a plane to the entire point cloud data, keeping everything above it as a
preliminary canopy. Next, we segment individual plots using the connected component
algorithm and estimate their centers. Finally, we create a refined ground plane for each
plot based on a square area around each plant center. With this more accurate ground
definition, we fit a final plane through these refined ground points and keep everything
above it as the true plant canopy. We utilized an in-house Python script for post-processing
and plot extraction, as described in our previous study by Young et al. [43]. Out of the
1100 canopies extracted, we selected 700 for downstream analysis. The selection process
excluded canopies with poor color and structural quality, primarily caused by overcast
conditions (80%), incompleteness (15%), or noise (5%). Incompleteness refers to parts of
the canopy not visible to the scanner during scanning, while noise results from canopy
movement due to wind.

Expert raters virtually conducted IDC ratings of the canopies by carefully examining
each point cloud [46]. These virtual visual ratings (VVR) used a scale of 1-5 following the
traditional visual ratings scale [12], with 5 indicating the highest disease severity. IDC,
stemming from higher soil pH reducing iron solubility, reduced iron intake by leaves and
resulted in chlorosis. Stress rating 1 signified the absence of chlorosis, with canopy leaves
retaining their green color. Rating 2 meant that the upper leaves were slightly yellowing;
rating 3 meant that the upper leaves had interveinal chlorosis; rating 4 meant that the
leaves had interveinal chlorosis and growth was slowed down and finally, rating 5 meant
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that the leaves had extreme chlorosis, growth was slowed down, and necrosis appeared on
new leaves.

We also generated 2D top-view projections of cleaned voxelized 3D plots of each
hill plot. Each projection was saved as a PNG file. The script for generating these 2D
images from the 3D voxelized point cloud is accessible on our GitHub repository: https:
/ /github.com/znjubery/3D_Plant_Stress_Repo_ty (accessed on 24 May 2024). A schematic
of the complete data collection and curation workflow is shown in Figure 1. Figure 2
presents a selection of images showcasing the 3D point clouds at different stages of the
data curation process. It includes 3D point clouds of the entire field, individual plots, and
the corresponding top-view projected 2D images.

Figure 2. A selection of images showcasing the 3D point clouds at various stages of the data curation
process: (A) Original registered RGB point cloud. (B) Cropped point cloud focused on the field.
(C) Point clouds of all plots, with ground removed, captured at three different time points; note that
some plots were excluded due to overcast conditions, incompleteness, or noise. (D) Sample 3D point
cloud and the corresponding top-view 2D projection.

2.3. Feature Generation

We utilize three distinct methods for generating features from 3D point clouds and
2D images, as shown in Figure 3. These approaches encompass handcrafted features,
canopy fingerprint features, and latent features. The first two methods involve explicit
feature extraction, while latent features are generated implicitly during the construction of
deep-learning classification models. Latent features are implicitly generated during neural
network training and are not manually extracted or visualized. In contrast, the handcrafted
features are manually extracted based on predefined criteria.

Plot Extraction Feature Generation Classification

S

"'&,? Handcrafted Color Features SVM, RF, DT, KNN
s (%B,%G,%Y)
&

= : .
[ﬂ Canopy Color Fingerprint SVM, RF, DT, KNN

T~

(%B1,%G1,%Y1,%B2,...)

Handcrafted Color Features SVM, RF, DT, KNN
(%B, %G, %Y)

. Latent Features CNN (ResNet18)

Figure 3. Feature Generation and Classification: After plot extraction, we performed feature genera-
tion and classification. To showcase the diversity in canopy color and size present in the dataset,
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we increased the point density of four extracted plots. For each plot, we extracted handcrafted
color and canopy fingerprint features from the 3D point cloud. From the 2D top-view projection
image, we extracted handcrafted color features and generated latent features using a neural network.
These features, combined with the IDC ratings, were used to train various classification algorithms,
including Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest (RF), and
Convolutional Neural Network (CNN), to predict the IDC class labels.

