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Abstract

Artificial intelligence (Al) in soybean research has revolutionized various crop
improvement and production aspects. This review provides predominant areas that
have seen the use of Al. Al applications in phenomics have enabled collecting and
analyzing high-dimensional data in soybean plants, from below- to above-ground
traits, predicting phenotypes, and identifying complex patterns. In genomics, Al has
improved genomic selection accuracy and identified genomic regions associated
with traits of interest, such as resistance to biotic and abiotic stresses. Al has also been
extensively used in detecting and managing biotic and abiotic plant stresses using
RGB, multispectral, and thermal imagery from ground-based and aerial platforms.
Additionally, Al has shown significant potential in yield prediction, incorporating
factors such as vegetation indices, weather data, and soil properties. This review
explains the concept of cyber-agricultural systems (CAS) that integrates Al, advanced
sensing, computational modeling, and scalable cyberinfrastructure to optimize soy-
bean production, enhance resource management, reduce environmental impact, and
improve farm efficiency. We explain the use of CAS in crop improvement as well. We
provide an exhaustive listing of challenges and future direction in the integration of Al
in soybean production and crop improvement, including multi-modal and layered
sensing, data availability and quality, computational modeling, Al models and tools,
Cyberinfrastructure, Explainability and interpretability of Al models, Al-related impacts
on privacy, ethics, and policy, Impact on Smallholder Farmers, Digital Twin, Large
Soybean Datasets for community usage, and Immersive environments.

1. Introduction

Soybeans are an essential source of both protein and oil, playing a

critical role in human and animal nutrition. Soybean offers a high-quality

protein source that helps address global nutritional and feed needs, parti-

cularly in developing regions (Hartman et al,, 2011). In animal diets,

soybean meal significantly boosts livestock productivity by providing

essential amino acids, thereby supporting the global meat supply chain
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(Graham and Vance, 2003). The versatility of soybean extends beyond
nutrition, as they are also pivotal in various industries, including sustainable
aviation fuel and biodiesel production, further underscoring their eco-
nomic importance (Hartman et al., 2011). Moreover, soybean contributes
to sustainable agricultural practices through biological nitrogen fixation.
This process enhances soil fertility by converting atmospheric nitrogen into
a form usable by plants, thereby reducing the reliance on synthetic nitrogen
fertilizers (Graham and Vance, 2003).

Soybean production has faced numerous challenges as acreage has
expanded. The effects of biotic and abiotic pressure individually, and in
combination, can negatively impact soybean yield, resulting in billions of
dollars in U.S. crop insurance payments, economic losses for farmers, and
increased prices for consumers (Dice and Rodziewicz, 2020). These stresses
can be exacerbated by extreme weather events, which are becoming more
prevalent due to climate change (Raymond et al., 2020). Across crop
species, the main abiotic stress factors associated with yield losses are
drought, heat, cold, and soil salinity (Oerke, 2006). Water deficit, or
drought, is a major abiotic factor that affects the yield of crop species
around the world, and is considered as one of the main constraints on yield
potential in the highly productive US Corn Belt region (Yang and Wang,
2023). Soybean yield losses due to drought stem from reduced growth and
development rate, and have been found to cause a yield reduction of 40 %
(Specht et al., 1999). A recent study on the magnitude, frequency, dura-
tion, and timing of droughts showed that more than two thirds of global
soybean acreage is at high risk of severe droughts causing reduced yield in
soybean (Santini et al., 2022). Rising global temperatures, that often
accompany drought stress, are predicted to increase the prevalence of heat
stress in many soybean production regions (Teixeira et al., 2013). While
heat stress has generally not been considered a significant constraint on
soybean production worldwide, end-of-the-century climate projections
show it to be an increasingly important factor affecting the yields of
numerous crop species, including soybean (Bezner Kerr et al., 2022),
which is projected to have yield losses of up to 22 % due to heat stress
(Yang and Wang, 2023). Additionally, cold temperatures can negatively
impact soybean. Depending on the cultivation area, cold stress can affect
the germination and seedling establishment, particularly if planting dates are
earlier, and early frosts can affect seed development at the end of the season
(Ohnishi et al., 2010).
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In addition to abiotic stresses, soybean is also exposed to yield limiting
biotic stresses such as insect pests, diseases, and weeds. In 2022, the most
severe biotic stress in both the Northern and Southern United States as well
as Ontario, Canada was soybean cyst nematode (Heterodera glycines) causing
over 90 million bushels in yield loss (Allen et al., 2023). In the Northern
United States and Ontario, Canada, the fungal disease sudden death syn-
drome (Fusarium virguliforme) ranks second causing over 19 million bushels
yield loss, while in the southern region of the US, root knot nematode
(Meloidogyne spp.) takes second place causing over 13 million bushels in
yield loss (Allen et al., 2023). Poorly controlled weeds, especially in late-
season, can cause yield losses up to 48 % (Landau et al., 2022). Insects are
constantly on the move and new insect pests can emerge to cause damage
such as the soybean gall midge (Resseliella maxima Gagné) first reported in
2019 in the Midwest United States (Gagné et al., 2019) and can cause yield
losses from 17-31 % in soybean (McMechan et al., 2021). Biotic stresses
pose a unique challenge in that they are also constantly evolving to meet
and overcome genetic and management strategies developed for biotic
stress mitigation. Unfortunately, the United States leads the world with 132
species of herbicide resistant weeds, with a growing number of species
developing resistance to multiple herbicide modes of action (Heap, 2024).
To make matters worse, soybean cyst nematode has developed the ability
to reproduce on a highly utilized source of resistance from PI 88788
(McCarville et al., 2017) that was predominantly used in breeding due to its
effectiveness and incorporation in high-yielding genetic materials. These
unique challenges highlight the need for both diverse genetic and man-
agement strategies to safeguard the genetic and chemical strategies for as
long as possible. As the problems exacerbate and new issues emerge in crop
production, we must investigate state-of-the-art technology and novel
methods to breed higher-yielding, more resilient crops.

Soybean breeders have adapted and developed new technology to face
the various challenges in today’s production of soybeans. Among these
tools is artificial intelligence (AI) where computer models are trained to
process information in a manner similar to the human brain. Al and deep
learning (DL) have emerged as transformative tools in modern agriculture,
reshaping traditional practices and fostering innovation (Pathan et al.,
2020). The integration of Al in soybean improvement and production
represents new approaches to meet the global protein and oil needs. Al
technologies can help improve plant breeding efficiency and success,
optimize crop production and management, and help control diseases and
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pests, leading to increased productivity and sustainability. These techno-
logical advancements are crucial for meeting the rising global demand for
soybeans, ensuring food security, and maintaining economic stability
Negus et al. (2024). The soybean industry can achieve more efficient and
resilient production systems by leveraging Al, ultimately contributing to a
more secure and sustainable agricultural future.

This paradigm shift is propelled by the exponential growth of data and
the advent of high-throughput imaging technologies, which generate vast
amounts of valuable information regarding plant health and environmental
conditions (Araus and Cairns, 2014). The emergence of advanced technol-
ogies such as drones, ground robots, and sensors, has brought high-
throughput phenotyping and phenomics to the forefront, transforming the
measurement of multiple plant traits across various growth stages and facil-
itating rapid, precise, and accurate data collection (Feng et al., 2021; Guo
et al., 2021). DL plays a pivotal role in harnessing this deluge of data for the
identification, classification, quantification, and prediction (ICQP) of plant
stress phenomena (Singh et al., 2016). By leveraging its capacity for
sophisticated data analysis and pattern recognition, DL enables the extraction
of valuable insights from complex datasets Feuer et al. (2024). This
empowers farmers and researchers to make informed decisions regarding
crop management practices, resource allocation, and stress mitigation stra-
tegies. Al advancement, in conjunction with data generation and sensing
technology, is solving complex problems.

This review article provides a comprehensive overview of the literature
on Al in soybean breeding and production, along with basics of machine
learning, deep learning, and artificial intelligence. Several AI application
areas are covered, including phenomics, genomics, and cyber-agricultural
systems. We present challenges that need to be overcome for a full reali-
zation of Al potential and present future directions in plant breeding and
crop production.

2. Machine learning, deep learning, and artificial
intelligence

Machine Learning (ML), Deep Learning (DL), and Artificial
Intelligence (AlI) are key components of modern data-driven technology,
each with unique roles that are closely connected (Fig. 1). Al is the
broadest term and refers to creating systems that can perform tasks that
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Examples of usage.

usually require human intelligence, such as making decisions, solving
problems, and learning from experience. For example, an Al system in
agriculture might analyze weather data and plant health to recommend the
best time to harvest crops.

ML is a part of Al that focuses on creating algorithms that allow
computers to learn from data and make predictions. Think of it as teaching
a computer to recognize patterns and make decisions based on those pat-
terns. ML can be divided into three main types: (a) supervised learning, (b)
unsupervised learning, and (c) reinforcement learning. In supervised
learning, the computer is trained on a labeled dataset, meaning each piece
of data has a correct answer provided. For example, labeled images of
healthy and diseased plants can be used to teach the computer to identify
diseases. Unsupervised learning involves the computer looking for patterns
in data without any labels, similar to sorting a mixed bag of seeds into
groups without knowing what each seed type is. Reinforcement learning
involves computer learning by trial and error, receiving rewards for correct
actions, much like training a dog with treats for good behavior.

Numerous ML techniques have demonstrated their efficacy in soybean
phenotyping. Common regression methods used include linear regression,
logistic regression, stepwise regression, ridge regression, partial least squares
regression, elastic net regression, piecewise regression, tree regression, and
Gaussian process regression. Classification methods frequently employed
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are Naive Bayes, decision trees, random forests, K-nearest neighbor, linear
discriminant analysis, quadratic discriminant analysis, support vector
machines (SVM), and extreme learning machines. These methods have
been applied to various phenotyping tasks, providing valuable insights into
soybean traits and growth patterns. These are covered in more detail in
(Singh et al., 2016; Gill et al., 2022b).

DL is a more advanced subset of ML. It uses complex structures called
neural networks with many layers (hence “deep”) to process and learn from
large amounts of data. DL is especially powerful for tasks involving images,
audio, and text. In plant breeding and phenotyping, DL can be used to
analyze images of plants to detect diseases, measure growth, and predict
yields. This advanced capability allows breeders, researchers, and farmers to
gain valuable insights from complex datasets, leading to more precise and
efficient agricultural practices.

DL algorithms have shown significant promise in extracting valuable
insights from plant phenotype data. Advances in automation, computation,
and sensor technology have facilitated the collection of high-resolution
phenotype data across extensive geographical areas with high temporal
resolution. This influx of data has enabled the successful application of DL
algorithms to a wide range of plant phenotyping tasks. Deep learning
methods, particularly Convolutional Neural Networks (CNN), have
excelled in challenging tasks such as plant disease classification (Singh et al.,
2018). Additionally, DL methods have achieved state-of-the-art perfor-
mance in complex image-based phenotyping problems, such as root and
shoot feature identification and localization (Jubery et al., 2021). Other
commonly used deep learning models in soybean phenotyping include
Multilayer Perceptrons (MLP), Recurrent Neural Networks (RNN), and
Long Short-Term Memory (LSTM) (Shook et al., 2021). Other research
areas include generative deep learning, super-resolution, dehazing, and
spectral reconstruction, which aim to enhance sensor-based phenotype
information (Shoeiby et al., 2019). Reinforcement learning (RL) is also a
developing area, particularly useful for optimizing phenotyping strategies
and improving decision-making processes in soybean research as proto-
typed in (Hitti et al., 2024). A comprehensive discussion on DL for plant
phenotyping can be found in (Singh et al., 2018).

Currently, transformer-based models, such as vision transformers
(Dosovitskiy et al., 2020) have emerged as powerful tools in deep learning
due to their ability to capture long-range dependencies and contextual
information. The performance of these models has led to their adoption in
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phenotyping tasks for improved phenotyping performance (Bi et al., 2023).
Transformer-based models are particularly effective in handling large-scale
phenotyping data, offering improved performance and scalability for soy-
bean research tasks (Yang et al., 2022).

In soybean research, the collection of vast amounts of data has outpaced
the available expertise for labeling, resulting in a substantial amount of
unlabeled data. This imbalance poses a significant challenge for training
effective deep learning models. However, several techniques can help
address this issue, some of which are explained below:

e Active Learning: This approach involves selectively querying the most
informative data points for labeling, thereby maximizing the efficiency of
the labeling process. By focusing on the most uncertain or diverse
samples, active learning can significantly reduce the amount of labeled
data required for training while maintaining model performance This
approach has been successfully implemented in soybean leaf stress clas-
sification (Nagasubramanian et al., 2021).

o Transfer Learning: Transfer learning leverages pre-trained models on
related tasks or domains to improve performance on the target task. In
soybean research, models pre-trained on large, annotated datasets from
similar crops or agricultural tasks can be fine-tuned with a smaller
amount of soybean-specific data, thereby overcoming the labeling bot-
tleneck (Yang et al., 2021).

e Self-Supervised Learning: This technique uses the data itself to generate
supervisory signals, enabling the model to learn useful representations
from unlabeled data. For example, by learning augmented views of the
data from various angles and parts, the model can learn robust features
without requiring extensive labeled datasets (Chiranjeevi et al., 2023).

