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ABSTRACT Precise modeling of power systems is vital to ensure stability, reliability, and secure operations.
In power industrial settings, model parameters can become skewed over time due to prolonged device
usage or modifications made to the control systems. Doubly-Fed Induction Generator (DFIG), one of the
most prevalent generators in wind farms, is sensitive to transient occurrences. Consequently, parameter
calibration of DFIG becomes a crucial focal point in power system planning and operational studies. In this
paper, two baseline approaches are first developed to identify the potentially harmful parameters of the
DFIG system, including the Particle Swarm Optimization (PSO) method and the state-of-the-art off-policy
Reinforcement Learning (RL) method, Soft Actor-Critic (SAC). The outcomes demonstrated that the SAC
method outperformed PSO, resulting in an impressive reduction of 74.67% Mean Squared Error (MSE) and
a more efficient testing period. In further exploration, a novel hybrid approach called SAC-PSO is developed,
with SAC being the teacher of PSO to tackle scenarios withmultiple potential solutions. The results exhibited
an even greater enhancement over using SAC alone, leading to a remarkable reduction of 87.84%MSEduring
the testing phase. The proposed method can also effectively apply to a power plant incorporating multiple
wind generators.

INDEX TERMS Deep reinforcement learning (DRL), doubly-fed induction generator (DFIG), hybrid SAC-
PSO, parameter calibration, parameter identification, particle swarm optimization (PSO), soft actor-critic
(SAC).

I. INTRODUCTION
Over the past decades, the global power sector has observed
a remarkably increased penetration of renewable genera-
tion integrated into modern power systems, among which
the Doubly-Fed Induction Generator (DFIG) has garnered
notable interest owing to its compact power converters, cost-
efficient nature, improved quality, and distinct benefits such
as decoupled active and reactive power control [1]. The main
difference from the traditional system is that it employs
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a back-to-back converter, as shown in Fig. 1. The DFIG
stator is synchronized with the grid, whereas the rotor is
coupled to the converter. The back-to-back converter can
supply the rotor with currents of varying frequencies. The
induction generator has the flexibility to import and export
reactive power independent of the turning speed, enabling
various ranges of speeds of wind turbines, thus providing
high stability during severe disturbances [2]. The DFIG
converter has lower costs and higher efficiency than other
variable speed solutions. Its interesting structure and high
usability make it a dominating solution in large-scale wind
farms.
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FIGURE 1. DFIG system with a back-to-back converter.

Nevertheless, DFIG has exhibited heightened suscep-
tibility during transient occurrences [3]. In the context
of power system operations, the prolonged utilization of
devices frequently leads to inaccuracies in model parameters,
consequently amplifying the risks associated with transient
events. This makes parameter identification and calibration
more essential in DFIG systems. To resolve this issue, this
paper presents a novel hybrid method that takes advantage
of both PSO and reinforcement learning algorithms to derive
optimal model parameters that best match measurements
captured during transients. The following sections of this
paper are structured as follows:

Section II conducts a detailed literature survey discussing
various methods for model parameter identification. In
Section III, we explore the design of the parameter calibration
problem and provide the mathematical models of DFIG for
constructing the training environment of RL. Additionally,
we introduce the principles underlying the off-policy RL
algorithm known as Soft Actor-Critic (SAC) while illustrat-
ing the proposed methods. Section IV presents the research
findings and offers an in-depth analysis. The performance of
the two benchmark algorithms, Particle Swarm Optimization
(PSO) and RL, are compared in the parameter identification
process. Furthermore, we thoroughly discuss and analyze
the outcomes of the proposed hybrid methods. Lastly,
conclusions are drawn in Section V.