2.3.1. Handcrafted Features for 3D Point Clouds and 2D Images

The creation of handcrafted features is motivated by the expert’s reasoning applied
during virtual assessments. The expert examined color signatures from green to yellow to
brown, specifically assessing the degree of discoloration originating from the green shade.
This analysis encompassed the transition from chlorosis (yellowing) to necrosis (browning).

To mimic the rater’s approach of quantifying color signatures, we used Python with
OpenCV and Open3D to process the RGB 3D point cloud or 2D image of the canopy into
HSV (Hue, Saturation, Value) values, as shown in Figure 4. For 2D images, we read the
image using OpenCV'’s ‘cv2.imread()’ function. For 3D point clouds, we utilized Open3D’s
functionalities to load and manipulate the data.

RGBto HSY —» Brown (B), Green (G), _, Handcrafted Color Features
and Yellow (Y) Pixel Counts (%B,%G,%Y)

Figure 4. Overview of Handcrafted feature generation from 2D images. We used a similar workflow
for Handcrafted feature generation from 3D point clouds.

First, we extracted the RGB values from the 3D point cloud and converted them to
HSV using OpenCV’s ‘cv2.cvtColor()” function. For 2D images, we directly converted the
image from RGB to HSV. We defined the hue ranges for green, yellow, and brown colors
as 45-64, 31-45, and 0-31, respectively. Using these predefined hue ranges, we created
masks for each color with OpenCV'’s ‘cv2.inRange()’ function to identify the pixels or points
within the specified hue range.

Finally, we calculated the percentage of green (%G), yellow (%Y), and brown (%B)
colors in each plot by dividing the number of points or pixels of each color by the total
number of points or pixels. These %G, %Y, and %B percentages are considered handcrafted
features. Such handcrafted features have proven successful in automated IDC ratings of
2D images [12], and this work extends the approach to 3D point clouds.

2.3.2. Canopy Fingerprinting for 3D Point Clouds

Canopy fingerprinting [43] is an approach for characterizing the three-dimensional
structure of plant canopies. This approach involves analyzing 3D point cloud data of
canopies to create detailed yet interpretable phenotypic traits. These fingerprints are
generated by dividing the canopy into smaller, sub-canopy-scale components and extracting
specific geometric features. This method is particularly useful for identifying patterns,
querying similar canopies, or recognizing canopies with particular shapes. The features
extracted using this method can feed into statistical or machine learning techniques to map
to various traits.

In the current study, we extend the canopy fingerprinting concept to extract not only
sub-canopy scale geometric features but also the sub-canopy scale color features that are
representative of IDC stress. This process involves segmenting a canopy into a series
of 2n + 1 equally divided sections, referred to as sub-canopies, to capture the disease
symptoms within each sub-canopy. The division is conducted vertically along the height
direction, yielding the 2n + 1 sections. Each sub-canopy is then assigned a color signature
indicating the percentage of each of three colors: green, yellow, and brown ([%G, %Y,
%B]). Essentially, instead of capturing the canopy scale amount of chlorosis and necrosis
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(as performed in Section 2.3.1), here, the vertical distribution of chlorosis and necrosis is
captured, thus providing a finer scale of detail on stress progression. The final fingerprint
for a canopy’s 3D RGB point cloud is represented by concatenating the color signatures of
the sub-canopies into a single feature vector of size [(2n + 1) x 3, 1].

2.4. Classification Models

We used several machine learning models to map the generated features to the vi-
sually rated IDC ratings and construct classification models. The virtual rating served as
the categorical output variable (classes), while the inputs were the feature vectors. These
classification models are then utilized to predict IDC ratings for different feature vectors.
We train decision trees (DT), random forests (RF), k-nearest neighbors (KNN), and sup-
port vector machines (SVM) using both handcrafted and fingerprint feature vectors. The
handcrafted feature vector size was 3, while the fingerprint feature vector size was 9.