Computer Vision (CV), a field of Al that enables machines to interpret
visual information, is increasingly applied in soybean breeding and pro-
duction for high-throughput phenotyping. Using image processing tech-
niques and machine learning algorithms, including deep learning models
like Convolutional Neural Networks, CV automates the extraction of
plant traits from images. These pipelines can measure plant height, leaf area,
and canopy cover from aerial images; detect diseases based on leaf symp-
toms; and assess pod and seed characteristics. This approach allows breeders
to evaluate large plant populations more efficiently than manual methods,
potentially capturing subtle variations that human observers might miss.
Recent developments in imaging technologies, such as multispectral and
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hyperspectral cameras, 3D imaging including LIDAR (Light Detection and
Ranging), and photogrammetry, have expanded CV applications in soy-
bean phenotyping. For example, hyperspectral imaging has been used to
assess drought stress responses and nitrogen status in soybeans Li et al.
(2020). These 3D techniques provide more accurate measurements of plant
architecture and biomass Paulus (2019). As imaging technologies progress,
CV may provide new insights into soybean phenotypes, contributing to
crop improvement efforts.

E 3. Phenotyping and Al

Automated plant phenotyping pipelines are essential for measuring
plant traits efficiently and accurately. Sensors, when integrated across
multiple platforms, capture diverse data types that are critical for these
phenotyping pipelines. They offer powerful tools for gathering data at
various scales and resolutions. These pipelines rely heavily on robust image
processing and Al algorithms to extract meaningful insights from the data
(see Fig. 1). In addition, they offer promising approaches for faster and
more efficient analytics, enabling researchers to uncover patterns and fea-
tures from the large volumes of data generated by high-throughput phe-
notyping platforms (Ghosal et al., 2018). Researchers have developed and
applied various image processing algorithms to measure different plant
traits. Techniques such as segmentation, classification, feature extraction,
skeletonization, graph-based algorithms, and morphological operations
have been widely used for this purpose (Hamuda et al., 2016; Arnal
Barbedo, 2013; Kumar and Raghavendra, 2019). These tools are essential
for extracting meaningful information from images, enabling accurate and
high-throughput phenotyping of soybean plants.

High-throughput phenotyping (HTP) is an advanced method that
allows for the rapid measurement and analysis of plant traits using auto-
mated imaging and data processing techniques. Combining various plat-
forms and sensors, HTP systems can capture large volumes of phenotypic
data in a short amount of time, significantly enhancing the efficiency of
phenotyping beyond traditional manual and visual methods that can be
time-consuming and labor-intensive. Furthermore, large breeding pro-
grams and farm fields benefit from the use of technology that can span a
field faster than a human alone to allow for increased population sizes and
full coverage scouting in a farm field. HTP can be applied at multiple levels
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of crop growth and development from microscopic (Akintayo et al., 2018),
to single leaf (Yu et al., 2024), root (Carley et al., 2023), plant canopy
(Naik et al., 2017), test plots (Parmley et al., 2019a), to large scale field
evaluation (Song et al., 2017) assisted by specially designed HTP systems.
These advancements in HTP provide valuable insights into plant growth
patterns and improve the precision of phenotypic evaluations in soybean
breeding programs (Singh et al., 2021b).

3.1 Sensors for data collection

Data is the foundation for developing Al applications in soybean breeding
and production. Large and high quality data sets are important for devel-
opment of useful techniques and models. The sensors commonly used in
high throughput phenotyping can be organized by their data output such as
digital or numeric, by their radiation source (active or passive), and by the
range of the electromagnetic (EM) spectrum utilized (Singh et al., 2021b).
Below we discuss sensors, data types, and the various platforms utilized to
facilitate data collection.

RGB sensors, much like the human eye, are able to capture color
differences in the visual range (400-700 nm), specifically red, green, and
blue (RGB) channels. RGB sensors are commonly used for agricultural
purposes due to their accessibility, affordability, high resolution, and ver-
satility (Singh et al., 2021a). The ability to detect and differentiate colors is
a fundamental strength of these cameras, which makes them particularly
useful in a variety of applications in soybean phenotyping, such as nutrient
deficiency screening (Dobbels and Lorenz, 2019; Naik et al., 2017), disease
classification (Ghosal et al., 2018), disease quantification (Rairdin et al.,
2022), and even yield and agronomic trait prediction (Yuan et al., 2019).
RGB sensors excel in morphological phenotyping of various plant parts
such as roots and nodules, extracting traits that would be insurmountable to
collect manually (Falk et al., 2020a,b; Carley et al., 2023). In associated
agricultural tasks, RGB sensors have been used for insect detection
(Chiranjeevi et al., 2023), weed density assessment dos Santos Ferreira et al.
(2017), weed identification Zou et al. (2023), and weed management
through precision agriculture (Staff; 2022).

Multispectral sensors have a wider spectral range than RGB sensors
and typically utilize about 3—10 wavebands (Singh et al., 20212). Wavebands
are generally wider, containing several wavelengths, and non-continuous. In
addition to RGB bands, multispectral cameras often contain red-edge and/or
near-infrared (NIR) bands which can capture non-visual clues for plant
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health assessment and early detection (Jones et al., 2024). Unlike RGB
sensors, multispectral sensors enable calculation of many more vegetation
indices that augment data, including commonly used vegetation indices such
as NDVI index (Rouse et al., 1973). Multispectral sensors excel in situations
where information beyond the visual spectrum is beneficial and are often
used in soybean stress screening (Zhou et al., 2021, 2020), and have been
used in soybean yield prediction as well (Herrero-Huerta et al., 2020).

Hyperspectral sensors are found in two forms including radiometers
with purely spectral dimensions in digital number output, as well as imaging
sensors with spatial and spectral dimensions. Hyperspectral sensors cover a
larger range of the EM spectrum at a much higher and continuous density
compared to multispectral sensors. The range and density of hyperspectral
sensors enable calculation of a wider range of vegetation indices targeting
very specific single wavelength bands and utilizing wavelengths from the
ultra-violet, to infrared, and short-wave infrared regions. In soybean, several
studies utilizing hyperspectral imaging have been performed in the lab or
greenhouse for early and accurate disease detection and severity estimation
(Nagasubramanian et al., 2018, 2019). Studies utilizing hyperspectral radio-
meters have been successful in the field for yield prediction and predictive
breeding (Parmley et al., 2019b,a).

Thermal sensors capture infrared radiation at a far range of the EM
spectrum compared to RGB, multispectral, and hyperspectral sensors. In
soybean, research found that thermal data can help identify candidate genes
for drought tolerance in soybean (Bazzer and Purcell, 2020), is closely
related to drought induced canopy wilting (Bai and Purcell, 2018) as well as
soybean crop water status (Crusiol et al., 2020). Thermal sensors com-
monly used in plant phenotyping come in several forms including non-
contact imagers and radiometers which capture thermal infrared radiation
emitted, and direct contact thermocouples. Non-contact thermal imagers
have an advantage in phenotyping speed as they can be mounted on
drones, however, these methods do not come without challenges. Accu-
racy of thermal imaging can vary widely and is sensitive to environmental
parameters such as air temperature, flight direction, solar angle, humidity,
and cloud cover among other factors (Perich et al., 2020) and should be
evaluated closely for accurate phenotyping.

3D sensor (three-dimensional) is a device that attains information
about the physical/natural world in three dimensions (X, Y, Z), in addition
to the information gathered by 2D image data. The primary usage of 3D
sensors is to gather depth, which tells the distance between the object and
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the sensor for every point in the image. The sensors can also measure the
size, volume, shape, contour, surface texture, and light reflectivity, making
them useful for applications in diverse industries. These sensors allow access
to the plant architecture, enabling tracking of the physical development,
and define different parameters of plant organs and canopies (Paulus, 2019;
Young et al., 2023). 3D sensors have the potential to provide both qua-
litative and quantitative measures of plants, capturing detailed information
such as the number and shapes of leaves, size, surface area, and the archi-
tecture of the plant (Paulus, 2019; Salter et al., 2021). They can accurately
assess branch and leaf angles, contributing significantly to our under-
standing of plant morphology and behavior under various environmental
conditions (Liu et al., 2019a; Zhou, 2022; Young et al., 2024). Impor-
tantly, all this data is gathered non-destructively, allowing continuous
monitoring and analysis without harming the plant. A range of 3D sensors
offer varied outputs, crucial for detailed spatial analysis and precise mod-
eling across different applications.

¢ Point Cloud: Point cloud data is produced by specific 3D sensors that
capture the spatial data as points. Point cloud data have coordinates and
color information for each point of the environment detected by sensors.

This data type is useful for applications requiring high-precision mod-

eling and mapping.

— (a) LiDaR: Light detecting and ranging system (LiIDAR) technology
emits pulses of light by laser beams and then calculates how long it
takes for each light pulse to return, hence calculating the distance to
objects. This results in dense point clouds that accurately represent 3D
representations of the environment. The LiDAR system can collect
data by airborne laser scanner, terrestrial, or mobile laser scanner,
serving diverse applications. LiIDAR systems can be utilized for
measuring crop features, detecting objects, evaluating biomass, and
planning agricultural activities (Rivera et al., 2023).

— (b) Structured Light Scanners: Similar to LiDAR, Structured Light
Scanners detect distances using light. These scanners emit a known
pattern of light onto an object and calculate the deformation of this
pattern when it reflects (Georgopoulos et al., 2010). This process creates a
dense 3D point cloud of the object. Additionally, in detailed agricultural
and environmental studies, these sensors provide depth and RGB data
(RGB-D), facilitating the classification and detection of various objects,
such as leaves, branches, flowers, and fruits (Harandi et al., 2023).
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— (c) Photogrammetry: Photogrammetry uses overlapping 2D images
captured from different perspectives to reconstruct detailed 3D models
with texture mappings. This technology creates lifelike and textured
3D representations, ideal for precise modeling of objects and envir-
onments. It can be utilized in any situation where the object can be
photographically recorded, reconstructing them into multiple digital
formats like coordinates, point clouds, and meshes (Luhmann et al.,
2023). Significantly, photogrammetry is proficient at generating
detailed digital twins of agricultural fields, facilitating precise soil
roughness measurement, and enhancing crop management strategies
(Gilliot et al., 2017).

e Depth Map: Depth map data encodes the distance of objects from the
camera lens, where each pixel represents the distance from the camera.
This data typically employs a grayscale or color scale to visually indicate
varying distances, clearly depicting the object’s depth. This format is an
effective way to visually assess objects’ spatial arrangement and depth in
an environment (Chen et al., 2023).

— (a) Stereo Vision Cameras: Stereo Vision Cameras measure 3D shapes
and typically consist of two or more image sensors positioned at
slightly different angles. These cameras capture images simultaneously
from multiple perspectives, allowing them to collect in-depth infor-
mation based on the disparity between the images (Rosell-Polo et al.,
2015). This technique is highly effective in applications such as
autonomous navigation for robots in various environments and gen-
erating detailed 3D terrain maps (Rovira-Mas et al., 2008).

— (b) Time-of-Flight Cameras: Time-of-flight (ToF) cameras measure
full-range distances in real time. They first light the scene with
modulated infrared light and then measure the phase shift between the
reference signal and the reflected light. The system allows for precise
depth mapping, which is essential in environments requiring rapid and
precise distance measurements (Lindner et al., 2010). These low-cost
ToF sensors can be directly utilized to derive crop height models,
eliminating the need for prior terrain measurements (Himmerle and

Hofle, 2016).

All of the above-mentioned sensors capture information about plants
from different point of view, providing in-depth phenotyping possibilities.
The integration of ML, DL, and AI with 3D sensor data enhances plant
phenotyping. ML algorithms, such as Random Forest (RF), can be utilized
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to analyze complex 3D datasets for yield prediction, leaf area index, and
biomass (Randelovic et al., 2023). DL excels in extracting characteristics
from 3D imaging by using CNNs, improving detection and classification of
plant structures. For example, (Zhao et al., 2022) demonstrated that
DL-based 3D reconstruction from single RGB photos could effectively
estimate phenotypic variables. Their technique involves applying deep
learning to construct 3D models of plants from simple 2D photos, allowing
for phenotypic measurements of plant height, trunk diameter, canopy size
and analysis of plant growth status. Al leverages ML and DL results from
numerous sensors to optimize crop management and breeding strategies,
allowing for real-time monitoring and decision-making. Recent studies
show that incorporating Al with sensors and robots can assess plant features,
measure physiological parameters, detect diseases, and predict crop yields
and performances (Qiao et al., 2022).

3.2 Platforms for carrying sensors

Numerous platform options exist to carry suites of sensors for use in
phenotyping soybean, as well as other crop species. The broad categories
for such platforms include proximal and aerial platforms. Proximal plat-
forms enable proximal phenotyping of plants, which is the phenotyping of
crop plants via ground-based, non-destructive approaches for in situ
measurements. Field carts, or proximal sensing carts (PSCs), are a low-cost
platform that requires manual pushing or pulling to move through the field,
although more advanced versions are motorized to reduce the labor of
moving such carts through the field (Alison et al., 2018). PSCs are often
lightweight for minimal soil disturbance and can be customized to suit the
height and row spacing as required for the field. Additionally, sensors can
easily be added, removed, or re-positioned for different requirements,
allowing for a flexible platform, such as collecting canopy data in soybean
(Parmley et al., 2019a). Another proximal platform is field rovers, which
are semi-autonomous and require less human labor for operation. Rovers
can be built narrow to fit within rows of soybean and other crops or have a
high clearance to go over crops. Today, multiple commercial options of
rovers have been developed for use in agriculture research (Farm-ng, 2024;
EarthSense, 2021). Rovers equipped with LIDAR and RGB cameras and
has been used in soybean to estimate yield by tracking and counting soy-
bean pod numbers (McGuire et al., 2021; Riera et al., 2021).

