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Abstract 

Artificial intelligence (AI) in soybean research has revolutionized various crop 
improvement and production aspects. This review provides predominant areas that 
have seen the use of AI. AI applications in phenomics have enabled collecting and 
analyzing high-dimensional data in soybean plants, from below- to above-ground 
traits, predicting phenotypes, and identifying complex patterns. In genomics, AI has 
improved genomic selection accuracy and identified genomic regions associated 
with traits of interest, such as resistance to biotic and abiotic stresses. AI has also been 
extensively used in detecting and managing biotic and abiotic plant stresses using 
RGB, multispectral, and thermal imagery from ground-based and aerial platforms. 
Additionally, AI has shown significant potential in yield prediction, incorporating 
factors such as vegetation indices, weather data, and soil properties. This review 
explains the concept of cyber-agricultural systems (CAS) that integrates AI, advanced 
sensing, computational modeling, and scalable cyberinfrastructure to optimize soy
bean production, enhance resource management, reduce environmental impact, and 
improve farm efficiency. We explain the use of CAS in crop improvement as well. We 
provide an exhaustive listing of challenges and future direction in the integration of AI 
in soybean production and crop improvement, including multi-modal and layered 
sensing, data availability and quality, computational modeling, AI models and tools, 
Cyberinfrastructure, Explainability and interpretability of AI models, AI-related impacts 
on privacy, ethics, and policy, Impact on Smallholder Farmers, Digital Twin, Large 
Soybean Datasets for community usage, and Immersive environments.

1. Introduction

Soybeans are an essential source of both protein and oil, playing a 
critical role in human and animal nutrition. Soybean offers a high-quality 
protein source that helps address global nutritional and feed needs, parti
cularly in developing regions (Hartman et al., 2011). In animal diets, 
soybean meal significantly boosts livestock productivity by providing 
essential amino acids, thereby supporting the global meat supply chain 
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(Graham and Vance, 2003). The versatility of soybean extends beyond 
nutrition, as they are also pivotal in various industries, including sustainable 
aviation fuel and biodiesel production, further underscoring their eco
nomic importance (Hartman et al., 2011). Moreover, soybean contributes 
to sustainable agricultural practices through biological nitrogen fixation. 
This process enhances soil fertility by converting atmospheric nitrogen into 
a form usable by plants, thereby reducing the reliance on synthetic nitrogen 
fertilizers (Graham and Vance, 2003).

Soybean production has faced numerous challenges as acreage has 
expanded. The effects of biotic and abiotic pressure individually, and in 
combination, can negatively impact soybean yield, resulting in billions of 
dollars in U.S. crop insurance payments, economic losses for farmers, and 
increased prices for consumers (Dice and Rodziewicz, 2020). These stresses 
can be exacerbated by extreme weather events, which are becoming more 
prevalent due to climate change (Raymond et al., 2020). Across crop 
species, the main abiotic stress factors associated with yield losses are 
drought, heat, cold, and soil salinity (Oerke, 2006). Water deficit, or 
drought, is a major abiotic factor that affects the yield of crop species 
around the world, and is considered as one of the main constraints on yield 
potential in the highly productive US Corn Belt region (Yang and Wang, 
2023). Soybean yield losses due to drought stem from reduced growth and 
development rate, and have been found to cause a yield reduction of 40 % 
(Specht et al., 1999). A recent study on the magnitude, frequency, dura
tion, and timing of droughts showed that more than two thirds of global 
soybean acreage is at high risk of severe droughts causing reduced yield in 
soybean (Santini et al., 2022). Rising global temperatures, that often 
accompany drought stress, are predicted to increase the prevalence of heat 
stress in many soybean production regions (Teixeira et al., 2013). While 
heat stress has generally not been considered a significant constraint on 
soybean production worldwide, end-of-the-century climate projections 
show it to be an increasingly important factor affecting the yields of 
numerous crop species, including soybean (Bezner Kerr et al., 2022), 
which is projected to have yield losses of up to 22 % due to heat stress 
(Yang and Wang, 2023). Additionally, cold temperatures can negatively 
impact soybean. Depending on the cultivation area, cold stress can affect 
the germination and seedling establishment, particularly if planting dates are 
earlier, and early frosts can affect seed development at the end of the season 
(Ohnishi et al., 2010).
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In addition to abiotic stresses, soybean is also exposed to yield limiting 
biotic stresses such as insect pests, diseases, and weeds. In 2022, the most 
severe biotic stress in both the Northern and Southern United States as well 
as Ontario, Canada was soybean cyst nematode (Heterodera glycines) causing 
over 90 million bushels in yield loss (Allen et al., 2023). In the Northern 
United States and Ontario, Canada, the fungal disease sudden death syn
drome (Fusarium virguliforme) ranks second causing over 19 million bushels 
yield loss, while in the southern region of the US, root knot nematode 
(Meloidogyne spp.) takes second place causing over 13 million bushels in 
yield loss (Allen et al., 2023). Poorly controlled weeds, especially in late- 
season, can cause yield losses up to 48 % (Landau et al., 2022). Insects are 
constantly on the move and new insect pests can emerge to cause damage 
such as the soybean gall midge (Resseliella maxima Gagné) first reported in 
2019 in the Midwest United States (Gagné et al., 2019) and can cause yield 
losses from 17–31 % in soybean (McMechan et al., 2021). Biotic stresses 
pose a unique challenge in that they are also constantly evolving to meet 
and overcome genetic and management strategies developed for biotic 
stress mitigation. Unfortunately, the United States leads the world with 132 
species of herbicide resistant weeds, with a growing number of species 
developing resistance to multiple herbicide modes of action (Heap, 2024). 
To make matters worse, soybean cyst nematode has developed the ability 
to reproduce on a highly utilized source of resistance from PI 88788 
(McCarville et al., 2017) that was predominantly used in breeding due to its 
effectiveness and incorporation in high-yielding genetic materials. These 
unique challenges highlight the need for both diverse genetic and man
agement strategies to safeguard the genetic and chemical strategies for as 
long as possible. As the problems exacerbate and new issues emerge in crop 
production, we must investigate state-of-the-art technology and novel 
methods to breed higher-yielding, more resilient crops.

Soybean breeders have adapted and developed new technology to face 
the various challenges in today’s production of soybeans. Among these 
tools is artificial intelligence (AI) where computer models are trained to 
process information in a manner similar to the human brain. AI and deep 
learning (DL) have emerged as transformative tools in modern agriculture, 
reshaping traditional practices and fostering innovation (Pathan et al., 
2020). The integration of AI in soybean improvement and production 
represents new approaches to meet the global protein and oil needs. AI 
technologies can help improve plant breeding efficiency and success, 
optimize crop production and management, and help control diseases and 
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pests, leading to increased productivity and sustainability. These techno
logical advancements are crucial for meeting the rising global demand for 
soybeans, ensuring food security, and maintaining economic stability 
Negus et al. (2024). The soybean industry can achieve more efficient and 
resilient production systems by leveraging AI, ultimately contributing to a 
more secure and sustainable agricultural future.

This paradigm shift is propelled by the exponential growth of data and 
the advent of high-throughput imaging technologies, which generate vast 
amounts of valuable information regarding plant health and environmental 
conditions (Araus and Cairns, 2014). The emergence of advanced technol
ogies such as drones, ground robots, and sensors, has brought high- 
throughput phenotyping and phenomics to the forefront, transforming the 
measurement of multiple plant traits across various growth stages and facil
itating rapid, precise, and accurate data collection (Feng et al., 2021; Guo 
et al., 2021). DL plays a pivotal role in harnessing this deluge of data for the 
identification, classification, quantification, and prediction (ICQP) of plant 
stress phenomena (Singh et al., 2016). By leveraging its capacity for 
sophisticated data analysis and pattern recognition, DL enables the extraction 
of valuable insights from complex datasets Feuer et al. (2024). This 
empowers farmers and researchers to make informed decisions regarding 
crop management practices, resource allocation, and stress mitigation stra
tegies. AI advancement, in conjunction with data generation and sensing 
technology, is solving complex problems.

This review article provides a comprehensive overview of the literature 
on AI in soybean breeding and production, along with basics of machine 
learning, deep learning, and artificial intelligence. Several AI application 
areas are covered, including phenomics, genomics, and cyber-agricultural 
systems. We present challenges that need to be overcome for a full reali
zation of AI potential and present future directions in plant breeding and 
crop production.

2. Machine learning, deep learning, and artificial 
intelligence

Machine Learning (ML), Deep Learning (DL), and Artificial 
Intelligence (AI) are key components of modern data-driven technology, 
each with unique roles that are closely connected (Fig. 1). AI is the 
broadest term and refers to creating systems that can perform tasks that 
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usually require human intelligence, such as making decisions, solving 
problems, and learning from experience. For example, an AI system in 
agriculture might analyze weather data and plant health to recommend the 
best time to harvest crops.

ML is a part of AI that focuses on creating algorithms that allow 
computers to learn from data and make predictions. Think of it as teaching 
a computer to recognize patterns and make decisions based on those pat
terns. ML can be divided into three main types: (a) supervised learning, (b) 
unsupervised learning, and (c) reinforcement learning. In supervised 
learning, the computer is trained on a labeled dataset, meaning each piece 
of data has a correct answer provided. For example, labeled images of 
healthy and diseased plants can be used to teach the computer to identify 
diseases. Unsupervised learning involves the computer looking for patterns 
in data without any labels, similar to sorting a mixed bag of seeds into 
groups without knowing what each seed type is. Reinforcement learning 
involves computer learning by trial and error, receiving rewards for correct 
actions, much like training a dog with treats for good behavior.

Numerous ML techniques have demonstrated their efficacy in soybean 
phenotyping. Common regression methods used include linear regression, 
logistic regression, stepwise regression, ridge regression, partial least squares 
regression, elastic net regression, piecewise regression, tree regression, and 
Gaussian process regression. Classification methods frequently employed 

Fig. 1 Artificial intelligence, Machine learning, Deep learning, Generative AI and Large 
language models: Description of the terms, Data type and size, Complexity and 
Examples of usage. 
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are Naive Bayes, decision trees, random forests, K-nearest neighbor, linear 
discriminant analysis, quadratic discriminant analysis, support vector 
machines (SVM), and extreme learning machines. These methods have 
been applied to various phenotyping tasks, providing valuable insights into 
soybean traits and growth patterns. These are covered in more detail in 
(Singh et al., 2016; Gill et al., 2022b).

DL is a more advanced subset of ML. It uses complex structures called 
neural networks with many layers (hence “deep”) to process and learn from 
large amounts of data. DL is especially powerful for tasks involving images, 
audio, and text. In plant breeding and phenotyping, DL can be used to 
analyze images of plants to detect diseases, measure growth, and predict 
yields. This advanced capability allows breeders, researchers, and farmers to 
gain valuable insights from complex datasets, leading to more precise and 
efficient agricultural practices.

DL algorithms have shown significant promise in extracting valuable 
insights from plant phenotype data. Advances in automation, computation, 
and sensor technology have facilitated the collection of high-resolution 
phenotype data across extensive geographical areas with high temporal 
resolution. This influx of data has enabled the successful application of DL 
algorithms to a wide range of plant phenotyping tasks. Deep learning 
methods, particularly Convolutional Neural Networks (CNN), have 
excelled in challenging tasks such as plant disease classification (Singh et al., 
2018). Additionally, DL methods have achieved state-of-the-art perfor
mance in complex image-based phenotyping problems, such as root and 
shoot feature identification and localization (Jubery et al., 2021). Other 
commonly used deep learning models in soybean phenotyping include 
Multilayer Perceptrons (MLP), Recurrent Neural Networks (RNN), and 
Long Short-Term Memory (LSTM) (Shook et al., 2021). Other research 
areas include generative deep learning, super-resolution, dehazing, and 
spectral reconstruction, which aim to enhance sensor-based phenotype 
information (Shoeiby et al., 2019). Reinforcement learning (RL) is also a 
developing area, particularly useful for optimizing phenotyping strategies 
and improving decision-making processes in soybean research as proto
typed in (Hitti et al., 2024). A comprehensive discussion on DL for plant 
phenotyping can be found in (Singh et al., 2018).

Currently, transformer-based models, such as vision transformers 
(Dosovitskiy et al., 2020) have emerged as powerful tools in deep learning 
due to their ability to capture long-range dependencies and contextual 
information. The performance of these models has led to their adoption in 
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phenotyping tasks for improved phenotyping performance (Bi et al., 2023). 
Transformer-based models are particularly effective in handling large-scale 
phenotyping data, offering improved performance and scalability for soy
bean research tasks (Yang et al., 2022).

In soybean research, the collection of vast amounts of data has outpaced 
the available expertise for labeling, resulting in a substantial amount of 
unlabeled data. This imbalance poses a significant challenge for training 
effective deep learning models. However, several techniques can help 
address this issue, some of which are explained below: 

• Active Learning: This approach involves selectively querying the most 
informative data points for labeling, thereby maximizing the efficiency of 
the labeling process. By focusing on the most uncertain or diverse 
samples, active learning can significantly reduce the amount of labeled 
data required for training while maintaining model performance This 
approach has been successfully implemented in soybean leaf stress clas
sification (Nagasubramanian et al., 2021).

• Transfer Learning: Transfer learning leverages pre-trained models on 
related tasks or domains to improve performance on the target task. In 
soybean research, models pre-trained on large, annotated datasets from 
similar crops or agricultural tasks can be fine-tuned with a smaller 
amount of soybean-specific data, thereby overcoming the labeling bot
tleneck (Yang et al., 2021).

• Self-Supervised Learning: This technique uses the data itself to generate 
supervisory signals, enabling the model to learn useful representations 
from unlabeled data. For example, by learning augmented views of the 
data from various angles and parts, the model can learn robust features 
without requiring extensive labeled datasets (Chiranjeevi et al., 2023).

