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Abstract—This paper proposes an advanced approach to con-
trol and coordinate a large number of electric vehicles to optimize
their charging and discharging strategies using mean field game
theory. Due to high-dimensional complexity, studying a system
with a swarm of agents is computationally expensive. Therefore,
the system can be structured as a game using mean field game
theory to handle this complexity. Mean field game facilitates
the interactions between players by considering the collective
behavior of all agents. The finite difference method integrated
with Bayesian optimization is utilized to solve the mean field game
system, which consists of coupled Hamilton-Jacobi-Bellman and
Kolmogorov forward equations. Those formulas guide electric
vehicle owners’ decisions to avoid penalties. This paper aims
to determine the optimal parameters that enhance the numerical
stability and accuracy of the finite difference method. Then, these
parameters are utilized to solve the system of mean field game
to control the actions of electric vehicle owners and analyze the
impact of the estimated mass function of the entire population
on their decision-making process. In addition, the reliability
is evaluated to assess the effectiveness of price coordination
in enhancing energy management. Comprehensive economic
analyses for a fleet of electric vehicles are also conducted through
a numerical example to validate the efficiency of the proposed
method.

Index Terms—Economic analysis, electric vehicle, finite differ-
ence, mean field game, reliability.

I. INTRODUCTION

The combustion engines used in various means of trans-
portation are considered one of the main sources of increasing
levels of greenhouse gases and air pollution [1]. As a result, the
use of electric vehicles (EVs) has increased worldwide because
of their vital role in reducing emissions and the dependency on
fossil fuel sources [2], [3]. However, the electricity required
to charge an EV battery entirely is equivalent to that needed
for a household during peak demand, which can strain the
local grid [4]. On the other hand, EVs can enhance the grid’s
resilience and reliability by setting up rational policies and
strategies. This can be achieved by encouraging the owners of
EVs to charge during times of low-cost electricity and supply
the grid in high-demand periods [5], [6]. Thus, controlling a
large scale of EVs in a grid becomes critical.

One of the strategies that can be utilized to achieve this goal
is the mean-field game (MFG). This is an advanced method
used to guide the owners of EVs in their decisions. While
it is difficult for players to gather comprehensive information
about the behaviors and strategies of others, MFG depends on
the global distribution of other agents to guide their decisions
[7]. In the context of information flow, there are two types

of MFG: decentralized and centralized. In the former, players
make decisions individually and according to feedback from
the local environment; in the latter, players’ decisions are
guided by a central authority [8].

In comparison to other multi-agent optimization techniques,
such as asynchronous distributed optimization, distributed
stochastic algorithm, and the maximum gain message, MFG
shows a lot of advantages. Plug-in EVs are coordinated using
an asynchronous distributed optimization method in [9]. How-
ever, this method is limited by communication capabilities.
The maximum gain message is used to manage the charging
process for a group of EVs [10]. However, the technique
showed limitations in scalability. Traditional optimization
methods show limitations and a lack of coordination when
dealing with a swarm of players. In contrast, MFG needs
less communication and is more suitable for highly dynamic
environments [11].

Researchers have shown interest in optimal control, espe-
cially the applications of MFG for controlling and coordinating
EVs and energy storage systems (ESS) within power grids.
The authors of [12] applied the generalized Nash game method
to model the charging process of EVs. However, the study
does not consider the local constraints for the state of charge
and charging rates. Moreover, the convergence analysis is
neglected. MFG is used to study the effect of electricity prices
on EV owners in [13]. The results showed how the decisions
of EV owners influenced the electricity market. In [14], an
optimal charging strategy is suggested using MFG to control
the charging rate for a fleet of EVs. The study showed how
encouraging EV owners to charge simultaneously at certain
intervals at a clustered charging station can minimize costs.
However, the paper does not consider potential difficulties,
such as charging all EVs at an aggregated station.