II. RELATED WORK
Power system modeling is acknowledged as one of the most
intricate facets of power system analysis [4] and has been
discussed regarding various calibration techniques. Tradi-
tional parameter calibration methods, such as measurement-
based, component-based, and curve-fitting, are common-
place but often encounter challenges. These mathematical
methods can prove difficult to converge or may yield
multiple solutions. Recognizing the outstanding capabilities
of Support VectorMachine (SVM) as a classificationmethod,
which can notably streamline data utilization in model
development [5], [6]. Efforts have been made to enhance
generalization and precision. In this regard, [7] applied the
genetic algorithm (GA) method, which searches for optima
across a broad parameter space. However, GA may exhibit
slow convergence and converge towards local minima [4].

Similarly, Simulated Annealing (SA), characterized by its
convergence during a gradual cooling process, has been
leveraged as an approximation algorithm by [8]. PSO
emerges as a straightforward algorithm for searching for
optimal solutions amid noisy measurements. PSO has found
application in parameter tuning for DFIG [9] and has
exhibited commendable performance. One of the critical
advantages of PSO is its ease of implementation, which
positions it as one of the baseline methods adopted in this
paper.

The extended Kalman filter method has recently gained
widespread acceptance for parameter calibration [10], [11].
This recursive filter, encompassing prediction and correction
steps, enables the estimation of dynamic systems from noisy
measurements. Notably, [12] introduced EnKF (ensemble
Kalman filter)for parameter estimation and calibration in
DFIG. This method displayed robust performance across
varying noise levels and initial errors. Intriguingly, [13]
leveraged the Advanced EnKFmethod alongside online PMU
measurements. Additionally, they introduced a sensitivity
function to evaluate the influence of different parameters on
the system. However, these methods need more sense of auto-
matic adaptation for differentmodels and are time-consuming
for each converging iteration.

The advent of Deep Learning has prompted researchers
to investigate its application in parameter calibration. For
instance, [14] examined various Deep Learning methods
on a complex 14-bus system, including CNN, LSTM, and
GRU. PMU data are utilized to train these models to predict
model parameters, thereby affirming the feasibility of Deep
Learning in parameter calibration.

Reinforcement Learning (RL) revolves around an agent
learning by interacting with its environment, primarily
focusing on solving the Markov Decision Process (MDP)
problems. SAC [15] provides a sample-efficient RL algo-
rithm renowned for its prowess in handling complex decision-
making challenges. It builds upon deep deterministic policy
gradients (DDPG) but introduces a novel concept, the maxi-
mum entropy. This innovation enables SAC to pursue higher
rewards but explore its environment effectively, striking a
balance between trying new strategies and making optimal
decisions. It is reported that the SAC algorithms perform well
in tasks demanding both efficiency and adaptability.

SAC’s remarkable stability and robustness during RL
agent training make it stand out. Even when dealing
with complex, continuous action spaces, SAC remains
reliable. It has excelled in various domains, from robot
control to decision-making in intricate settings. The SAC’s
efficiency in learning from past experiences positions it as
a top choice for researchers and practitioners addressing
real-world problems with RL, offering a powerful tool
for optimizing decision-making in diverse applications.
Further mathematical details will be explored in subsequent
sections.

Deep Reinforcement Learning (DRL), capable of dynamic
interaction with the environment, has been harnessed for
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real-time model calibration [16]. In a related study, [17]
utilized SAC for co-calibration of dynamic model parame-
ters across multiple events. PMU measurements served as
‘‘play-in’’ signals, validating the viability of SAC in this
context.

Recognizing the robustness of RL and PSO, we conceived
the idea of combining them for mutual benefits. Our literature
review explored how others have merged RL and traditional
math methods. The hybrid approaches [18], [19], [20], [21],
[22], [23] provide insights, affirming the practicality of
combining DRL and PSO.

Some studies employ DRL as a tool to enhance the
convergence rate and stability of PSO. For example,
DQL-PSO in [21] assesses the action reward at each
step, directing the particles to execute the suitable actions
in real-time. DDPG-PSO, proposed in [22], employs a
customized Deep Deterministic Policy Gradients (DDPG)
algorithm within each iteration of PSO, which leads to
more effective particle velocity determination. Additionally,
in another study [23], a hybrid path planning method,
called Hybrid PPSO and HORL Algorithm (HPHA), fuses
optimized RL and enhanced PSO. They used Hybrid Optimal
Reinforcement Learning (HORL) to train the Pre-set PSO
and efficiently find the best paths within the path evaluation
system by considering parameters.