Computer Vision (CV), a field of AI that enables machines to interpret 
visual information, is increasingly applied in soybean breeding and pro
duction for high-throughput phenotyping. Using image processing tech
niques and machine learning algorithms, including deep learning models 
like Convolutional Neural Networks, CV automates the extraction of 
plant traits from images. These pipelines can measure plant height, leaf area, 
and canopy cover from aerial images; detect diseases based on leaf symp
toms; and assess pod and seed characteristics. This approach allows breeders 
to evaluate large plant populations more efficiently than manual methods, 
potentially capturing subtle variations that human observers might miss. 
Recent developments in imaging technologies, such as multispectral and 
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hyperspectral cameras, 3D imaging including LiDAR (Light Detection and 
Ranging), and photogrammetry, have expanded CV applications in soy
bean phenotyping. For example, hyperspectral imaging has been used to 
assess drought stress responses and nitrogen status in soybeans Li et al. 
(2020). These 3D techniques provide more accurate measurements of plant 
architecture and biomass Paulus (2019). As imaging technologies progress, 
CV may provide new insights into soybean phenotypes, contributing to 
crop improvement efforts.

3. Phenotyping and AI

Automated plant phenotyping pipelines are essential for measuring 
plant traits efficiently and accurately. Sensors, when integrated across 
multiple platforms, capture diverse data types that are critical for these 
phenotyping pipelines. They offer powerful tools for gathering data at 
various scales and resolutions. These pipelines rely heavily on robust image 
processing and AI algorithms to extract meaningful insights from the data 
(see Fig. 1). In addition, they offer promising approaches for faster and 
more efficient analytics, enabling researchers to uncover patterns and fea
tures from the large volumes of data generated by high-throughput phe
notyping platforms (Ghosal et al., 2018). Researchers have developed and 
applied various image processing algorithms to measure different plant 
traits. Techniques such as segmentation, classification, feature extraction, 
skeletonization, graph-based algorithms, and morphological operations 
have been widely used for this purpose (Hamuda et al., 2016; Arnal 
Barbedo, 2013; Kumar and Raghavendra, 2019). These tools are essential 
for extracting meaningful information from images, enabling accurate and 
high-throughput phenotyping of soybean plants.

High-throughput phenotyping (HTP) is an advanced method that 
allows for the rapid measurement and analysis of plant traits using auto
mated imaging and data processing techniques. Combining various plat
forms and sensors, HTP systems can capture large volumes of phenotypic 
data in a short amount of time, significantly enhancing the efficiency of 
phenotyping beyond traditional manual and visual methods that can be 
time-consuming and labor-intensive. Furthermore, large breeding pro
grams and farm fields benefit from the use of technology that can span a 
field faster than a human alone to allow for increased population sizes and 
full coverage scouting in a farm field. HTP can be applied at multiple levels 
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of crop growth and development from microscopic (Akintayo et al., 2018), 
to single leaf (Yu et al., 2024), root (Carley et al., 2023), plant canopy 
(Naik et al., 2017), test plots (Parmley et al., 2019a), to large scale field 
evaluation (Song et al., 2017) assisted by specially designed HTP systems. 
These advancements in HTP provide valuable insights into plant growth 
patterns and improve the precision of phenotypic evaluations in soybean 
breeding programs (Singh et al., 2021b).

3.1 Sensors for data collection
Data is the foundation for developing AI applications in soybean breeding 
and production. Large and high quality data sets are important for devel
opment of useful techniques and models. The sensors commonly used in 
high throughput phenotyping can be organized by their data output such as 
digital or numeric, by their radiation source (active or passive), and by the 
range of the electromagnetic (EM) spectrum utilized (Singh et al., 2021b). 
Below we discuss sensors, data types, and the various platforms utilized to 
facilitate data collection.

RGB sensors, much like the human eye, are able to capture color 
differences in the visual range (400–700 nm), specifically red, green, and 
blue (RGB) channels. RGB sensors are commonly used for agricultural 
purposes due to their accessibility, affordability, high resolution, and ver
satility (Singh et al., 2021a). The ability to detect and differentiate colors is 
a fundamental strength of these cameras, which makes them particularly 
useful in a variety of applications in soybean phenotyping, such as nutrient 
deficiency screening (Dobbels and Lorenz, 2019; Naik et al., 2017), disease 
classification (Ghosal et al., 2018), disease quantification (Rairdin et al., 
2022), and even yield and agronomic trait prediction (Yuan et al., 2019). 
RGB sensors excel in morphological phenotyping of various plant parts 
such as roots and nodules, extracting traits that would be insurmountable to 
collect manually (Falk et al., 2020a,b; Carley et al., 2023). In associated 
agricultural tasks, RGB sensors have been used for insect detection 
(Chiranjeevi et al., 2023), weed density assessment dos Santos Ferreira et al. 
(2017), weed identification Zou et al. (2023), and weed management 
through precision agriculture (Staff, 2022).

Multispectral sensors have a wider spectral range than RGB sensors 
and typically utilize about 3–10 wavebands (Singh et al., 2021a). Wavebands 
are generally wider, containing several wavelengths, and non-continuous. In 
addition to RGB bands, multispectral cameras often contain red-edge and/or 
near-infrared (NIR) bands which can capture non-visual clues for plant 
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health assessment and early detection (Jones et al., 2024). Unlike RGB 
sensors, multispectral sensors enable calculation of many more vegetation 
indices that augment data, including commonly used vegetation indices such 
as NDVI index (Rouse et al., 1973). Multispectral sensors excel in situations 
where information beyond the visual spectrum is beneficial and are often 
used in soybean stress screening (Zhou et al., 2021, 2020), and have been 
used in soybean yield prediction as well (Herrero-Huerta et al., 2020).

Hyperspectral sensors are found in two forms including radiometers 
with purely spectral dimensions in digital number output, as well as imaging 
sensors with spatial and spectral dimensions. Hyperspectral sensors cover a 
larger range of the EM spectrum at a much higher and continuous density 
compared to multispectral sensors. The range and density of hyperspectral 
sensors enable calculation of a wider range of vegetation indices targeting 
very specific single wavelength bands and utilizing wavelengths from the 
ultra-violet, to infrared, and short-wave infrared regions. In soybean, several 
studies utilizing hyperspectral imaging have been performed in the lab or 
greenhouse for early and accurate disease detection and severity estimation 
(Nagasubramanian et al., 2018, 2019). Studies utilizing hyperspectral radio
meters have been successful in the field for yield prediction and predictive 
breeding (Parmley et al., 2019b,a).

Thermal sensors capture infrared radiation at a far range of the EM 
spectrum compared to RGB, multispectral, and hyperspectral sensors. In 
soybean, research found that thermal data can help identify candidate genes 
for drought tolerance in soybean (Bazzer and Purcell, 2020), is closely 
related to drought induced canopy wilting (Bai and Purcell, 2018) as well as 
soybean crop water status (Crusiol et al., 2020). Thermal sensors com
monly used in plant phenotyping come in several forms including non- 
contact imagers and radiometers which capture thermal infrared radiation 
emitted, and direct contact thermocouples. Non-contact thermal imagers 
have an advantage in phenotyping speed as they can be mounted on 
drones, however, these methods do not come without challenges. Accu
racy of thermal imaging can vary widely and is sensitive to environmental 
parameters such as air temperature, flight direction, solar angle, humidity, 
and cloud cover among other factors (Perich et al., 2020) and should be 
evaluated closely for accurate phenotyping.

3D sensor (three-dimensional) is a device that attains information 
about the physical/natural world in three dimensions (X, Y, Z), in addition 
to the information gathered by 2D image data. The primary usage of 3D 
sensors is to gather depth, which tells the distance between the object and 
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the sensor for every point in the image. The sensors can also measure the 
size, volume, shape, contour, surface texture, and light reflectivity, making 
them useful for applications in diverse industries. These sensors allow access 
to the plant architecture, enabling tracking of the physical development, 
and define different parameters of plant organs and canopies (Paulus, 2019; 
Young et al., 2023). 3D sensors have the potential to provide both qua
litative and quantitative measures of plants, capturing detailed information 
such as the number and shapes of leaves, size, surface area, and the archi
tecture of the plant (Paulus, 2019; Salter et al., 2021). They can accurately 
assess branch and leaf angles, contributing significantly to our under
standing of plant morphology and behavior under various environmental 
conditions (Liu et al., 2019a; Zhou, 2022; Young et al., 2024). Impor
tantly, all this data is gathered non-destructively, allowing continuous 
monitoring and analysis without harming the plant. A range of 3D sensors 
offer varied outputs, crucial for detailed spatial analysis and precise mod
eling across different applications. 

• Point Cloud: Point cloud data is produced by specific 3D sensors that 
capture the spatial data as points. Point cloud data have coordinates and 
color information for each point of the environment detected by sensors. 
This data type is useful for applications requiring high-precision mod
eling and mapping. 
– (a) LiDaR: Light detecting and ranging system (LiDAR) technology 

emits pulses of light by laser beams and then calculates how long it 
takes for each light pulse to return, hence calculating the distance to 
objects. This results in dense point clouds that accurately represent 3D 
representations of the environment. The LiDAR system can collect 
data by airborne laser scanner, terrestrial, or mobile laser scanner, 
serving diverse applications. LiDAR systems can be utilized for 
measuring crop features, detecting objects, evaluating biomass, and 
planning agricultural activities (Rivera et al., 2023).

– (b) Structured Light Scanners: Similar to LiDAR, Structured Light 
Scanners detect distances using light. These scanners emit a known 
pattern of light onto an object and calculate the deformation of this 
pattern when it reflects (Georgopoulos et al., 2010). This process creates a 
dense 3D point cloud of the object. Additionally, in detailed agricultural 
and environmental studies, these sensors provide depth and RGB data 
(RGB-D), facilitating the classification and detection of various objects, 
such as leaves, branches, flowers, and fruits (Harandi et al., 2023).
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– (c) Photogrammetry: Photogrammetry uses overlapping 2D images 
captured from different perspectives to reconstruct detailed 3D models 
with texture mappings. This technology creates lifelike and textured 
3D representations, ideal for precise modeling of objects and envir
onments. It can be utilized in any situation where the object can be 
photographically recorded, reconstructing them into multiple digital 
formats like coordinates, point clouds, and meshes (Luhmann et al., 
2023). Significantly, photogrammetry is proficient at generating 
detailed digital twins of agricultural fields, facilitating precise soil 
roughness measurement, and enhancing crop management strategies 
(Gilliot et al., 2017).

• Depth Map: Depth map data encodes the distance of objects from the 
camera lens, where each pixel represents the distance from the camera. 
This data typically employs a grayscale or color scale to visually indicate 
varying distances, clearly depicting the object’s depth. This format is an 
effective way to visually assess objects’ spatial arrangement and depth in 
an environment (Chen et al., 2023). 
– (a) Stereo Vision Cameras: Stereo Vision Cameras measure 3D shapes 

and typically consist of two or more image sensors positioned at 
slightly different angles. These cameras capture images simultaneously 
from multiple perspectives, allowing them to collect in-depth infor
mation based on the disparity between the images (Rosell-Polo et al., 
2015). This technique is highly effective in applications such as 
autonomous navigation for robots in various environments and gen
erating detailed 3D terrain maps (Rovira-Más et al., 2008).

– (b) Time-of-Flight Cameras: Time-of-flight (ToF) cameras measure 
full-range distances in real time. They first light the scene with 
modulated infrared light and then measure the phase shift between the 
reference signal and the reflected light. The system allows for precise 
depth mapping, which is essential in environments requiring rapid and 
precise distance measurements (Lindner et al., 2010). These low-cost 
ToF sensors can be directly utilized to derive crop height models, 
eliminating the need for prior terrain measurements (Hämmerle and 
Höfle, 2016).

All of the above-mentioned sensors capture information about plants 
from different point of view, providing in-depth phenotyping possibilities.

The integration of ML, DL, and AI with 3D sensor data enhances plant 
phenotyping. ML algorithms, such as Random Forest (RF), can be utilized 
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to analyze complex 3D datasets for yield prediction, leaf area index, and 
biomass (Randelović et al., 2023). DL excels in extracting characteristics 
from 3D imaging by using CNNs, improving detection and classification of 
plant structures. For example, (Zhao et al., 2022) demonstrated that 
DL-based 3D reconstruction from single RGB photos could effectively 
estimate phenotypic variables. Their technique involves applying deep 
learning to construct 3D models of plants from simple 2D photos, allowing 
for phenotypic measurements of plant height, trunk diameter, canopy size 
and analysis of plant growth status. AI leverages ML and DL results from 
numerous sensors to optimize crop management and breeding strategies, 
allowing for real-time monitoring and decision-making. Recent studies 
show that incorporating AI with sensors and robots can assess plant features, 
measure physiological parameters, detect diseases, and predict crop yields 
and performances (Qiao et al., 2022).

3.2 Platforms for carrying sensors
Numerous platform options exist to carry suites of sensors for use in 
phenotyping soybean, as well as other crop species. The broad categories 
for such platforms include proximal and aerial platforms. Proximal plat
forms enable proximal phenotyping of plants, which is the phenotyping of 
crop plants via ground-based, non-destructive approaches for in situ 
measurements. Field carts, or proximal sensing carts (PSCs), are a low-cost 
platform that requires manual pushing or pulling to move through the field, 
although more advanced versions are motorized to reduce the labor of 
moving such carts through the field (Alison et al., 2018). PSCs are often 
lightweight for minimal soil disturbance and can be customized to suit the 
height and row spacing as required for the field. Additionally, sensors can 
easily be added, removed, or re-positioned for different requirements, 
allowing for a flexible platform, such as collecting canopy data in soybean 
(Parmley et al., 2019a). Another proximal platform is field rovers, which 
are semi-autonomous and require less human labor for operation. Rovers 
can be built narrow to fit within rows of soybean and other crops or have a 
high clearance to go over crops. Today, multiple commercial options of 
rovers have been developed for use in agriculture research (Farm-ng, 2024; 
EarthSense, 2021). Rovers equipped with LiDAR and RGB cameras and 
has been used in soybean to estimate yield by tracking and counting soy
bean pod numbers (McGuire et al., 2021; Riera et al., 2021).