The work in [15] used a decentralized game to optimize the
interactions between EV owners and decentralized EV supply,
such as solar energy. Despite the advantages of decentralized
game theory, the level of satisfaction decreases with the num-
ber of EVs. Moreover, while the paper considered switching
to the grid in case of insufficient supply from solar energy,
it does not study the effect of this switching on the grid.
MEG is also used to optimize the charging patterns for plug-
in EVs and minimize battery degradation using a sequential
quadratic programming (SQP) algorithm [16]. Traveling time
is considered a constraint to controlling the decision of EV
owners in switching between electricity and gasoline mode.



However, the paper did not consider the pricing technique for
each agent and the impact of it on the power grid. Linear
quadratic (LQ) MFG is also utilized to manage the interactions
between three parties: the power grid, parking area, and EV
owners to optimize the charging cost [17]. Despite the benefit
of the LQ MFG approach, it is hindered by the linear dynamic
state assumption.

The work in [18], [19] uses reinforcement learning to learn
the optimal charging protocol for EVs. Deep reinforcement
learning (DRL) controls the charging plan for a fleet of EVs in
[20]. The results showed that increasing the number of agents
will not change the computational complexity. However, the
effect of the residential load is neglected. Furthermore, using
reinforcement learning requires a significant amount of data
for training. MFG offers an effective solution due to its
unique ability to reduce dimensions by mapping a high-
dimensional game into a low-dimensional one. This feature
differs from traditional multiagent systems, which require
extensive communication tools to capture the interactions
between agents and experience high computation costs due
to high dimensionality.

The contribution of this paper is as follows: 1) Developing
a model to study the interactions between a fleet of EVs in a
smart grid using the finite difference method. 2) Addressing
numerical instabilities of finite difference method using sensi-
tivity analysis and convergence criteria such as the Bayesian
optimization method. 3) Evaluating the impact of managing
the charging protocols of EV owners on enhancing reliability.

The remainder of the paper is structured in the following
manner. Section II presents the formulation of the game.
Section III represents the finite difference method based on
MEFG. Section IV includes a simulation and the main results,
followed by the conclusion in section V.

II. MEAN FIELD GAME FORMULATION

For classical games, the interactions and decision-making
process are studied for a limited set of players. As the number
of players rises, coordinating the process that governs agent
interactions becomes computationally expensive. Furthermore,
the availability of reliable means of communication is limited.
Thus, MFG approximates the swarm of agents and transforms
the game from a multiplayer to a two-player game. In the
context of EVs, EV owners are handled as the players in the
game. The game’s rules that govern the dynamic environment
of the players consist of the electricity price, battery state of
charge, consumption rate, and the reward function.

A. Game Formulation

Suppose a group of battery electric vehicles (BEVs) denoted
as N, where the evolution of the battery level X; can be
expressed as the difference between the consumption rate D}
and the control rate 3¢, with i representing the individual EVs,
as follows [21].

dx? = g at — D dt (1)

Due to the stochastic nature of the battery level, the con-
sumption rate is described using the Brownian motion W;
[21].

dXt = (/Bt — Df) dt — Dt’}/t de (2)

Without suitable coordination to govern the process of
charging and discharging, EVs can cause grid congestion,
especially if many of them charge simultaneously during peak
demand. Consequently, a game formulation is necessary. In
other words, EV owners will play a game to optimize their
battery level at all times. Thus, their decision to charge or
discharge is directed by the reward function consisting of:
1) The cost of charging or discharging the battery [;p;(m).
2) The cost of using the battery at a particular moment
in the day A(t,«). 3) The cost associated with the lack of
satisfaction when the battery capacity is low f(¢, X). 4) Safety
costs S(¢, X). Therefore, for N EVs, the value function is
calculated by (3)

V<t,X>;6>=1E</O 0<5,X,m)dt+F<XR>> 3)

where F'(Xpg) represents the final penalty at time 7', which
prevents the unwanted effect of charging in the last moments.
It is important to mention that addressing the individual
differences between players such as the capacity of batteries
and charging speed allows more realistic simulation. How-
ever, assuming homogeneous EVs simplifies the computational
complexity and lowers the problem’s dimensionality.

