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Abstract—Accurate load forecasting is crucial in ensuring
efficient, reliable, and cost-effective planning and execution of
the power grids. The uncertain characteristic of consumers as
well as the increasing distributed generation units makes precise
load forecasting an increasingly challenging task. Additionally,
due to the complex nonlinear relationship of electric load with
weather factors, advanced load forecasting models are necessary
to accommodate the fast-changing nature of power grids. This
research proposes an improved model for short-term load fore-
casting using deep learning. Important factors like electricity
price, dew point, dry bulb, wet bulb, humidity, day of month,
day of week, year, and time of day will be included in the
model. First, a deep neural network is implemented with default
hyperparameters. Then, hyperparameter optimization is applied,
during which the model searches for the optimal combination of
hyperparameters within the defined range. Finally, the model is
run with the optimized hyperparameter values to predict the load.
The proposed method is implemented on the Electrical Reliability
Council of Texas system to validate its accuracy. The results
show a significant improvement in system performance after
hyperparameter optimization while considering diverse impact
factors.

Index Terms—Artificial neural network, deep learning, hyper-
parameter optimization, load forecasting.

I. INTRODUCTION

Load forecasting (LF) is pivotal in power systems due

to its impact on efficient energy management and planning

[1]. There are three types of LF: long-term load forecasting

(LTLF), mid-term load forecasting (MTLF) and short-term

load forecasting (STLF). STLF covers LF from one hour

to a few weeks. It is utilized in fields like real-time con-

trol, economic dispatch, and load management [2]. MTLF

is generally applied for a time frame from 1 month to 5

years while LTLF is used for a time frame of 5 years to 20

years. LTLF is applied for planning the generation by capacity

and type to satisfy future demand and cost efficiency [3].

Accuracy of LF has a considerable effect on system expenses

[4]. The advantages of accurate LF include the reduction of

operation as well as maintenance costs, enhancement of power

system reliability, and improvement in planning and decision

making for power dispatch. Overestimation of load causes an

increase in the reserve capacity, which might not be necessary,

thereby increasing operation and installation costs. Similarly,

underestimation of electrical load causes a failure to supply

the needed spinning and standby reserve, potentially leading

to stability issues on voltage and frequency, and even collapse

of the power system in extreme cases [5].

To cope with the energy transition to a carbon-neutral

system, advanced techniques need to be developed to keep

the grid stable with reliable energy supply [6]. However, due

to this transition, additional challenges regarding voltage and

frequency control, intermittency, and variability have emerged,

thereby reducing the system stability and complicating the

working mechanism of the power grid. Therefore, it is im-

portant to have a precise load forecast to help make the right

decisions on the usage of electricity which in turn improves

the system stability and reliability.

Deep learning (DL) has been getting a lot of attention re-

cently in electrical LF. Due to the ability to handle complicated

and non-linear equations, DL is being implemented widely

in power system operation and planning [7]. Compared to

artificial neural networks (ANNs), DL systems have more than

one hidden layer making them capable of learning complex

patterns and skills. However, as DL models are composed of

more layers than ANN, more data is needed to train the DL

model to acquire better results [8]. DL has been used in STLF

to increase the accuracy of load forecasts [1].

According to [9], various factors affect the load demand like

weather conditions, electricity price, day of month (DoM), day

of week (DoW), and time of day (ToD). To improve accuracy

of load forecast, all factors affecting the load demand needs

to be considered while training the DL model.