Uncrewed aerial vehicles (UAVs), commonly called drones, have increased 
in popularity for plant phenotyping due to their high throughput ability. 
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UAVs can collect data in a shorter amount of time compared to the ground- 
based methods, have less of a risk of damaging the plants, and no risk of soil 
compaction due to the traffic of the platform in the field. The speed of UAVs 
allows for a higher temporal and spatial resolution of data (Xie and Yang, 
2020), which provides for phenotyping with greater accuracy. Different classes 
of UAVs exist, with four broad categories being single-rotors, multi-rotors, 
fixed wings, and vertical takeoff and landing (VTOL) (Guo et al., 2021). These 
different categories of UAVs differ in their payload capacity, maximum flight 
time, and ease of operation, which are all factors to consider when deploying 
UAVs in soybean research and production. An additional platform for aerial 
sensing is the use of satellites, which can carry sensors for panchromatic, 
multispectral, and hyperspectral imagery. Satellites have been used in soybean 
for on-farm yield forecasting (Schwalbert et al., 2020), as well as for predicting 
soybean seed composition (Hernandez et al., 2023). While satellites do not 
require a trained operator like UAVs do, several limitations need to be con
sidered. These limitations include the resolution of the cameras, weather 
conditions, and the revisit frequency for imaging. As of 2023, the average farm 
size in the United States is 464 acres, making crop stress scouting a time- 
consuming challenge by traditional on-the-ground methods (USDA-NASS, 
2024). Drones and satellite platforms offer rapid methods for large-scale 
imaging of crop fields, enable measurement of wavelengths beyond human 
vision, and facilitate high-throughput phenotyping in major crop breeding 
programs (Herr et al., 2023).

4. Applications of AI in soybean improvement and 
production

4.1 Phenomics
The soybean phenotype results from the interaction of a plant’s genotype, 
environment, and management practices (Furbank and Tester, 2011). Plant 
phenomics involves large-scale collection of high-dimensional data across 
an organism (Houle et al., 2010). Advanced phenotyping platforms and 
sensors have created a deluge of data requiring sophisticated analysis 
methods (Singh et al., 2016). Characterizing soybean phenotypes has direct 
advantages in breeding by enhancing the understanding of genotype- 
phenotype interactions. This facilitates rapid selection in breeding programs 
by identifying genes of interest (Rairdin et al., 2022) and is key to 
understanding the genetic basis of complex traits (Houle et al., 2010).
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Deep learning models, particularly CNNs and RNNs, have revolu
tionized phenotype prediction in crops. CNNs excel at analyzing spatial 
data from genomic sequences, while RNNs capture temporal changes over 
plant developmental stages (Gao et al., 2023; Ray et al., 2023). These 
models excel in processing and analyzing high-dimensional phenotypic 
data, such as images capturing plant morphology and developmental stages 
(Liu et al., 2019b). By leveraging large datasets, CNNs can identify com
plex patterns and subtle variations in phenotypic traits, such as leaf shape, 
plant height, and biomass, which are crucial for assessing plant health and 
vigor. In addition to CNNs, advanced AI techniques have been applied to 
enhance the precision and accuracy of phenomic predictions (Xu et al., 
2022). The integration of diverse datasets provides comprehensive insights 
into plant responses and adaptations, supporting the selection of superior 
genotypes for breeding. Additional challenges, such as the integration of 
multiple modalities of sensing has been met by new models such as the 
RGB and Infrared Feature Fusion Segmentation Network (RIFSeg-Net) 
that utilizes a Res-Net backbone (Yu et al., 2024). The model combines 
images from multiple modalities creating a single mask for segmentation 
enabled by the Segment Anything Model (SAM) (Kirillov et al., 2023) that 
accurately extracts individual leaves from canopies.

AI enabled phenomics is transforming soybean breeding, enabling 
collection of previously difficult-to-measure or labor intensive traits 
(Fig. 2). A mobile, low-cost root phenotyping system using computer 
vision and machine learning was developed for high-throughput analysis of 
root system architecture traits (Falk et al., 2020a). Novel methods pair AI 
with phenotyping to increase automation and feasible population sizes. 
Examples include using hyperspectral wavebands and 3D deep CNNs to 
measure internal stem disease symptoms (Nagasubramanian et al., 2019), 
and employing RetinaNet and UNet architectures for root nodulation trait 
collection (Jubery et al., 2021; Carley et al., 2023). These technologies 
introduce new traits, such as nodule size and location on the root, that can 
be measured via high-throughput systems. At field scale, supervised 
machine learning techniques like LASSO enable early yield prediction and 
selection using UAV data, allowing screening of large populations com
parable to breeders’ selection (Zhou et al., 2022). By increasing the speed 
and automation of trait collection, these methods allow breeders and sci
entists to investigate topics not previously attempted. As satellite tech
nology advances, the application of these models to larger-scale platforms 
becomes feasible.
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From a breeding perspective, having a fully characterized soybean 
phenotype is key to developing ideotypes - ideal plant types that optimize 
desired traits for specific environments for prescriptive breeding. The use of 
DL in soybean breeding is transforming the field, enabling breeders to 
collect previously difficult to measure traits such as root shape, length, 
number, mass, and angle made possible through a mobile, low-cost root 
phenotyping system using computer vision and ML for high-throughput 
analysis of root system architecture (RSA) traits (Falk et al., 2020a). Fur
thermore, development of shape profiles could assist breeders in under
standing characteristics ideal for certain environments. This capability 
facilitates location-dependent prescriptive breeding, and enhances the 
selection of superior lines via additional traits.

The development of reliable, high-throughput methods is crucial for 
screening large populations for important traits. Integrating AI in phe
nomics offers a robust framework for image-to-trait pipelines, combining 
genetic data with environmental insights to enhance trait predictions and 

Fig. 2 Overview of soybean breeding strategy using genomics, phenomics, and 
artificial intelligence (AI) for multi-environment evaluation leading to the identifica
tion of a new variety. Breeding populations (e.g., Pop 01, Pop 02, Pop 03) undergo 
multiple generations of selection. Genomics (including Marker-assisted selection and 
Genomic Prediction) and Phenomics with AI are useful to optimize the cross-selection, 
trait estimate and prediction, and culling and selection. Marker-assisted selection and 
genomic selection models can be applied to enrich allele and gene frequencies over 
generations. AI enhances the accuracy of complex trait prediction, particularly in 
multi-environment trials, accelerating genetic gains and improving performance 
across diverse locations. 
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cultivate soybean varieties tailored to global agricultural demands. The use 
of deep learning and big data analytics not only improves the efficiency of 
phenomic predictions but also enhances the understanding of genotype- 
environment interactions, leading to more resilient and productive soybean 
varieties. Overall, the application of AI in phenomic prediction provides a 
powerful tool for advancing soybean breeding and production. The ability 
to analyze and interpret complex phenotypic data enables breeders to make 
more informed decisions, accelerating the development of high-per
forming soybean cultivars for target environments.

4.2 Genomics
As climate change is expected to decrease overall crop productivity and 
soybean demand is projected to increase (Ray et al., 2013), addressing these 
challenges requires developing genomics-based approaches for crop 
improvement, leveraging the large quantities of genomic data produced in 
recent years (Abberton et al., 2016). Many valuable agronomic traits are 
quantitative, controlled by numerous small-effect loci, complicating tra
ditional phenotypic selection methods (Merrick et al., 2022). The release of 
the soybean reference genome (Schmutz et al., 2010) and development of 
standardized marker arrays (Song et al., 2013) have accelerated marker- 
assisted selection (MAS), enabling early-generation selection and reducing 
plot testing expenses. Genomic selection, which estimates all gene effects 
simultaneously (Meuwissen et al., 2001), produces genomic estimated 
breeding values (GEBVs) for parent selection and line advancement 
(Fig. 2). This approach has the potential to reduce breeding cycle length 
(Ma et al., 2018) and accelerate genetic gains (Voss-Fels et al., 2019), 
supported by methods such as speed breeding (Watson et al., 2018).

Non-linear prediction algorithms, including ML and DL, have shown 
promise in improving genomic selection accuracy (Crossa et al., 2017; 
Cuevas et al., 2016; Pérez-Rodríguez et al., 2012). These methods offer 
advantages in handling complex data and potentially addressing issues like 
epistasis effects and genomic imprinting (Varona et al., 2018). Deep 
learning, particularly CNNs and Deep Neural Networks (DNNs), has 
demonstrated the ability to identify complex multidimensional patterns in 
large datasets (Zou et al., 2019). CNNs have shown success in selecting 
high-value phenotypes from genomic data (Ma et al., 2018).

Innovative approaches like the hyperspectral wide association study 
(HypWAS) integrate phenomic and genomic data to identify key hyper
spectral reflectance bands linked to soybean yield, offering indirect 
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selection criteria for breeding programs (Yoosefzadeh-Najafabadi et al., 
2021). DL techniques are also transforming phenotyping for disease resis
tance, using DL frameworks for image-based phenotyping to provide more 
insightful results than traditional visual methods, identifying significant 
SNP markers linked to sudden death syndrome (SDS) resistance (Rairdin 
et al., 2022). ML-based genome-wide association studies (GWAS) have 
unveiled novel genomic regions associated with resistance to Southern 
root-knot nematode (SRKN), identifying minor effect SNPs missed by 
traditional methods (Vieira and Chen, 2021). The G2PDeep web server 
exemplifies the potential of DL frameworks in genomic prediction, 
offering a user-friendly platform for creating, training, and deploying 
models for quantitative phenotype prediction (Zeng et al., 2021).

Recent studies have demonstrated the superiority of ML models like 
XGBoost and random forest over DL models for genotype-to-phenotype 
predictions using genome-wide molecular markers, significantly enhancing 
prediction accuracy and reducing marker inputs by up to 90 % (Gill et al., 
2022a). Conversely, DL-based models such as SoyDNGP have shown 
remarkable precision in predicting complex traits, providing an accessible 
web server for trait estimation, thus enhancing breeding programs (Gao 
et al., 2023). In addition, CNNs have been explored for genomic selection 
to predict quantitative traits from single nucleotide polymorphisms (SNPs) 
without the need for genotype imputation, outperforming traditional sta
tistical methods (Liu et al., 2019b). Comparative studies of various genomic 
prediction (GP) methods have shown that traditional models like the 
genomic best linear unbiased predictor (GBLUP) often outperform DL 
models, particularly when accounting for genotype × environmental 
interaction (G × E) effects are high (Ray et al., 2023). While DL algorithms 
can capture nonlinear patterns and integrate diverse data sources, poten
tially improving prediction accuracy for large breeding datasets, their 
superiority over conventional models in prediction power is not definitive 
(Montesinos-López et al., 2021). DL applications in genomic selection 
need high-quality, large training datasets for effective use. More impor
tantly, the nature of molecular marker data type is not complex, and further 
research is needed that integrates multi-omics datastreams to compare 
traditional genomic prediction and DL methods.

Exploring genomic prediction models for traits with varying herit
abilities helps refine the accuracy of breeding selections, optimizing the 
predictive performance of these models (Kaler et al., 2022). By examining 
different marker sets and training population sizes, researchers can improve 
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the efficiency of selection processes in breeding programs. The develop
ment of SoyDNGP, a DL model demonstrating high predictive accuracy 
for complex traits across different crops, illustrates the potential of these 
technologies in developing customized cultivars (Gao et al., 2023). This 
model performs with minimal parameter tuning, highlighting significant 
advancements in trait prediction.

Deep learning and AI are revolutionizing soybean breeding programs by 
offering powerful tools for analyzing vast amounts of genomic data. The 
integration of AI and pHENOMICS in soybean breeding offers promising 
avenues for improving selection accuracy and accelerating genetic gains. 
These technologies accelerate the identification of superior lines, enhancing 
the efficiency of breeding programs through early selection of lines that are 
likely to perform well under specific conditions (Gao et al., 2023; Ray et al., 
2023; Liu et al., 2019b). This rapid identification process is not only about 
speed but also precision, allowing for the early selection of lines that are 
predicted to yield well under specific conditions, thereby enhancing the 
development of tailored soybean varieties with desired characteristics.

4.3 Plant stresses
Soybean, like many crops, face stress that is in part due to a varied climate, 
which is expected to worsen due to climate change (Bezner Kerr et al., 2022). 
Abiotic and biotic stresses prevent soybean from reaching maximum yield 
potential and pose complex challenges for plant breeders. The economic 
impact of soybean diseases is substantial, with estimated average losses of $41.66 
per acre in Iowa and $44.83 per acre across the United States and Ontario, 
Canada between 2014 and 2019 (Bradley et al., 2021). On average from 1980 
to 2020, droughts caused over 7 billion dollars in damage each year to the 
agricultural sector, ranking third in billion dollar environmental events to 
impact the United States (NOAA National Centers for Environmental 
Information (NCEI), 2024). Management strategies exist to mitigate some of 
the stresses, such as irrigating fields with insufficient rainfall and applying fer
tilizers when soils contain insufficient levels of necessary nutrients for crop 
growth and development. Furthermore, pest management can include fungi
cide, herbicides, and insecticides applications. In 2012, herbicides were applied 
to 98 % of soybean acres, insecticides applied to 18 % of acres, and fungicides 
applied to 11 % of acres (USDA-NASS, 2013). In 2018 herbicide use 
expanded to 99 % of soybean acres, insecticides applied to 16 % of acres and 
fungicides applied to 15 % of acres (USDA-NASS, 2019). Nitrogen, Phos
phorus, and Potassium application have increased across soybean acres from 
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2012 to 2018 by 2 %, 5 %, and 6 % respectively (USDA-NASS, 2019). 
However, the mitigation practices are often costly and are becoming increas
ingly environmentally unsustainable (Liu et al., 2017; Good and Beatty, 2011).

The key methods for application of AI for addressing plant stress is 
identification, classification, quantification, and prediction (Singh et al., 
2016). Soybean stress identification and quantification present significant 
challenges due to the difficulty in distinguishing between various sources of 
stress. Traditional methods rely on individuals trained in symptom and pest 
identification. Visual severity field ratings can also be susceptible to intra- and 
inter-rater variability (Akintayo et al., 2018; Singh et al., 2021a). AI and DL 
have emerged as popular research areas for stress identification, addressing the 
limitations of traditional methods. These technologies are being applied 
across various scales, from small-scale platforms using ground-based images to 
medium-scale platforms such as UAVs. Researchers have used DL to 
develop a model capable of identifying nine different abiotic and biotic 
stresses and classifying their severity levels using soybean leaf images (Ghosal 
et al., 2018). Further use of the dataset and model created from that study 
were used and led to advancements in data augmentation to improve clas
sification accuracy (Saleem et al., 2024).