As the number of EVs, N, increases, the classical game
shows many system control limitations. For instance, manag-
ing a system with a significant number of agents is compu-
tationally expensive. In addition, intensive knowledge about
agents makes them prone to the dimensionality problem [22].
In contrast, MFG can overcome classical game limitations.
The merits of MFG are evident through its ability to simplify
the dimensions of control problems. The formation of MFG
is based on the assumption that the players are considered
almost identical and continuum, which gives it the flexibility
to optimize the agent actions based on the collective statistical
behavior of the group. Furthermore, MFG is robust since it
can handle uncertainty by capturing the average dynamic of
the system. Therefore, it mitigates the effects of individual
agents’ random actions [23].

In a dynamic environment, MFG often consists of
the Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-
Kolmogorov (FPK) equations. HIB describes the objective
function wu(z, t) over space and time, while FPK illustrates the
global distribution of the overall population m(z, t). Equations
(4)-(7) show the general formulation for the MFG system.
Equations (4) and (5) show HJB and FPK formulas, respec-
tively [24], [25].

—% —vAu+ H(z,Vu) = R(z,m) inRYx (0,T) (4)
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It is clear from equations (4) and (5) that the reward function
u(x,t) of each player is affected by the density m(z,t) of
all agents. The function H(x,p) is the Hamiltonian, and the
function R(xz,m) describes the connection between u(z,t)
and m(x, t). Equations (6) and (7) show the initial condition of
system density and the terminal condition for reward function,
respectively. It is important to mention that HJB is solved
backward in time while FPK is solved forward in time.

The interaction between HIB and FPK equations means that
HIJB updates its solution using the probability distribution from
FPK. In contrast, FPK updates the global distribution accord-
ing to the solution of HJB. This process occurs iteratively
until the solution has converged. Thus, finding the solution
for the MFG model analytically can be a challenging task. As
a result, numerical methods are needed to learn PDE solutions.
In this context, we will utilize the finite difference method to
determine the MFG system.

III. FINITE DIFFERENCE METHOD BASED ON MFG
A. MFG Equations

To implement MFG using finite difference, the MFG system
should be discretized after setting up the boundary conditions.
In general, the domain is divided into a consistent grid.
Accordingly, sets of discrete numerical approximations to the
derivative are produced. PDEs can be discretized using (8)
[26].
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For V(t,X;f) given in (3), the corresponding HIB and
FPK are presented in (9) and (10):
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The optimal policy that maximizes or minimizes the ob-
jective function given in (11) can be derived using the HIB
equation.

1
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It is worth mentioning that the HIB and FPK systems need
to be solved sequentially. Thus, the optimal value V* from
the HIB equation will be used to find the global distribution
mFPX using (10), and vice versa. The probabilistic feedback
from FPK assists HIB in finding the optimal policy that
maintains the state of charge constraints. Notably, if the
coupled equations HJB and FPK are solved with stability and
accuracy, the optimal policy exists. Furthermore, the iterative
process between HJB and FPK enables individual decisions
to be adjusted to reach a stable solution that optimizes the
charging protocols of the swarm of EVs. Thus, for an optimal
policy to exist, it is important that numerical methods can
solve the MFG system with sufficient accuracy and under well-
defined circumstances and parameters.

As previously mentioned, finding solutions for such systems
requires numerical methods. While these methods provide
approximate solutions, knowing the source of errors is crucial.
In regards to finite difference, one of the main drawbacks
is numerical instability. For instance, the grid quality used
to discretize a function affects the precision and stability of
the solution. This is known as a truncation error, a disparity
between the exact quantity assuming perfect arithmetic and
the precise solution of the original differential equation. Fur-
thermore, there is a loss of precision due to the computer
adjusting decimal numbers. To avoid these problems, the
Bayesian optimization technique can be used to find the
optimal hyperparameters to enhance stability. The mechanism
used to solve the MFG system is shown in Fig. 1. It portrays
the primary goal of MFG in reducing the state space to only
two players: the individual EV and the total mass. The mass
of agents will represent the local environment that provides
agents with the necessary information to follow the optimal
path. To illustrate the process, HIB will find the value and
policy that controls EV decisions at each time step. Then, the
output of HIB will be used to determine the density function
through the FPK equation, which describes how the control
strategies evolve; the process continues until the optimal values
are found, ensuring reliable performance.