Uncrewed aerial vehicles (UAVs), commonly called drones, have increased
in popularity for plant phenotyping due to their high throughput ability.
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UAVs can collect data in a shorter amount of time compared to the ground-
based methods, have less of a risk of damaging the plants, and no risk of soil
compaction due to the traffic of the platform in the field. The speed of UAVs
allows for a higher temporal and spatial resolution of data (Xie and Yang,
2020), which provides for phenotyping with greater accuracy. Difterent classes
of UAVs exist, with four broad categories being single-rotors, multi-rotors,
fixed wings, and vertical takeoff and landing (VTOL) (Guo et al., 2021). These
different categories of UAVs differ in their payload capacity, maximum flight
time, and ease of operation, which are all factors to consider when deploying
UAVs in soybean research and production. An additional platform for aerial
sensing is the use of satellites, which can carry sensors for panchromatic,
multispectral, and hyperspectral imagery. Satellites have been used in soybean
for on-farm yield forecasting (Schwalbert et al., 2020), as well as for predicting
soybean seed composition (Hernandez et al., 2023). While satellites do not
require a trained operator like UAVs do, several limitations need to be con-
sidered. These limitations include the resolution of the cameras, weather
conditions, and the revisit frequency for imaging. As of 2023, the average farm
size in the United States is 464 acres, making crop stress scouting a time-
consuming challenge by traditional on-the-ground methods (USDA-INASS,
2024). Drones and satellite platforms offer rapid methods for large-scale
imaging of crop fields, enable measurement of wavelengths beyond human
vision, and facilitate high-throughput phenotyping in major crop breeding
programs (Herr et al., 2023).

E 4. Applications of Al in soybean improvement and
production

4.1 Phenomics

The soybean phenotype results from the interaction of a plant’s genotype,
environment, and management practices (Furbank and Tester, 2011). Plant
phenomics involves large-scale collection of high-dimensional data across
an organism (Houle et al., 2010). Advanced phenotyping platforms and
sensors have created a deluge of data requiring sophisticated analysis
methods (Singh et al., 2016). Characterizing soybean phenotypes has direct
advantages in breeding by enhancing the understanding of genotype-
phenotype interactions. This facilitates rapid selection in breeding programs
by identifying genes of interest (Rairdin et al., 2022) and is key to
understanding the genetic basis of complex traits (Houle et al., 2010).
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Deep learning models, particularly CNNs and RNNs, have revolu-
tionized phenotype prediction in crops. CNNs excel at analyzing spatial
data from genomic sequences, while RNNNs capture temporal changes over
plant developmental stages (Gao et al., 2023; Ray et al., 2023). These
models excel in processing and analyzing high-dimensional phenotypic
data, such as images capturing plant morphology and developmental stages
(Liu et al., 2019b). By leveraging large datasets, CNNs can identify com-
plex patterns and subtle variations in phenotypic traits, such as leaf shape,
plant height, and biomass, which are crucial for assessing plant health and
vigor. In addition to CNNs, advanced Al techniques have been applied to
enhance the precision and accuracy of phenomic predictions (Xu et al.,
2022). The integration of diverse datasets provides comprehensive insights
into plant responses and adaptations, supporting the selection of superior
genotypes for breeding. Additional challenges, such as the integration of
multiple modalities of sensing has been met by new models such as the
RGB and Infrared Feature Fusion Segmentation Network (RIFSeg-Net)
that utilizes a Res-Net backbone (Yu et al., 2024). The model combines
images from multiple modalities creating a single mask for segmentation
enabled by the Segment Anything Model (SAM) (Kirillov et al., 2023) that
accurately extracts individual leaves from canopies.

Al enabled phenomics is transforming soybean breeding, enabling
collection of previously difficult-to-measure or labor intensive traits
(Fig. 2). A mobile, low-cost root phenotyping system using computer
vision and machine learning was developed for high-throughput analysis of
root system architecture traits (Falk et al., 20202). Novel methods pair Al
with phenotyping to increase automation and feasible population sizes.
Examples include using hyperspectral wavebands and 3D deep CNNs to
measure internal stem disease symptoms (Nagasubramanian et al., 2019),
and employing RetinaNet and UNet architectures for root nodulation trait
collection (Jubery et al., 2021; Carley et al., 2023). These technologies
introduce new traits, such as nodule size and location on the root, that can
be measured via high-throughput systems. At field scale, supervised
machine learning techniques like LASSO enable early yield prediction and
selection using UAV data, allowing screening of large populations com-
parable to breeders’ selection (Zhou et al., 2022). By increasing the speed
and automation of trait collection, these methods allow breeders and sci-
entists to investigate topics not previously attempted. As satellite tech-
nology advances, the application of these models to larger-scale platforms
becomes feasible.
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Fig. 2 Overview of soybean breeding strategy using genomics, phenomics, and
artificial intelligence (Al) for multi-environment evaluation leading to the identifica-
tion of a new variety. Breeding populations (e.g., Pop 01, Pop 02, Pop 03) undergo
multiple generations of selection. Genomics (including Marker-assisted selection and
Genomic Prediction) and Phenomics with Al are useful to optimize the cross-selection,
trait estimate and prediction, and culling and selection. Marker-assisted selection and
genomic selection models can be applied to enrich allele and gene frequencies over
generations. Al enhances the accuracy of complex trait prediction, particularly in
multi-environment trials, accelerating genetic gains and improving performance
across diverse locations.

From a breeding perspective, having a fully characterized soybean
phenotype is key to developing ideotypes - ideal plant types that optimize
desired traits for specific environments for prescriptive breeding. The use of
DL in soybean breeding is transforming the field, enabling breeders to
collect previously difficult to measure traits such as root shape, length,
number, mass, and angle made possible through a mobile, low-cost root
phenotyping system using computer vision and ML for high-throughput
analysis of root system architecture (RSA) traits (Falk et al., 2020a). Fur-
thermore, development of shape profiles could assist breeders in under-
standing characteristics ideal for certain environments. This capability
facilitates location-dependent prescriptive breeding, and enhances the
selection of superior lines via additional traits.

The development of reliable, high-throughput methods is crucial for
screening large populations for important traits. Integrating Al in phe-
nomics offers a robust framework for image-to-trait pipelines, combining
genetic data with environmental insights to enhance trait predictions and
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cultivate soybean varieties tailored to global agricultural demands. The use
of deep learning and big data analytics not only improves the efficiency of
phenomic predictions but also enhances the understanding of genotype-
environment interactions, leading to more resilient and productive soybean
varieties. Overall, the application of Al in phenomic prediction provides a
powerful tool for advancing soybean breeding and production. The ability
to analyze and interpret complex phenotypic data enables breeders to make
more informed decisions, accelerating the development of high-per-
forming soybean cultivars for target environments.

4.2 Genomics

As climate change is expected to decrease overall crop productivity and
soybean demand is projected to increase (Ray et al., 2013), addressing these
challenges requires developing genomics-based approaches for crop
improvement, leveraging the large quantities of genomic data produced in
recent years (Abberton et al., 2016). Many valuable agronomic traits are
quantitative, controlled by numerous small-effect loci, complicating tra-
ditional phenotypic selection methods (Merrick et al., 2022). The release of
the soybean reference genome (Schmutz et al., 2010) and development of
standardized marker arrays (Song et al., 2013) have accelerated marker-
assisted selection (MAS), enabling early-generation selection and reducing
plot testing expenses. Genomic selection, which estimates all gene effects
simultaneously (Meuwissen et al., 2001), produces genomic estimated
breeding values (GEBVs) for parent selection and line advancement
(Fig. 2). This approach has the potential to reduce breeding cycle length
(Ma et al., 2018) and accelerate genetic gains (Voss-Fels et al.,, 2019),
supported by methods such as speed breeding (Watson et al., 2018).

Non-linear prediction algorithms, including ML and DL, have shown
promise in improving genomic selection accuracy (Crossa et al., 2017;
Cuevas et al., 2016; Pérez-Rodriguez et al., 2012). These methods offer
advantages in handling complex data and potentially addressing issues like
epistasis effects and genomic imprinting (Varona et al., 2018). Deep
learning, particularly CNNs and Deep Neural Networks (DNNs), has
demonstrated the ability to identify complex multidimensional patterns in
large datasets (Zou et al., 2019). CNNs have shown success in selecting
high-value phenotypes from genomic data (Ma et al., 2018).

Innovative approaches like the hyperspectral wide association study
(HypWAS) integrate phenomic and genomic data to identify key hyper-
spectral reflectance bands linked to soybean yield, offering indirect
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selection criteria for breeding programs (Yoosefzadeh-Najatabadi et al.,
2021). DL techniques are also transforming phenotyping for disease resis-
tance, using DL frameworks for image-based phenotyping to provide more
insightful results than traditional visual methods, identifying significant
SNP markers linked to sudden death syndrome (SDS) resistance (Rairdin
et al., 2022). ML-based genome-wide association studies (GWAS) have
unveiled novel genomic regions associated with resistance to Southern
root-knot nematode (SRKN), identifying minor effect SNPs missed by
traditional methods (Vieira and Chen, 2021). The G2PDeep web server
exemplifies the potential of DL frameworks in genomic prediction,
offering a user-friendly platform for creating, training, and deploying
models for quantitative phenotype prediction (Zeng et al., 2021).

Recent studies have demonstrated the superiority of ML models like
XGBoost and random forest over DL models for genotype-to-phenotype
predictions using genome-wide molecular markers, significantly enhancing
prediction accuracy and reducing marker inputs by up to 90 % (Gill et al.,
2022a). Conversely, DL-based models such as SoyDNGP have shown
remarkable precision in predicting complex traits, providing an accessible
web server for trait estimation, thus enhancing breeding programs (Gao
et al., 2023). In addition, CNNs have been explored for genomic selection
to predict quantitative traits from single nucleotide polymorphisms (SNPs)
without the need for genotype imputation, outperforming traditional sta-
tistical methods (Liu et al., 2019b). Comparative studies of various genomic
prediction (GP) methods have shown that traditional models like the
genomic best linear unbiased predictor (GBLUP) often outperform DL
models, particularly when accounting for genotype X environmental
interaction (G X E) effects are high (Ray et al., 2023). While DL algorithms
can capture nonlinear patterns and integrate diverse data sources, poten-
tially improving prediction accuracy for large breeding datasets, their
superiority over conventional models in prediction power is not definitive
(Montesinos-Lopez et al., 2021). DL applications in genomic selection
need high-quality, large training datasets for effective use. More impor-
tantly, the nature of molecular marker data type is not complex, and further
research is needed that integrates multi-omics datastreams to compare
traditional genomic prediction and DL methods.

Exploring genomic prediction models for traits with varying herit-
abilities helps refine the accuracy of breeding selections, optimizing the
predictive performance of these models (Kaler et al., 2022). By examining
different marker sets and training population sizes, researchers can improve
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the efficiency of selection processes in breeding programs. The develop-
ment of SoyDNGP, a DL model demonstrating high predictive accuracy
for complex traits across different crops, illustrates the potential of these
technologies in developing customized cultivars (Gao et al., 2023). This
model performs with minimal parameter tuning, highlighting significant
advancements in trait prediction.

Deep learning and Al are revolutionizing soybean breeding programs by
offering powerful tools for analyzing vast amounts of genomic data. The
integration of Al and pHENOMICS in soybean breeding offers promising
avenues for improving selection accuracy and accelerating genetic gains.
These technologies accelerate the identification of superior lines, enhancing
the efficiency of breeding programs through early selection of lines that are
likely to perform well under specific conditions (Gao et al., 2023; Ray et al.,
2023; Liu et al., 2019b). This rapid identification process is not only about
speed but also precision, allowing for the early selection of lines that are
predicted to yield well under specific conditions, thereby enhancing the
development of tailored soybean varieties with desired characteristics.

4.3 Plant stresses

Soybean, like many crops, face stress that is in part due to a varied climate,
which is expected to worsen due to climate change (Bezner Kerr et al., 2022).
Abiotic and biotic stresses prevent soybean from reaching maximum yield
potential and pose complex challenges for plant breeders. The economic
impact of soybean diseases is substantial, with estimated average losses of $41.66
per acre in Iowa and $44.83 per acre across the United States and Ontario,
Canada between 2014 and 2019 (Bradley et al., 2021). On average from 1980
to 2020, droughts caused over 7 billion dollars in damage each year to the
agricultural sector, ranking third in billion dollar environmental events to
impact the United States (NOAA National Centers for Environmental
Information (NCEI), 2024). Management strategies exist to mitigate some of
the stresses, such as irrigating fields with insufficient rainfall and applying fer-
tilizers when soils contain insufficient levels of necessary nutrients for crop
growth and development. Furthermore, pest management can include fungi-
cide, herbicides, and insecticides applications. In 2012, herbicides were applied
to 98 % of soybean acres, insecticides applied to 18 % of acres, and fungicides
applied to 11% of acres (USDA-NASS, 2013). In 2018 herbicide use
expanded to 99 % of soybean acres, insecticides applied to 16 % of acres and
fungicides applied to 15 % of acres (USDA-INASS, 2019). Nitrogen, Phos-
phorus, and Potassium application have increased across soybean acres from
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2012 to 2018 by 2%, 5%, and 6% respectively (USDA-INASS, 2019).
However, the mitigation practices are often costly and are becoming increas-
ingly environmentally unsustainable (Liu et al., 2017; Good and Beatty, 2011).

The key methods for application of Al for addressing plant stress is
identification, classification, quantification, and prediction (Singh et al.,
2016). Soybean stress identification and quantification present significant
challenges due to the difficulty in distinguishing between various sources of
stress. Traditional methods rely on individuals trained in symptom and pest
identification. Visual severity field ratings can also be susceptible to intra- and
inter-rater variability (Akintayo et al., 2018; Singh et al., 2021a). Al and DL
have emerged as popular research areas for stress identification, addressing the
limitations of traditional methods. These technologies are being applied
across various scales, from small-scale platforms using ground-based images to
medium-scale platforms such as UAVs. Researchers have used DL to
develop a model capable of identifying nine different abiotic and biotic
stresses and classifying their severity levels using soybean leaf images (Ghosal
et al., 2018). Further use of the dataset and model created from that study
were used and led to advancements in data augmentation to improve clas-
sification accuracy (Saleem et al., 2024).