4.3.1 Abiotic stresses
Traditionally, direct selection for yield stability under multiple locations in 
stressed environments has been used to develop crop cultivars with stress 
tolerance (Singh et al., 2021c), although this process is labor and resource 
intensive. Indirect selection is another method used in which morphological 
or physiological characteristics that contribute to stress resistance are selected, 
generally in specialized nurseries (Singh et al., 2021c). This approach requires 
in-depth knowledge on how a species responds to different stressors, and 
what characteristics will be beneficial to the plant under stress.

Advances have been made in phenotyping for rating soybean stress 
responses to flooding (Zhou et al., 2021), drought (Peirone et al., 2018; 
Zhou et al., 2020), and iron deficiency chlorosis (Naik et al., 2017; Dobbels 
and Lorenz, 2019), which can be used for identifying candidate genes to be 
used in breeding for abiotic stress tolerance. These advances in phenotyping 
have largely been made possible due to advances in phenomics, ML, and DL 
models. For instance, Naik et al. (2017) used ML to successfully identify and 
classify the severity of iron deficiency chlorosis (IDC) stress symptoms using 
cell phone images. In another study, the levels of dicamba treatment were 
able to be estimated from ground based hyperspectral wavelengths using a 
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random forest model, although the model only worked in situations were 
the soybean crop was still recoverable (Zhang et al., 2019a). On medium- 
scale platforms, UAVs have proven effective for various applications in 
abiotic stress research. Dobbels and Lorenz (2019) demonstrated the cap
ability of AI to identify and classify IDC from aerial platforms using neural 
networks and random forests. Multispectral and thermal cameras mounted 
on UAVs were used to determine flood injury scores in soybeans via a 
feedforward neural network (FNN) model (Zhou et al., 2021). Researchers 
applied RGB, multispectral, and thermal cameras for assessing leaf wilting 
and drought responses by using a SVM model (Zhou et al., 2020). Dicamba 
injury ratings of tolerant and susceptible soybean varieties were successful 
using aerial RGB images wtih artificial neural network (ANN) and random 
forest models (Vieira et al., 2022). For additional abiotic stresses such as heat 
stress, leaf temperature measurements can provide valuable insights (Jagadish 
et al., 2021). UAV-mounted thermal sensors can collect data on large trials at 
crucial time points for heat stress, from early vegetative to reproductive 
stages. Deep learning models excel at processing large datasets to optimize 
irrigation practices (Umutoni and Samadi, 2024). These models utilize vast 
amounts of data, including real-time weather conditions and soil moisture 
levels, to accurately predict crop water needs. Weather data, including 
parameters such as temperature, humidity, solar radiation, and wind speed, is 
crucial for determining irrigation requirements. Precise measurements of 
these parameters, obtained through Internet of Things (IoT) based weather 
stations and various sensors, significantly influence water loss rates 
(Abdelmoamen Ahmed et al., 2021). Researchers have demonstrated that 
such IoT-based weather monitoring systems can analyze the crop environ
ment in real-time, utilizing sensors for these weather variables along with soil 
moisture content (Pramanik et al., 2022). Real-time estimation of reference 
evapotranspiration (ETO) using these weather variables provides insights 
into water loss from plants and soil (Bounajra et al., 2024). Integrating 
weather forecasts into AI-driven irrigation systems enables proactive 
adjustments to irrigation schedules. Wireless Sensor Networks (WSNs) 
facilitate precision monitoring across large cropping areas, allowing real-time 
analysis and immediate adjustments based on predefined thresholds (Glória 
et al., 2021; Jamal et al., 2023). In soybean cultivation, AI/DL-driven irri
gation systems optimize water usage, enhance yield, and reduce environ
mental impact. These systems analyze real-time data to assess water needs, 
significantly reducing waste through runoff and deep percolation (Sarkar 
et al., 2024). Machine learning algorithms, such as CNNs, coupled with IoT 
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systems, enable targeted irrigation based on crop stress levels (Tace et al., 
2022), preserving soil integrity and preventing issues like nutrient leaching 
and salinization leading to healthier soil ecosystem and more resilient crop 
growth (Goap et al., 2018). This technology offers cost savings through 
reduced water and energy consumption, contributed to broader environ
mental goals, such as lower carbon footprints and improved water resource 
management, supporting farm viability and aligning with global sustainability 
targets (Blessy and Kumar, 2021). Machine learning and DL models have 
advanced abiotic stress phenotyping in soybeans, enabling large-scale data 
collection on experimental lines. This benefits geneticists by facilitating the 
identification of stress-tolerance genes through large panel screenings. Soy
bean breeders can leverage these advancements and candidate genes to 
develop cultivars with enhanced abiotic stress tolerance. Additionally, these 
models show potential for farmer applications, potentially enabling near real- 
time detection and scouting of stress symptoms in fields, thus improving crop 
management strategies.

4.3.2 Biotic stresses
Biotic stresses encompass a wide range of organisms such as bacteria, virus, 
fungi, weeds, insects, and nematodes. Unfortunately, biotic stresses have a 
clear strength in their ability to overcome genetic sources of tolerance and 
management strategies, as well as their unpredictability due to the interplay 
with weather, the environment, and host susceptibility. Accurate identifica
tion can be complicated by confounding visual symptoms. For example, 
Sudden Death Syndrome (Fusarium virguliforme), Brown stem rot (Cadophora 
gregata), and Southern stem canker (Diaporthe phaseolorum var. merdionalis) 
produce very similar interveinal chlorosis and necrosis symptoms and often 
require examination of plant stem and roots to differentiate signs and symp
toms for correct diagnostics (Hartman et al., 2015). The interplay of various 
biological organisms can also complicate management strategies. Some diseases 
can be spread by insects, such as the soybean dwarf virus spread by aphids or 
soybean vein necrosis virus spread by thrips (order Thysanoptera). Therefore, 
early identification and control of insect pests can prevent the potential sec
ondary spread of viral infection (Hartman et al., 2015).

Deep learning models, have demonstrated remarkable success in 
leveraging high-resolution images collected from various sensing platforms, 
pre-processing to enhance features relevant to the desired task, such as 
classification and prediction. The training process involves feeding anno
tated datasets through multiple layers, enabling the model to learn critical 
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feature representations in identifying defects and diseases in soybean leaves 
with high accuracy (LeCun et al., 2015). The deep learning approach has 
proven particularly effective in identifying common soybean diseases 
(Nagasubramanian et al., 2020). The intricacies of training DL models for 
soybean disease classification encompass several key aspects: optimizing 
hyperparameters to fine-tune model performance, employing data aug
mentation techniques to improve model robustness and generalization, and 
leveraging transfer learning to enhance performance when annotated data is 
limited. These methodologies, as highlighted in Ferentinos (2018), have 
demonstrated the efficacy of DL models in plant disease detection and 
diagnosis. Similarly, Rairdin et al. (2022) trained a DL model to classify and 
quantify sudden death syndrome in soybeans using ground-based canopy 
images. Nagasubramanian et al. (2019) developed a 3D CNN for classifying 
charcoal rot in soybean using hyperspectral imagery, showcasing the pos
sibilities for advanced imaging technologies in field applications. Another 
technique, rare object detection, via a deep convolutional selective auto
encoder, enabling automated counting of soybean cyst nematode eggs, a 
process necessary for rating levels of resistance in soybean SCN resistance 
screening (Akintayo et al., 2018).

DL models are now increasingly equipped to process extensive datasets 
of plant and pest images, effectively recognizing various disease patterns and 
symptoms Ghosal et al. (2018). Recent advancements have introduced 
more sophisticated DL architectures and training techniques that enhance 
the model’s ability to generalize from training data to real-world condi
tions, significantly improving detection accuracy even under variable field 
conditions (Ahmad et al., 2023). High throughput platforms such as UAVs, 
ground robots, and insect traps equipped with advanced imaging sensors 
enhance these capabilities, enabling rapid identification of pest and disease 
types over large areas and detailed assessment of infestation severity. Sig
nificant enhancements in crop disease detection capabilities have been 
facilitated by the integration of these systems with DL techniques 
(Wiesner-Hanks et al., 2019; Bouguettaya et al., 2021).

Innovations in classification systems specifically developed for soybean 
diseases leverage DL to analyze images and accurately differentiate disease 
types (Yu et al., 2022). These systems facilitate rapid responses to disease 
outbreaks, potentially reducing the spread and severity of infections. 
Recent models incorporate techniques such as transfer learning and semi- 
supervised learning, allowing for effective training with limited annotated 
datasets, a common challenge in agricultural settings (Fang et al., 2020; 
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Tetila et al., 2020; Bouguettaya et al., 2021). Applying self-supervised 
learning methods has improved the classification of agriculturally important 
insects with minimal annotations, enhancing model performance under 
conditions of low annotation availability (Karmakar et al., 2023). Out-of- 
distribution detection algorithms ensure effective pest detection and clas
sification even under varied field conditions, maintaining high accuracy 
and reliability across different scenarios (Saadati et al., 2024).

4.3.3 Insect, weed, and disease ICQP and management
Deep learning models have expanded rapidly in plant stress phenotyping 
due to their ability to handle highly dimensional data, recognize important 
data features, and contribute to identification, classification, quantification, 
and prediction of plant stress including insects, weeds and diseases (Singh 
et al., 2016, 2018). These models attempt to mimic the learning process of 
the human brain by utilizing a multi-layer neural network framework to 
learn more abstract, discriminative features of the data (Singh et al., 2018).

Pest control in agriculture faces significant challenges, including the 
ineffectiveness of manual field scouting, difficulties in disease identification, 
and the increasing prevalence of herbicide-resistant weeds. Between 1990 
and 2015, an average of five new herbicide-resistant weed cases emerged 
annually (Kniss, 2018). To address these issues, robotic technology and AI 
offer promising solutions. Robots designed to be lightweight and navigate 
between variable row sizes can minimize crop disruption and soil com
paction. These robots can be equipped with sensors and compact AI 
models for pest identification, such as the InsectNet model for insects 
(Chiranjeevi et al., 2023). Autonomous robots with computer vision 
capabilities can accurately detect and map weeds in real-time (Bawden 
et al., 2017), while DL-based weed detection systems for UAVs enable 
large-scale, high-resolution weed mapping (Sa et al., 2017). The See & 
Spray system is a notable example of AI-powered weed identification and 
targeted herbicide application (Chostner, 2017).

The implementation of AI-driven pest classification enables more 
informed decision-making regarding pesticide application, potentially 
helping to combat herbicide resistance development. In soybean, economic 
benefits of precision spraying technology in the field can save from 43.9% to 
90.6% herbicide application resulting in average savings of $38.78/hectare 
(Houser et al., 2024). In soybean production, AI is transforming disease 
prediction and pesticide optimization. AI models can accurately forecast 
potential disease outbreaks by leveraging environmental factors, historical 
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crop performance, and current crop health indicators, enabling early 
detection and management of soybean foliar diseases (Kashyap et al., 2022; 
Nayar et al., 2023). The integration of AI with Integrated Crop and Pest 
Management (ICPM) strategies offers comprehensive insights into crop 
health, pest levels, and environmental conditions, supporting informed 
decision-making and promoting sustainable farming practices (Miranowski, 
1980; Greene et al., 1985). Real-time data collection and analysis technol
ogies, such as UAV and IoT devices, are instrumental in implementing 
precision agriculture, accurately detecting affected areas and enabling precise 
pesticide application (Singh et al., 2021a; Balaji et al., 2023). These 
advancements in AI and robotics offer promising solutions for sustainable and 
efficient pest management in soybean cultivation and agriculture as a whole 
(Oberti et al., 2016).

4.3.4 Early detection of stresses
Early detection is one of the key areas of advancement in plant stress 
detection. Early detection is critical as it allows for timely intervention, 
potentially preventing widespread disease outbreaks and minimizing yield 
losses. This proactive approach helps prevent pest resistance and uncon
trolled epidemics. Given the importance of swift and accurate stress 
identification in mitigation efforts, deep learning and AI-based solutions are 
gaining prominence due to their versatility and accuracy.

A primary method of early detection involves the utilization of 
wavelengths beyond the visible spectrum, including infrared and hyper
spectral imaging. These wavelengths can identify physiological stress in 
plants that is not yet visible to the human eye, enabling the detection of 
diseases before symptoms appear (Lowe et al., 2017; Moghadam et al., 
2017; Golhani et al., 2018; Khaled et al., 2018; Seshaiah et al., 2024). 
Machine learning also plays a crucial role in selecting the most infor
mative spectral bands from highly correlated data, which is common in 
hyperspectral imaging. This selection process improves the efficiency and 
accuracy of disease detection models by reducing data dimensionality and 
focusing on the most relevant features. In addition to plant sensors, soil 
sensors represent a vital technology to assess early disease development. 
These sensors gather real-time data on soil conditions, which can be 
crucial for predicting potential disease outbreaks. A study has shown that 
combining soil sensor data with ML techniques allows for the efficient 
diagnosis of various fungal diseases, achieving prediction accuracy greater 
than 98% (Kumar et al., 2020). By continuously monitoring real-time 
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agricultural information, soil sensors can help mitigate disease risks, 
leading to improved crop management and sustainable farming practices.

Combining HTP platforms with DL/AI methods opens new oppor
tunities for dynamic and precise monitoring of crop diseases and pests over 
extensive areas. This integration allows for continuous monitoring and 
real-time data delivery, essential for tracking disease progression and 
evaluating the effectiveness of treatment strategies.

4.4 Seed yield prediction
An important and relevant application of ML in crop production is the in- 
season prediction of yield. Accurate estimates of crop yields help breeders 
make timely decisions for selecting and advancing experimental lines. 
Beyond plant breeders, predictions of local and regional yields have several 
benefits. These benefits include better planning of the use of the harvested 
crop, price discovery for futures contracts, price regulation, and providing 
farmers a baseline yield for planning input costs to increase profitability 
(Johnson, 2014). The United States Department of Agriculture (USDA) 
predicts crop yields across the United States as part of their service to 
agriculture (USDA-NASS, 2023). The National Agricultural Statistics 
Service (NASS), which is the statistical group of the USDA, conducts 
annual surveys throughout the growing season by contacting farmers for 
on-farm yield estimates, as well as sampling sections of growing fields for 
indicators of crop development (Johnson, 2014; USDA-NASS, 2023). 
However, such estimates for yield prediction are limited and time-con
suming to collect, which lends the feasibility of remote sensing paired with 
AI methods to predict an estimated end-of-season yield. Numerous pre
diction factors have been considered and researched, including vegetation 
indices (VIs), weather and climate data, and soil properties. Additionally, 
the scales for prediction and platforms used have varied, with applications 
spanning from field level to county level and utilizing different ground and 
aerial-based platforms for sensing.