In another sense, PSO can also work to improve
DRL’s performance. In PG-PSO [24], Policy Gradient (PG)
collaborates with PSO for parameter exploration within
the policy network, leading to performance improvements.
In PSO-QL [25], PSO accelerates the Q-learning update
speed in multi-agent scenarios, resulting in efficient pose
calculations for industrial robots. DRL-PPSO [26] introduces
DRL with Parallel PSO, where agents aim to receive the
global largest reward while minimizing processing time by
sharing information with neighboring particles. Furthermore,
RL-enhanced PSO employs two policy networks as proposed
in [27]. These networks generate distinct normal distributions
by offering two input options: One network uses the global
best particle as the input state, while the other integrates its
best particle.

These innovative hybrid methodologies represent promis-
ing steps toward harnessing the strengths of both DRL
and PSO in various application domains. Indeed, none of
the existing hybrid methods discussed incorporate imitation
learning, which is the primary focus of this paper.

III. PROPOSED METHODOLOGY
A. PROBLEM STATEMENT
The problem of calibrating DFIG parameters is cast as an
MDP, with the RL agent interacting with the simulated
DFIG model, which serves as the environment. Within
this framework, the RL agent employs the SAC algo-
rithm, a powerful RL technique, to iteratively and dynam-
ically adjust the DFIG model’s parameters. This process
unfolds as a continuous quest to identify the most optimal
configuration.

Referring to [28], the primary objective function of SAC
is to optimize the expected return while incorporating policy
entropy, mathematically represented as:

J (π ) = Eπφ

[∑
t

γ t (r(st , at )− αH (π (·|st ))

]
(1)

where π denotes the policy, r(st , at ) signifies the reward
function at state st when taking action at . α is the temperature
parameter that balances expected return and entropy H (P).
γ is the discount factor, and π (·|st ) represents the policy’s
probability distribution of selecting an action at state st .
SAC adopts an off-policy actor-critic architecture featuring

three networks: a policy function πφ , a state value function
Vψ , and a soft Q-function Qθ , while Vψ and Qθ are related
through the policy.

By definition, the Q value is obtained by iteratively using a
Bellman backup operation until convergence, formulated as:

Qθ (st , at ) = r(st , at )+ γEst+1∼p[V (st+1)] (2)

where V (st ) represents the soft state value function:

Vψ (st ) = Eπ
[
Qθ (st , at )− α logπ (at |st )

]
(3)

The soft Q-function parameters are trained to minimize the
following error:

JQ(θ ) = E(st ,at )∼D

[
1
2

(
Qθ (st , at )− Qθ̄ (st , at )

)2] (4)

where the target soft Q function with parameters θ̄ is derived
by taking an exponentially moving average of the soft Q
function weights, and the optimization of the Q function
is accomplished with stochastic gradients ∇θJQ(θ ). Lastly,
the policy parameters can be optimized by minimizing the
expected KL divergence:

Jπ (φ) = Est∼D
[
Eat∼πφ

[
α log(πφ(at |st ))− Qθ (at , st )

]]
(5)

And the gradient ∇φJπ (φ) can then be approximated.
These equations define the SAC algorithm, highlighting its

core components and their respective roles in reinforcement
learning. Applying the DFIG parameter calibration problem,
the training process can be formulated as in Fig. 2. More
details of the functions involved are discussed in the
following sections.

B. ENVIRONMENT: DFIG MODELING & SIMULATION
In accordance with the Western Electricity Coordinating
Council (WECC)wind turbinemodel [29], as shown in Fig. 3.
The dynamic behavior of DFIG is governed by three primary
control models:

1) DFIG Model (WGNC): This model orchestrates
high-voltage current control and low-voltage active
current control, featuring an integral low-voltage power
logic (LVPL) module.

