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Abstract—This paper proposes an advanced approach to con-
trol and coordinate a large number of electric vehicles to optimize
their charging and discharging strategies using mean field game
theory. Due to high-dimensional complexity, studying a system
with a swarm of agents is computationally expensive. Therefore,
the system can be structured as a game using mean field game
theory to handle this complexity. Mean field game facilitates
the interactions between players by considering the collective
behavior of all agents. The finite difference method integrated
with Bayesian optimization is utilized to solve the mean field game
system, which consists of coupled Hamilton-Jacobi-Bellman and
Kolmogorov forward equations. Those formulas guide electric
vehicle owners’ decisions to avoid penalties. This paper aims
to determine the optimal parameters that enhance the numerical
stability and accuracy of the finite difference method. Then, these
parameters are utilized to solve the system of mean field game
to control the actions of electric vehicle owners and analyze the
impact of the estimated mass function of the entire population
on their decision-making process. In addition, the reliability
is evaluated to assess the effectiveness of price coordination
in enhancing energy management. Comprehensive economic
analyses for a fleet of electric vehicles are also conducted through
a numerical example to validate the efficiency of the proposed
method.

Index Terms—Economic analysis, electric vehicle, finite differ-
ence, mean field game, reliability.

I. INTRODUCTION

The combustion engines used in various means of trans-

portation are considered one of the main sources of increasing

levels of greenhouse gases and air pollution [1]. As a result, the

use of electric vehicles (EVs) has increased worldwide because

of their vital role in reducing emissions and the dependency on

fossil fuel sources [2], [3]. However, the electricity required

to charge an EV battery entirely is equivalent to that needed

for a household during peak demand, which can strain the

local grid [4]. On the other hand, EVs can enhance the grid’s

resilience and reliability by setting up rational policies and

strategies. This can be achieved by encouraging the owners of

EVs to charge during times of low-cost electricity and supply

the grid in high-demand periods [5], [6]. Thus, controlling a

large scale of EVs in a grid becomes critical.

One of the strategies that can be utilized to achieve this goal

is the mean-field game (MFG). This is an advanced method

used to guide the owners of EVs in their decisions. While

it is difficult for players to gather comprehensive information

about the behaviors and strategies of others, MFG depends on

the global distribution of other agents to guide their decisions

[7]. In the context of information flow, there are two types

of MFG: decentralized and centralized. In the former, players

make decisions individually and according to feedback from

the local environment; in the latter, players’ decisions are

guided by a central authority [8].

In comparison to other multi-agent optimization techniques,

such as asynchronous distributed optimization, distributed

stochastic algorithm, and the maximum gain message, MFG

shows a lot of advantages. Plug-in EVs are coordinated using

an asynchronous distributed optimization method in [9]. How-

ever, this method is limited by communication capabilities.

The maximum gain message is used to manage the charging

process for a group of EVs [10]. However, the technique

showed limitations in scalability. Traditional optimization

methods show limitations and a lack of coordination when

dealing with a swarm of players. In contrast, MFG needs

less communication and is more suitable for highly dynamic

environments [11].

Researchers have shown interest in optimal control, espe-

cially the applications of MFG for controlling and coordinating

EVs and energy storage systems (ESS) within power grids.

The authors of [12] applied the generalized Nash game method

to model the charging process of EVs. However, the study

does not consider the local constraints for the state of charge

and charging rates. Moreover, the convergence analysis is

neglected. MFG is used to study the effect of electricity prices

on EV owners in [13]. The results showed how the decisions

of EV owners influenced the electricity market. In [14], an

optimal charging strategy is suggested using MFG to control

the charging rate for a fleet of EVs. The study showed how

encouraging EV owners to charge simultaneously at certain

intervals at a clustered charging station can minimize costs.

However, the paper does not consider potential difficulties,

such as charging all EVs at an aggregated station.

The work in [15] used a decentralized game to optimize the

interactions between EV owners and decentralized EV supply,

such as solar energy. Despite the advantages of decentralized

game theory, the level of satisfaction decreases with the num-

ber of EVs. Moreover, while the paper considered switching

to the grid in case of insufficient supply from solar energy,

it does not study the effect of this switching on the grid.