Along with the different prediction factors and platforms, different ML 
and DL models have been explored, and this exploration continues as new 
models are released. Through their complex architectures involving layers 
of neural networks, DL models can integrate various types of data, 
including remote sensing imagery, soil properties, and historical yield data. 
This integration enables a holistic approach to crop modeling that tradi
tional methods, which often handle fewer data types and require extensive 
pre-processing, cannot achieve (Toledo and Crawford, 2023). In particular, 

Use of artificial intelligence in soybean breeding and production                                     225 



LSTM networks have demonstrated remarkable capabilities in predicting 
soybean yield and other agronomic traits, potentially surpassing traditional 
ML methods. LSTM networks, a type of RNN, are particularly suited for 
sequential data, making them ideal for time-series predictions in agri
cultural forecasting. These networks can model seasonality and other 
temporal dynamics influencing crop development, providing more accu
rate yield predictions and agronomic trait analysis (Shook et al., 2021).

Vegetation indices are a popular predictor for in-season soybean yield 
prediction. A study by Maimaitijiang et al. (2020) collected VIs from a UAV 
platform. This data was combined with other UAV derived variables related to 
canopy structure and texture to predict the yields on three soybean genotypes 
in large field plots. Five different ML models were compared, with a DNN 
being found to have the greatest accuracy, with a R2 of 0.72 and a RMSE of 
15.9% (Maimaitijiang et al., 2020). A separate study looked at eight different 
soil properties as variables to predict yield on a field-scale in Canada, and 
compared four different models for these predictions. Random forest was found 
to be the most successful, with a R2 of 0.94 for soybean, and the importance of 
the different soil variables in prediction was investigated (Burdett and Wellen, 
2022). More commonly, yield prediction models utilize both VIs and weather 
data to develop more robust and accurate models. One such baseline model to 
predict crop yield, including soybean yield, used satellite-based Normalized 
Difference Vegetation Index (NDVI), surface temperature, and precipitation as 
input into multiple regression models to predict the county level yields 
(Johnson, 2014). A similar study used VIs, weather data, and maturity group in 
a polynomial and ridge regression model to predict the yield of specific field 
sites (Mourtzinis et al., 2014). Interestingly, these two studies differed in the 
importance of precipitation for predicting yield.

In a similar study for predicting county-level yields in Illinois and Iowa, a 
SVM was found to have the most accurate results and found that the variable 
importance rankings changed throughout the growing season (Ju et al., 
2021). In the Brazilian Cerrado region, researchers used NASA-POWER 
weather data to compare random forest, ANNs, and SVM for yield forecasts, 
and found the random forest model to have the highest performance 
(Barbosa Dos Santos et al., 2022). This study also looked at the importance of 
climatic variables at different soybean phenological stages, and found that the 
magnitude and order of importance changes throughout the season. A 
comprehensive study used weather parameters, soil characteristics, and crop 
management to predict yields (Ansarifar et al., 2021). While several models 
were compared in this study, their newly proposed interaction regression 
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model had the best accuracy and performance in predicting the yields of both 
soybean and corn. Additionally, they observed the additive and interaction 
effects of predictor variables and the temporal variations of these effects 
(Ansarifar et al., 2021). Ground-based collected VIs were used to train a 
random forest model to predict and rank the yield of numerous soybean 
genotypes in small plots for breeding application (Parmley et al., 2019a). In 
another study, multi-spectral images from the MODIS satellite were used to 
predict soybean yields on the county level throughout parts of the United 
States (You et al., 2017). In this study, they compared baseline methods of 
ridge regression, decision trees, and DNNs to previous CNNs and LSTM 
approaches and reported that DL models outperform the popular baseline 
methods (You et al., 2017).

In one study, researchers used historical soybean yield data from 
breeding trials to train an LSTM model to predict yields, and determine 
which weather parameters were most relevant for such predictions (Shook 
et al., 2021). This study also utilized pedigree-related measures, and the 
combination with weather parameters resulted in the LSTM model having 
a significantly higher prediction accuracy than SVR and LASSO. An 
additional benefit of the LSTM model in this study was the temporal 
attention mechanisms, which offer insights into critical periods during the 
growing season that most affect crop yield (Shook et al., 2021). Researchers 
in southern Brazil used MODIS satellite imagery-derived VIs, along with 
temperature and precipitation data, to predict municipal soybean yields 
(Schwalbert et al., 2020). Comparing ordinary least squares regression, 
random forest, and LSTM models, they found that LSTM outperformed 
the others at most time points. The inclusion of weather parameters 
improved prediction accuracy, reducing MAE, RMSE, and MSE, under
scoring the importance of weather data in yield forecasting.

Deep learning models, particularly LSTM, often outperform traditional 
algorithms in agricultural applications, demonstrating superior accuracy and 
generalization across diverse environments, although it is not always superior 
when there is a small number of features (Kang et al., 2020). However, for 
certain agricultural traits, traditional ML models like XGBoost and random 
forest can still excel (Gill et al., 2022a). This indicates that model selection 
should be tailored to the specific trait and dataset under consideration.

4.5 Cyber-agricultural systems
The development of advanced sensors, platforms, AI algorithms, and 
tools—as discussed in the previous sections— has driven a transformation 
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in agriculture where these technologies are integrated under the framework 
of cyber-physical systems (CPS). This integration enables the creation of 
interconnected systems that can monitor, analyze, and optimize agricultural 
processes in real time, leading to more efficient and sustainable practices. 
Cyber-physical systems (CPS) are engineered systems resulting from the 
continuous integration of computation and physical components. They 
involve a close interaction between sensors, computing devices, control 
and actuation systems, and networking infrastructure. In CPS, the physical 
space serves as the source of information, and the cyberspace uses this 
information to make decisions, which are then implemented back into the 
physical space.

Building upon this foundation, a new paradigm of Cyber-Agricultural 
Systems (CAS), which instantiates CPS specifically for agriculture was 
introduced in Sarkar et al. (2024). CAS represents a transformative approach 
that integrates advanced sensing, computational modeling, AI, and smart 
actuators to revolutionize agricultural practices (Fig. 3). The core of CAS is 
its integration of various technological pillars—sensing, modeling, actuation, 
and Internet of Things (IoT) to create a more interconnected and intelligent 

Fig. 3 (A) Cyber-physical systems (CPS) are engineered systems with deep integration 
between the physical and cyberspace. The three technical modules of CPS—sensing, 
modeling, and actuation—leverage the three functional pillars: communication, com
putation, and control. Cyber-agricultural systems (CAS) are built on the CPS concept. (B) 
The future vision of CAS—an individualized plant management paradigm that senses 
and models up to individual plants and organs providing unprecedented insights for 
decision making in breeding and production. Figure and caption reprinted with per
mission from Elsevier. Original article: Sarkar et al. (2024). Cyber-agricultural systems for 
crop breeding and sustainable production. Trends in Plant Science 29(2): 130–149.  
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agricultural environment (Sarkar et al., 2024; Sharma et al., 2020; 
Dumitrache et al., 2017). This integration leads to ultra-precision agriculture, 
enabling individualized phenotyping and actuation at finer scales.

4.5.1 Key components of CAS
The following sections outline the key components of CAS, emphasizing 
their roles and impact on modern agricultural practices.

Advanced Sensing: Advanced sensing technologies play a pivotal role 
in CAS systems by providing real-time data collection essential for 
informed decision-making. IoT devices, including soil moisture sensors, 
weather stations, and plant health monitors, are deployed across fields to 
continuously gather data on critical parameters such as soil moisture, 
temperature, humidity, and precipitation, (see Fig. 4A). This granular data 
enables precise monitoring and management of crop conditions, leading to 
optimized water usage, timely interventions for pest and disease control, 
and overall improved crop health (Shaikh et al., 2022). The deployment of 
such sensors ensures that farmers can make data-driven decisions, enhan
cing productivity and sustainability in soybean cultivation.

Artificial Intelligence and Machine Learning: AI and ML are at the 
heart of CAS, offering powerful tools for analyzing vast amounts of agri
cultural data. AI and ML models can identify patterns and correlations that 
are not easily discernible to humans. For instance, they can analyze crop 
information, weather forecasts, and soil conditions to predict yield (Torsoni 
et al., 2023). The integration of AI and ML in soybean production facilitates 
precision agriculture, enhancing both efficiency and output, (see Fig. 4B).

Robotics: Robotics technology revolutionizes traditional agricultural 
practices by automating labor-intensive tasks such as planting, harvesting, 
and crop monitoring. Autonomous robots equipped with AI capabilities 
can navigate fields, plant seeds at precise depths and intervals, and harvest 
crops with minimal human intervention (Mahmud et al., 2020). These 
robots not only increase operational efficiency but also reduce the reliance 
on manual labor, which is often scarce and expensive. In soybean pro
duction, robotic systems can ensure timely planting and harvesting, thereby 
aligning agricultural activities with optimal growing conditions and redu
cing crop losses, (see Fig. 4C).

Wireless Communication: Wireless communication is a critical 
component of CAS, enabling seamless data exchange between various 
devices and platforms. Technologies such as 4G/5G, Wi-Fi, and low-range 
(LoRa) high-bandwidth wireless connectivity ensure that data collected by 
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Fig. 4 (A) CAS sensing: advanced sensing technology of different modalities, lever
aging heterogeneous platforms; recent advances in information processing methods, 
enabled by computer vision and machine learning, lead to high-throughput pheno
typing (HTP) of important plant traits and stresses. (B) CAS modeling and reasoning: 
computational modeling at a plant to field to regional scale involving domain 
knowledge and data; computational models are then used to make optimal rea
soning, planning, and control for agricultural decisions. (C) CAS actuation and in-field 
intelligence. (D) Advanced actuation such as precision spraying, autonomous scouting 
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IoT sensors and transmitted by robotic systems is relayed to central data
bases in real time. This connectivity allows for the integration of diverse 
data sources, facilitating comprehensive analysis and decision-making. 
Efficient data communication is essential for the coordinated functioning of 
all components within a CAS (Elijah et al., 2018; Parween et al., 2021).

Scalable Computing Infrastructure: The vast amounts of data 
generated by advanced sensing technologies, AI models, and robotic sys
tems necessitate a scalable computing infrastructure capable of handling 
large datasets and complex computations (Mekala and Viswanathan, 2017). 
Cloud computing platforms and high-performance computing (HPC) 
systems provide the necessary computational power and storage capacity to 
process and analyze agricultural data effectively. These infrastructures 
support the local computing systems (edge devices) that may be mounted 
on sensors and robots for the deployment of AI models and the real-time 
processing of data streams, enabling swift and accurate decision-making. 
This scalability is crucial for adapting to the growing data demands of 
modern agriculture.

Security: As CAS becomes more integrated and data-driven, ensuring 
the security of these systems is paramount. Cyber-security measures are 
essential to protect sensitive agricultural data from unauthorized access and 
cyber threats. This includes implementing encryption protocols, secure 
data transmission methods, and robust authentication mechanisms. In 
soybean production, secure CAS can prevent data breaches that could 
compromise farm operations and intellectual property (Alahmadi et al., 
2022). Ensuring the security of these systems is vital for maintaining trust 
and reliability in digital agriculture.

CAS is poised to revolutionize the agricultural sector by offering new 
avenues for enhancing efficiency, productivity, sustainability, and resi
lience. In the context of soybean cultivation, CAS can significantly 
improve crop management through precision farming, by providing pre
cise, real-time data and automated responses to various agricultural chal
lenges. One possible application of precision farming in the context of CAS 

robots, and dexterous robotic arms for plant manipulation. (E) Technical challenges in 
CAS is to create highly dexterous robots that are scalable to large fields at low cost. 
Figure and caption reprinted with permission from Elsevier. Original article: Sarkar et al. 
2024. Cyber-agricultural systems for crop breeding and sustainable production. Trends in 
Plant Science 29(2): 130–149.  
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could be pesticide application. Precision pesticide application starts with 
pest scouting using sensors and cameras on autonomous devices or hand
held tools to collect high-resolution data. Through efficient networks for 
communication, AI-driven decision tools analyze this data, and robots or 
drones apply chemicals only in target areas, reducing soil compaction, 
minimizing environmental impact, and potentially increasing yield (Shaheb 
et al., 2021; Frene et al., 2024). This targeted approach minimizes chemical 
use, reduces environmental impact, and ensures effective pest control.

In addition, CAS enables smart irrigation and water management, 
offering significant benefits for sustainable crop production. These advanced 
systems optimize water usage through precise scheduling, leading to cost 
savings and enhanced environmental sustainability by reducing water waste 
and chemical inputs (Choudhary et al., 2019). Integration of real-time 
weather data allows for dynamic irrigation adjustments, maintaining optimal 
soil moisture levels, particularly with changing climate (Campoverde and 
Palmieri, 2022; Nobles et al., 2022; Sacala et al., 2017). These applications 
leverage CAS technologies to address agricultural challenges, ensuring sus
tainable management.