2) Electric Control and Protection Model (WGNCE):
WGNCE primarily oversees plant-level control and
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FIGURE 2. Diagram of the SAC-based method for DFIG parameter calibration.

FIGURE 3. DFIG control model [29].

power quality (PQ) control, ensuring the stable oper-
ation of the wind turbine system.

3) Wind Generator Turbine and Pitch Control Model
(WGNCT): WGNCT takes charge of pitch control and
aerodynamic control and includes a drive-train model,
which plays a pivotal role in regulating the generator’s
performance.

The experiment’s setup is constructed utilizing the DSA
Tools TSAT simulationmodule. It depicts a simple configura-
tionwhere aDFIG bus is interconnectedwith thewind turbine
generator, while the infinity bus signifies the swing bus,
representing a point of reference. This model encompasses
over 50 distinct parameters, intricately managing various
aspects of the DFIG system.

The simulation process employs a dynamic file containing
control parameters as its input. The total simulation duration
spans 5 seconds, with a fixed time step of 8.33 milliseconds.
To delve into transient phenomena, a grid fault contingency
is introduced at time T = 1 second, providing insights into
the system’s response under adverse conditions.

TABLE 1. States constructed of seven parameters.

C. STATE SPACE AND ACTION SPACE
The paramount consideration in the proposed calibration
process revolves around identifying and targeting the most
crucial parameters - those that wield the most significant
influence over the system. To achieve this, we’ve harnessed a
sensitivity concept introduced by [13] to extract the states of
the MDP problem.

In this method, we single out one parameter for a controlled
perturbation, introducing a small perturbation while keeping
all other parameters constant. Subsequently, the outputs of the
DFIG system are closely monitored. This meticulous process
allows us to pinpoint and assess the impact of individual
parameters with precision. The sensitivity function of each
disturbed parameter is:

Sen(x) =
1
N

N∑
k=1

|
y1 − y2
2 ∗ α

| (6)

where

y1 = output(x + x ∗ α)

y2 = output(x − x ∗ α)

where α is the disturbing rate, we used N = 5 disturbing
rates of [0.001, 0.01, 0.05, 0.1, 0.2]. The output metric
is the average of the active power corresponding to that
parameter x.
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TABLE 2. SAC hyperparameter list.

Seven parameters, as shown in Table 1, turn out to have
the highest calculated sensitivity value, meaning they have
the highest impact on the active power. The table ranks
with the vector position of each parameter. Thus, the true
parameter vector is [0.8, 0.9, 0.5, 1.45, 0.875, 1.8, 1].
Drawing from extensive industrial experience, we account
for a noise margin of approximately ±20% to encompass
real-world variability. The action set is the seven adjustments
corresponding to the normalized states, confined within the
±0.2 range. After one execution, the new state is calculated
as:

St+1 = St + At

D. REWARD FUNCTION
Active power and reactive power are pivotal outputs in the
context of power systems. Active power is the tangible output
of a generator that performs useful work. Reactive power,
however, is essential for maintaining voltage levels across
the grid. These metrics hold paramount importance as they
directly influence the stability, efficiency, and reliability of
the electrical grid.

In the model parameter calibration process, the reward
function quantifies how well the calibrated parameters match
the actual power output. Given that power outputs exhibit
distinct behaviors across different phases (before a grid fault
(I), during the fault transient (II), and during recovery(III)).
The reward function is developed to minimize the Euclidean
distances between estimated and true power values across
these phases, formulated as follows:

R = −α1D(I )− α2D(II )− α3D(III )

where D represents the sum of Euclidean distances of P
and Q between the reference and the estimation. It’s usually
appropriate to assign varying levels of importance to these
phases by α’s. In this case, α1 = 1/60, α2 = 1/40, and
α3 = 1/30. The goal is considered reached when R > −0.5.