4.3.1 Abiotic stresses

Traditionally, direct selection for yield stability under multiple locations in
stressed environments has been used to develop crop cultivars with stress
tolerance (Singh et al., 2021¢), although this process is labor and resource
intensive. Indirect selection is another method used in which morphological
or physiological characteristics that contribute to stress resistance are selected,
generally in specialized nurseries (Singh et al., 2021¢). This approach requires
in-depth knowledge on how a species responds to different stressors, and
what characteristics will be beneficial to the plant under stress.

Advances have been made in phenotyping for rating soybean stress
responses to flooding (Zhou et al.,; 2021), drought (Peirone et al., 2018;
Zhou et al., 2020), and iron deficiency chlorosis (Naik et al., 2017; Dobbels
and Lorenz, 2019), which can be used for identifying candidate genes to be
used in breeding for abiotic stress tolerance. These advances in phenotyping
have largely been made possible due to advances in phenomics, ML, and DL
models. For instance, Naik et al. (2017) used ML to successfully identify and
classify the severity of iron deficiency chlorosis (IDC) stress symptoms using
cell phone images. In another study, the levels of dicamba treatment were
able to be estimated from ground based hyperspectral wavelengths using a
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random forest model, although the model only worked in situations were
the soybean crop was still recoverable (Zhang et al., 20192). On medium-
scale platforms, UAVs have proven eftective for various applications in
abiotic stress research. Dobbels and Lorenz (2019) demonstrated the cap-
ability of Al to identify and classify IDC from aerial platforms using neural
networks and random forests. Multispectral and thermal cameras mounted
on UAVs were used to determine flood injury scores in soybeans via a
feedforward neural network (FNN) model (Zhou et al., 2021). Researchers
applied RGB, multispectral, and thermal cameras for assessing leaf” wilting
and drought responses by using a SVM model (Zhou et al., 2020). Dicamba
injury ratings of tolerant and susceptible soybean varieties were successful
using aerial RGB images wtih artificial neural network (ANN) and random
forest models (Vieira et al., 2022). For additional abiotic stresses such as heat
stress, leaf temperature measurements can provide valuable insights (Jagadish
etal., 2021). UAV-mounted thermal sensors can collect data on large trials at
crucial time points for heat stress, from early vegetative to reproductive
stages. Deep learning models excel at processing large datasets to optimize
irrigation practices (Umutoni and Samadi, 2024). These models utilize vast
amounts of data, including real-time weather conditions and soil moisture
levels, to accurately predict crop water needs. Weather data, including
parameters such as temperature, humidity, solar radiation, and wind speed, is
crucial for determining irrigation requirements. Precise measurements of
these parameters, obtained through Internet of Things (IoT) based weather
stations and various sensors, significantly influence water loss rates
(Abdelmoamen Ahmed et al., 2021). Researchers have demonstrated that
such IoT-based weather monitoring systems can analyze the crop environ-
ment in real-time, utilizing sensors for these weather variables along with soil
moisture content (Pramanik et al., 2022). Real-time estimation of reference
evapotranspiration (ETO) using these weather variables provides insights
into water loss from plants and soil (Bounajra et al., 2024). Integrating
weather forecasts into Al-driven irrigation systems enables proactive
adjustments to irrigation schedules. Wireless Sensor Networks (WSNs)
facilitate precision monitoring across large cropping areas, allowing real-time
analysis and immediate adjustments based on predefined thresholds (Gloria
et al., 2021; Jamal et al., 2023). In soybean cultivation, AI/DL-driven irri-
gation systems optimize water usage, enhance yield, and reduce environ-
mental impact. These systems analyze real-time data to assess water needs,
significantly reducing waste through runoft and deep percolation (Sarkar
et al., 2024). Machine learning algorithms, such as CNNs, coupled with IoT
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systems, enable targeted irrigation based on crop stress levels (Tace et al.,
2022), preserving soil integrity and preventing issues like nutrient leaching
and salinization leading to healthier soil ecosystem and more resilient crop
growth (Goap et al.,, 2018). This technology offers cost savings through
reduced water and energy consumption, contributed to broader environ-
mental goals, such as lower carbon footprints and improved water resource
management, supporting farm viability and aligning with global sustainability
targets (Blessy and Kumar, 2021). Machine learning and DL models have
advanced abiotic stress phenotyping in soybeans, enabling large-scale data
collection on experimental lines. This benefits geneticists by facilitating the
identification of stress-tolerance genes through large panel screenings. Soy-
bean breeders can leverage these advancements and candidate genes to
develop cultivars with enhanced abiotic stress tolerance. Additionally, these
models show potential for farmer applications, potentially enabling near real-
time detection and scouting of stress symptoms in fields, thus improving crop
management strategies.

4.3.2 Biotic stresses

Biotic stresses encompass a wide range of organisms such as bacteria, virus,
fungi, weeds, insects, and nematodes. Unfortunately, biotic stresses have a
clear strength in their ability to overcome genetic sources of tolerance and
management strategies, as well as their unpredictability due to the interplay
with weather, the environment, and host susceptibility. Accurate identifica-
tion can be complicated by confounding visual symptoms. For example,
Sudden Death Syndrome (Fusarium virguliforme), Brown stem rot (Cadophora
gregata), and Southern stem canker (Diaporthe phaseolorum var. merdionalis)
produce very similar interveinal chlorosis and necrosis symptoms and often
require examination of plant stem and roots to differentiate signs and symp-
toms for correct diagnostics (Hartman et al., 2015). The interplay of various
biological organisms can also complicate management strategies. Some diseases
can be spread by insects, such as the soybean dwarf virus spread by aphids or
soybean vein necrosis virus spread by thrips (order Thysanoptera). Therefore,
early identification and control of insect pests can prevent the potential sec-
ondary spread of viral infection (Hartman et al., 2015).

Deep learning models, have demonstrated remarkable success in
leveraging high-resolution images collected from various sensing platforms,
pre-processing to enhance features relevant to the desired task, such as
classification and prediction. The training process involves feeding anno-
tated datasets through multiple layers, enabling the model to learn critical
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feature representations in identifying defects and diseases in soybean leaves
with high accuracy (LeCun et al., 2015). The deep learning approach has
proven particularly effective in identifying common soybean diseases
(Nagasubramanian et al., 2020). The intricacies of training DL models for
soybean disease classification encompass several key aspects: optimizing
hyperparameters to fine-tune model performance, employing data aug-
mentation techniques to improve model robustness and generalization, and
leveraging transfer learning to enhance performance when annotated data is
limited. These methodologies, as highlighted in Ferentinos (2018), have
demonstrated the efficacy of DL models in plant disease detection and
diagnosis. Similarly, Rairdin et al. (2022) trained a DL model to classify and
quantify sudden death syndrome in soybeans using ground-based canopy
images. Nagasubramanian et al. (2019) developed a 3D CNN for classifying
charcoal rot in soybean using hyperspectral imagery, showcasing the pos-
sibilities for advanced imaging technologies in field applications. Another
technique, rare object detection, via a deep convolutional selective auto-
encoder, enabling automated counting of soybean cyst nematode eggs, a
process necessary for rating levels of resistance in soybean SCN resistance
screening (Akintayo et al., 2018).

DL models are now increasingly equipped to process extensive datasets
of plant and pest images, effectively recognizing various disease patterns and
symptoms Ghosal et al. (2018). Recent advancements have introduced
more sophisticated DL architectures and training techniques that enhance
the model’s ability to generalize from training data to real-world condi-
tions, significantly improving detection accuracy even under variable field
conditions (Ahmad et al., 2023). High throughput platforms such as UAVs,
ground robots, and insect traps equipped with advanced imaging sensors
enhance these capabilities, enabling rapid identification of pest and disease
types over large areas and detailed assessment of infestation severity. Sig-
nificant enhancements in crop disease detection capabilities have been
facilitated by the integration of these systems with DL techniques
(Wiesner-Hanks et al., 2019; Bouguettaya et al., 2021).

Innovations in classification systems specifically developed for soybean
diseases leverage DL to analyze images and accurately differentiate disease
types (Yu et al.,, 2022). These systems facilitate rapid responses to disease
outbreaks, potentially reducing the spread and severity of infections.
Recent models incorporate techniques such as transfer learning and semi-
supervised learning, allowing for effective training with limited annotated
datasets, a common challenge in agricultural settings (Fang et al., 2020;
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Tetila et al.,, 2020; Bouguettaya et al., 2021). Applying self-supervised
learning methods has improved the classification of agriculturally important
insects with minimal annotations, enhancing model performance under
conditions of low annotation availability (Karmakar et al., 2023). Out-of-
distribution detection algorithms ensure effective pest detection and clas-
sification even under varied field conditions, maintaining high accuracy
and reliability across different scenarios (Saadati et al., 2024).

4.3.3 Insect, weed, and disease ICQP and management

Deep learning models have expanded rapidly in plant stress phenotyping
due to their ability to handle highly dimensional data, recognize important
data features, and contribute to identification, classification, quantification,
and prediction of plant stress including insects, weeds and diseases (Singh
et al., 2016, 2018). These models attempt to mimic the learning process of
the human brain by utilizing a multi-layer neural network framework to
learn more abstract, discriminative features of the data (Singh et al., 2018).

Pest control in agriculture faces significant challenges, including the
ineftectiveness of manual field scouting, difficulties in disease identification,
and the increasing prevalence of herbicide-resistant weeds. Between 1990
and 2015, an average of five new herbicide-resistant weed cases emerged
annually (Kniss, 2018). To address these issues, robotic technology and Al
offer promising solutions. Robots designed to be lightweight and navigate
between variable row sizes can minimize crop disruption and soil com-
paction. These robots can be equipped with sensors and compact Al
models for pest identification, such as the InsectNet model for insects
(Chiranjeevi et al., 2023). Autonomous robots with computer vision
capabilities can accurately detect and map weeds in real-time (Bawden
et al.,, 2017), while DL-based weed detection systems for UAVs enable
large-scale, high-resolution weed mapping (Sa et al., 2017). The See &
Spray system is a notable example of Al-powered weed identification and
targeted herbicide application (Chostner, 2017).

The implementation of Al-driven pest classification enables more
informed decision-making regarding pesticide application, potentially
helping to combat herbicide resistance development. In soybean, economic
benefits of precision spraying technology in the field can save from 43.9% to
90.6% herbicide application resulting in average savings of $38.78/hectare
(Houser et al.,, 2024). In soybean production, Al is transforming disease
prediction and pesticide optimization. Al models can accurately forecast
potential disease outbreaks by leveraging environmental factors, historical
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crop performance, and current crop health indicators, enabling early
detection and management of soybean foliar diseases (Kashyap et al., 2022;
Nayar et al., 2023). The integration of Al with Integrated Crop and Pest
Management (ICPM) strategies offers comprehensive insights into crop
health, pest levels, and environmental conditions, supporting informed
decision-making and promoting sustainable farming practices (Miranowski,
1980; Greene et al., 1985). Real-time data collection and analysis technol-
ogies, such as UAV and loT devices, are instrumental in implementing
precision agriculture, accurately detecting affected areas and enabling precise
pesticide application (Singh et al., 2021a; Balaji et al,, 2023). These
advancements in Al and robotics offer promising solutions for sustainable and
efficient pest management in soybean cultivation and agriculture as a whole
(Oberti et al., 2016).

4.3.4 Early detection of stresses

Early detection is one of the key areas of advancement in plant stress
detection. Early detection is critical as it allows for timely intervention,
potentially preventing widespread disease outbreaks and minimizing yield
losses. This proactive approach helps prevent pest resistance and uncon-
trolled epidemics. Given the importance of swift and accurate stress
identification in mitigation eftorts, deep learning and Al-based solutions are
gaining prominence due to their versatility and accuracy.

A primary method of early detection involves the utilization of
wavelengths beyond the visible spectrum, including infrared and hyper-
spectral imaging. These wavelengths can identify physiological stress in
plants that is not yet visible to the human eye, enabling the detection of
diseases before symptoms appear (Lowe et al., 2017; Moghadam et al.,
2017; Golhani et al., 2018; Khaled et al., 2018; Seshaiah et al., 2024).
Machine learning also plays a crucial role in selecting the most infor-
mative spectral bands from highly correlated data, which is common in
hyperspectral imaging. This selection process improves the efficiency and
accuracy of disease detection models by reducing data dimensionality and
focusing on the most relevant features. In addition to plant sensors, soil
sensors represent a vital technology to assess early disease development.
These sensors gather real-time data on soil conditions, which can be
crucial for predicting potential disease outbreaks. A study has shown that
combining soil sensor data with ML techniques allows for the efficient
diagnosis of various fungal diseases, achieving prediction accuracy greater
than 98% (Kumar et al., 2020). By continuously monitoring real-time
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agricultural information, soil sensors can help mitigate disease risks,
leading to improved crop management and sustainable farming practices.

Combining HTP platforms with DL/AI methods opens new oppor-
tunities for dynamic and precise monitoring of crop diseases and pests over
extensive areas. This integration allows for continuous monitoring and
real-time data delivery, essential for tracking disease progression and
evaluating the effectiveness of treatment strategies.