4.5.2 Challenges and considerations in CAS
Implementing CAS presents several challenges and considerations that must 
be addressed to ensure their effectiveness and sustainability. One major 
challenge is the high initial cost of deploying advanced technologies such as 
IoT devices, AI models, and robotics, which can be prohibitive for small- 
scale farmers (Yang et al., 2023). Additionally, the integration of diverse 
technologies requires robust and scalable computing infrastructure, which 
can be difficult to maintain and upgrade. Data privacy and security are also 
critical concerns, as the increasing digitization of agricultural operations 
makes them vulnerable to cyber threats and data breaches. Ensuring 
interoperability among different devices and platforms is another significant 
consideration, as it is essential for seamless data exchange and system 
functionality. Furthermore, there is a need for continuous training and 
support for farmers to effectively utilize these advanced systems, which can 
be a barrier to widespread adoption. Addressing these challenges requires a 
collaborative approach involving technology providers, policymakers, and 
the agricultural community to develop cost-effective, secure, and user- 
friendly solutions (Yang et al., 2023).
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5. Challenges and future directions for the use of AI in 
soybean breeding and production

5.1 Multi-modal and layered sensing
The integration of multi-modal and layered sensing technologies is a promising 
approach for enhancing the accuracy and robustness of data acquisition in 
precision agriculture. Multi-modal sensing involves the combination of mul
tiple sensing modalities, such as RGB, multispectral, hyperspectral, thermal, 
and LiDAR, to capture complementary information about crop traits and field 
conditions (Karmakar et al., 2023). Ground-based sensors, such as proximal 
sensing carts and stationary sensor networks, provide high-resolution data on 
individual plants or small plots, while UAVs and satellites offer a broader spatial 
coverage and the ability to monitor large agricultural areas (Bruckstein et al., 
2009). The fusion of data from multiple modalities and layers presents both 
opportunities and challenges. Integrating different modalities presents chal
lenges due to the distinct statistical properties, formats, and processing 
requirements of each modality, complicating their unification into a single 
model. To overcome these challenges, techniques such as cross-modal align
ment, hierarchical fusion strategies, feature concatenation, and attention 
mechanisms can be employed to manage this complexity and ensure robust 
cross-modal interactions (Xu et al., 2023). Additionally, advanced data fusion 
methods, such as deep learning-based approaches, can effectively integrate and 
analyze heterogeneous data streams (Lu et al., 2024). Moreover, the devel
opment of standardized data formats and protocols is crucial for ensuring 
interoperability and facilitating data sharing among researchers and stakeholders. 
The integration of sensing data with crop growth models and decision support 
systems will enable more accurate yield predictions and informed management 
decisions. The integration of GPS coordinates with multi-modal sensing data 
enhances spatial accuracy and facilitates precise georeferencing of crop traits and 
field conditions (Weiss et al., 2020). This spatial context is crucial for imple
menting site-specific management practices and for tracking temporal changes 
across different field locations. Recent advancements in multi-modal data 
integration for crop phenotyping have shown promising results. Yu et al. 
(2024) demonstrated the effectiveness of a novel approach combining RGB 
and infrared imaging for soybean canopy analysis, achieving high accuracy in 
segmenting soybean canopies from field images. Such innovative multi-modal 
approaches not only improve the accuracy of crop trait estimation but also 
provide a foundation for developing more comprehensive understanding of 
crop growth dynamics in field conditions (Zhang et al., 2019b).
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5.2 Data availability and quality
The development and application of AI models in agriculture heavily depend 
on the availability and quality of datasets. Various online platforms, such as 
Mesonet, iNaturalist, and Kaggle, offer diverse datasets including weather 
station data and animal and insect image collections, creating numerous 
opportunities for AI applications. However, despite their accessibility, these 
datasets present several challenges that need to be addressed for effective AI 
model training and implementation (Sarkar et al., 2024).

Data structure is a critical consideration when evaluating datasets for AI 
model training. The variation in storage structures across different datasets 
poses a significant challenge when combining multiple sources, potentially 
hindering the development of comprehensive models that could benefit 
from diverse data inputs. To facilitate the accumulation of large datasets for 
model training, it is essential to develop common data storage protocols. 
Implementing folder structures that enable easy and fast labeling can greatly 
aid in preparing large image datasets for training models, which is parti
cularly important for computer vision applications in agriculture, such as 
pest and disease identification.

The infrastructure for data storage and download must be robust to 
support the compilation of extensive datasets, such as the 13 million images 
used in training an insect identification model (Chiranjeevi et al., 2023). 
This highlights the need for scalable and efficient data management systems 
in agricultural AI research. Moreover, the development of standardized 
data formats and metadata schemas specific to agricultural data could sig
nificantly enhance interoperability and facilitate the integration of diverse 
datasets from multiple sources.

The quality of data used in training AI models, particularly foundational 
models, is crucial. High-quality datasets should capture natural variability to 
build more robust models that can generalize well to real-world agricultural 
scenarios. This includes ensuring diversity in environmental conditions, 
crop varieties, and stress factors represented in the datasets. Additionally, 
the accuracy of data labels is paramount. For instance, the insect identifi
cation model utilized data from iNaturalist, a citizen science project where 
domain experts verify data labels (Chiranjeevi et al., 2023). This approach 
of expert validation can be crucial in ensuring the reliability of training 
data, especially in domains where specialized knowledge is required.

Ensuring the correctness of data provided during model training can 
significantly enhance model accuracy, while messy or inaccurate data can 
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lead to confusion and lower accuracy models. In the agricultural context, 
this could involve rigorous validation processes for field data, including 
cross-verification of sensor readings, standardization of measurement 
techniques, and careful documentation of data collection methodologies. 
The challenge of data quality is particularly acute in agriculture due to the 
variability of environmental conditions and the potential for human error 
in field observations.

To prepare for future applications of AI in agriculture, it is necessary to 
address these data-related challenges comprehensively (WorldFAIR 
Project, 2024; Wilkinson et al., 2016). Developing infrastructure and 
protocols for foundational models would allow for the creation of a few AI 
models that can be fine-tuned on smaller datasets. This approach could 
significantly advance the field by providing a solid foundation for various 
agricultural AI applications, from crop yield prediction to automated pest 
management systems. Furthermore, the agricultural sector could benefit 
from the development of centralized, curated data repositories specifically 
designed for AI applications (Swetnam et al., 2024; Hugging Face, 2024). 
These repositories could serve as benchmarks for model development and 
evaluation, ensuring that researchers and practitioners have access to high- 
quality, standardized datasets (Yang et al., 2024a; Arshad et al., 2024b). 
Collaborative efforts between academic institutions, industry partners, and 
government agencies could be instrumental in establishing such resources.

As the agricultural sector continues to embrace AI technologies, 
addressing these data-related challenges will be crucial in realizing the full 
potential of AI in improving agricultural practices and outcomes. This 
includes not only improving data collection and storage methods but also 
developing robust data validation techniques, creating standardized 
benchmarks, and fostering a culture of data sharing and collaboration 
within the agricultural research community.

5.3 Computational modeling
Computational modeling in agriculture employs numerical methods to 
predict plant growth, biomass, and yield by analyzing the interactions 
between crops and their environments. Crop modeling, a critical com
ponent of this field, simulates or predicts plant growth, development, and 
yield under various environmental conditions, helping to assess climate 
change impacts on agriculture (Phuoc et al., 2023). By integrating data on 
weather, soil properties, and crop genetics, crop models evaluate how 
factors such as planting density, irrigation, and fertilization affect crop 
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performance. Several biophysical process-based models, such as ORYZA, 
APSIM, DSSAT, and MLCan, are widely used in crop modeling for 
decision-making purposes (Bouman and Van Laar, 2006; Keating et al., 
2003; Jones et al., 2003; Drewry et al., 2010). Despite their utility, these 
models face significant challenges, including incomplete mechanistic 
knowledge, difficulty in measuring latent variables, and brittleness due to 
mismatches in the scales of input parameters. To address these limitations, 
hybrid approaches combining data-driven methods and process-based 
models are being developed.

Early data-driven efforts utilized single data modalities for crop yield 
prediction, disease identification, and irrigation optimization (Balakrishnan 
and Muthukumarasamy, 2016; Ramesh and Vardhan, 2015; Ahmad et al., 
2010; Mohanty et al., 2016; Karandish and Šimůnek, 2016). The advent of 
IoT devices has enabled the collection of multi-modal data, enhancing 
decision-making processes beyond single-mode ML. Studies have shown 
that integrating publicly available weather and soil data can effectively 
predict county-level corn yield in the US Midwest (Jiang et al., 2020). 
Moreover, DL models have been developed to combine genotype and 
environmental variables for crop yield prediction, with explainable DL 
models providing insights into significant predictors (Shook et al., 2021; 
Khaki et al., 2020; Barbosa et al., 2020; Gangopadhyay et al., 2020; 
Akhavizadegan et al., 2021). However, purely data-driven models often fail 
to provide accurate outcomes beyond their training data, but integrating 
biophysical knowledge can mitigate this issue and reduce the need for 
extensive data. Recent advancements have seen the integration of high- 
throughput imaging and sensing data with biophysical knowledge to create 
flexible, hybrid AI models, such as knowledge-guided ML models for rice 
growth simulation (Han et al., 2023). Similarly, coupling of ML and crop 
modeling was shown to improve crop yield prediction in the US Corn Belt 
(Shahhosseini et al., 2021). While the best approaches for integrating 
knowledge and ML are still being refined, the field is progressing and holds 
great promise for future advancements in crop modeling.

5.4 AI models and tools
The integration of AI in agriculture has led to the development of various 
off-the-shelf tools that agricultural professionals and non-technical indivi
duals can easily explore and utilize. These tools leverage satellite imagery, 
weather data, and machine learning algorithms to provide valuable insights 
for precision farming and crop management.
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One such tool is OneSoil, a digital agriculture platform that aids in 
remote crop monitoring, yield increase, and optimization of seed and 
fertilizer costs (OneSoil, 2024). This user-friendly application demonstrates 
the potential of AI in making complex agricultural data accessible to a wide 
range of users. Another significant development in this field is Agromo
nitoring, which offers satellite and weather data for precision farming 
(Agromonitoring, 2024). This platform processes large amounts of satellite 
and climate data to provide vegetation indices, weather forecasts, and 
analytical reports. Its dashboard feature allows users to monitor field states 
throughout the year, integrating satellite imagery and weather data with 
advanced machine learning technologies. For those requiring more 
advanced spatial analysis capabilities, QGIS offers a comprehensive, open- 
source geographical information system (QGIS.org, 2024). While not 
exclusively an AI tool, QGIS supports various data formats and provides a 
framework for integrating AI-driven analyses. Its ability to handle raster, 
vector, mesh, and point cloud data makes it a versatile tool for agricultural 
applications, particularly when combined with AI models for crop mon
itoring and land use analysis. Google Earth Engine represents a significant 
leap in the accessibility of large-scale geospatial analysis (Google, 2024). 
This platform combines a vast catalog of satellite imagery and geospatial 
datasets with powerful analysis capabilities. While it requires some technical 
expertise to use effectively, Earth Engine’s ability to detect changes, map 
trends, and quantify differences on the Earth’s surface makes it an invalu
able tool for researchers and developers working on agricultural applica
tions. For more specialized crop intelligence, Taranis offers a platform 
focused on providing leaf-level insights for crop advisors and growers 
(Taranis, 2024). Using high-resolution drone imagery and AI-powered 
analysis, Taranis can detect and analyze various crop threats, including 
weed severity, disease, insect damage, and nutrient deficiencies. This tool 
demonstrates the power of combining AI with targeted data collection 
methods to provide actionable insights for agricultural decision-making.

These tools represent a spectrum of AI applications in agriculture, from 
user-friendly mobile apps to powerful analytical platforms. They showcase 
the potential of AI to democratize access to complex agricultural data and 
insights, enabling both experts and non-technical users to make more 
informed decisions about crop management and resource allocation. In 
addition to specialized agricultural tools, several general-purpose AI models 
with user-friendly interfaces can be applied to agricultural tasks. The 
Segment Anything Model (SAM), developed by Meta AI, offers powerful 
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image segmentation capabilities that can be used for crop analysis and field 
mapping (Kirillov et al., 2023). For object detection, models like You Only 
Look Once (YOLO) can be adapted to identify various agricultural ele
ments such as crop types, pests, or equipment in fields (Redmon et al., 
2016). In the realm of image classification, ResNet variants have shown 
promise in detecting diseases in crops, demonstrating the potential for early 
identification of plant health issues (He et al., 2016). While these models 
may require some adaptation for specific agricultural use cases, they 
represent accessible entry points for users to experiment with AI applica
tions in agriculture without extensive technical expertise.

5.5 Cyberinfrastructure
The implementation of Cyber-Agricultural systems (CAS) relies on a robust 
cyberinfrastructure to support essential functions such as efficient data 
transfer, real-time decision support, management information delivery, and 
storage of heterogeneous data formats from various sensors and platforms. 
This infrastructure facilitates querying data based on research needs, orga
nizing trained models, providing visualization, and storing scripts and models 
for future use. In an analogy to infrastructure such as roads, bridges, rail lines, 
power grids, and telephony networks that underlie an industrial economy, 
cyberinfrastructure refers to the collective of advanced computing systems, 
data, and information management, and high-performance networks that 
power 21st-century science and engineering research and education. 
Advanced cyberinfrastructure comprises not only hardware systems but also 
the software that links all the components and makes the system useful and 
usable, as well as the human expertise that operates and helps researchers 
utilize the resources. Cyberinfrastructure encompasses various technological 
solutions tailored to support the specific needs of Cyber-Ag. Examples 
include data transfer solutions that facilitate efficient data transfer from fog- 
edge-cloud devices, decision support systems (DSS) providing real-time or 
scheduled decision support, data management solutions handling diverse data 
formats from different sensors and platforms, visualization tools offering 
visualization capabilities to make data insights accessible, and storage solu
tions organizing and storing trained models, scripts, and data for future use. 
While cyberinfrastructure is already proving productive in industrial settings, 
agriculture presents unique challenges requiring different approaches.

Agriculture’s dynamic and variable environments necessitate flexible 
and adaptive data management solutions. Key challenges include rural 
connectivity, as many agricultural operations are in rural areas with limited 
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high-speed internet access. Solutions like LoRaWAN and edge computing 
are needed to manage data locally. Additionally, distributed data processing 
is crucial for handling large volumes of data from multiple sources across 
edge, fog, and cloud layers to ensure timely decision-making. Agricultural 
devices often operate with limited power and computational resources, 
necessitating efficient data compression, lightweight machine-learning 
models, and energy-aware computing frameworks. The infrastructure must 
also withstand extreme weather, dust, and temperature variations. Effective 
communication between edge devices can enhance decision support 
through distributed learning, networking, and weight sharing.