MFG is also used to optimize the charging patterns for plug-

in EVs and minimize battery degradation using a sequential

quadratic programming (SQP) algorithm [16]. Traveling time

is considered a constraint to controlling the decision of EV

owners in switching between electricity and gasoline mode.



However, the paper did not consider the pricing technique for

each agent and the impact of it on the power grid. Linear

quadratic (LQ) MFG is also utilized to manage the interactions

between three parties: the power grid, parking area, and EV

owners to optimize the charging cost [17]. Despite the benefit

of the LQ MFG approach, it is hindered by the linear dynamic

state assumption.

The work in [18], [19] uses reinforcement learning to learn

the optimal charging protocol for EVs. Deep reinforcement

learning (DRL) controls the charging plan for a fleet of EVs in

[20]. The results showed that increasing the number of agents

will not change the computational complexity. However, the

effect of the residential load is neglected. Furthermore, using

reinforcement learning requires a significant amount of data

for training. MFG offers an effective solution due to its

unique ability to reduce dimensions by mapping a high-

dimensional game into a low-dimensional one. This feature

differs from traditional multiagent systems, which require

extensive communication tools to capture the interactions

between agents and experience high computation costs due

to high dimensionality.

The contribution of this paper is as follows: 1) Developing

a model to study the interactions between a fleet of EVs in a

smart grid using the finite difference method. 2) Addressing

numerical instabilities of finite difference method using sensi-

tivity analysis and convergence criteria such as the Bayesian

optimization method. 3) Evaluating the impact of managing

the charging protocols of EV owners on enhancing reliability.

The remainder of the paper is structured in the following

manner. Section II presents the formulation of the game.

Section III represents the finite difference method based on

MFG. Section IV includes a simulation and the main results,

followed by the conclusion in section V.

II. MEAN FIELD GAME FORMULATION

For classical games, the interactions and decision-making

process are studied for a limited set of players. As the number

of players rises, coordinating the process that governs agent

interactions becomes computationally expensive. Furthermore,

the availability of reliable means of communication is limited.

Thus, MFG approximates the swarm of agents and transforms

the game from a multiplayer to a two-player game. In the

context of EVs, EV owners are handled as the players in the

game. The game’s rules that govern the dynamic environment

of the players consist of the electricity price, battery state of

charge, consumption rate, and the reward function.

A. Game Formulation

Suppose a group of battery electric vehicles (BEVs) denoted

as N , where the evolution of the battery level Xt can be

expressed as the difference between the consumption rate D i
t

and the control rate βi
t , with i representing the individual EVs,

as follows [21].

dX
(i)
t = β

(i)
t dt−D

(i)
t dt (1)

Due to the stochastic nature of the battery level, the con-

sumption rate is described using the Brownian motion Wt

[21].

dXt = (βt −Dt) dt−Dtγt dWt (2)

Without suitable coordination to govern the process of

charging and discharging, EVs can cause grid congestion,

especially if many of them charge simultaneously during peak

demand. Consequently, a game formulation is necessary. In

other words, EV owners will play a game to optimize their

battery level at all times. Thus, their decision to charge or

discharge is directed by the reward function consisting of:

1) The cost of charging or discharging the battery βtpt(m).
2) The cost of using the battery at a particular moment

in the day h(t, α). 3) The cost associated with the lack of

satisfaction when the battery capacity is low f(t,X). 4) Safety

costs S (t ,X ). Therefore, for N EVs, the value function is

calculated by (3)

V (t,X);β) = E

(

∫ T

0

C(β,X,m) dt+ F (XR)

)

(3)

where F (XR) represents the final penalty at time T , which

prevents the unwanted effect of charging in the last moments.

It is important to mention that addressing the individual

differences between players such as the capacity of batteries

and charging speed allows more realistic simulation. How-

ever, assuming homogeneous EVs simplifies the computational

complexity and lowers the problem’s dimensionality.

As the number of EVs, N , increases, the classical game

shows many system control limitations. For instance, manag-

ing a system with a significant number of agents is compu-

tationally expensive. In addition, intensive knowledge about

agents makes them prone to the dimensionality problem [22].

In contrast, MFG can overcome classical game limitations.