4.4 Seed yield prediction

An important and relevant application of ML in crop production is the in-
season prediction of yield. Accurate estimates of crop yields help breeders
make timely decisions for selecting and advancing experimental lines.
Beyond plant breeders, predictions of local and regional yields have several
benefits. These benefits include better planning of the use of the harvested
crop, price discovery for futures contracts, price regulation, and providing
farmers a baseline yield for planning input costs to increase profitability
(Johnson, 2014). The United States Department of Agriculture (USDA)
predicts crop yields across the United States as part of their service to
agriculture (USDA-NASS, 2023). The National Agricultural Statistics
Service (NASS), which is the statistical group of the USDA, conducts
annual surveys throughout the growing season by contacting farmers for
on-farm yield estimates, as well as sampling sections of growing fields for
indicators of crop development (Johnson, 2014; USDA-NASS, 2023).
However, such estimates for yield prediction are limited and time-con-
suming to collect, which lends the feasibility of remote sensing paired with
Al methods to predict an estimated end-of-season yield. Numerous pre-
diction factors have been considered and researched, including vegetation
indices (VIs), weather and climate data, and soil properties. Additionally,
the scales for prediction and platforms used have varied, with applications
spanning from field level to county level and utilizing difterent ground and
aerial-based platforms for sensing.

Along with the different prediction factors and platforms, different ML
and DL models have been explored, and this exploration continues as new
models are released. Through their complex architectures involving layers
of neural networks, DL models can integrate various types of data,
including remote sensing imagery, soil properties, and historical yield data.
This integration enables a holistic approach to crop modeling that tradi-
tional methods, which often handle fewer data types and require extensive
pre-processing, cannot achieve (Toledo and Crawford, 2023). In particular,
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LSTM networks have demonstrated remarkable capabilities in predicting
soybean yield and other agronomic traits, potentially surpassing traditional
ML methods. LSTM networks, a type of RINN, are particularly suited for
sequential data, making them ideal for time-series predictions in agri-
cultural forecasting. These networks can model seasonality and other
temporal dynamics influencing crop development, providing more accu-
rate yield predictions and agronomic trait analysis (Shook et al., 2021).

Vegetation indices are a popular predictor for in-season soybean yield
prediction. A study by Maimaitijiang et al. (2020) collected VIs from a UAV
platform. This data was combined with other UAV derived variables related to
canopy structure and texture to predict the yields on three soybean genotypes
in large field plots. Five different ML models were compared, with a DNN
being found to have the greatest accuracy, with a R of 0.72 and a RMSE of
15.9% (Maimaitijiang et al., 2020). A separate study looked at eight different
soil properties as variables to predict yield on a field-scale in Canada, and
compared four different models for these predictions. Random forest was found
to be the most successful, with a R? of 0.94 for soybean, and the importance of
the different soil variables in prediction was investigated (Burdett and Wellen,
2022). More commonly, yield prediction models utilize both VIs and weather
data to develop more robust and accurate models. One such baseline model to
predict crop vyield, including soybean vyield, used satellite-based Normalized
Difference Vegetation Index (NDVI), surface temperature, and precipitation as
input into multiple regression models to predict the county level yields
(Johnson, 2014). A similar study used VIs, weather data, and maturity group in
a polynomial and ridge regression model to predict the yield of specific field
sites (Mourtzinis et al., 2014). Interestingly, these two studies differed in the
importance of precipitation for predicting yield.

In a similar study for predicting county-level yields in Illinois and Iowa, a
SVM was found to have the most accurate results and found that the variable
importance rankings changed throughout the growing season (Ju et al.,
2021). In the Brazilian Cerrado region, researchers used NASA-POWER
weather data to compare random forest, ANNs, and SVM for yield forecasts,
and found the random forest model to have the highest performance
(Barbosa Dos Santos et al., 2022). This study also looked at the importance of
climatic variables at different soybean phenological stages, and found that the
magnitude and order of importance changes throughout the season. A
comprehensive study used weather parameters, soil characteristics, and crop
management to predict yields (Ansarifar et al., 2021). While several models
were compared in this study, their newly proposed interaction regression
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model had the best accuracy and performance in predicting the yields of both
soybean and corn. Additionally, they observed the additive and interaction
effects of predictor variables and the temporal variations of these effects
(Ansarifar et al., 2021). Ground-based collected VIs were used to train a
random forest model to predict and rank the yield of numerous soybean
genotypes in small plots for breeding application (Parmley et al., 2019a). In
another study, multi-spectral images from the MODIS satellite were used to
predict soybean yields on the county level throughout parts of the United
States (You et al., 2017). In this study, they compared baseline methods of
ridge regression, decision trees, and DNNs to previous CNNs and LSTM
approaches and reported that DL models outperform the popular baseline
methods (You et al., 2017).

In one study, researchers used historical soybean yield data from
breeding trials to train an LSTM model to predict yields, and determine
which weather parameters were most relevant for such predictions (Shook
et al., 2021). This study also utilized pedigree-related measures, and the
combination with weather parameters resulted in the LSTM model having
a significantly higher prediction accuracy than SVR and LASSO. An
additional benefit of the LSTM model in this study was the temporal
attention mechanisms, which offer insights into critical periods during the
growing season that most affect crop yield (Shook et al.; 2021). Researchers
in southern Brazil used MODIS satellite imagery-derived VIs, along with
temperature and precipitation data, to predict municipal soybean yields
(Schwalbert et al., 2020). Comparing ordinary least squares regression,
random forest, and LSTM models, they found that LSTM outperformed
the others at most time points. The inclusion of weather parameters
improved prediction accuracy, reducing MAE, RMSE, and MSE, under-
scoring the importance of weather data in yield forecasting.

Deep learning models, particularly LSTM, often outperform traditional
algorithms in agricultural applications, demonstrating superior accuracy and
generalization across diverse environments, although it is not always superior
when there is a small number of features (Kang et al., 2020). However, for
certain agricultural traits, traditional ML models like XGBoost and random
forest can still excel (Gill et al., 2022a). This indicates that model selection
should be tailored to the specific trait and dataset under consideration.

4.5 Cyber-agricultural systems

The development of advanced sensors, platforms, Al algorithms, and
tools—as discussed in the previous sections— has driven a transformation
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in agriculture where these technologies are integrated under the framework
of cyber-physical systems (CPS). This integration enables the creation of
interconnected systems that can monitor, analyze, and optimize agricultural
processes in real time, leading to more efficient and sustainable practices.
Cyber-physical systems (CPS) are engineered systems resulting from the
continuous integration of computation and physical components. They
involve a close interaction between sensors, computing devices, control
and actuation systems, and networking infrastructure. In CPS, the physical
space serves as the source of information, and the cyberspace uses this
information to make decisions, which are then implemented back into the
physical space.

Building upon this foundation, a new paradigm of Cyber-Agricultural
Systems (CAS), which instantiates CPS specifically for agriculture was
introduced in Sarkar et al. (2024). CAS represents a transformative approach
that integrates advanced sensing, computational modeling, Al, and smart
actuators to revolutionize agricultural practices (Fig. 3). The core of CAS is
its integration of various technological pillars—sensing, modeling, actuation,
and Internet of Things (IoT) to create a more interconnected and intelligent
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Fig. 3 (A) Cyber-physical systems (CPS) are engineered systems with deep integration
between the physical and cyberspace. The three technical modules of CPS—sensing,
modeling, and actuation—leverage the three functional pillars: communication, com-
putation, and control. Cyber-agricultural systems (CAS) are built on the CPS concept. (B)
The future vision of CAS—an individualized plant management paradigm that senses
and models up to individual plants and organs providing unprecedented insights for
decision making in breeding and production. Figure and caption reprinted with per-
mission from Elsevier. Original article: Sarkar et al. (2024). Cyber-agricultural systems for
crop breeding and sustainable production. Trends in Plant Science 29(2): 130-149.



Use of artificial intelligence in soybean breeding and production 229

agricultural environment (Sarkar et al., 2024; Sharma et al., 2020;
Dumitrache et al., 2017). This integration leads to ultra-precision agriculture,
enabling individualized phenotyping and actuation at finer scales.

4.5.1 Key components of CAS
The following sections outline the key components of CAS, emphasizing
their roles and impact on modern agricultural practices.

Advanced Sensing: Advanced sensing technologies play a pivotal role
in CAS systems by providing real-time data collection essential for
informed decision-making. IoT devices, including soil moisture sensors,
weather stations, and plant health monitors, are deployed across fields to
continuously gather data on critical parameters such as soil moisture,
temperature, humidity, and precipitation, (see Fig. 4A). This granular data
enables precise monitoring and management of crop conditions, leading to
optimized water usage, timely interventions for pest and disease control,
and overall improved crop health (Shaikh et al., 2022). The deployment of
such sensors ensures that farmers can make data-driven decisions, enhan-
cing productivity and sustainability in soybean cultivation.

Artificial Intelligence and Machine Learning: Al and ML are at the
heart of CAS, offering powerful tools for analyzing vast amounts of agri-
cultural data. AI and ML models can identify patterns and correlations that
are not easily discernible to humans. For instance, they can analyze crop
information, weather forecasts, and soil conditions to predict yield (Torsoni
et al., 2023). The integration of Al and ML in soybean production facilitates
precision agriculture, enhancing both efficiency and output, (see Fig. 4B).

Robotics: Robotics technology revolutionizes traditional agricultural
practices by automating labor-intensive tasks such as planting, harvesting,
and crop monitoring. Autonomous robots equipped with Al capabilities
can navigate fields, plant seeds at precise depths and intervals, and harvest
crops with minimal human intervention (Mahmud et al., 2020). These
robots not only increase operational efficiency but also reduce the reliance
on manual labor, which is often scarce and expensive. In soybean pro-
duction, robotic systems can ensure timely planting and harvesting, thereby
aligning agricultural activities with optimal growing conditions and redu-
cing crop losses, (see Fig. 4C).

Wireless Communication: Wireless communication is a critical
component of CAS, enabling seamless data exchange between various
devices and platforms. Technologies such as 4G/5G, Wi-Fi, and low-range
(LoRa) high-bandwidth wireless connectivity ensure that data collected by
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IoT sensors and transmitted by robotic systems is relayed to central data-
bases in real time. This connectivity allows for the integration of diverse
data sources, facilitating comprehensive analysis and decision-making.
Efficient data communication is essential for the coordinated functioning of
all components within a CAS (Elijah et al., 2018; Parween et al., 2021).

Scalable Computing Infrastructure: The vast amounts of data
generated by advanced sensing technologies, AI models, and robotic sys-
tems necessitate a scalable computing infrastructure capable of handling
large datasets and complex computations (Mekala and Viswanathan, 2017).
Cloud computing platforms and high-performance computing (HPC)
systems provide the necessary computational power and storage capacity to
process and analyze agricultural data effectively. These infrastructures
support the local computing systems (edge devices) that may be mounted
on sensors and robots for the deployment of Al models and the real-time
processing of data streams, enabling swift and accurate decision-making.
This scalability is crucial for adapting to the growing data demands of
modern agriculture.

Security: As CAS becomes more integrated and data-driven, ensuring
the security of these systems is paramount. Cyber-security measures are
essential to protect sensitive agricultural data from unauthorized access and
cyber threats. This includes implementing encryption protocols, secure
data transmission methods, and robust authentication mechanisms. In
soybean production, secure CAS can prevent data breaches that could
compromise farm operations and intellectual property (Alahmadi et al.,
2022). Ensuring the security of these systems is vital for maintaining trust
and reliability in digital agriculture.

CAS is poised to revolutionize the agricultural sector by offering new
avenues for enhancing efficiency, productivity, sustainability, and resi-
lience. In the context of soybean cultivation, CAS can significantly
improve crop management through precision farming, by providing pre-
cise, real-time data and automated responses to various agricultural chal-
lenges. One possible application of precision farming in the context of CAS

robots, and dexterous robotic arms for plant manipulation. (E) Technical challenges in
CAS is to create highly dexterous robots that are scalable to large fields at low cost.
Figure and caption reprinted with permission from Elsevier. Original article: Sarkar et al.
2024. Cyber-agricultural systems for crop breeding and sustainable production. Trends in
Plant Science 29(2): 130-149.
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could be pesticide application. Precision pesticide application starts with
pest scouting using sensors and cameras on autonomous devices or hand-
held tools to collect high-resolution data. Through efficient networks for
communication, Al-driven decision tools analyze this data, and robots or
drones apply chemicals only in target areas, reducing soil compaction,
minimizing environmental impact, and potentially increasing yield (Shaheb
et al., 2021; Frene et al., 2024). This targeted approach minimizes chemical
use, reduces environmental impact, and ensures eftective pest control.

In addition, CAS enables smart irrigation and water management,
offering significant benefits for sustainable crop production. These advanced
systems optimize water usage through precise scheduling, leading to cost
savings and enhanced environmental sustainability by reducing water waste
and chemical inputs (Choudhary et al., 2019). Integration of real-time
weather data allows for dynamic irrigation adjustments, maintaining optimal
soil moisture levels, particularly with changing climate (Campoverde and
Palmieri, 2022; Nobles et al., 2022; Sacala et al., 2017). These applications
leverage CAS technologies to address agricultural challenges, ensuring sus-
tainable management.