Addressing these challenges involves a multi-faceted approach. Shared 
data storage systems facilitate efficient and secure transfer of large datasets, 
while high-memory computing provides access to high-memory compu
ters and virtual machines for data analysis. Metadata labeling enables 
descriptive metadata for efficient data retrieval, and identity management 
systems ensure secure data sharing. Computational efficiency is crucial, 
involving learning from compressed sensor data sets and converting them 
into actionable insights, typically through scheduled computations per
formed in central or distributed units connected to the cloud.

Initiatives like the AI Institute for Resilient Agriculture (AIIRA) 
(Ganapathysubramanian et al., 2024) and the ICICLE AI Institute (Intel
ligent CyberInfrastructure with Computational Learning in the Environ
ment) (Panda et al., 2024) are leading efforts to address these challenges. 
AIIRA focuses on integrating advanced technologies to enhance agri
cultural productivity and sustainability, while ICICLE aims to democratize 
AI by developing intelligent cyberinfrastructure spanning the edge-cloud- 
HPC computing continuum. Cybershuttle (Marru et al., 2023) is another 
initiative to support an end-to-end computational science research con
tinuum, enabling seamless movement from local laptops to preprocessing, 
simulation, visualization, and analysis stages. This infrastructure supports 
scaling computational resources, captures metadata, and facilitates iterative 
processes.

Cyberinfrastructure is key in enabling information flow across different 
disciplines and platforms. For example, in soybean plant physiology, 
empirical response curves for stomatal conductance with environmental 
conditions can be used by crop modelers to simulate crop yield, with data 
and models shared as web resources through platforms like CyVerse 
(Swetnam et al., 2024) and the Open Ag Data Alliance (Ault et al., 2022). 
Ongoing research and development, improvements in rural connectivity, 
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and engagement with the farming community are essential for the con
tinued advancement and adoption of cyberinfrastructure in agriculture. 
Collaborative projects like INFEWS (Innovations at the Nexus of Food, 
Energy, and Water Systems) and PCHES (Program on Coupled Human 
and Earth Systems) are also making strides by developing container-based 
modeling infrastructures to understand and address the impacts of agri
cultural production on sustainable water use.

5.6 Explainability and interpretability of AI models
Explainable deep learning aims to address the “black box” nature of many AI 
models by providing interpretable tools that clarify why a model makes 
specific decisions or behaves in a certain way. This approach is crucial in 
agricultural applications, particularly in plant phenotyping, where under
standing the model’s decision-making process is essential for scientific 
validity and practical implementation. Techniques such as saliency maps 
highlight the most important pixels in imagery data, revealing spatial regions 
crucial for classification (Simonyan et al., 2013). This methodology has been 
applied in soybean stress phenotyping, where a 3D-CNN model using 
hyperspectral imagery simultaneously learned spectral and spatial disease 
signatures correlated to charcoal rot symptom severity (Nagasubramanian 
et al., 2019).

Explainable AI (XAI) techniques enhance the trustworthiness of image- 
based phenotypic information used in food production systems (Mostafa 
et al., 2023; Harfouche et al., 2023). Ghosal et al. (2018) demonstrated how 
techniques such as Grad-CAM (Selvaraju et al., 2017) can improve 
transparency in stress phenotyping by highlighting specific regions that are 
critical for the model in determining different types of stress. Additionally, 
the technique discussed in (Chefer et al., 2021) can be applied to explore 
the transparency of vision transformer models (Dosovitskiy et al., 2020). 
Furthermore, explainable DL output can derive stress severity scores that 
show high agreement with expert ratings (Ghosal et al., 2018), providing 
an unsupervised method for quantitative stress measurement. Zhou et al. 
(2024) enhanced the explainability of Support Vector Regression models 
used in predicting soybean branching by employing SHapley Additive 
exPlanations (SHAP) (Lundberg and Lee, 2017). This technique helps 
identify key genes influencing branching, allowing breeders to optimize 
their programs more effectively. Other XAI techniques, such as rule 
extraction and feature importance analysis, provide valuable insights into 
AI models’ decision-making processes in agriculture (Samek et al., 2021). 

240                                                                                         Asheesh K. Singh et al. 



Rule extraction methods, for instance, can generate human-interpretable 
rules describing the conditions for particular predictions, enabling agro
nomists to understand and validate the model’s reasoning (Guidotti et al., 
2018). By providing interpretable and trustworthy insights, XAI enables 
plant scientists and breeders to make more informed decisions. The stress 
severity ratings derived from explainable DL could be input as phenotypic 
data into genomic studies such as GWAS and Quantitative Trait Loci 
mapping, or automatically incorporated into genomic selection meth
odologies in breeding programs. This integration of explainable AI in 
agricultural research and practice represents a significant advancement in 
leveraging AI technologies for improved crop management and breeding 
strategies.

5.7 AI related impacts on privacy, ethics, and policy
The implementation of AI in crop production and breeding raises sig
nificant ethical concerns, particularly regarding data security, privacy, and 
policy issues. Large amounts of data are regularly collected on farms, 
providing valuable information for developing robust AI models. 
However, farmers often show reluctance in sharing this data due to lack of 
transparency (Wiseman et al., 2019). This hesitation stems from concerns 
about data ownership, potential misuse, and the fear of losing competitive 
advantages. To address these concerns, transparency regarding the intended 
use and outcomes of the data is essential, along with assurances that farmers 
will benefit from their data contributions. AI technologies in agriculture are 
governed by diverse regulations across different countries and regions, 
reflecting the global nature of both agriculture and AI development. The 
European Union has taken a proactive approach with its Artificial Intel
ligence Act, which categorizes AI applications based on risk levels and 
mandates transparency and human oversight for high-risk applications in 
agriculture (European Commission, 2024). This comprehensive frame
work aims to foster innovation while ensuring that AI systems in agri
culture do not compromise safety or ethical standards.

In the United States, the USDA has developed a data strategy regarding 
transparency, security, and accountability of data usage, including applica
tions in AI (United States Department of Agriculture, 2023). This data plan 
also features objectives to develop training programs to increase availability of 
education about ethical use of data and AI. The United States government 
continues to encourage regulation regarding AI with an Executive Order 
that has eight guiding principles that focus on ensuring AI is used safely, 
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securely, fairly, and with the protection of Americans in mind (Executive 
Office of the President, 2023). These guidelines reflect a growing awareness 
of the potential risks associated with AI, including data breaches, algorithmic 
bias, and the concentration of market power. Some states have enacted 
specific legislation to protect against the misuse of AI and are moving to 
create local groups to monitor the use of AI within their respective states 
(State of Utah, 2024; State of Colorado, 2024). Other regions, including 
Australia and Canada, are focusing on confidentiality, safety, responsibility, 
transparency and protecting users’ data rights (Australian Government, 2024; 
Government of Canada, 2021). These efforts highlight the global recogni
tion of the need for standardized approaches to data management and AI 
deployment in agriculture, while also acknowledging the unique challenges 
faced by different agricultural systems worldwide.

Fairness, accountability, transparency, and equitable access are crucial 
principles in the ethical development of AI in agriculture. These principles 
aim to prevent discrimination, establish clear responsibilities for AI deploy
ment, make AI decisions understandable to stakeholders, and ensure that all 
farmers can benefit from AI advancements, regardless of their size or tech
nological expertise. The implementation of these principles requires careful 
consideration of how AI systems are designed, deployed, and monitored in 
agricultural settings. Data security and privacy are paramount concerns in the 
agricultural use of AI. The vast amount of data collected from farms, 
including sensitive information about crop yields, soil conditions, and farm 
management practices, necessitates robust security measures to protect against 
unauthorized access or breaches. Farmers need assurances that their data will 
be used ethically and that they retain control over it. Addressing these 
challenges requires comprehensive policy support, including financial sub
sidies, infrastructure development, and robust training programs to equip 
farmers with the necessary skills. Clear regulations on data privacy and 
ownership are also essential to protect farmers’ interests. With appropriate 
policy interventions, smallholder farmers can leverage AI to improve their 
productivity and contribute to sustainable agricultural development. 
Ensuring the privacy of this data is crucial not only for individual farmers but 
also for maintaining fair competition in the agricultural sector. Policies 
regarding data ownership and privacy are being developed to address these 
concerns, with a focus on giving farmers control over their data and ensuring 
that they understand how it will be used.

The societal impacts of AI in agriculture extend beyond the farm, 
potentially affecting labor markets and changing the structure of agricultural 
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communities. As AI technologies automate certain tasks, there are concerns 
about job displacement and the changing skill requirements for agricultural 
workers. Policy makers must consider these broader implications when 
developing regulations for AI in agriculture, ensuring that the benefits of 
these technologies are balanced against potential negative impacts on rural 
communities. Governments and regulatory bodies should create frameworks 
that encourage responsible AI adoption while balancing innovation and 
protection. This balance is critical to ensure that the agricultural sector can 
benefit from AI advancements without compromising ethical standards or 
exacerbating existing inequalities. Collaboration among industry stake
holders, researchers, and policymakers is essential to shape effective policies 
that address the complex ethical and practical challenges posed by AI in 
agriculture.

To foster trust and adoption of AI technologies in agriculture, ongoing 
communication with stakeholders, careful consideration of societal impacts, 
and the development of supportive policies are necessary. This includes 
educating farmers about the potential benefits and risks of AI technologies, 
involving them in the development of AI solutions, and ensuring that they 
have a voice in policy-making processes. Researchers must engage with 
policymakers to ensure that research can continue while protecting farmers’ 
data, striking a balance between scientific advancement and ethical con
siderations.

By addressing these ethical, policy, data security, and privacy issues, the 
agricultural sector can leverage AI to enhance productivity, sustainability, 
and resilience in the face of growing global challenges. The holistic 
approach to AI implementation in agriculture aims to harness its potential 
while mitigating risks and ensuring widespread distribution of benefits. As 
AI technologies continue to evolve, ongoing evaluation and adjustment of 
policies and practices will be necessary to maintain ethical standards and 
maximize the positive impact of AI in agriculture and breeding.

5.8 Impact on smallholder farmers
Smallholder farmers’ adoption of AI technologies is hindered by high initial 
costs, inadequate digital infrastructure, and a lack of technical knowledge. 
Many farmers may find the investment in AI hardware, software, and 
training prohibitive, while poor internet connectivity in rural areas further 
complicates the deployment and maintenance of these technologies (Felz 
et al., 2022). Moreover, the need for technical training poses a barrier, as 
many farmers may lack the skills required to use AI systems effectively. 
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Data privacy concerns also arise, as farmers need assurances that their data 
will be used ethically and that they retain control over it. Addressing these 
challenges requires comprehensive policy support, including financial 
subsidies, infrastructure development, and robust training programs to 
equip farmers with the necessary skills. Clear regulations on data privacy 
and ownership are also essential to protect farmers’ interests. With 
appropriate policy interventions, smallholder farmers can leverage AI to 
improve their productivity and contribute to sustainable agricultural 
development.

5.9 Digital twin
Digital Twins (DTs) have emerged as a transformative technology in 
agriculture, unifying sensing, modeling, control, and actuation aspects of 
Cyber-Agricultural Systems (CAS) under a single framework. This inte
gration positions DTs as a potential game-changer for CAS, offering 
unprecedented opportunities for precision agriculture and sustainable 
farming practices. While widely used in engineering systems (Madni et al., 
2019; Schleich et al., 2017; Torzoni et al., 2024) and supply chain man
agement (Ivanov and Dolgui, 2021; Ivanov, 2024), DTs are now rapidly 
being adopted in agriculture, spanning applications from fundamental 
research (Pylianidis et al., 2021) to breeding (Moghadam et al., 2020), 
precision agriculture (Angin et al., 2020; Alves et al., 2019; Goldenits et al., 
2024), and policy-making (Delgado et al., 2019). DT in agriculture is a data 
and software framework that serves as a digital replica of the agricultural 
physical system (Jones et al., 2020). These digital replicas mirror the 
behavior of their real-world counterparts throughout their life cycle, from 
seed to harvest. These advanced models simulate the physiological state, 
growth, and development of plants or fields by incorporating diverse 
components such as historical data, crop models, AI models for pheno
typing and ICQ assessment, decision-making algorithms, and field maps 
with 3D crop models for robotic navigation. Crop models, integral to DTs, 
are essential for understanding plant physiology, growth, development, and 
management. Unlike traditional agricultural simulators, DTs must con
tinuously or periodically update their digital state using real-time mea
surements from their physical counterparts, including phenotyping, phy
siological measurements, and environmental data like soil, weather, and 
management practices. Moreover, DTs provide a structured approach to 
reconcile known dynamics, encoded in crop models, with unknown 
dynamics derived from real-world measurements. This integration is 
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critical for biological systems where comprehensive first-principle models 
are not available, unlike engineered systems with fully describable beha
viors. DTs have been utilized in various agricultural contexts, covering 
species such as row crops, orchards, viticulture, gardens, and horticulture. 
They can be designed and implemented at different scales, from individual 
organs to entire fields and greenhouses (Chaux et al., 2021; Howard et al., 
2020; Kamburjan et al., 2024; Reyes Yanes et al., 2022). Recent research 
has applied DTs at these varied scales. Applications of DTs extend from 
monitoring and real-time diagnostics to optimizing yield, profitability, 
breeding decisions, and autonomous field operations (Laryukhin et al., 
2019; Skobelev et al., 2020; Defraeye et al., 2021). Technologies like 
augmented reality (AR) and virtual reality (VR) can further augment DT 
applications, providing immersive visualization and interaction with digital 
agricultural systems and enhancing user experience and operational effi
ciency. The future of DT research lies in developing ‘Intelligent Digital 
Twins’ (IDTs), capable of self-learning and making autonomous decisions 
for farm management (Laryukhin et al., 2019). Machine learning techni
ques are being intensively studied to imbue DTs with intelligence, enabling 
them to adapt to dynamic environmental conditions and optimize farm 
operations in real-time. Preliminary studies on IDTs, primarily utilizing 
generative models, show promise for self-learning capabilities with varying 
levels of data integration (Tsialiamanis et al., 2021). The combination of 
ML, extensive sensing, and autonomous systems presents significant 
opportunities to advance agriculture through DTs.