E. TRAINING AND BENCHMARKING
Table 2 lists the key hyperparameters employed for SAC
training. These hyperparameters significantly influence the
performance and behavior of the SAC agent throughout the
training process. The hyperparameter tuning is not heavy, but
of particular note is the entropy coefficient, set to a relatively
higher initial value of 0.2. Due to its significant role in guiding
the SAC algorithm, it encourages the algorithm to explore
more extensively during training, aiding in escaping potential

Algorithm 1 PSO Algorithm Pseudocode [30]
1: Initialize particles randomly
2: for each iteration do
3: for each particle do
4: Calculate cost
5: if Cost less than lowest cost Lbest in history then
6: Set current cost as the new Lbest
7: Set current particle as the new Pbest
8: end if
9: for each particle do

10: Update particle velocity
11: Update particle position
12: end for
13: end for
14: end for

local minima and mitigating the likelihood of encountering
multi-solution challenges.

For the benchmark setup, the PSO algorithm is adopted
as a benchmark to assess and compare the performance of
SAC. PSO leverages a group of particles, each representing
a potential solution. These particles iteratively adjust their
positions based on the local solutions they encounter, and
collectively, the swarm aims to discover the global best
solution. The pseudocode of PSO is presented in Algo. 1,
with the cost function being defined identically to the reward
function used in SAC.

Larger swarms often enhance the efficiency of PSO
for more complex problems and practical applications,
as demonstrated in previous studies [31]. The iteration
number in PSO controls the convergence time. So, we’ve
configured two distinct scenarios for these experiments. The
first scenario involves 20 particles undergoing ten iterations,
denoted as PSO20, while the second scenario features
50 particles spanning 20 iterations, denoted as PSO50.

F. THE HYBRID SAC-PSO AND PSO-SAC METHODS
To harness the strengths of SAC and PSO algorithms,
we introduce two novel hybrid approaches, namely SAC-PSO
and PSO-SAC, detailed in Fig. 4. These innovative methods
capitalize on the concept of imitation learning, framing the
algorithms as a teacher-student duo. When confronted with
complex problems, the student algorithm, initially unsure of
where to begin, seeks guidance from the teacher to enhance
its problem-solving precision. Determining which algorithm
assumes the role of the better teacher between SAC and PSO
becomes the focal point of our investigation. Specifically,
SAC-PSO, illustrated in Figure 4(a), positions SAC as the
teacher and PSO as the student, outlining the following
methodology:

The process is initiated by harnessing the predictive
capabilities of the SAC algorithm. The predictions generated
by SAC serve as the initial states for PSO, kickstarting its
optimization journey. PSO then takes the reins and continues
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FIGURE 4. Two hybrid approaches using imitation learning.

FIGURE 5. Example calibration results for the active power, comparing
three algorithms.

to refine its parameters until reaching convergence. The
synergy between SAC and PSO is designed to capitalize on
SAC’s proficiency in initial predictions and PSO’s ability to
fine-tune the solution further.

We have also experimented with an alternative hybrid
algorithm as a comparative benchmark, as illustrated in
Fig. 4(b). In this case, we reverse the roles, with PSO
assuming the role of the teacher and guiding SAC. This
comparative assessment offers valuable insights regarding the
efficacy of SAC-PSO and its unique contributions to the field
of DFIG model parameter calibration.

IV. CASE STUDIES AND ANALYSIS
A. EXAMPLE CALIBRATION CASE
Fig. 5 provides an illustration of the calibration problem.
The uncalibrated curve displays substantial mismatches,
underscoring the issue at hand. Notably, three algorithms—
PSO20, SAC, and SAC-PSO—exhibit varying degrees of
success in calibrating the curves. In this particular case,
PSO20 falls short in capturing the resonance during the
recovery phase, while SAC-PSO emerges as the algorithm
that aligns most closely with the reference curve.

It is important to note that the performances of these
algorithms may be contingent on different cases with diverse
initializations. Further insights and additional results are
expounded upon in subsequent sections for a comprehensive
understanding.