4.5.2 Challenges and considerations in CAS

Implementing CAS presents several challenges and considerations that must
be addressed to ensure their eftectiveness and sustainability. One major
challenge is the high initial cost of deploying advanced technologies such as
[oT devices, Al models, and robotics, which can be prohibitive for small-
scale farmers (Yang et al., 2023). Additionally, the integration of diverse
technologies requires robust and scalable computing infrastructure, which
can be difficult to maintain and upgrade. Data privacy and security are also
critical concerns, as the increasing digitization of agricultural operations
makes them vulnerable to cyber threats and data breaches. Ensuring
interoperability among different devices and platforms is another significant
consideration, as it is essential for seamless data exchange and system
functionality. Furthermore, there is a need for continuous training and
support for farmers to eftectively utilize these advanced systems, which can
be a barrier to widespread adoption. Addressing these challenges requires a
collaborative approach involving technology providers, policymakers, and
the agricultural community to develop cost-effective, secure, and user-
friendly solutions (Yang et al., 2023).
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5. Challenges and future directions for the use of Al in
soybean breeding and production

5.1 Multi-modal and layered sensing

The integration of multi-modal and layered sensing technologies is a promising
approach for enhancing the accuracy and robustness of data acquisition in
precision agriculture. Multi-modal sensing involves the combination of mul-
tiple sensing modalities, such as RGB, multispectral, hyperspectral, thermal,
and LiDAR, to capture complementary information about crop traits and field
conditions (Karmakar et al., 2023). Ground-based sensors, such as proximal
sensing carts and stationary sensor networks, provide high-resolution data on
individual plants or small plots, while UAVs and satellites offer a broader spatial
coverage and the ability to monitor large agricultural areas (Bruckstein et al.,
2009). The fusion of data from multiple modalities and layers presents both
opportunities and challenges. Integrating different modalities presents chal-
lenges due to the distinct statistical properties, formats, and processing
requirements of each modality, complicating their unification into a single
model. To overcome these challenges, techniques such as cross-modal align-
ment, hierarchical fusion strategies, feature concatenation, and attention
mechanisms can be employed to manage this complexity and ensure robust
cross-modal interactions (Xu et al., 2023). Additionally, advanced data fusion
methods, such as deep learning-based approaches, can effectively integrate and
analyze heterogeneous data streams (Lu et al., 2024). Moreover, the devel-
opment of standardized data formats and protocols is crucial for ensuring
interoperability and facilitating data sharing among researchers and stakeholders.
The integration of sensing data with crop growth models and decision support
systems will enable more accurate yield predictions and informed management
decisions. The integration of GPS coordinates with multi-modal sensing data
enhances spatial accuracy and facilitates precise georeferencing of crop traits and
field conditions (Weiss et al., 2020). This spatial context 1s crucial for imple-
menting site-specific management practices and for tracking temporal changes
across different field locations. Recent advancements in multi-modal data
integration for crop phenotyping have shown promising results. Yu et al.
(2024) demonstrated the effectiveness of a novel approach combining RGB
and infrared imaging for soybean canopy analysis, achieving high accuracy in
segmenting soybean canopies from field images. Such innovative multi-modal
approaches not only improve the accuracy of crop trait estimation but also
provide a foundation for developing more comprehensive understanding of
crop growth dynamics in field conditions (Zhang et al., 2019b).
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5.2 Data availability and quality

The development and application of Al models in agriculture heavily depend
on the availability and quality of datasets. Various online platforms, such as
Mesonet, iNaturalist, and Kaggle, offer diverse datasets including weather
station data and animal and insect image collections, creating numerous
opportunities for Al applications. However, despite their accessibility, these
datasets present several challenges that need to be addressed for effective Al
model training and implementation (Sarkar et al., 2024).

Data structure is a critical consideration when evaluating datasets for Al
model training. The variation in storage structures across different datasets
poses a significant challenge when combining multiple sources, potentially
hindering the development of comprehensive models that could benefit
from diverse data inputs. To facilitate the accumulation of large datasets for
model training, it is essential to develop common data storage protocols.
Implementing folder structures that enable easy and fast labeling can greatly
aid in preparing large image datasets for training models, which is parti-
cularly important for computer vision applications in agriculture, such as
pest and disease identification.

The infrastructure for data storage and download must be robust to
support the compilation of extensive datasets, such as the 13 million images
used in training an insect identification model (Chiranjeevi et al., 2023).
This highlights the need for scalable and efficient data management systems
in agricultural Al research. Moreover, the development of standardized
data formats and metadata schemas specific to agricultural data could sig-
nificantly enhance interoperability and facilitate the integration of diverse
datasets from multiple sources.

The quality of data used in training Al models, particularly foundational
models, is crucial. High-quality datasets should capture natural variability to
build more robust models that can generalize well to real-world agricultural
scenarios. This includes ensuring diversity in environmental conditions,
crop varieties, and stress factors represented in the datasets. Additionally,
the accuracy of data labels is paramount. For instance, the insect identifi-
cation model utilized data from iNaturalist, a citizen science project where
domain experts verify data labels (Chiranjeevi et al., 2023). This approach
of expert validation can be crucial in ensuring the reliability of training
data, especially in domains where specialized knowledge is required.

Ensuring the correctness of data provided during model training can
significantly enhance model accuracy, while messy or inaccurate data can
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lead to confusion and lower accuracy models. In the agricultural context,
this could involve rigorous validation processes for field data, including
cross-verification of sensor readings, standardization of measurement
techniques, and careful documentation of data collection methodologies.
The challenge of data quality is particularly acute in agriculture due to the
variability of environmental conditions and the potential for human error
in field observations.

To prepare for future applications of Al in agriculture, it is necessary to
address these data-related challenges comprehensively (WorldFAIR
Project, 2024; Wilkinson et al., 2016). Developing infrastructure and
protocols for foundational models would allow for the creation of a few Al
models that can be fine-tuned on smaller datasets. This approach could
significantly advance the field by providing a solid foundation for various
agricultural Al applications, from crop yield prediction to automated pest
management systems. Furthermore, the agricultural sector could benefit
from the development of centralized, curated data repositories specifically
designed for Al applications (Swetnam et al., 2024; Hugging Face, 2024).
These repositories could serve as benchmarks for model development and
evaluation, ensuring that researchers and practitioners have access to high-
quality, standardized datasets (Yang et al., 2024a; Arshad et al., 2024b).
Collaborative efforts between academic institutions, industry partners, and
government agencies could be instrumental in establishing such resources.

As the agricultural sector continues to embrace Al technologies,
addressing these data-related challenges will be crucial in realizing the full
potential of Al in improving agricultural practices and outcomes. This
includes not only improving data collection and storage methods but also
developing robust data validation techniques, creating standardized
benchmarks, and fostering a culture of data sharing and collaboration
within the agricultural research community.

5.3 Computational modeling

Computational modeling in agriculture employs numerical methods to
predict plant growth, biomass, and yield by analyzing the interactions
between crops and their environments. Crop modeling, a critical com-
ponent of this field, simulates or predicts plant growth, development, and
yield under various environmental conditions, helping to assess climate
change impacts on agriculture (Phuoc et al., 2023). By integrating data on
weather, soil properties, and crop genetics, crop models evaluate how
factors such as planting density, irrigation, and fertilization affect crop
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performance. Several biophysical process-based models, such as ORYZA,
APSIM, DSSAT, and MLCan, are widely used in crop modeling for
decision-making purposes (Bouman and Van Laar, 2006; Keating et al.,
2003; Jones et al., 2003; Drewry et al., 2010). Despite their utility, these
models face significant challenges, including incomplete mechanistic
knowledge, difficulty in measuring latent variables, and brittleness due to
mismatches in the scales of input parameters. To address these limitations,
hybrid approaches combining data-driven methods and process-based
models are being developed.

Early data-driven efforts utilized single data modalities for crop yield
prediction, disease identification, and irrigation optimization (Balakrishnan
and Muthukumarasamy, 2016; Ramesh and Vardhan, 2015; Ahmad et al.,
2010; Mohanty et al., 2016; Karandish and Simtinek, 201 6). The advent of
IoT devices has enabled the collection of multi-modal data, enhancing
decision-making processes beyond single-mode ML. Studies have shown
that integrating publicly available weather and soil data can effectively
predict county-level corn yield in the US Midwest (Jiang et al., 2020).
Moreover, DL models have been developed to combine genotype and
environmental variables for crop yield prediction, with explainable DL
models providing insights into significant predictors (Shook et al., 2021;
Khaki et al., 2020; Barbosa et al., 2020; Gangopadhyay et al., 2020;
Akhavizadegan et al., 2021). However, purely data-driven models often fail
to provide accurate outcomes beyond their training data, but integrating
biophysical knowledge can mitigate this issue and reduce the need for
extensive data. Recent advancements have seen the integration of high-
throughput imaging and sensing data with biophysical knowledge to create
flexible, hybrid Al models, such as knowledge-guided ML models for rice
growth simulation (Han et al., 2023). Similarly, coupling of ML and crop
modeling was shown to improve crop yield prediction in the US Corn Belt
(Shahhosseini et al., 2021). While the best approaches for integrating
knowledge and ML are still being refined, the field is progressing and holds
great promise for future advancements in crop modeling.

5.4 Al models and tools

The integration of Al in agriculture has led to the development of various
off-the-shelf tools that agricultural professionals and non-technical indivi-
duals can easily explore and utilize. These tools leverage satellite imagery,
weather data, and machine learning algorithms to provide valuable insights
for precision farming and crop management.
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One such tool is OneSoil, a digital agriculture platform that aids in
remote crop monitoring, yield increase, and optimization of seed and
fertilizer costs (OneSoil, 2024). This user-friendly application demonstrates
the potential of Al in making complex agricultural data accessible to a wide
range of users. Another significant development in this field is Agromo-
nitoring, which offers satellite and weather data for precision farming
(Agromonitoring, 2024). This platform processes large amounts of satellite
and climate data to provide vegetation indices, weather forecasts, and
analytical reports. Its dashboard feature allows users to monitor field states
throughout the year, integrating satellite imagery and weather data with
advanced machine learning technologies. For those requiring more
advanced spatial analysis capabilities, QGIS offers a comprehensive, open-
source geographical information system (QGIS.org, 2024). While not
exclusively an Al tool, QGIS supports various data formats and provides a
framework for integrating Al-driven analyses. Its ability to handle raster,
vector, mesh, and point cloud data makes it a versatile tool for agricultural
applications, particularly when combined with Al models for crop mon-
itoring and land use analysis. Google Earth Engine represents a significant
leap in the accessibility of large-scale geospatial analysis (Google, 2024).
This platform combines a vast catalog of satellite imagery and geospatial
datasets with powerful analysis capabilities. While it requires some technical
expertise to use effectively, Earth Engine’s ability to detect changes, map
trends, and quantify differences on the Earth’s surface makes it an invalu-
able tool for researchers and developers working on agricultural applica-
tions. For more specialized crop intelligence, Taranis offers a platform
focused on providing leaf-level insights for crop advisors and growers
(Taranis, 2024). Using high-resolution drone imagery and Al-powered
analysis, Taranis can detect and analyze various crop threats, including
weed severity, disease, insect damage, and nutrient deficiencies. This tool
demonstrates the power of combining Al with targeted data collection
methods to provide actionable insights for agricultural decision-making.

These tools represent a spectrum of Al applications in agriculture, from
user-friendly mobile apps to powerful analytical platforms. They showcase
the potential of Al to democratize access to complex agricultural data and
insights, enabling both experts and non-technical users to make more
informed decisions about crop management and resource allocation. In
addition to specialized agricultural tools, several general-purpose Al models
with user-friendly interfaces can be applied to agricultural tasks. The
Segment Anything Model (SAM), developed by Meta Al, ofters powerful
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image segmentation capabilities that can be used for crop analysis and field
mapping (Kirillov et al., 2023). For object detection, models like You Only
Look Once (YOLO) can be adapted to identify various agricultural ele-
ments such as crop types, pests, or equipment in fields (Redmon et al.,
2016). In the realm of image classification, ResNet variants have shown
promise in detecting diseases in crops, demonstrating the potential for early
identification of plant health issues (He et al., 2016). While these models
may require some adaptation for specific agricultural use cases, they
represent accessible entry points for users to experiment with Al applica-
tions in agriculture without extensive technical expertise.

5.5 Cyberinfrastructure

The implementation of Cyber-Agricultural systems (CAS) relies on a robust
cyberinfrastructure to support essential functions such as efficient data
transfer, real-time decision support, management information delivery, and
storage of heterogeneous data formats from various sensors and platforms.
This infrastructure facilitates querying data based on research needs, orga-
nizing trained models, providing visualization, and storing scripts and models
for future use. In an analogy to infrastructure such as roads, bridges, rail lines,
power grids, and telephony networks that underlie an industrial economy,
cyberinfrastructure refers to the collective of advanced computing systems,
data, and information management, and high-performance networks that
power 2lst-century science and engineering research and education.
Advanced cyberinfrastructure comprises not only hardware systems but also
the software that links all the components and makes the system useful and
usable, as well as the human expertise that operates and helps researchers
utilize the resources. Cyberinfrastructure encompasses various technological
solutions tailored to support the specific needs of Cyber-Ag. Examples
include data transfer solutions that facilitate efficient data transfer from fog-
edge-cloud devices, decision support systems (DSS) providing real-time or
scheduled decision support, data management solutions handling diverse data
formats from different sensors and platforms, visualization tools offering
visualization capabilities to make data insights accessible, and storage solu-
tions organizing and storing trained models, scripts, and data for future use.
While cyberinfrastructure is already proving productive in industrial settings,
agriculture presents unique challenges requiring different approaches.
Agriculture’s dynamic and variable environments necessitate flexible
and adaptive data management solutions. Key challenges include rural
connectivity, as many agricultural operations are in rural areas with limited
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high-speed internet access. Solutions like LoORaWAN and edge computing
are needed to manage data locally. Additionally, distributed data processing
is crucial for handling large volumes of data from multiple sources across
edge, fog, and cloud layers to ensure timely decision-making. Agricultural
devices often operate with limited power and computational resources,
necessitating efficient data compression, lightweight machine-learning
models, and energy-aware computing frameworks. The infrastructure must
also withstand extreme weather, dust, and temperature variations. Effective
communication between edge devices can enhance decision support
through distributed learning, networking, and weight sharing.