DL application in LF has been developed intensively with

diverse algorithms. The authors in [10] present the LF imple-

menting long short-term memory (LSTM) algorithm in two

architectures: standard LSTM and LSTM based sequence to

sequence algorithm. LSTM algorithm overcomes the issue

of diminishing gradient existing in recurrent neural network

(RNN) by regulating the flow of gradient through the gates and

the memory cells. RNN is generally trained using backpropa-

gation or a real-time recurrent algorithm. Despite resolving

the problem of vanishing gradient, the LSTM model was

trained using only 120 hours of data, which may be insufficient

to adequately capture the full range of input features. For

instance, there will be less variation in temperature and other

factors in such a short amount of time. Therefore, the model

may not perform well when the weather factors are extreme

[11]. STLF using deep neural network (DNN) is compared

with five different ML algorithms: Multi-Layer Perceptron

(MLP) and LSTM, Decision Tree (DT), Random Forest (RF),

Support Vector Machine (SVM), to show its superiority in

[12]. The proposed method implements LSTM architecture



using a convolutional neural network (CNN) algorithm. Mean

absolute percentage error (MAPE) for proposed DNN method

is asserted to be better than the other five algorithms. How-

ever, this work does not consider hyperparameter optimization

(HPO) and the performance of different ML algorithms with

sub-optimal solutions can not be compared. The reason is that

the results may not be reliable: an algorithm that appears

superior under sub-optimal conditions might perform worse

than other methods when hyperparameters are properly opti-

mized. Therefore, hyperparameter optimization should be im-

plemented before comparing the performance of different ML

algorithms. In [13], bagged ANN and boosted ANN is used for

STLF. This reduces the bias and variance thereby improving

the forecasting accuracy. The method uses resampled subsets

of the training data which is fed into several ANN models

simultaneously. Then, the evaluated loads are averaged for

the final predicted load. However, the time required for the

execution would be significantly higher when running several

ANN algorithms simultaneously thereby reducing the time

efficiency. A modified mutual information (MMI) for pre-

processing of the dataset and feature selection was used in

LF in [14]. The module used to train and forecast relies on

factored conditional restricted Boltzmann machine (FCRBM)

model (DL model). The module used to optimize relies on a

genetic wind-driven (GWDO) algorithm. The proposed hybrid

model uses the advantages of every model thereby enhancing

system accuracy. Even though the accuracy is better than the

four benchmark models, the important factors like price is not

considered. A new probabilistic LF approach that integrates

quantile regression (QR) and hybrid model thereby enhancing

the reliability of smart grids is used in [15]. A combined

probabilistic forecasting model (CPFM) is also applied. The

performance is better than a single forecast model. However,

computational complexity increased significantly. Addition-

ally, the data distribution information is not considered. More-

over, weather parameters, energy market parameters, and time

are not taken into account.

The work in this paper overcomes the drawback of the

previous works by the following contribution:

• Developing a DNN model for LF that implements HPO

in a broad range of hyperparameters.

• Considering the electricity price, weather factors, and

time factors that affect load demand in the proposed DNN

model to improve the LF accuracy.

DL algorithm will be implemented in Python. Electricity

price, humidity, wet bulb, dew point, dry bulb, DoM, DoW,

month, year, and ToD are used as input features, and system

load as the target value or the output of the model. Addition-

ally, HPO is also implemented which significantly improves

the performance of forecasting. The data from the Electrical

Reliability Council of Texas (ERCOT) is used to validate the

proposed approach [16].

This paper includes five sections. Section II details load

forecasting using deep learning. Section III explains load

forecasting methodology. Section IV presents the simulation

and result. Finally, section V addresses the conclusion.

II. LOAD FORECASTING USING DEEP LEARNING

A DNN architecture is depicted in Fig. 1. The DNN has

d input features and c output values. The neurons in each

hidden layer can be varied as needed. In this research, the

DL-assisted LF model has one neuron at the output layer as

we are forecasting the system load only. The four key elements

Fig. 1: A general architecture of DNN with two hidden layers.

of DL include:

A. Neural Networks

NNs are composed of interconnected nodes organized in

layers. Every node implements a mathematical computation

using the inputs and provides the outcome to next layer. The

input layer of NN will take the input features. Number of

neurons on input layer will be equal to the dimension of the

input feature. The variables that affect the electrical load will

be fed through the input layer. In the proposed model, the

variables include electricity price, humidity, wet bulb, dew

point, dry bulb, DoM, DoW, month, year, and ToD. The output

layer, particularly in this work, will have a neuron which will

provide a forecasted electrical load as output.