Decision trees construct predictive models using a tree-like structure to categorize
observations [47]. For the DT classifier, the splitting was performed based on the Gini
impurity; the max depth and random state were set to 4 and 0, respectively. The maximum
depth of the decision tree is an integer that controls the overall complexity of the tree and
must not exceed the number of samples used to train the model. Too large a maximum
depth can cause over-fitting of the model [48]. The random state parameter controls the
randomness of the estimator, resulting in randomly permutated features at each decision
tree split. RF is an ensemble method that addresses over-fitting by combining multiple
decision trees [49]. We utilized 100 decision trees with Gini impurity as splitting conditions
for the RF implementation.

KNN assigns class labels based on similarity metrics in the feature space [50]. For
the KNN classifier, four neighbors were used for the similarity estimation. Neighbors are
selected based on Euclidean distance, and all points are equally weighted when a new
point is queried. SVM is a widely used supervised technique that employs kernel functions
to separate data into higher-dimensional spaces [51]. We utilized the Radial Basis Function
(RBF) kernel, known for its effectiveness with non-linear and high-dimensional data. To
balance smoothness and accuracy in the decision boundary, we employ a regularization
parameter set to 1. This parameter interacts with another key factor, gamma, which controls
the influence of individual training points. A small gamma value creates a smoother
boundary by extending each point’s influence, while a large gamma focuses on nearby
points, potentially leading to overfitting. The algorithm automatically sets gamma based
on feature statistics to ensure consistent impact across datasets with varying feature scales.

We conducted training on ResNet18 for 2D image classification tasks using a fine-
tuning approach on a ResNet18 pre-trained on ImageNet. The process involved training
only with the final four layers after adding a new classification head. To standardize the
images, we resized them to 224 by 224 pixels and normalized the color values based on
mean and standard deviation. We used random rotations to augment the data. The model
was trained using the cross-entropy loss function and the Adam optimizer for 100 epochs,
with a batch size of 30, and a learning rate set to 0.001.

Because of this study’s limited number of samples, achieving an equivalent distribu-
tion within the training and test data sets after random splitting proved challenging. It
was necessary to carefully split the data manually or semi-automatically to ensure that
both datasets had representative samples regarding class labels and intra-class variability.
Hence, we opted for K-fold cross-validation, elaborated in the Section 2.4.1.

2.4.1. Evaluation Metrics

The classifier’s effectiveness can be evaluated using a confusion matrix. In this matrix, the
diagonal elements represent the number of observations where the predicted rating matches
the actual rating, while the off-diagonal elements indicate misclassified observations.
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An example confusion matrix for a binary classification problem is shown below:

‘ Predicted Positive (TP) Predicted Negative (TN)
Actual Positive (TP) TP FN
Actual Negative (TN) FP TN

In our analysis, we evaluated the performance of the models using information ex-
tracted from the confusion matrix. We used accuracy, mean per-class accuracy, and misclas-
sification as key metrics to compare the effectiveness of our models.

Accuracy provides insight into how well the model predicts the dataset’s correct
outcomes. It is calculated using the formula:

TP+ TN

Accuracy = TP+ TN+ FP + EN x 100

Mean per-class accuracy offers a refined understanding of how the classifier performs
for individual classes. Per-class accuracy considers the fraction of correctly predicted
instances for each class, which is especially valuable when dealing with imbalanced classes.
The formula for per-class accuracy for each class ‘i’ is as follows:

i-th observation of row i .
Per class accuracy = g -, i=1,...,n
Sum of observations of row i

where ‘n’ is the number of classes, and ‘row i’ represents the i-th row in the confusion matrix.
Mean per-class accuracy (MPCA) is the average of per-class accuracy across all classes
and can be calculated as:

Z Per class accuracy
i=1

n
Mean Per Class Accuracy = 1
Additionally, we utilized misclassification costs to quantify the impact of misclassifica-
tion errors. This was achieved through a misclassification cost matrix (w;;) detailing the
costs associated with wrongly predicted pairs of actual and predicted ratings, as outlined
in Table 1. In this matrix, the off-diagonal elements signify the costs of misclassification
for each rating, typically represented by finite real values. For instance, if an observation’s
actual rating is 5, the cost of misclassifying it as rating 1 is four times higher than mis-
classifying it as rating 4, and so forth. The misclassification cost can be computed using
the formula:

n n CM X W
Misclassification Cost = Z Z J 4

i=1j=1 N
Table 1. Cost matrix w;;.
Predicted
Actual 0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