5.10 Large soybean datasets for community usage
The plant breeding and production community leverages diverse data
sets—including large images, sensor data, and multi-omics information—to 
advance AI-driven research and crop improvement in soybeans and other 
field crops. The USDA-ARS Ag Data Commons (USDA National 
Agricultural Library, 2024) provides a comprehensive repository of agri
cultural datasets, including environmental conditions, soil properties, and 
plant health monitoring, which are essential for studying and improving 
crop performance. The PlantVillage dataset (PlantVillage, 2024) includes 
over 50,000 images across various crop species, offering valuable resources 
for disease detection and health monitoring in soybeans and other crops. 
Similarly, the CropDeep Agricultural Dataset (Jiang, 2023) focuses on 
images of tomato diseases collected via IoT and mobile cameras, which 
provide methodologies applicable to other crops, including soybeans. The 
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TERRA REF initiative (TERRA-REF, 2024) offers extensive high- 
resolution sensor data from sorghum breeding trials, which can be utilized 
to study similar traits in soybean cultivation. Additionally, the Quantitative 
Plant project (Quantitative Plant, 2024) hosts a range of datasets, such as 
root system and shoot images, pivotal for phenotyping and growth analysis 
in crops like wheat and soybean. Resources like GrowStuff (Growstuff 
Team, 2024) and Open Plant Pathology (Del Ponte and Sparks, 2024) 
contribute further by providing open-access data and tools for crop record- 
keeping and disease research, enhancing our understanding and manage
ment of field crops.

SoyBase (Grant et al., 2010), the Soybean Genetics and Genomics 
Database, provides access to diverse genomic and phenomic datasets for 
soybean research. It is a comprehensive resource for soybean geneticists and 
breeders, offering data on genetic maps, markers, QTL (Quantitative Trait 
Loci) information, and sequences. SoyBase also includes various tools for 
visualizing and analyzing genomic data, making it an invaluable resource 
for identifying genes associated with important agronomic traits. An Illu
mina Infinium BeadChip containing over 50,000 SNPs from soybean has 
been developed (Song et al., 2013, 2015).

The Soybean Knowledge Base (SoyKB) (Joshi et al., 2014), SoyMD 
(Yang et al., 2024b), and SoyOmics (Liu et al., 2023) integrate multi-omics 
datasets essential for soybean research. SoyKB combines various omics data 
with molecular breeding information. SoyMD offers transcriptomic, pro
teomic, and metabolomic datasets, aiding in understanding gene expression 
and protein modifications. SoyOmics provides high-throughput sequen
cing, quantitative proteomics, and metabolite profiles, supporting soybean 
cultivar improvement and stress response studies. These comprehensive 
datasets support the development of precision agriculture technologies and 
improve crop productivity and sustainability. These open-source datasets 
are ideally positioned to assist the soybean research community develop and 
deploy ML- and AI-based solutions.

5.11 Immersive environments
AI and ML have revolutionized 3D modeling of real-world environments. 
These technologies enable quick conversion of 2D images or video into 
detailed 3D models, with ML algorithms improving quality and filling gaps 
(Arshad et al., 2024a). This advancement has significantly facilitated the 
creation of immersive environments across various industries, making the 
process faster and more accessible.
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An immersive environment is a digital environment designed to fully 
engage and envelop the user’s senses, creating a sense of presence and 
interaction with the environment. The environment stimulates the physical 
world by engaging one or more senses like sight, sound, touch, and pos
sibly smell. This type of environment is becoming increasingly relevant in 
fields like education, healthcare, entertainment, marketing, manufacturing, 
and many more diverse research fields (Suh and Prophet, 2018). Different 
technologies are deployed to give a sense of presence in these environ
ments, such as virtual reality (VR) and augmented reality (AR). Virtual 
Reality technology uses input devices such as head-mounted displays 
(HMDs) and controllers to immerse the user in a computer-generated, 
three-dimensional environment. VR takes place in the artificial/virtual 
environment, where users can generally manipulate real-life objects with 
the help of input devices. Augmented Reality focuses on the intersection of 
the real and virtual worlds, where digital information is overlaid onto the 
real-world environment. Unlike VR, AR does not aim to fully immerse 
the user in an artificial world, but instead enhances the real-world 
experience, providing users with additional information and control over 
their surroundings (Ardiny and Khanmirza, 2018).

In education, AR and VR make learning engaging across math, physics, 
astronomy, and biology (Ardiny and Khanmirza, 2018). A recent study has 
shown that VR can help students enhance their learning and observation 
with the visualization of complex problems, especially in subjects where 
visual understanding is important (Campos et al., 2022). In the tourism 
industry, VR technology enables tourists to explore destinations virtually 
and meticulously plan their visits ahead of time. Additionally, many hotels 
are leveraging VR to offer virtual tours of their rooms, enhancing their 
marketing efforts and allowing potential guests to experience accom
modations before booking (Pestek and Sarvan, 2020). In agronomy, 
AR/VR can be crucial in applications involving sensing, reasoning, and 
future remote robotic manipulation. These technologies can enable 
researchers and (eventually) farmers to perform various experiments and 
operations with considerably less effort (Hurst et al., 2021). It has multiple 
applications that can help both small- and large-scale farmers. These 
technologies can provide critical training to alleviate labor shortages and 
improve worker skills, lowering the risk of fatalities and injuries among 
inexperienced workers. The deployment of VR in training has shown 
many advantages, such as cost-effective, safe learning environments, 
enabling trainees to practice various scenarios repeatedly, and ensuring 
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proficiency in skills while minimizing exposure to real-world dangers 
(Xie et al., 2021). VR can also help with virtual tours that allow researchers 
to explore remote agricultural locations from their homes, which is helpful 
in times like the COVID-19 pandemic. With the use of AR prototypes 
that teach insect identification, this technology can also teach farmers about 
disease outbreaks and pest control. For example, researchers have devel
oped an AR system that helps farmers directly distinguish between bene
ficial and harmful pests in their fields with mobile phones (Nigam et al., 
2011). Furthermore, AR can also help farmers/researchers retain specific 
information on water, soil, and fertilizer requirements, thereby lowering 
costs and improving crop management (Isafiade and Mabiletsa, 2020).

Immersion technology in agriculture has an inspiring future ahead of it 
and will wholly transform farming methods. With the ongoing development 
of immersive technology, farmers and researchers can conduct precise and 
efficient crop management by observing data in real time. This includes 
keeping track of plant health, soil conditions, and watering requirements to 
maximize resource utilization and yield. Moreover, combining AR/VR, AI, 
and IoT will allow for smarter farming approaches, making agriculture more 
sustainable and resilient. These advances will address labor shortages and 
improve overall farm management, significantly contributing to long-term 
food production (de Oliveira and Corrêa, 2020). Even though immersive 
technology has advanced considerably in recent years, its widespread appli
cation still has challenges and drawbacks. One of the major challenges is the 
cost of implementing AR/VR systems; HMDs are expensive and require 
substantial investment. Furthermore, these technologies necessitate high- 
performance hardware and frequent software upgrades, which might be 
unaffordable for small-scale farmers and organizations. Technical limitations 
such as limited battery life, consistent internet connectivity, and consumer 
discomfort during extended use also hinder adoption. Additionally, inte
grating AR/VR into established agricultural practices requires training and 
technological skills, which may not be readily accessible in all locations.

5.12 Soybean variety development
Within breeding programs, AI has been applied in many ways in soybean 
including pod counting (Riera et al., 2021), disease classification 
(Nagasubramanian et al., 2018), root trait extraction (Carley et al., 2023; 
Falk et al., 2020b), abiotic stress classification (Dobbels and Lorenz, 
2019; Zhou et al., 2020, 2021) and many more. For a breeder developing 
cultivars, these models can provide insightful information previously 
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unavailable or difficult to obtain due to phenotyping/measurement 
challenges; however, several challenges remain.

Deep learning models can often be complex and difficult to interpret 
due to the lack of understanding in how they make predictions (McGovern 
et al., 2019). More basic ML models, such as decision trees, are inherently 
interpretable, while other models such as neural networks use feature 
attribution methods to make up for the lack of inherent interpretability 
(Paudel et al., 2023). These feature attribution methods, along with 
automatic feature learning capacity of DL, make DL models more inter
pretable to users, including plant breeders, to utilize in research and cultivar 
development. Model interpretability can provide useful insights which 
plant breeders can use for decision making. Interpretable DL models allow 
for an understanding of associations between the features and the outcomes 
(Azodi et al., 2020), which can be interpreted as a goal for guiding 
hypotheses. An example of an interpretable model is (Nagasubramanian 
et al., 2020), in which several DL methods with interpretability were used 
to detect and classify eight different soybean stresses. The interpretability of 
the model allowed for identification of infected regions on leaves, which 
could be used to generate hypotheses for the response mechanisms to the 
stresses, as well as allowing for biological interpretations. (Newman and 
Furbank, 2021) argues that interpretability of ML models should not be 
reliant on only the ranking of variable importance, and that for greatest 
utility in biology, models should be made understandable even at the cost 
of predictive accuracy. By understanding and being able to interpret the 
model, scientists can seek to understand the systems, rather than being 
limited to only predicting the system. In understanding why a prediction 
was made, a breeder can better select cultivars for specific production 
systems, and can work towards ideotype development for different envir
onments. Essentially, a variety development program that makes hundreds 
of decision in the breeding pipeline can benefit from optimization and 
interpretability for processes and the overall system.

Fully understanding soybean is key to developing novel and custom 
varieties equipped for resiliency and high yield under stress and uniquely 
placed in their ideal environment. Predictive breeding combines envir
onmental and management considerations for appropriate placement of 
novel lines (Parmley et al., 2019b). Development of ideotypes relies on 
ability to fully characterize the soybean genetically and phenotypically, 
both above and below ground. AI based techniques such as 3D canopy 
fingerprinting which allow for querying of related soybean canopy 
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structure can help breeders understand how canopy architecture is related to 
preferential agronomic traits (Young et al., 2023). While other high 
throughput plant phenotyping techniques implementing AI for root ideo
type characterization can illuminate parts of the plant not commonly phe
notyped (Falk et al., 2020b). Furthermore, AI’s integration into genetic 
studies of soybeans enables the development of customized crop varieties. By 
analyzing vast datasets on genetic markers, AI algorithms can predict plant 
traits that optimize yield, disease resistance, and adaptability to specific cli
matic conditions. Additional design strategies include genome editing 
techniques which can have a significant impact in the development of new 
soybean varieties. These technologies can aid breeders in the development of 
non-transgenic cultivars with traits that otherwise would be unfeasible to 
develop. Gene editing techniques provide human control over genetic 
information (Kumar and Jain, 2015), accelerating the improvement of crop 
traits. Combining structural, physiological, and genetic understanding of 
soybean under varying conditions is fundamental to digital twin develop
ment. Through AI in concert with environmental and genetic data, soybean 
growth and development can be simulated to predict desirable traits, 
allowing breeders to design customized soybean varieties and determine ideal 
placement. Furthermore, AI will benefit in the next generation of gene 
targets adn transformation as it will integrate insights from multi-omics.

Advances in genomics and phenomics are resulting in increased inte
gration of these tools into modern plant breeding, which is allowing 
breeders to further increase yield and genetic gain. Additional opportunities 
include the application of omics technologies, which can be difficult due to 
the generation of large datasets which are often heterogeneous and com
plex to analyze, resulting in a big data problem (Harfouche et al., 2019). AI 
is able to assist with the problem of large datasets and streamline analyses, 
and is being successfully applied to various breeding objectives that were 
previously outlined. One growing area in breeding that AI has potential to 
affect is in developing novel varieties with unique combination of traits 
meeting the needs of prescriptive cultivars (Parmley et al., 2019b). Another 
avenue is the integration of soil-crop-weather parameters to develop 
adaptive ideotypes through digital twins. These technologies paired with 
AI have the potential for breeders to tailor-made soybean varieties that 
meet specific agronomic and climate needs. This enhances crop perfor
mance under varied environmental conditions and aligns with sustainable 
agricultural practices by reducing dependency on chemical inputs (Poonia 
et al., 2022; Wang et al., 2023).
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6. Concluding remarks

The integration of AI and DL methodologies in soybean improvement 
and production presents a paradigm shift in addressing the escalating chal
lenges of productivity and sustainability. These advanced computational 
approaches demonstrate superior capacity in processing and analyzing mul
tidimensional, high-throughput resolution, integrating AI, developing 
decision support tools and informed decision making. On-board computing 
on machines represents a quantum leap in CAS, enabling high-fidelity 
detection of biotic and abiotic stressors and informing data-driven manage
ment strategies. The computational prowess of AI in assimilating and 
interpreting diverse datasets, encompassing genomic, meteorological, and 
historical agronomic information, facilitates evidence-based decision-making 
and resource optimization. This capability has profound implications for 
varietal selection, targeted pesticide application, and site-specific manage
ment protocols, potentially yielding both economic and environmental 
dividends in soybean production systems, and meet future production goals 
in the face of climate variability. However, the implementation of AI 
methodologies in agriculture is not without challenges. These include sub
stantial computational resource requirements, the necessity for expansive, 
high-quality training datasets, and the inherent opacity of many deep 
learning algorithms, which complicates model interpretability and validation. 
Furthermore, issues pertaining to data security, privacy, and equitable access 
to AI technologies necessitate careful consideration to ensure ethical and 
unbiased implementation across diverse agricultural contexts. Future research 
trajectories should focus on addressing these challenges to fully harness the 
potential of AI in agriculture. Priority areas include enhancing model 
interpretability through explainable AI techniques, improving data quality 
and accessibility through standardized protocols, and developing scalable 
solutions adaptable to diverse agricultural systems. Advanced research ave
nues may explore multi-trait prediction models and the integration of 
dynamic environmental variables to enhance the robustness and applicability 
of AI systems in soybean breeding and production. While AI and deep 
learning approaches offer significant advantages in deciphering complex 
agricultural data and optimizing decision-making processes, their successful 
implementation necessitates a multidisciplinary approach addressing both 
technical and ethical considerations and partnerships with farmers and 
communication with policymakers. As these technologies continue to 
evolve, they hold the potential to significantly enhance the sustainability, 
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efficiency, and resilience of soybean production systems, contributing to 
global food security in the face of increasing environmental volatility and 
resource constraints.
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