The merits of MFG are evident through its ability to simplify

the dimensions of control problems. The formation of MFG

is based on the assumption that the players are considered

almost identical and continuum, which gives it the flexibility

to optimize the agent actions based on the collective statistical

behavior of the group. Furthermore, MFG is robust since it

can handle uncertainty by capturing the average dynamic of

the system. Therefore, it mitigates the effects of individual

agents’ random actions [23].

In a dynamic environment, MFG often consists of

the Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-

Kolmogorov (FPK) equations. HJB describes the objective

function u(x, t) over space and time, while FPK illustrates the

global distribution of the overall population m(x, t). Equations

(4)-(7) show the general formulation for the MFG system.

Equations (4) and (5) show HJB and FPK formulas, respec-

tively [24], [25].

−
∂u

∂t
− ν∆u+H(x,∇u) = R(x,m) in R

d × (0, T ) (4)



∂m

∂t
−ν∆m−∇· (DpH(x,∇u)m) = 0 in R

d× (0, T ) (5)

m(0, x) = m0(x) (6)

u(x, T ) = L(x) (7)

It is clear from equations (4) and (5) that the reward function

u(x, t) of each player is affected by the density m(x, t) of

all agents. The function H(x, p) is the Hamiltonian, and the

function R(x,m) describes the connection between u(x, t)
and m(x, t). Equations (6) and (7) show the initial condition of

system density and the terminal condition for reward function,

respectively. It is important to mention that HJB is solved

backward in time while FPK is solved forward in time.

The interaction between HJB and FPK equations means that

HJB updates its solution using the probability distribution from

FPK. In contrast, FPK updates the global distribution accord-

ing to the solution of HJB. This process occurs iteratively

until the solution has converged. Thus, finding the solution

for the MFG model analytically can be a challenging task. As

a result, numerical methods are needed to learn PDE solutions.

In this context, we will utilize the finite difference method to

determine the MFG system.

III. FINITE DIFFERENCE METHOD BASED ON MFG

A. MFG Equations

To implement MFG using finite difference, the MFG system

should be discretized after setting up the boundary conditions.

In general, the domain is divided into a consistent grid.

Accordingly, sets of discrete numerical approximations to the

derivative are produced. PDEs can be discretized using (8)

[26].

Forward Difference:
∂V

∂X
≈

Vi+1,j − Vi,j

∆X

Backward Difference:
∂V

∂X
≈

Vi,j − Vi−1,j

∆X

Central Difference:
∂V

∂X
≈

Vi+1,j − Vi−1,j

2∆X

(8)

For V (t ,X ;β) given in (3), the corresponding HJB and

FPK are presented in (9) and (10):

∂V (t,X)

∂t
=

1

2ζt

(

∂V (t,X)

∂X
+ pt(m

FPK
t )

)2

+Dt

∂V (t,X)

∂X

− f(t,X)− S(t,X)−
1

2
Γ2
tD

2
t

∂2V (t,X)

∂X2

(9)

∂m(t,X)

∂t
=

(

1

ζt

[

∂V ∗(t,X)

∂X
+ p(m)

]

+Dt

)

∂m(t,X)

∂X

+
1

ζt

∂2V ∗(t,X)

∂X2
m(t,X)

+
1

2
D2

t γ
2
t

∂2m(t,X)

∂X2
.

(10)

The optimal policy that maximizes or minimizes the ob-

jective function given in (11) can be derived using the HJB

equation.

β∗
t = −

1

ζt

[

∂XV (t,X) + pt(m
FPK
t )

]

(11)

It is worth mentioning that the HJB and FPK systems need

to be solved sequentially. Thus, the optimal value V ∗ from

the HJB equation will be used to find the global distribution

mFPK using (10), and vice versa. The probabilistic feedback

from FPK assists HJB in finding the optimal policy that

maintains the state of charge constraints. Notably, if the

coupled equations HJB and FPK are solved with stability and

accuracy, the optimal policy exists. Furthermore, the iterative

process between HJB and FPK enables individual decisions

to be adjusted to reach a stable solution that optimizes the

charging protocols of the swarm of EVs. Thus, for an optimal

policy to exist, it is important that numerical methods can

solve the MFG system with sufficient accuracy and under well-

defined circumstances and parameters.

As previously mentioned, finding solutions for such systems

requires numerical methods. While these methods provide

approximate solutions, knowing the source of errors is crucial.