Addressing these challenges involves a multi-faceted approach. Shared
data storage systems facilitate efficient and secure transfer of large datasets,
while high-memory computing provides access to high-memory compu-
ters and virtual machines for data analysis. Metadata labeling enables
descriptive metadata for efficient data retrieval, and identity management
systems ensure secure data sharing. Computational efficiency is crucial,
involving learning from compressed sensor data sets and converting them
into actionable insights, typically through scheduled computations per-
formed in central or distributed units connected to the cloud.

Initiatives like the AI Institute for Resilient Agriculture (AIIRA)
(Ganapathysubramanian et al., 2024) and the ICICLE Al Institute (Intel-
ligent Cyberlnfrastructure with Computational Learning in the Environ-
ment) (Panda et al., 2024) are leading efforts to address these challenges.
AIIRA focuses on integrating advanced technologies to enhance agri-
cultural productivity and sustainability, while ICICLE aims to democratize
Al by developing intelligent cyberinfrastructure spanning the edge-cloud-
HPC computing continuum. Cybershuttle (Marru et al., 2023) is another
initiative to support an end-to-end computational science research con-
tinuum, enabling seamless movement from local laptops to preprocessing,
simulation, visualization, and analysis stages. This infrastructure supports
scaling computational resources, captures metadata, and facilitates iterative
processes.

Cyberinfrastructure is key in enabling information flow across different
disciplines and platforms. For example, in soybean plant physiology,
empirical response curves for stomatal conductance with environmental
conditions can be used by crop modelers to simulate crop yield, with data
and models shared as web resources through platforms like CyVerse
(Swetnam et al., 2024) and the Open Ag Data Alliance (Ault et al., 2022).
Ongoing research and development, improvements in rural connectivity,



240 Asheesh K. Singh et al.

and engagement with the farming community are essential for the con-
tinued advancement and adoption of cyberinfrastructure in agriculture.
Collaborative projects like INFEWS (Innovations at the Nexus of Food,
Energy, and Water Systems) and PCHES (Program on Coupled Human
and Earth Systems) are also making strides by developing container-based
modeling infrastructures to understand and address the impacts of agri-
cultural production on sustainable water use.

5.6 Explainability and interpretability of Al models

Explainable deep learning aims to address the “black box” nature of many Al
models by providing interpretable tools that clarify why a model makes
specific decisions or behaves in a certain way. This approach is crucial in
agricultural applications, particularly in plant phenotyping, where under-
standing the model’s decision-making process is essential for scientific
validity and practical implementation. Techniques such as saliency maps
highlight the most important pixels in imagery data, revealing spatial regions
crucial for classification (Simonyan et al., 2013). This methodology has been
applied in soybean stress phenotyping, where a 3D-CNN model using
hyperspectral imagery simultaneously learned spectral and spatial disease
signatures correlated to charcoal rot symptom severity (Nagasubramanian
et al., 2019).

Explainable AI (XAI) techniques enhance the trustworthiness of image-
based phenotypic information used in food production systems (Mostafa
etal., 2023; Harfouche et al., 2023). Ghosal et al. (2018) demonstrated how
techniques such as Grad-CAM (Selvaraju et al.,, 2017) can improve
transparency in stress phenotyping by highlighting specific regions that are
critical for the model in determining different types of stress. Additionally,
the technique discussed in (Chefer et al., 2021) can be applied to explore
the transparency of vision transformer models (Dosovitskiy et al., 2020).
Furthermore, explainable DL output can derive stress severity scores that
show high agreement with expert ratings (Ghosal et al., 2018), providing
an unsupervised method for quantitative stress measurement. Zhou et al.
(2024) enhanced the explainability of Support Vector Regression models
used in predicting soybean branching by employing SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017). This technique helps
identify key genes influencing branching, allowing breeders to optimize
their programs more effectively. Other XAI techniques, such as rule
extraction and feature importance analysis, provide valuable insights into
Al models’ decision-making processes in agriculture (Samek et al., 2021).
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Rule extraction methods, for instance, can generate human-interpretable
rules describing the conditions for particular predictions, enabling agro-
nomists to understand and validate the model’s reasoning (Guidotti et al.,
2018). By providing interpretable and trustworthy insights, XAI enables
plant scientists and breeders to make more informed decisions. The stress
severity ratings derived from explainable DL could be input as phenotypic
data into genomic studies such as GWAS and Quantitative Trait Loci
mapping, or automatically incorporated into genomic selection meth-
odologies in breeding programs. This integration of explainable Al in
agricultural research and practice represents a significant advancement in
leveraging Al technologies for improved crop management and breeding
strategies.

5.7 Al related impacts on privacy, ethics, and policy

The implementation of Al in crop production and breeding raises sig-
nificant ethical concerns, particularly regarding data security, privacy, and
policy issues. Large amounts of data are regularly collected on farms,
providing valuable information for developing robust Al models.
However, farmers often show reluctance in sharing this data due to lack of
transparency (Wiseman et al., 2019). This hesitation stems from concerns
about data ownership, potential misuse, and the fear of losing competitive
advantages. To address these concerns, transparency regarding the intended
use and outcomes of the data is essential, along with assurances that farmers
will benefit from their data contributions. Al technologies in agriculture are
governed by diverse regulations across different countries and regions,
reflecting the global nature of both agriculture and Al development. The
European Union has taken a proactive approach with its Artificial Intel-
ligence Act, which categorizes Al applications based on risk levels and
mandates transparency and human oversight for high-risk applications in
agriculture (European Commission, 2024). This comprehensive frame-
work aims to foster innovation while ensuring that Al systems in agri-
culture do not compromise safety or ethical standards.

In the United States, the USDA has developed a data strategy regarding
transparency, security, and accountability of data usage, including applica-
tions in Al (United States Department of Agriculture, 2023). This data plan
also features objectives to develop training programs to increase availability of
education about ethical use of data and Al. The United States government
continues to encourage regulation regarding Al with an Executive Order
that has eight guiding principles that focus on ensuring Al is used safely,
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securely, fairly, and with the protection of Americans in mind (Executive
Office of the President, 2023). These guidelines reflect a growing awareness
of the potential risks associated with Al, including data breaches, algorithmic
bias, and the concentration of market power. Some states have enacted
specific legislation to protect against the misuse of Al and are moving to
create local groups to monitor the use of Al within their respective states
(State of Utah, 2024; State of Colorado, 2024). Other regions, including
Australia and Canada, are focusing on confidentiality, safety, responsibility,
transparency and protecting users’ data rights (Australian Government, 2024;
Government of Canada, 2021). These efforts highlight the global recogni-
tion of the need for standardized approaches to data management and Al
deployment in agriculture, while also acknowledging the unique challenges
faced by different agricultural systems worldwide.

Fairness, accountability, transparency, and equitable access are crucial
principles in the ethical development of Al in agriculture. These principles
aim to prevent discrimination, establish clear responsibilities for Al deploy-
ment, make Al decisions understandable to stakeholders, and ensure that all
farmers can benefit from Al advancements, regardless of their size or tech-
nological expertise. The implementation of these principles requires careful
consideration of how Al systems are designed, deployed, and monitored in
agricultural settings. Data security and privacy are paramount concerns in the
agricultural use of Al. The vast amount of data collected from farms,
including sensitive information about crop yields, soil conditions, and farm
management practices, necessitates robust security measures to protect against
unauthorized access or breaches. Farmers need assurances that their data will
be used ethically and that they retain control over it. Addressing these
challenges requires comprehensive policy support, including financial sub-
sidies, infrastructure development, and robust training programs to equip
farmers with the necessary skills. Clear regulations on data privacy and
ownership are also essential to protect farmers’ interests. With appropriate
policy interventions, smallholder farmers can leverage Al to improve their
productivity and contribute to sustainable agricultural development.
Ensuring the privacy of this data is crucial not only for individual farmers but
also for maintaining fair competition in the agricultural sector. Policies
regarding data ownership and privacy are being developed to address these
concerns, with a focus on giving farmers control over their data and ensuring
that they understand how it will be used.

The societal impacts of Al in agriculture extend beyond the farm,
potentially affecting labor markets and changing the structure of agricultural
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communities. As Al technologies automate certain tasks, there are concerns
about job displacement and the changing skill requirements for agricultural
workers. Policy makers must consider these broader implications when
developing regulations for Al in agriculture, ensuring that the benefits of
these technologies are balanced against potential negative impacts on rural
communities. Governments and regulatory bodies should create frameworks
that encourage responsible Al adoption while balancing innovation and
protection. This balance is critical to ensure that the agricultural sector can
benefit from Al advancements without compromising ethical standards or
exacerbating existing inequalities. Collaboration among industry stake-
holders, researchers, and policymakers is essential to shape effective policies
that address the complex ethical and practical challenges posed by Al in
agriculture.

To foster trust and adoption of Al technologies in agriculture, ongoing
communication with stakeholders, careful consideration of societal impacts,
and the development of supportive policies are necessary. This includes
educating farmers about the potential benefits and risks of Al technologies,
involving them in the development of Al solutions, and ensuring that they
have a voice in policy-making processes. Researchers must engage with
policymakers to ensure that research can continue while protecting farmers’
data, striking a balance between scientific advancement and ethical con-
siderations.

By addressing these ethical, policy, data security, and privacy issues, the
agricultural sector can leverage Al to enhance productivity, sustainability,
and resilience in the face of growing global challenges. The holistic
approach to Al implementation in agriculture aims to harness its potential
while mitigating risks and ensuring widespread distribution of benefits. As
Al technologies continue to evolve, ongoing evaluation and adjustment of
policies and practices will be necessary to maintain ethical standards and
maximize the positive impact of Al in agriculture and breeding.

5.8 Impact on smallholder farmers

Smallholder farmers’ adoption of Al technologies is hindered by high initial
costs, inadequate digital infrastructure, and a lack of technical knowledge.
Many farmers may find the investment in Al hardware, software, and
training prohibitive, while poor internet connectivity in rural areas further
complicates the deployment and maintenance of these technologies (Felz
et al., 2022). Moreover, the need for technical training poses a barrier, as
many farmers may lack the skills required to use Al systems eftectively.
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Data privacy concerns also arise, as farmers need assurances that their data
will be used ethically and that they retain control over it. Addressing these
challenges requires comprehensive policy support, including financial
subsidies, infrastructure development, and robust training programs to
equip farmers with the necessary skills. Clear regulations on data privacy
and ownership are also essential to protect farmers’ interests. With
appropriate policy interventions, smallholder farmers can leverage Al to
improve their productivity and contribute to sustainable agricultural
development.

5.9 Digital twin

Digital Twins (DTs) have emerged as a transformative technology in
agriculture, unifying sensing, modeling, control, and actuation aspects of
Cyber-Agricultural Systems (CAS) under a single framework. This inte-
gration positions DTs as a potential game-changer for CAS, oftering
unprecedented opportunities for precision agriculture and sustainable
farming practices. While widely used in engineering systems (Madni et al.,
2019; Schleich et al., 2017; Torzoni et al., 2024) and supply chain man-
agement (Ivanov and Dolgui, 2021; Ivanov, 2024), DTs are now rapidly
being adopted in agriculture, spanning applications from fundamental
research (Pylianidis et al., 2021) to breeding (Moghadam et al., 2020),
precision agriculture (Angin et al., 2020; Alves et al., 2019; Goldenits et al.,
2024), and policy-making (Delgado et al., 2019). DT in agriculture is a data
and software framework that serves as a digital replica of the agricultural
physical system (Jones et al., 2020). These digital replicas mirror the
behavior of their real-world counterparts throughout their life cycle, from
seed to harvest. These advanced models simulate the physiological state,
growth, and development of plants or fields by incorporating diverse
components such as historical data, crop models, Al models for pheno-
typing and ICQ assessment, decision-making algorithms, and field maps
with 3D crop models for robotic navigation. Crop models, integral to DTs,
are essential for understanding plant physiology, growth, development, and
management. Unlike traditional agricultural simulators, DTs must con-
tinuously or periodically update their digital state using real-time mea-
surements from their physical counterparts, including phenotyping, phy-
siological measurements, and environmental data like soil, weather, and
management practices. Moreover, DTs provide a structured approach to
reconcile known dynamics, encoded in crop models, with unknown
dynamics derived from real-world measurements. This integration is
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critical for biological systems where comprehensive first-principle models
are not available, unlike engineered systems with fully describable beha-
viors. DTs have been utilized in various agricultural contexts, covering
species such as row crops, orchards, viticulture, gardens, and horticulture.
They can be designed and implemented at different scales, from individual
organs to entire fields and greenhouses (Chaux et al., 2021; Howard et al.,
2020; Kamburjan et al., 2024; Reyes Yanes et al., 2022). Recent research
has applied DTs at these varied scales. Applications of DTs extend from
monitoring and real-time diagnostics to optimizing yield, profitability,
breeding decisions, and autonomous field operations (Laryukhin et al.,
2019; Skobelev et al., 2020; Defraeye et al., 2021). Technologies like
augmented reality (AR) and virtual reality (VR) can further augment DT
applications, providing immersive visualization and interaction with digital
agricultural systems and enhancing user experience and operational effi-
ciency. The future of DT research lies in developing ‘Intelligent Digital
Twins’ (IDTs), capable of self-learning and making autonomous decisions
for farm management (Laryukhin et al., 2019). Machine learning techni-
ques are being intensively studied to imbue DTs with intelligence, enabling
them to adapt to dynamic environmental conditions and optimize farm
operations in real-time. Preliminary studies on IDTs, primarily utilizing
generative models, show promise for self-learning capabilities with varying
levels of data integration (Tsialiamanis et al., 2021). The combination of
ML, extensive sensing, and autonomous systems presents significant
opportunities to advance agriculture through DTs.