B. SAC V.S. PSO
Fig. 6 provides the training progression of the SAC algorithm,
showing the episode average reward and the actor loss

FIGURE 6. SAC training progress.

during training. Notably, the episode’s average reward
steadily converges toward the maximum achievable reward,
a noteworthy milestone achieved at approximately 15,000
steps into the training process.

To ensure clarity in presentation, the figure displays explic-
itly data for the initial 25,000 training steps. The complete
training process extends beyond this range. An observation is
the correlation between the actor loss and the reward curves,
reflecting their synchronized behavior. Furthermore, for each
episode initiated with a random start, the trained SAC agent
demonstrates remarkable efficiency by identifying a viable
solution within a mere three steps.

To assess the algorithms’ precision, we employ the Mean
Squared Error (MSE) of the states as our primary metric. The
results are summarized in Table 3.When examining theMSE,
we observe the following insights: Firstly, both SAC and
PSO algorithms effectively reduce MSE after training. SAC,
for instance, achieves a substantial improvement, reducing
the MSE from 0.0150 to 0.0083, marking an approximate
76.67% decrease. PSO20 and PSO50 demonstrate the
effectiveness by achieving a significant reduction of 29.19%
and 60.49%, respectively. Comparing PSO20 and PSO50,
PSO50 outperforms PSO20. This is attributed to PSO50’s
ability to explore a wider candidate set and perform more
iterations. Regarding accuracy across the three methods, SAC
emerges as the top performer.

Moving on to the time aspect, the training process for SAC
is indeed time-consuming, but it’s a one-time job. Subsequent
testing requires only 20 seconds, making it highly efficient
in real-time applications. In contrast, PSO’s calibration time
varies, especially when the initialization is less accurate,
demandingmore iterations. Furthermore, PSO’s performance
heavily relies on the number of particles and iterations.
As we can observe, PSO50 takes considerably more time than
PSO20. This suggests a trade-off between time and accuracy
in the case of PSO.

Regarding algorithm implementation, PSO is relatively
straightforward and doesn’t necessitate extensive parameter
tuning. For SAC, some hyperparameter tuning is advisable to
prevent stagnation and ensure effective learning. Crafting an
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TABLE 3. Summary of algorithms’ performance in parameter calibration.

TABLE 4. States constructed of eleven parameters.

appropriate reward function can be challenging but crucial,
as it influences the presence of multiple optimal solutions.
However, when well-constructed, SAC excels at handling
scenarios with multiple solutions.

Summarizing the three methods, we can conclude that
SAC, while requiring longer preparation time, offers faster
calibration during testing. On the other hand, PSO is easier
to implement but tends to be slower during calibration.
The decision between the two options depends on specific
requirements, which involve balancing time constraints and
accuracy needs during calibration.

C. SAC-PSO V.S. PSO-SAC
Moving to the outcomes generated by the hybrid algorithms,
Fig. 7 portrays a SAC-PSO calibration scenario. This visual
representation illustrates the calibration process, highlighting
instances of initial mismatches and the subsequent transfor-
mation achieved through the calibrated results.

When the calibration process commences with random
initialization, as shown in the first row, the power values
exhibit notable discrepancies. However, under the guidance
of the teacher agent (SAC), these errors are substantially
reduced, as presented in the second row. Except for a
slight recovery phase mismatch, SAC already performs
excellently. From the third-row figures, the student agent
(PSO) takes over, further refining the states to mitigate any
remaining noise. It provides evidence that the SAC-PSO
hybrid approach excels in addressing the model parameter
calibration challenges, leading to precise and accurate results.

The evolution of MSE, as detailed in Table 3, mirrors
this progress. Beginning at 0.0148, the MSE declines to
0.0025 and ultimately reaches an impressive low of 0.0018,
marking it the lowest MSE achieved among all algorithms.
This remarkable improvement represents an average rate of
enhancement of 87.84%.

FIGURE 7. Example calibration results of SAC-PSO: (a) (b) are the
mismatch of powers with bad parameters. (c) (d) are results after the
calibration prediction of SAC. (e) (f) are the final calibrated results refined
by PSO.