In regards to finite difference, one of the main drawbacks

is numerical instability. For instance, the grid quality used

to discretize a function affects the precision and stability of

the solution. This is known as a truncation error, a disparity

between the exact quantity assuming perfect arithmetic and

the precise solution of the original differential equation. Fur-

thermore, there is a loss of precision due to the computer

adjusting decimal numbers. To avoid these problems, the

Bayesian optimization technique can be used to find the

optimal hyperparameters to enhance stability. The mechanism

used to solve the MFG system is shown in Fig. 1. It portrays

the primary goal of MFG in reducing the state space to only

two players: the individual EV and the total mass. The mass

of agents will represent the local environment that provides

agents with the necessary information to follow the optimal

path. To illustrate the process, HJB will find the value and

policy that controls EV decisions at each time step. Then, the

output of HJB will be used to determine the density function

through the FPK equation, which describes how the control

strategies evolve; the process continues until the optimal values

are found, ensuring reliable performance.

B. Reliability evaluation

The measure of reliability comes from the system’s ability

to purchase electricity at high and low prices efficiently. By

evaluating the purchased electricity against the average levels

of these periods, the simulation estimates the overall reliability

as follows :

HPR =

∑

t∈Thigh
(Et < E)

|Thigh|
(12)

LPR =

∑

t∈Tlow
(Et > E)

|Tlow|
(13)



Fig. 1: The process for solving MFG system.

Total Reliability =
HPR + LPR

2
(14)

where HPR, LPR are high and low price reliability, respec-

tively. Thigh, Tlow represent the set of high price and low price

intervals. Et presents the electricity purchased at time t.

IV. SIMULATION AND THE KEY FINDINGS

This proposed approach will be applied to manage the

charging strategies for the EV fleet. EVs are treated as a

continuum; hence, the number of EVs approaches infinity.

To begin with, the regulations for the EVs game have been

established. The energy consumption of EVs is considered to

be three days, Saturday to Monday. We assumed that the EVs

would consume more energy on Monday than on Saturday

or Sunday (weekend days). Fig. 2 depicts the average energy

consumption pattern Dt for EVs. The data is hypothetical and

estimated based on the expected usage patterns of EVs in real

life [27].

Fig. 2: Energy consumption Dt by EVs (kWh) .

Due to the assumption of indistinguishability, EVs are

considered identical. The boundary conditions for both m and

V are ∂Xm

∂t
(0, θ) = ∂Xm

∂t
(1, θ) = ∂Xv

∂t
(0, θ) = ∂Xv

∂t
(1, θ) = 0

to force the battery level X to be within [0, 1]. As previously

discussed, mFPK represents the global distribution of battery

levels Xt across EVs at time t. The battery level is constrained

not to reach extreme values, fully charged or completely

discharged, to model realistic and practical scenarios. Con-

sidering the changing rate of energy storage in EV batteries,

the interaction between EVs and the grid can be tracked. In

other words, selling or purchasing electricity for or from the

grid can be calculated using (15):

ET =

(

Dt + ∂t

(
∫

XmFPK(t, dX)

))

(15)

The price of electricity is defined as follows:

pt =
(

(ET )+ + dt
)2

(16)

where dt reflects the demand of other facilities.

Bayesian optimization is used to mitigate the numerical

instability resulting from the finite difference method. The

objective function for Bayesian optimization is maximizing

energy efficiency. The best parameters according to this op-

timization are: �t = 0.005, �X = 0.1, and ζt = 13.68. It

is important to mention that those values meet the Courant-

Friedrichs-Lewy condition [28].

Fig. 3 reflects the solution of (9). The value function

V (t,X) illustrates the cost associated with different battery

levels X over time. As stated previously, HJB is critical

in finding the policy that minimizes the cost function. This

illustrates the descending pattern for the value function, which

reflects the cost associated with EV behaviors. The peaks and

valleys correspond to higher and lower costs, respectively. At

high-price times, the value function should be less expensive

with a high battery level. Moreover, it shows high costs at

higher battery levels when the price is low. At the final

condition V (t = T,X) = (1 − X)2, the high battery level

is desirable, as shown in Fig. 4. This condition will prevent

EV owners from charging at the last moment. Thus avoiding

grid overload.