We then use cross-validation to estimate how well each classifier performs on average.
Cross-validation is a technique to test how accurate a model is with new data. Cross-
validation is important because considering only accuracy can be misleading due to biases
and over-fitting. By considering bias and variance, cross-validation helps us understand
how well a model can generalize to new data. We use a common approach called k-fold
cross-validation with a value of k equal to 5, which strikes a good balance between bias and
variance [52]. We repeat this process five times to calculate the average misclassification
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error for each model. While accuracy and mean per-class accuracy show how well the
model does on the same dataset, the average cross-validation misclassification error tells us
how well the model performs on different datasets.

2.4.2. Data Imbalance

In our study, the dataset exhibited an imbalance in distribution across IDC classes,
primarily with most observations falling into IDC class 5 (VVR = 5) and fewer observations
belonging to class 1 (VVR = 1). This imbalance arises from the sample of soybean accessions
and soil conditions that promoted the expression of IDC symptoms. This resulted in a
higher count for class 5 than for class 1. Additionally, the other classes (VVR =2/3/4)
displayed a relatively balanced distribution among themselves. The class imbalance within
the dataset is visualized in Table 2.

Table 2. Distribution of Samples Based on IDC Rating in Our Dataset.

IDC Rating 1 2 3 4 5
Counts 86 124 123 164 226

To address the class imbalance, we utilized the synthetic minority over-sampling
technique (SMOTE) [53,54], a data augmentation method. SMOTE generates synthetic
samples resembling existing minority-class data points. It selects a minority data point and
its k nearest neighbors then creates new samples through random interpolation. This helps
counter class imbalance effects on the classifier. We incorporated an advanced variant,
SVM-SMOTE, which uses support vector machine principles to enhance synthetic sample
generation. Instead of random selection, SVM-SMOTE identifies key support vectors in the
minority class to strategically create samples closer to decision boundaries. This approach
balances classes and refines class boundaries, potentially boosting the classifier’s overall
performance and generalization on imbalanced datasets.

3. Results and Discussion
3.1. Handcrafted Stress Representation Comparisons

The scatter plots presented in Figure 5 offer a comprehensive understanding of the
intricate relationship between the three color percentages extracted from the complete
canopy point cloud data. Each data point featured on the plot corresponds to a unique
soybean canopy and is color-coded to reflect the canopy’s IDC class rating. Significantly,
a discernible demarcation between a canopy’s IDC severity class rating and its color
composition is observable. This observation emphasizes the efficacy of employing color
percentages as an informative feature for classifying IDC severity.

Furthermore, the distinction between a canopy’s IDC severity class rating and its color
composition is particularly pronounced when analyzing the handcrafted features derived
from 3D point clouds (Figure 5A) instead of those extracted from 2D images (Figure 5B).
This enhanced separation underscores the distinct advantages of leveraging the additional
dimensionality and complexity offered by 3D point cloud data. A similar overlap in
IDC severity class ratings within the handcrafted features extracted from 2D images was
reported by Naik et al. [12]. The discrepancy, or more overlapping in 2D handcrafted
features than 3D features, is understandable. Visual rating and 3D handcrafted features
involve observing the entire canopy, whereas 2D handcrafted features were extracted from
partial canopy views, thus utilizing less comprehensive data. Additionally, for severity
ratings reliant on color percentage, the invisibility of any part of the diseased plant’s canopy
(containing healthy or diseased leaves) will alter the percentage composition.
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Figure 5. Comparing (A) 2D and (B) 3D Handcrafted Features: Rating-Specific Distribution. Each
point on the plot represents the handcrafted color features of an IDC-stressed soybean canopy. Notice
that the 3D handcrafted features exhibit superior class separation compared to their 2D counterparts.

