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Abstract—Accurate load forecasting is crucial in ensuring
efficient, reliable, and cost-effective planning and execution of
the power grids. The uncertain characteristic of consumers as
well as the increasing distributed generation units makes precise
load forecasting an increasingly challenging task. Additionally,
due to the complex nonlinear relationship of electric load with
weather factors, advanced load forecasting models are necessary
to accommodate the fast-changing nature of power grids. This
research proposes an improved model for short-term load fore-
casting using deep learning. Important factors like electricity
price, dew point, dry bulb, wet bulb, humidity, day of month,
day of week, year, and time of day will be included in the
model. First, a deep neural network is implemented with default
hyperparameters. Then, hyperparameter optimization is applied,
during which the model searches for the optimal combination of
hyperparameters within the defined range. Finally, the model is
run with the optimized hyperparameter values to predict the load.
The proposed method is implemented on the Electrical Reliability
Council of Texas system to validate its accuracy. The results
show a significant improvement in system performance after
hyperparameter optimization while considering diverse impact
factors.

Index Terms—Artificial neural network, deep learning, hyper-
parameter optimization, load forecasting.

I. INTRODUCTION

Load forecasting (LF) is pivotal in power systems due
to its impact on efficient energy management and planning
[1]. There are three types of LF: long-term load forecasting
(LTLF), mid-term load forecasting (MTLF) and short-term
load forecasting (STLF). STLF covers LF from one hour
to a few weeks. It is utilized in fields like real-time con-
trol, economic dispatch, and load management [2]. MTLF
is generally applied for a time frame from 1 month to 5
years while LTLF is used for a time frame of 5 years to 20
years. LTLF is applied for planning the generation by capacity
and type to satisfy future demand and cost efficiency [3].
Accuracy of LF has a considerable effect on system expenses
[4]. The advantages of accurate LF include the reduction of
operation as well as maintenance costs, enhancement of power
system reliability, and improvement in planning and decision
making for power dispatch. Overestimation of load causes an
increase in the reserve capacity, which might not be necessary,
thereby increasing operation and installation costs. Similarly,
underestimation of electrical load causes a failure to supply
the needed spinning and standby reserve, potentially leading
to stability issues on voltage and frequency, and even collapse
of the power system in extreme cases [5].

To cope with the energy transition to a carbon-neutral
system, advanced techniques need to be developed to keep
the grid stable with reliable energy supply [6]. However, due
to this transition, additional challenges regarding voltage and
frequency control, intermittency, and variability have emerged,
thereby reducing the system stability and complicating the
working mechanism of the power grid. Therefore, it is im-
portant to have a precise load forecast to help make the right
decisions on the usage of electricity which in turn improves
the system stability and reliability.

Deep learning (DL) has been getting a lot of attention re-
cently in electrical LF. Due to the ability to handle complicated
and non-linear equations, DL is being implemented widely
in power system operation and planning [7]. Compared to
artificial neural networks (ANNs), DL systems have more than
one hidden layer making them capable of learning complex
patterns and skills. However, as DL models are composed of
more layers than ANN, more data is needed to train the DL
model to acquire better results [8]. DL has been used in STLF
to increase the accuracy of load forecasts [1].

According to [9], various factors affect the load demand like
weather conditions, electricity price, day of month (DoM), day
of week (DoW), and time of day (ToD). To improve accuracy
of load forecast, all factors affecting the load demand needs
to be considered while training the DL. model.

DL application in LF has been developed intensively with
diverse algorithms. The authors in [10] present the LF imple-
menting long short-term memory (LSTM) algorithm in two
architectures: standard LSTM and LSTM based sequence to
sequence algorithm. LSTM algorithm overcomes the issue
of diminishing gradient existing in recurrent neural network
(RNN) by regulating the flow of gradient through the gates and
the memory cells. RNN is generally trained using backpropa-
gation or a real-time recurrent algorithm. Despite resolving
the problem of vanishing gradient, the LSTM model was
trained using only 120 hours of data, which may be insufficient
to adequately capture the full range of input features. For
instance, there will be less variation in temperature and other
factors in such a short amount of time. Therefore, the model
may not perform well when the weather factors are extreme
[11]. STLF using deep neural network (DNN) is compared
with five different ML algorithms: Multi-Layer Perceptron
(MLP) and LSTM, Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), to show its superiority in
[12]. The proposed method implements LSTM architecture