Fig. 3: Value function evolution concerning time and battery

level.

The evolution of EV global mass mFPK is shown in Fig. 5,

which reflects the optimal solution of (10). EVs tend to charge

at night time and discharge during the day. For instance, the

battery level increases from midnight until about 6 AM, which



Fig. 4: Value function at boundary t = T .

indicates that energy is bought at night and utilized during the

day. It is important to mention that the initial distribution for

battery levels follows a triangular distribution.

Fig. 5: The global distribution mFPK .

Electricity trading and price are calculated using (15) and

(16), as shown in Fig. 6, which reflects the electricity pur-

chasing process over time. EV owners are incentivized to

charge their batteries during the low-price period, while they

will tend to discharge in the peak demand periods. Notably,

some players are still purchasing electricity in high price

periods. This pattern reflects the real-life scenario and shows

one limitation of MFG: neglecting individual diversity and

the assumption that agents are homogeneous. However, the

use of MFG offers numerous advantages for EV owners. It

enhances battery health by controlling the charging process

and reducing battery degradation. Moreover, scheduling the

charging protocols reduces energy consumption and minimizes

power outages. In addition, MFG facilitates the exchange of

information between EV drivers using the average distribution

of EVs.

It is important to mention that different optimization metrics

will lead to different results. To illustrate that, we choose the

optimization metric to ensure system reliability. The reliability

objective measures the ability of a system to manage EV

consumption under different prices and state of charge levels.

For that performance metric, the overall reliability evaluation

is 94.73%, and the best parameters are �X = 0.447, �t

= 0.0999 , and ζt = 30. Electricity trading according to the

Fig. 6: Electricity price and trading.

reliability metric is shown in Fig. 7. It is noticeable in Fig. 7

that the surge in the final moments reflects a drastic increase

in demand due to relaxing the terminal cost condition. In

addition, tuning the performance metric leads to adjustments in

the electricity purchasing process, whereas the best parameters

are changed to maximize the performance objective.

Fig. 7: Electricity trading after terminal condition softening.

Fig. 8 shows the benefit of the charging policy in reducing

the total cost. The cost is mainly affected by the price of

electricity and the control rate. The drop in cost is a result of

the charging policy’s ability to identify periods of low elec-

tricity prices. When electricity prices are high, drivers tend to

avoid purchasing electricity and prefer to charge their vehicles

when prices are low. To demonstrate the effectiveness of the

Fig. 8: Mean field cost.

proposed method, a comparison with other references shows



the proposed method’s cost reduction and energy utilization

in Table I. Our approach shows about a 27% increase in off-

peak electricity use and a 20% cost reduction. The electricity

purchases in this study are managed based on electricity

prices to optimize the reward function. Reference [15] showed

that the peak-to-average ratio is reduced from 4.73 to 1.21,

indicating significant cost reduction. The exact percentage of

cost reduction is not provided. In [19], results showed that the

percentage of both energy utilization and cost reduction are

almost 15%.

TABLE I: Comparison of different methods

Method
Finite

difference
SQP [15] DRL [19]

Convergence Achieved Achieved Achieved

Energy Utilization 27.7% PAR= 1.21 15%

Cost Reduction 20% not specified 15%

Electricity Purchase
Varies by

price periods

Minimize
cost and

degradation

Multiagent
coordination

V. CONCLUSION

This paper uses MFG to schedule the charging protocol for a

swarm of EVs. The finite difference method is used to find the

solution of the MFG system. To tackle numerical instability,

Bayesian optimization is employed to obtain the best parame-

ters to solve the MFG system. Moreover, the reward function

and the collective mass are presented regarding electricity

prices to coordinate electricity trading. Numerical simulations

are carried out to show the efficacy of our approach. The

reliability of the proposed algorithm is evaluated to ensure

its efficiency in obtaining the optimal charging behavior of

an EV fleet. The results showed that optimizing for system

reliability yields a high level of reliability. Furthermore, MFG

reduces the overall EV operating costs and charging times in

the peak load periods, indicating its role in energy management

and cost reduction for both EV owners and grid operators.

The proposed method can be applied not only to control

homogeneous EVs but also to heterogeneous agents and other

components of power systems, such as renewable energy

resources and energy storage systems.
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