In the case of PSO-SAC, the approach leverages a similar
conceptual framework and yields high improvement as well
compared to individual methods, reaching 86.49%. It proves
the effectiveness of hybrid techniques. Our testing shows
it is not as good as SAC-PSO. It’s important to note that
PSO notably relies on its initialization and is easy to get
stuck at local minima. In this context, the teaching phase
doesn’t fully capitalize on PSO’s characteristics. Further-
more, SAC incorporates an end-state criterion, indicating the
episode is finished when specific reward conditions are met.
Consequently, when teacher PSO yields acceptable results,
SAC promptly marks the episode as ‘‘Done’’ limiting further
improvements. Conversely, when PSO performs poorly, SAC
perceives little distinction between this and a random start
scenario, as both routes lead toward the ‘‘Done’’ state rather
than a ‘‘Better’’ state unless an extremely decent reward
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TABLE 5. Summary of SAC and SAC-PSO performance with realistic dataset.

FIGURE 8. SAC training progress with realistic dataset.

function is formulated. This concept of PSO-SAC seems
to be a waste of computing resources, limiting further
improvement. That is the reason we focusmore on SAC-PSO.

D. REALISTIC DATA ANALYSIS
The above experiments ensured the feasibility of the proposed
methods. To further validate the hybrid SAC-PSO algorithm,
we continue to add four more control parameters and apply
noise to the power output to mimic realistic data. The new set
of states is shown in Table. 4, with eleven control parameters
constructing the state vector. The noisy level of the outputs is
set to be 1%.

The training progress is depicted in Fig. 8. Due to the larger
dataset with increased parameters and noise, the training
process on a CPU took approximately three days. The
potential for enhancing this process is evident through the
utilization of GPUs in the future. The graphical representation
illustrates clear convergence, notably around the 8,000-step
mark. By the first findings presented in Table 5, the trained
SAC model exhibited commendable calibration of active and
reactive power, notably reducing the MSE for active power
from 4.36 to 0.28. However, It is worth noting that the MSE
for states did not show very high improvement, about 10%.

Using the hybrid SAC-PSO method has demonstrated
significant improvements in power calibration, as evident
from the outcomes illustrated in Fig. 9. The initial mismatch,
particularly noticeable at the start, is effectively addressed
through calibration, showcasing a substantial enhancement
in power accuracy. Due to the robustness of SAC and the
application of noise, it is challenging to visualize the second
phase using PSO. Nevertheless, the significant improvements
in power are quantified in Table 5.

However, as indicated by MSE results, mitigating state
mismatches shows a more nuanced picture. While there is

FIGURE 9. Example Calibration results of SAC-PSO for realistic data:
(a) (b) are the mismatch of powers with bad parameters. (c) (d) are
results after the calibration prediction of SAC. (e) (f) are the final
calibrated results refined by PSO.

improvement after the application of SAC, the subsequent
introduction of PSO results in little improvement in MSE for
states. Several factors contribute to this observation. Firstly,
the performance of these algorithms is intricately linked to
the construction of the reward function in SAC and the cost
function in PSO. Directly using these functions from the
no-noise model may contribute to this discrepancy. Secondly,
some parameters exhibit high sensitivity, while others have
low sensitivity. The comprehensive MSE considers all states,
leading to varying degrees of calibration success. Some
parameters may be well-calibrated, while others, despite
not impacting power accuracy, may contribute to the total
MSE not improving or even increasing. In this context,
a higher MSE might not necessarily indicate a deterioration
in performance in a meaningful sense.

In conclusion, our primary objective of calibrating per-
formance based on power remains successfully achieved.
Addressing the mismatch in states suggests the potential for
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improvement through modifications to the reward functions.
Furthermore, embedding control parameter values directly
into the rewards could be a promising avenue for enhancing
efficiency in future iterations. This underscores the ongoing
potential for refinement and optimization in our calibration
approach.