B. Reliability evaluation

The measure of reliability comes from the system’s ability
to purchase electricity at high and low prices efficiently. By
evaluating the purchased electricity against the average levels
of these periods, the simulation estimates the overall reliability

as follows : _
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Fig. 1: The process for solving MFG system.

HPR + LPR
2
where HPR, LPR are high and low price reliability, respec-
tively. Thigh, Tiow Tepresent the set of high price and low price

intervals. & presents the electricity purchased at time ¢.

Total Reliability = (14)

IV. SIMULATION AND THE KEY FINDINGS

This proposed approach will be applied to manage the
charging strategies for the EV fleet. EVs are treated as a
continuum; hence, the number of EVs approaches infinity.
To begin with, the regulations for the EVs game have been
established. The energy consumption of EVs is considered to
be three days, Saturday to Monday. We assumed that the EVs
would consume more energy on Monday than on Saturday
or Sunday (weekend days). Fig. 2 depicts the average energy
consumption pattern D, for EVs. The data is hypothetical and
estimated based on the expected usage patterns of EVs in real
life [27].
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Fig. 2: Energy consumption D; by EVs (kWh) .

Due to the assumption of indistinguishability, EVs are
considered identical. The boundary conditions for both m and
V are 2% (0,0) = 2Xm (1,0) = 22:(0,0) = 2552 (1,0) = 0

to force the battery level X to be within [0, 1]. As previously
discussed, m® K represents the global distribution of battery
levels X; across EVs at time . The battery level is constrained
not to reach extreme values, fully charged or completely
discharged, to model realistic and practical scenarios. Con-
sidering the changing rate of energy storage in EV batteries,
the interaction between EVs and the grid can be tracked. In
other words, selling or purchasing electricity for or from the
grid can be calculated using (15):

ET = <Dt + 0, </ X mIPE (¢, dX))> (15)
The price of electricity is defined as follows:
pe = ((BT)" +dy)” (16)

where d; reflects the demand of other facilities.

Bayesian optimization is used to mitigate the numerical
instability resulting from the finite difference method. The
objective function for Bayesian optimization is maximizing
energy efficiency. The best parameters according to this op-
timization are: At = 0.005, AX = 0.1, and (; = 13.68. It
is important to mention that those values meet the Courant-
Friedrichs-Lewy condition [28].

Fig. 3 reflects the solution of (9). The value function
V(t, X) illustrates the cost associated with different battery
levels X over time. As stated previously, HJB is critical
in finding the policy that minimizes the cost function. This
illustrates the descending pattern for the value function, which
reflects the cost associated with EV behaviors. The peaks and
valleys correspond to higher and lower costs, respectively. At
high-price times, the value function should be less expensive
with a high battery level. Moreover, it shows high costs at
higher battery levels when the price is low. At the final
condition V(t = T, X) = (1 — X)?, the high battery level
is desirable, as shown in Fig. 4. This condition will prevent
EV owners from charging at the last moment. Thus avoiding
grid overload.

Fig. 3: Value function evolution concerning time and battery
level.