3.2. Comparing How Various Representations Affect Classification Results
We generated handcrafted, fingerprint, and latent representations. We trained DT,
KNN, RF, SVM, and ResNET18 models and compared their performance using mean per

class accuracy (MPCA).
From 2D images, we generated a handcrafted stress representation and trained dif-

ferent classifiers like DT, KNN, RF and SVM to map the handcrafted features to their
respective stress rating. We also used a ResNet18 CNN to directly map the learned latent
features of RGB images to stress ratings. Figure 6 shows that after training on a balanced
dataset Figure S1 using SVMSMOTE, the models’” average per-class accuracy ranged from
0.7 to 0.84, with the ResNet18 CNN having the best performance.

0.85 A

0.80 A

MPCA

0.70

0.65 -

0.60 -

« S & & &
S &S < > o

Figure 6. Comparing Classification Accuracy for Different Models on 2D Data: The evaluated models
encompass 2D Handcrafted Color Features and 2D CNN latent features. The x-axis represents the
various models (DT, KNN, RF, SVM, and CNN), and the bar plot illustrates the 5-fold accuracies

achieved by each model.

From the 3D RGB point cloud, we generated handcrafted features and fingerprint
stress representations to train different classifiers like DT, KNN, RF, and SVM. Figure 7
illustrates the classifiers’ performance on the balanced training dataset using SYMSMOTE.
The classifier based on handcrafted features had an average per-class accuracy varying from
0.93 to 0.95, while models trained with fingerprint features resulted in accuracy ranging
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from 0.94 to 0.97. The SVM classifier trained on the 3D fingerprint representation returned
the highest mean per-class accuracy.

The disparity in performance observed among classifiers trained on handcrafted
features and fingerprint stress representations can be attributed to several key factors:
(a) Fingerprint stress representations offer a more intricate and discriminative feature set
than handcrafted features extracted directly from the RGB point cloud. This richer feature
representation enables classifiers to capture finer patterns and nuances in the data, improv-
ing classification accuracy. (b) The higher dimensionality of fingerprint features allows
for a more comprehensive representation of the underlying data distribution, facilitating
the learning of complex decision boundaries. (c) The suitability of different classifiers for
handling specific characteristics of the feature representations plays a crucial role. For
instance, Support Vector Machines (SVMs) are well-known for their effectiveness in han-
dling high-dimensional data and nonlinear decision boundaries, making them particularly
adept at exploiting the discriminative power of fingerprint features. (d) Techniques like
SVMSMOTE for handling data imbalance can also improve classifier performance by pro-
viding a more balanced representation of the data during training. Overall, the combination
of richer feature representations, higher dimensionality, appropriate classifier selection,
and effective data balancing techniques collectively contribute to the superior performance
observed in the SVM classifier trained on the 3D fingerprint representation compared to
other classifiers trained on handcrafted features.

HE 3D-handcrafted
1.00 A 3D-fingerprint

0.95 1 T L - I
0.90 1
0.85 1
0.80 1
0.75 1
0.70
N S & &

Figure 7. Comparing Classification Accuracy for Different Models on 3D Data: The evaluated models
encompass 3D Handcrafted Color Features and 3D Fingerprints. The x-axis represents the various
models (DT, KNN, RF, and SVM), and the bar plot illustrates the five-fold accuracy achieved by
each model.

MPCA

3.3. Addressing Data Imbalance

In Table 3, we present the notable impact of our data balancing efforts on the outcomes
of our classification models, specifically focusing on the performance of models trained on
imbalanced and balanced 2D handcrafted features. The table highlights the mean per-class
accuracy (MPCA) attained through 5-fold cross-validation and the corresponding standard
deviations in parentheses. For models like k-nearest neighbors (KNN) with four neighbors
and support vector machine (SVM) employing the radial basis function with a regulariza-
tion parameter of 1, as well as decision trees constrained by a maximum depth of 4, there is
a discernible increase in MPCA after implementing data balancing techniques. We note
that all models have small standard deviations, suggesting robust models. Additionally, we
observe a reduction in the decision tree and SVM classifier’s standard deviation, indicating
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enhanced performance consistency. This analysis underscores the substantial improvement
in classification accuracy upon implementing data balancing techniques.