using a convolutional neural network (CNN) algorithm. Mean
absolute percentage error (MAPE) for proposed DNN method
is asserted to be better than the other five algorithms. How-
ever, this work does not consider hyperparameter optimization
(HPO) and the performance of different ML algorithms with
sub-optimal solutions can not be compared. The reason is that
the results may not be reliable: an algorithm that appears
superior under sub-optimal conditions might perform worse
than other methods when hyperparameters are properly opti-
mized. Therefore, hyperparameter optimization should be im-
plemented before comparing the performance of different ML
algorithms. In [13], bagged ANN and boosted ANN is used for
STLF. This reduces the bias and variance thereby improving
the forecasting accuracy. The method uses resampled subsets
of the training data which is fed into several ANN models
simultaneously. Then, the evaluated loads are averaged for
the final predicted load. However, the time required for the
execution would be significantly higher when running several
ANN algorithms simultaneously thereby reducing the time
efficiency. A modified mutual information (MMI) for pre-
processing of the dataset and feature selection was used in
LF in [14]. The module used to train and forecast relies on
factored conditional restricted Boltzmann machine (FCRBM)
model (DL model). The module used to optimize relies on a
genetic wind-driven (GWDO) algorithm. The proposed hybrid
model uses the advantages of every model thereby enhancing
system accuracy. Even though the accuracy is better than the
four benchmark models, the important factors like price is not
considered. A new probabilistic LF approach that integrates
quantile regression (QR) and hybrid model thereby enhancing
the reliability of smart grids is used in [15]. A combined
probabilistic forecasting model (CPFM) is also applied. The
performance is better than a single forecast model. However,
computational complexity increased significantly. Addition-
ally, the data distribution information is not considered. More-
over, weather parameters, energy market parameters, and time
are not taken into account.

The work in this paper overcomes the drawback of the
previous works by the following contribution:

« Developing a DNN model for LF that implements HPO
in a broad range of hyperparameters.

o Considering the electricity price, weather factors, and
time factors that affect load demand in the proposed DNN
model to improve the LF accuracy.

DL algorithm will be implemented in Python. Electricity
price, humidity, wet bulb, dew point, dry bulb, DoM, DoW,
month, year, and ToD are used as input features, and system
load as the target value or the output of the model. Addition-
ally, HPO is also implemented which significantly improves
the performance of forecasting. The data from the Electrical
Reliability Council of Texas (ERCOT) is used to validate the
proposed approach [16].

This paper includes five sections. Section II details load
forecasting using deep learning. Section III explains load
forecasting methodology. Section IV presents the simulation

and result. Finally, section V addresses the conclusion.

II. LOAD FORECASTING USING DEEP LEARNING

A DNN architecture is depicted in Fig. 1. The DNN has
d input features and ¢ output values. The neurons in each
hidden layer can be varied as needed. In this research, the
DL-assisted LF model has one neuron at the output layer as
we are forecasting the system load only. The four key elements
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Fig. 1: A general architecture of DNN with two hidden layers.

of DL include:

A. Neural Networks

NNs are composed of interconnected nodes organized in
layers. Every node implements a mathematical computation
using the inputs and provides the outcome to next layer. The
input layer of NN will take the input features. Number of
neurons on input layer will be equal to the dimension of the
input feature. The variables that affect the electrical load will
be fed through the input layer. In the proposed model, the
variables include electricity price, humidity, wet bulb, dew
point, dry bulb, DoM, DoW, month, year, and ToD. The output
layer, particularly in this work, will have a neuron which will
provide a forecasted electrical load as output.

B. Activation Functions

Activation functions introduce non-linearities into the net-
work, enabling it to acquire complicated structures in the data.
They include several types like rectified linear unit (ReLU),
hyperbolic tangent function (tanh), and sigmoid function. In
this research, sigmoid activation function is selected due to its
differentiability and bounded output, which helps with con-
vergence during training. Additionally, the sigmoid function
introduces non-linearity to the model, enabling the NN to
learn complicated patterns present in various input factors such
as electricity price, humidity, wet bulb, dew point, dry bulb,
DoM, DoW, month, year, and ToD, along with output system
load. This helps to enhance the correctness of the LF. The
graph of the sigmoid function is depicted in Fig. 2 and the
mathematical expression is shown below.
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Fig. 2: Plot of sigmoid activation function.

C. Loss Functions

Loss functions calculate difference between evaluated sys-
tem load and actual system load, leading the learning mech-
anism during training process. Loss functions or objective
functions such as mean squared error (MSE), mean absolute
error (MAE), and R? score are commonly used for regression
problems. The R? score is a metric for measuring how well
the evaluated values from a model match the actual values
[17]. These functions are mathematically represented in the
following expressions.
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where, n represents the count of total samples, y; indicates
actual value of target variable for ith data, 7; indicates
evaluated value of target variable for ith data, and 4 denotes
mean of actual values.

The loss function is used to measure how close the fore-
casted system load is to the actual system load. MSE, MAE,
and R? score are evaluated before and after HPO and the val-
ues are presented. The R? score value is used for comparison
and interpretation because of its simplicity.