The evolution of EV global mass m/ 7% is shown in Fig. 5,
which reflects the optimal solution of (10). EVs tend to charge
at night time and discharge during the day. For instance, the
battery level increases from midnight until about 6 AM, which



064

054

044

034

Terminal Condition

0.1+

004

02 03 04 05 06 07 08 09
Battery Level

Fig. 4: Value function at boundary ¢t =T

indicates that energy is bought at night and utilized during the
day. It is important to mention that the initial distribution for
battery levels follows a triangular distribution.
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Fig. 5: The global distribution m®F¥

Electricity trading and price are calculated using (15) and
(16), as shown in Fig. 6, which reflects the electricity pur-
chasing process over time. EV owners are incentivized to
charge their batteries during the low-price period, while they
will tend to discharge in the peak demand periods. Notably,
some players are still purchasing electricity in high price
periods. This pattern reflects the real-life scenario and shows
one limitation of MFG: neglecting individual diversity and
the assumption that agents are homogeneous. However, the
use of MFG offers numerous advantages for EV owners. It
enhances battery health by controlling the charging process
and reducing battery degradation. Moreover, scheduling the
charging protocols reduces energy consumption and minimizes
power outages. In addition, MFG facilitates the exchange of
information between EV drivers using the average distribution
of EVs.

It is important to mention that different optimization metrics
will lead to different results. To illustrate that, we choose the
optimization metric to ensure system reliability. The reliability
objective measures the ability of a system to manage EV
consumption under different prices and state of charge levels.
For that performance metric, the overall reliability evaluation
is 94.73%, and the best parameters are AX = 0.447, At
= 0.0999 , and (; = 30. Electricity trading according to the

200+ — Price (8/kWh)
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Value
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Fig. 6: Electricity price and trading.

reliability metric is shown in Fig. 7. It is noticeable in Fig. 7
that the surge in the final moments reflects a drastic increase
in demand due to relaxing the terminal cost condition. In
addition, tuning the performance metric leads to adjustments in
the electricity purchasing process, whereas the best parameters
are changed to maximize the performance objective.
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Fig. 7: Electricity trading after terminal condition softening.

Fig. 8 shows the benefit of the charging policy in reducing
the total cost. The cost is mainly affected by the price of
electricity and the control rate. The drop in cost is a result of
the charging policy’s ability to identify periods of low elec-
tricity prices. When electricity prices are high, drivers tend to
avoid purchasing electricity and prefer to charge their vehicles
when prices are low. To demonstrate the effectiveness of the
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Fig. 8: Mean field cost.

proposed method, a comparison with other references shows



the proposed method’s cost reduction and energy utilization
in Table I. Our approach shows about a 27% increase in off-
peak electricity use and a 20% cost reduction. The electricity
purchases in this study are managed based on electricity
prices to optimize the reward function. Reference [15] showed
that the peak-to-average ratio is reduced from 4.73 to 1.21,
indicating significant cost reduction. The exact percentage of
cost reduction is not provided. In [19], results showed that the
percentage of both energy utilization and cost reduction are
almost 15%.

TABLE I: Comparison of different methods

Finite
Method difference SQP [15] DRL [19]
Convergence Achieved Achieved Achieved
Energy Utilization 27.7% PAR= 1.21 15%
Cost Reduction 20% not specified 15%
. Minimize .
Electricity Purchase Yanes l_)y cost and Mult}age.nt
price periods . coordination
degradation

V. CONCLUSION

This paper uses MFG to schedule the charging protocol for a
swarm of EVs. The finite difference method is used to find the
solution of the MFG system. To tackle numerical instability,
Bayesian optimization is employed to obtain the best parame-
ters to solve the MFG system. Moreover, the reward function
and the collective mass are presented regarding electricity
prices to coordinate electricity trading. Numerical simulations
are carried out to show the efficacy of our approach. The
reliability of the proposed algorithm is evaluated to ensure
its efficiency in obtaining the optimal charging behavior of
an EV fleet. The results showed that optimizing for system
reliability yields a high level of reliability. Furthermore, MFG
reduces the overall EV operating costs and charging times in
the peak load periods, indicating its role in energy management
and cost reduction for both EV owners and grid operators.
The proposed method can be applied not only to control
homogeneous EVs but also to heterogeneous agents and other
components of power systems, such as renewable energy
resources and energy storage systems.
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