We observed that CNN and SVM fingerprints yielded the most promising results after
comparing various models and representations for 2D and 3D datasets. Notably, the 3D
data consistently outperformed its 2D counterpart regarding accuracy. The comparison
of misclassification costs is presented in Figure 8, and mean per class accuracy is shown
in Figure S2. For 2D images, the CNN method is the best-performing classifier with a
low misclassification cost compared to other methods. For 3D data, the fingerprint repre-
sentation and SVM method provide low misclassification costs around eight times lower
than the costs of 2D representations. Any 3D representations have less misclassification
cost compared to 2D representations. In addition, the confusion matrix in Figure 9 reveals
specific areas where 3D data are beneficial, such as misclassifying class 4 as five and class 3
as two.

Research has shown that 3D features provide better results than 2D features. For
instance, Rios-Toledo et al. [35] found that 3D features outperformed 2D, as the 3D model
could recognize plant stress even when visual signals were not apparent. In contrast, a 2D
approach only recognizes plant stress in images where the plant shows obvious physical
signs of stress. For a plant experiencing first-day stress, the physical signs were not visible
in the 2D image, but the morphological decline of the leaves as a result of crop stress was de-
tected by the 3D methodology. This information allowed the 3D methodology to recognize
stress even when visual signals were absent on the plant. This performance discrepancy
points towards 2D’s limitations in comprehensively capturing disease symptoms evident
across the canopy.

Table 3. Comparing Model Performance on 2D data: Mean Per-Class Accuracy (MPCA) Before and
After Data Balancing.

Model Imbalanced Balanced

Decision Trees (DT) 0.749 (0.029) 0.749 (0.028)
K-Nearest Neighbors (KNN) 0.780 (0.031) 0.798 (0.049)
Random Forest (RF) 0.770 (0.024) 0.778 (0.028)
Support Vector Machine (SVM) 0.634 (0.034) 0.707 (0.013)

s 2D-imbalanced
0.4 - 2D-handcrafted

3D-handcrafted
0.3 1 I I

3D-fingerprint
0.2 A :I: :|:

2D-CNN

Misclassification Cost

3 S « & N
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Figure 8. Comparing Mis-Classification Cost for Different Models on 2D and 3D Data: The evaluated
models encompass 2D Imbalanced Features, 2D Handcrafted Color Features, 2D CNN, 3D Hand-
crafted Color Features and 3D Fingerprints. The x-axis represents the various models (DT, KNN, RF,
SVM, and CNN), and the bar plot illustrates the misclassification cost generated by each model.



Agronomy 2024, 16, 1181

13 of 17

3D_fingerprint 2D_CNN

N2 0.00% 0.00% 0.00% 0.00% 1 JRERUY 18.75% 0.00% 0.00% 6.25% 100%

0.00% 0.00% 2 22.22% 0.00% 0.00%

24

34 0.00% 3.70% 96.30% 0.00% 34 0.00% 40.00% 48.00% 8.00% 4.00%

r 50%

True label

44 0.00% 0.00% 3.23% 96.77% 0.00% 44 0.00% 0.00% 0.00% 48.28%

54 0.00% 0.00% 0.00% 0.00% IR 5 | 0.00% 0.00% 0.00% 0.00% 100.00%

— 0%

~ v » ™ el ~ v » ™ o
Predicted rating Predicted rating
Figure 9. Comparing Confusion Matrices for the Top Two Performing Models Using 2D and
3D Features.

3.4. Future Directions

Further enhancements, such as fine-tuning fingerprint representations and incorpo-
rating additional canopy information like shape fingerprints, hold promise for improving
classifiers. By investigating the correlation between stress and shape fingerprints, the
impact of stress on the size and shape of the plant can be analyzed. Also, identifying
the most informative sub-canopy in making disease classification can help to develop a
hypothesis. While this study evaluated a single time point, a more in-depth and temporal
fingerprint could be developed to evaluate the stress progression and the impact of shape
and development over time. These temporal fingerprints could provide new insights
into agronomic traits, diseases, and pesticide applications, and even develop fingerprint
responses to abiotic stress and amendments.