R*=1- (4)

D. Optimization Algorithms

Optimization algorithms adjust the parameters of the NN
to minimize the loss function, typically using techniques
like stochastic gradient descent (SGD) and Adam optimizer.
Adam optimizer is used for optimization because it tends
to converge faster than traditional SGD with momentum.
Additionally, Adam adjusts the learning rate individually for
every parameter using estimates of 1% and 2"¢ moments of
gradients. This capability allows Adam to automatically adjust

the learning rate during training, leading to more stable and
efficient convergence, thereby enhancing the performance of
the load forecast.

The next section will explain the load forecasting method-
ology used in this research.

III. LOAD FORECASTING METHODOLOGY

Flowchart of proposed DL approach is represented in Fig.
3. Initially, ERCOT system data [16] was imported and ex-
ploratory data analysis (EDA) was performed. EDA helps to
improve the accuracy of load forecast by helping to remove
outliers. Then, data preprocessing was implemented to stan-
dardize the dataset. This is important to ensure all features
such as electricity price, humidity, wet bulb, dew point, dry
bulb, DoM, DoW, month, year, and ToD contribute equally
to the LF model. Therefore, data preprocessing is pivotal to
enhance the accuracy of LF. Then, dataset is separated into
training and test sets. The dataset is then converted to a tensor.
Furthermore, the training dataset is fed to DL model with
default hyperparameters and performance evaluation was per-
formed in test data. HPO is performed and model evaluation
is performed after running the DL model. Finally, the result
of the electrical load forecasted by the proposed DL method
before and after HPO are compared. The process is elaborated
further in the subsequent sections.
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Fig. 3: Block diagram of the proposed DL approach.

A. Test and training data preprocessing

The data used for this research underwent exploratory data
analysis (EDA), which involved handling the missing values
and data visualization to check the outliers. It is then divided
into train and test datasets in a proportion of 8/2. Furthermore,
standardization was applied to both training and test sets.
Standardization helped to remove the mean and scale the data



to unit variance. As a result, the standardized dataset will have
0 as mean and 1 as variance, thereby ensuring that all features
contribute uniformly to the LF model.

B. Model architecture design for ANN

ANN with three hidden layers was used for this research.
Ten neurons are used at the input layer as the dataset has
ten features. The sigmoid activation function was applied
in hidden layers. One output neuron present at output layer
gives the forecasted output in each iteration. To augment the
performance of the proposed method, the Bayesian hyperpa-
rameter optimization technique was implemented to optimize
the epoch, learning rate, and number of neurons in three hidden
layers.

C. Training ANN model

Batch size indicates the number of samples used for every
gradient update. A batch size of 64 is chosen in this research
for its balance between memory efficiency, training stability,
and computation speed. 80% of total dataset is used while
training the LF model. During training through backpropaga-
tion, the weights associated with each neuron and biases are
updated after every iteration. After completion of the training
process, the model runs on forward pass during which the
weight and biases do not change. The learning curve in Fig. 4
depicts the MSE loss during training and validation process.

D. Model evaluation on the test dataset

The remaining 20% of the data split during preprocessing
step is utilized as a test dataset for evaluating the model’s
performance. The Fig. 5 presents the scatter diagram of the
actual system load values versus forecasted system load values
before HPO. The Fig. 6 depicts the scatter plot of actual system
load values versus forecasted system load values after HPO.
In the scatter plot after HPO, the average distance from data
points to the dotted red line has decreased compared to the
plot before HPO. Therefore, HPO has increased the accuracy
of the prediction. However, the plot depicts that not all the
points are exactly on the red dotted line. This signifies that
there are some errors in the prediction. If all the forecasted
values are exactly equal to the target value, the R? score would
be equal to 1.

The Fig. 7 shows the plot of 100 samples of actual system
load values and predicted system load values before HPO and
Fig. 8 depicts 100 samples of actual system load values and
predicted system load values after HPO. There are 17530 test
data values but only first 100 samples among those values
were plotted for a better visualization.

IV. SIMULATION AND RESULT
A. Dataset Description

The dataset contains eleven features such as electricity price,
humidity, wet bulb, dew point, dry bulb, DoM, DoW, month,
year, ToD, and system load. The first ten features are used as
input features and the system load is used as the target variable
which is to be predicted in this research. These features are

utilized as inputs to the proposed model for forecasting system
load. The dataset contains 87648 samples of data and the target
system load from 2006 to 2010 [16]. The statistics of the
dataset is listed in Tables I and II.