5.10 Large soybean datasets for community usage

The plant breeding and production community leverages diverse data-
sets—including large images, sensor data, and multi-omics information—to
advance Al-driven research and crop improvement in soybeans and other
field crops. The USDA-ARS Ag Data Commons (USDA National
Agricultural Library, 2024) provides a comprehensive repository of agri-
cultural datasets, including environmental conditions, soil properties, and
plant health monitoring, which are essential for studying and improving
crop performance. The PlantVillage dataset (PlantVillage, 2024) includes
over 50,000 images across various crop species, offering valuable resources
for disease detection and health monitoring in soybeans and other crops.
Similarly, the CropDeep Agricultural Dataset (Jiang, 2023) focuses on
images of tomato diseases collected via IoT and mobile cameras, which
provide methodologies applicable to other crops, including soybeans. The
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TERRA REF initiative (TERRA-REF, 2024) offers extensive high-
resolution sensor data from sorghum breeding trials, which can be utilized
to study similar traits in soybean cultivation. Additionally, the Quantitative
Plant project (Quantitative Plant, 2024) hosts a range of datasets, such as
root system and shoot images, pivotal for phenotyping and growth analysis
in crops like wheat and soybean. Resources like GrowStuft (Growstuft
Team, 2024) and Open Plant Pathology (Del Ponte and Sparks, 2024)
contribute further by providing open-access data and tools for crop record-
keeping and disease research, enhancing our understanding and manage-
ment of field crops.

SoyBase (Grant et al., 2010), the Soybean Genetics and Genomics
Database, provides access to diverse genomic and phenomic datasets for
soybean research. It is a comprehensive resource for soybean geneticists and
breeders, offering data on genetic maps, markers, QTL (Quantitative Trait
Loci) information, and sequences. SoyBase also includes various tools for
visualizing and analyzing genomic data, making it an invaluable resource
for identifying genes associated with important agronomic traits. An Illu-
mina Infinium BeadChip containing over 50,000 SNPs from soybean has
been developed (Song et al., 2013, 2015).

The Soybean Knowledge Base (SoyKB) (Joshi et al., 2014), SoyMD
(Yang et al., 2024b), and SoyOmics (Liu et al., 2023) integrate multi-omics
datasets essential for soybean research. SoyKB combines various omics data
with molecular breeding information. SoyMD offers transcriptomic, pro-
teomic, and metabolomic datasets, aiding in understanding gene expression
and protein modifications. SoyOmics provides high-throughput sequen-
cing, quantitative proteomics, and metabolite profiles, supporting soybean
cultivar improvement and stress response studies. These comprehensive
datasets support the development of precision agriculture technologies and
improve crop productivity and sustainability. These open-source datasets
are ideally positioned to assist the soybean research community develop and
deploy ML- and Al-based solutions.

5.11 Immersive environments

Al and ML have revolutionized 3D modeling of real-world environments.
These technologies enable quick conversion of 2D images or video into
detailed 3D models, with ML algorithms improving quality and filling gaps
(Arshad et al., 2024a). This advancement has significantly facilitated the
creation of immersive environments across various industries, making the
process faster and more accessible.
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An immersive environment is a digital environment designed to fully
engage and envelop the user’s senses, creating a sense of presence and
interaction with the environment. The environment stimulates the physical
world by engaging one or more senses like sight, sound, touch, and pos-
sibly smell. This type of environment is becoming increasingly relevant in
fields like education, healthcare, entertainment, marketing, manufacturing,
and many more diverse research fields (Suh and Prophet, 2018). Different
technologies are deployed to give a sense of presence in these environ-
ments, such as virtual reality (VR) and augmented reality (AR). Virtual
Reality technology uses input devices such as head-mounted displays
(HMDs) and controllers to immerse the user in a computer-generated,
three-dimensional environment. VR takes place in the artificial/virtual
environment, where users can generally manipulate real-life objects with
the help of input devices. Augmented Reality focuses on the intersection of
the real and virtual worlds, where digital information is overlaid onto the
real-world environment. Unlike VR, AR does not aim to fully immerse
the user in an artificial world, but instead enhances the real-world
experience, providing users with additional information and control over
their surroundings (Ardiny and Khanmirza, 2018).

In education, AR and VR make learning engaging across math, physics,
astronomy, and biology (Ardiny and Khanmirza, 2018). A recent study has
shown that VR can help students enhance their learning and observation
with the visualization of complex problems, especially in subjects where
visual understanding is important (Campos et al., 2022). In the tourism
industry, VR technology enables tourists to explore destinations virtually
and meticulously plan their visits ahead of time. Additionally, many hotels
are leveraging VR to offer virtual tours of their rooms, enhancing their
marketing efforts and allowing potential guests to experience accom-
modations before booking (Pestek and Sarvan, 2020). In agronomy,
AR/VR can be crucial in applications involving sensing, reasoning, and
future remote robotic manipulation. These technologies can enable
researchers and (eventually) farmers to perform various experiments and
operations with considerably less effort (Hurst et al., 2021). It has multiple
applications that can help both small- and large-scale farmers. These
technologies can provide critical training to alleviate labor shortages and
improve worker skills, lowering the risk of fatalities and injuries among
inexperienced workers. The deployment of VR in training has shown
many advantages, such as cost-effective, safe learning environments,
enabling trainees to practice various scenarios repeatedly, and ensuring
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proficiency in skills while minimizing exposure to real-world dangers
(Xie et al., 2021). VR can also help with virtual tours that allow researchers
to explore remote agricultural locations from their homes, which is helpful
in times like the COVID-19 pandemic. With the use of AR prototypes
that teach insect identification, this technology can also teach farmers about
disease outbreaks and pest control. For example, researchers have devel-
oped an AR system that helps farmers directly distinguish between bene-
ficial and harmful pests in their fields with mobile phones (Nigam et al.,
2011). Furthermore, AR can also help farmers/researchers retain specific
information on water, soil, and fertilizer requirements, thereby lowering
costs and improving crop management (Isafiade and Mabiletsa, 2020).
Immersion technology in agriculture has an inspiring future ahead of it
and will wholly transform farming methods. With the ongoing development
of immersive technology, farmers and researchers can conduct precise and
efficient crop management by observing data in real time. This includes
keeping track of plant health, soil conditions, and watering requirements to
maximize resource utilization and yield. Moreover, combining AR/VR, Al,
and IoT will allow for smarter farming approaches, making agriculture more
sustainable and resilient. These advances will address labor shortages and
improve overall farm management, significantly contributing to long-term
food production (de Oliveira and Corréa, 2020). Even though immersive
technology has advanced considerably in recent years, its widespread appli-
cation still has challenges and drawbacks. One of the major challenges is the
cost of implementing AR/VR systems; HMDs are expensive and require
substantial investment. Furthermore, these technologies necessitate high-
performance hardware and frequent software upgrades, which might be
unaftordable for small-scale farmers and organizations. Technical limitations
such as limited battery life, consistent internet connectivity, and consumer
discomfort during extended use also hinder adoption. Additionally, inte-
grating AR/VR into established agricultural practices requires training and
technological skills, which may not be readily accessible in all locations.

5.12 Soybean variety development

Within breeding programs, Al has been applied in many ways in soybean
including pod counting (Riera et al., 2021), disease classification
(Nagasubramanian et al., 2018), root trait extraction (Carley et al., 2023;
Falk et al., 2020b), abiotic stress classification (Dobbels and Lorenz,
2019; Zhou et al., 2020, 2021) and many more. For a breeder developing
cultivars, these models can provide insightful information previously
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unavailable or difficult to obtain due to phenotyping/measurement
challenges; however, several challenges remain.

Deep learning models can often be complex and difficult to interpret
due to the lack of understanding in how they make predictions (McGovern
et al., 2019). More basic ML models, such as decision trees, are inherently
interpretable, while other models such as neural networks use feature
attribution methods to make up for the lack of inherent interpretability
(Paudel et al., 2023). These feature attribution methods, along with
automatic feature learning capacity of DL, make DL models more inter-
pretable to users, including plant breeders, to utilize in research and cultivar
development. Model interpretability can provide useful insights which
plant breeders can use for decision making. Interpretable DL models allow
for an understanding of associations between the features and the outcomes
(Azodi et al., 2020), which can be interpreted as a goal for guiding
hypotheses. An example of an interpretable model is (Nagasubramanian
et al., 2020), in which several DL methods with interpretability were used
to detect and classify eight different soybean stresses. The interpretability of
the model allowed for identification of infected regions on leaves, which
could be used to generate hypotheses for the response mechanisms to the
stresses, as well as allowing for biological interpretations. (Newman and
Furbank, 2021) argues that interpretability of ML models should not be
reliant on only the ranking of variable importance, and that for greatest
utility in biology, models should be made understandable even at the cost
of predictive accuracy. By understanding and being able to interpret the
model, scientists can seek to understand the systems, rather than being
limited to only predicting the system. In understanding why a prediction
was made, a breeder can better select cultivars for specific production
systems, and can work towards ideotype development for different envir-
onments. Essentially, a variety development program that makes hundreds
of decision in the breeding pipeline can benefit from optimization and
interpretability for processes and the overall system.

Fully understanding soybean is key to developing novel and custom
varieties equipped for resiliency and high yield under stress and uniquely
placed in their ideal environment. Predictive breeding combines envir-
onmental and management considerations for appropriate placement of
novel lines (Parmley et al., 2019b). Development of ideotypes relies on
ability to fully characterize the soybean genetically and phenotypically,
both above and below ground. Al based techniques such as 3D canopy
fingerprinting which allow for querying of related soybean canopy
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structure can help breeders understand how canopy architecture is related to
preferential agronomic traits (Young et al., 2023). While other high
throughput plant phenotyping techniques implementing Al for root ideo-
type characterization can illuminate parts of the plant not commonly phe-
notyped (Falk et al., 2020b). Furthermore, Al’s integration into genetic
studies of soybeans enables the development of customized crop varieties. By
analyzing vast datasets on genetic markers, Al algorithms can predict plant
traits that optimize yield, disease resistance, and adaptability to specific cli-
matic conditions. Additional design strategies include genome editing
techniques which can have a significant impact in the development of new
soybean varieties. These technologies can aid breeders in the development of
non-transgenic cultivars with traits that otherwise would be unfeasible to
develop. Gene editing techniques provide human control over genetic
information (Kumar and Jain, 2015), accelerating the improvement of crop
traits. Combining structural, physiological, and genetic understanding of
soybean under varying conditions is fundamental to digital twin develop-
ment. Through Al in concert with environmental and genetic data, soybean
growth and development can be simulated to predict desirable traits,
allowing breeders to design customized soybean varieties and determine ideal
placement. Furthermore, Al will benefit in the next generation of gene
targets adn transformation as it will integrate insights from multi-omics.

Advances in genomics and phenomics are resulting in increased inte-
gration of these tools into modern plant breeding, which is allowing
breeders to further increase yield and genetic gain. Additional opportunities
include the application of omics technologies, which can be difficult due to
the generation of large datasets which are often heterogeneous and com-
plex to analyze, resulting in a big data problem (Harfouche et al., 2019). Al
is able to assist with the problem of large datasets and streamline analyses,
and is being successfully applied to various breeding objectives that were
previously outlined. One growing area in breeding that Al has potential to
affect is in developing novel varieties with unique combination of traits
meeting the needs of prescriptive cultivars (Parmley et al., 2019b). Another
avenue is the integration of soil-crop-weather parameters to develop
adaptive ideotypes through digital twins. These technologies paired with
Al have the potential for breeders to tailor-made soybean varieties that
meet specific agronomic and climate needs. This enhances crop perfor-
mance under varied environmental conditions and aligns with sustainable
agricultural practices by reducing dependency on chemical inputs (Poonia
et al., 2022; Wang et al., 2023).
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6. Concluding remarks

The integration of Al and DL methodologies in soybean improvement
and production presents a paradigm shift in addressing the escalating chal-
lenges of productivity and sustainability. These advanced computational
approaches demonstrate superior capacity in processing and analyzing mul-
tidimensional, high-throughput resolution, integrating Al, developing
decision support tools and informed decision making. On-board computing
on machines represents a quantum leap in CAS, enabling high-fidelity
detection of biotic and abiotic stressors and informing data-driven manage-
ment strategies. The computational prowess of Al in assimilating and
interpreting diverse datasets, encompassing genomic, meteorological, and
historical agronomic information, facilitates evidence-based decision-making
and resource optimization. This capability has profound implications for
varietal selection, targeted pesticide application, and site-specific manage-
ment protocols, potentially yielding both economic and environmental
dividends in soybean production systems, and meet future production goals
in the face of climate variability. However, the implementation of Al
methodologies in agriculture is not without challenges. These include sub-
stantial computational resource requirements, the necessity for expansive,
high-quality training datasets, and the inherent opacity of many deep
learning algorithms, which complicates model interpretability and validation.
Furthermore, issues pertaining to data security, privacy, and equitable access
to Al technologies necessitate careful consideration to ensure ethical and
unbiased implementation across diverse agricultural contexts. Future research
trajectories should focus on addressing these challenges to fully harness the
potential of Al in agriculture. Priority areas include enhancing model
interpretability through explainable Al techniques, improving data quality
and accessibility through standardized protocols, and developing scalable
solutions adaptable to diverse agricultural systems. Advanced research ave-
nues may explore multi-trait prediction models and the integration of
dynamic environmental variables to enhance the robustness and applicability
of Al systems in soybean breeding and production. While Al and deep
learning approaches offer significant advantages in deciphering complex
agricultural data and optimizing decision-making processes, their successful
implementation necessitates a multidisciplinary approach addressing both
technical and ethical considerations and partnerships with farmers and
communication with policymakers. As these technologies continue to
evolve, they hold the potential to significantly enhance the sustainability,
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efficiency, and resilience of soybean production systems, contributing to
global food security in the face of increasing environmental volatility and
resource constraints.
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