V. CONCLUSION
A. SUMMARY
In pursuit of achieving precise parameter calibration for
DFIG modeling, our research delved into the application of
several algorithms, including SAC, PSO, and the proposed
innovative hybrid approaches known as SAC-PSO and
PSO-SAC.

We initiated our exploration by establishing the feasibility
of Deep Reinforcement Learning, focusing on SAC, in the
context of parameter calibration for DFIG power systems.
The results demonstrated the remarkable performance of
SAC, significantly outperforming the traditional mathe-
matical method represented by PSO. This performance
evaluation enabled a comprehensive analysis of the strengths
and advantages offered by both algorithms, providing
valuable insights for industries seeking the most suitable
method based on criteria such as accuracy, efficiency, and
cost-effectiveness.

Subsequently, we introduced the hybrid methodologies,
SAC-PSO and PSO-SAC, which exhibited superior per-
formance compared to the individual algorithms employed
in isolation. These hybrid approaches are promising for
enhancing parameter calibration processes, emphasizing their
potential in real-world applications.

In our final analysis, we conducted a realistic experiment
by introducing additional parameters and noise into the
power data. While this posed challenges in refining the
reward functions, as highlighted in the earlier analysis,
the power calibration proved to be a success. Despite
the heightened complexity introduced by these additional
factors, the algorithm demonstrated effective utility, show-
casing its robustness and efficiency in addressing real-world
complexities. This underscores the algorithm’s ability to
handle intricate scenarios and its overall efficacy in power
calibration.

B. FUTURE APPLICATION DIRECTIONS
Notably, our calibration methodology extends its utility
beyond the calibration of individual power generators,
finding relevance in the context of entire power grids. This
expanded scope underscores its versatility and underlines the
potential for significantly enhancing the performance and
reliability of power grids on a larger and more impactful
scale. Due to the generalized nature of our methods, we can
adapt them to a wide range of generators. Experimenting
with different generators not covered in this study will
offer insights into their effectiveness across diverse energy
systems. On a larger scale with identical generators, we can

calibrate one generator’s parameters and then apply them
to all others. Even with different types of generators, this
method could still be technically accomplished by utilizing a
larger state vector containing all distinct control parameters.

Additionally, we’re keen on integrating our methods with
other renewable energy sources. For instance, exploring
how our methods can be incorporated into solar energy
systems is an exciting prospect, aiming to contribute to
the broader improvement of renewable energy utilization.
By exploring these future research avenues, our goal is
to enhance the applicability of our methods and make
meaningful contributions to the advancement of renewable
energy technologies.

C. CHALLENGES AND FUTURE WORK
Several practical challenges persist in implementing these
techniques in industries. It is important to note that we
focus on applying the proposed technique in transient cases.
Primarily, transient cases occur infrequently, making it
challenging to obtain data related to these instances. Given
the diversity of faults causing transient cases, acquiring such
data poses a realistic hurdle for future work. Secondly, the
lack of transparency in real-world infrastructure complicates
matters. While striving to find simulation models that closely
mimic reality, obtaining the actual industry model remains
elusive, potentially leading to inaccuracies in modeling.
Thirdly, neglecting to switch details can significantly impact
calibration results, underscoring the importance of consider-
ing these specifics in the process.

Future efforts could pivot towards leveraging actual PMU
(Phasor Measurement Unit) data to fortify these method-
ologies’ practicality and real-world applicability. Incorpo-
rating this data source would significantly enhance model
validation, elevating the credibility of these approaches. This
avenue of research offers the potential for even greater
precision in parameter calibration practices within power
systems. Addressing the aforementioned challenges remains
a priority, and our commitment lies in presenting accurate
solutions to these complexities.

Additionally, within our hybrid algorithm, the two algo-
rithms collaborate in a cooperative manner. Exploring alter-
native concepts, such as competitive frameworks, promises
further enhancement. Embracing diverse approaches could
unlock new dimensions of efficiency and effectiveness in our
methodologies.
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