TABLE I: Statistics of Environmental Variables

DryBulb DewPnt WetBulb Humidity ElecPrice

Count 87648 87648 87648 87648 87648
Mean 18.26 11.92 14.88 68.9 42.4
Std 4.89 5.47 4.29 16.86 215.64
Min 3.7 -8.4 2.5 7 -264.31
25% 14.7 8 11.6 58 21.8
50% 18.5 12.45 15.1 70 25.81
75% 21.8 16.35 18.4 82.5 36.94
Max 43.8 242 26.3 100 10000

TABLE II: Statistics of Time and Load Variables

Day DoM DoW Month Year ToD Load
Count 87648 87648 87648 87648 87648 87648 87648
Mean 913.52 15.73 3 6.52 2008 705 8894
Std 527.12 8.8 2 345 141 415.6 1409.05
Min 1 1 0 1 2006 0 5498.36
25% 457 8 1 4 2007 3525 7879.67
50% 914 16 3 7 2008 705  8992.58
75% 1370 23 5 10 2009 1057.5 9832.85
Max 1827 31 6 12 2011 1410 14274.15

B. Experimental Setup

Python is used for programming due to the availability of
crucial libraries, for instance, numpy, pandas, sklearn, and
matplotlib. The dataset was imported from a csv file and
divided into train and test datasets. DNN with three hidden
layers is used in this research to reduce the model complexity
and time of execution. The model performance was calculated
utilizing three metrics MSE, MAE and, R? score.

In the program, data is separated into the training and
test data in proportion of 8/2 which works as an outer loop
for model evaluation. Hyperparameter tuning is performed on
training folds, whereas the validation fold is used to calculate
the accuracy of the DNN model with the selected hyperpa-
rameters. A total 100 number of iterations were performed
for Bayesian Optimization. We have defined a function called
DeepNeuralNetwork, which takes the learning rate, hidden
layer one size, hidden layer two size, hidden layer three size,
and epochs as the arguments. We have provided 0.001, 128, 64,
32, and 20 as default values before implementing the Bayesian
optimization process to check the model’s performance before
HPO.

C. Results

The MSE, MAE and, R? score were evaluated before and
after implementing the HPO to access the model performance.
The MSE, MAE and, R? score before and after using HPO
are listed in Table III. There has been a considerable increase
in the model’s performance after HPO which is indicated by
the performance metrics.
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Table IV contains the hyperparameters range defined and
tuned values. Randomly selecting hyperparameter values and
running the model repeatedly is not scientific and may not be
feasible for a large range of hyperparameters. The R? score

improved from 0.9198 for default hyperparameter to 0.9838
for the optimized value of hyperparameters. This indicates
that HPO is crucial and can enhance the model performance
significantly. However, using the HPO algorithm can lead to
longer execution time and may fail to identify the optimal

solution if the defined range for hyperparameters is excessively
broad.
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TABLE III: Performance metrics values before and after HPO.

Performance metrics before HPO after HPO
MSE 161161.0005 32546.6836
MAE 298.0643 132.9852
R? Score 0.9198 0.9838

The improvement of prediction accuracy of the LF can be
observed from Fig. 7 and Fig. 8. The enhancement in system
load prediction accuracy in Fig. 8 is due to the implementation
of HPO. By incorporating all significant factors such as dry



TABLE IV: Hyperparameter values.

Hyperparameters Range defined Tuned value
Hidden layer1 size (8, 256) 165

Hidden layer2 size (8, 128) 99

Hidden layer3 size (8, 128) 55

Number of epochs (10, 110) 97

Learning rate (le-5, le-1) 0.0088

bulb, dew point, wet bulb, humidity, DoM, DoW, month,
year, and ToD during model training, we have enhanced
the practicality and reliability of the load forecast model.
The major factors that can affect electricity demand are
considered, enabling the proposed DNN method to correctly
learn the relationship of input features with the system load.
This enhancement contributes to the overall reliability of the
LF. Additionally, the implementation of HPO has ensured
that the results are optimized across the defined range of
hyperparameters.

V. CONCLUSION

This paper implemented a DL approach for STLF using
weather, time, and cost factors along with the application of
HPO algorithm. HPO technique is implemented to acquire the
optimized hyperparameters to improve the effectiveness of the
LF model. Consideration of all the major factors affecting
the system load makes this method more reliable. The work
has proved that using weather factors, electricity price, and
time factors along with implementing HPO makes forecasting
more realistic and pragmatic for real-world electrical LF
applications. The result indicates that the proposed DNN-based
STLF model has a robust generalizing capability and it has
an excellent forecasting performance. This method helps the
system operator for efficient planning as well as execution
of the power grid because of the reliable and accurate LF.
Additionally, the operation and maintenance cost of the system
can also be reduced significantly considering the advantages
of the proposed method.
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