Overall, utilizing 3D canopy data in genomic [55,56] and phenomic research can
significantly enrich the comprehension of stress factors. This is especially true in identifying
biotic stress traits such as disease and insects [56,57]. Exploring the feature vector within
the fingerprint representation, which evolves with plant height, offers the potential for
functional GWAS [55] to uncover potential loci associated with multi-scale canopy features
linked to stresses. Researchers can efficiently sift through genetic material by employing
unique canopy fingerprints, revealing correlations between canopy structures and stress
responses. Understanding the impact of various canopy levels on stress factors, such
as disease susceptibility and pest infestation, yields valuable insights for refining crop
improvement strategies. Leveraging 3D canopy data facilitates more precise prediction
of stress responses, thereby enhancing the efficacy of genomic studies to mitigate stress-
related agricultural losses. The 3D representation can be stored as metadata to the original
point clouds offering a practical solution for querying data and enhancing privacy in deep
models, as demonstrated by [58], or stored as a compressed representation of the point
cloud that can be used with other modalities to make decision.

While this work primarily focuses on fingerprints assessed from TLS laser point clouds,
the concept of canopy fingerprints can be applied across various technologies capable of
capturing 3D point clouds like handheld scanners, structured light or constructing 3D
point clouds from 2D images like such as space-carving, structure from motion [59-61].
Additionally, advancements in structure-from-motion and related methods, such as Neural
Radiance Fields [62] and Gaussian Splatting [63], have made it possible to reconstruct 3D
data from a set of 2D multi-view images from 2D images in wild conditions [64].

We note that canopy fingerprints (especially the vertically aligned fingerprints) may
produce differing representations if plants are tilted. However, this could be useful for
estimating agronomic traits like lodging. Fingerprint representation of stress serves as a
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novel strategy for high throughput phenotyping with applications in data curation, cultivar
selection, evaluation, and additional experimentation. Integration of canopy fingerprints
with machine learning models can further advance the field of phenomics and cyber-
agricultural systems [65].

4. Conclusions

This study explores the potential of using 3D point cloud data for precise plant stress
evaluation in field crops. We demonstrated that relatively simple (and interpretable) stress
representations extracted from 3D point cloud data can be used with classical machine
learning models to obtain accurate IDC predictions. In addition, techniques to rectify class
imbalance improve classification accuracy and are useful for real-world data complexities
where class imbalance is inevitable. The 3D canopy fingerprinting representation with
the SVM approach produces accuracies of around 95%, outperforming complicated deep
learning models that use only 2D data. This underscores how the integration of 3D data
enhances the accuracy of stress identification and classification, as other studies have
also shown [66,67]. The findings of this study have important implications for precision
agriculture and plant stress evaluation in field crops. The use of 3D point cloud data and
classical machine learning models with simple stress representations can lead to more
accurate and efficient identification and classification of plant stress, ultimately leading to
better crop management and increased yields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390 /agronomy14061181/s1, Figure S1: Comparing Handcrafted
Features of 2D images: Rating-Specific Distribution Pre- and Post-SVMSMOTE Implementation. Each
point illustrates handcrafted color features of IDC-stressed soybean canopies. Colors denote disease
ratings, as depicted in Figure 5, highlighting SMOTE's role in amplifying low-instance class samples;
Figure S2: Comparison of Classification MPCA for Different Models on 2D and 3D Datasets: The
models evaluated include 2D Imbalanced, 2D Handcrafted Color Features, 3D Handcrafted Color
Features, 3D Fingerprint, and 2D CNN (utilizing latent features from CNN). The x-axis represents the
various models (KNN, RF, SVM, and CNN), and the bar plot illustrates the 5-fold MPCA achieved by
each model.
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