B. Activation Functions

Activation functions introduce non-linearities into the net-

work, enabling it to acquire complicated structures in the data.

They include several types like rectified linear unit (ReLU),

hyperbolic tangent function (tanh), and sigmoid function. In

this research, sigmoid activation function is selected due to its

differentiability and bounded output, which helps with con-

vergence during training. Additionally, the sigmoid function

introduces non-linearity to the model, enabling the NN to

learn complicated patterns present in various input factors such

as electricity price, humidity, wet bulb, dew point, dry bulb,

DoM, DoW, month, year, and ToD, along with output system

load. This helps to enhance the correctness of the LF. The

graph of the sigmoid function is depicted in Fig. 2 and the

mathematical expression is shown below.

σ(x) =
1

1 + e−x
(1)



Fig. 2: Plot of sigmoid activation function.

C. Loss Functions

Loss functions calculate difference between evaluated sys-

tem load and actual system load, leading the learning mech-

anism during training process. Loss functions or objective

functions such as mean squared error (MSE), mean absolute

error (MAE), and R2 score are commonly used for regression

problems. The R2 score is a metric for measuring how well

the evaluated values from a model match the actual values

[17]. These functions are mathematically represented in the

following expressions.

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 (2)

MAE =
1

n

n∑

i=1

|yi − ŷi| (3)

R2 = 1−

∑
n

i=1
(yi − ŷi)

2

∑
n

i=1
(yi − ȳ)2

(4)

where, n represents the count of total samples, yi indicates

actual value of target variable for ith data, ŷi indicates

evaluated value of target variable for ith data, and ȳ denotes

mean of actual values.

The loss function is used to measure how close the fore-

casted system load is to the actual system load. MSE, MAE,

and R2 score are evaluated before and after HPO and the val-

ues are presented. The R2 score value is used for comparison

and interpretation because of its simplicity.

D. Optimization Algorithms

Optimization algorithms adjust the parameters of the NN

to minimize the loss function, typically using techniques

like stochastic gradient descent (SGD) and Adam optimizer.

Adam optimizer is used for optimization because it tends

to converge faster than traditional SGD with momentum.

Additionally, Adam adjusts the learning rate individually for

every parameter using estimates of 1st and 2nd moments of

gradients. This capability allows Adam to automatically adjust

the learning rate during training, leading to more stable and

efficient convergence, thereby enhancing the performance of

the load forecast.

The next section will explain the load forecasting method-

ology used in this research.

III. LOAD FORECASTING METHODOLOGY

Flowchart of proposed DL approach is represented in Fig.

3. Initially, ERCOT system data [16] was imported and ex-

ploratory data analysis (EDA) was performed. EDA helps to

improve the accuracy of load forecast by helping to remove

outliers. Then, data preprocessing was implemented to stan-

dardize the dataset. This is important to ensure all features

such as electricity price, humidity, wet bulb, dew point, dry

bulb, DoM, DoW, month, year, and ToD contribute equally

to the LF model. Therefore, data preprocessing is pivotal to

enhance the accuracy of LF. Then, dataset is separated into

training and test sets. The dataset is then converted to a tensor.

Furthermore, the training dataset is fed to DL model with

default hyperparameters and performance evaluation was per-

formed in test data. HPO is performed and model evaluation

is performed after running the DL model. Finally, the result

of the electrical load forecasted by the proposed DL method

before and after HPO are compared. The process is elaborated

further in the subsequent sections.

Fig. 3: Block diagram of the proposed DL approach.

A. Test and training data preprocessing

The data used for this research underwent exploratory data

analysis (EDA), which involved handling the missing values

and data visualization to check the outliers. It is then divided

into train and test datasets in a proportion of 8/2. Furthermore,

standardization was applied to both training and test sets.

Standardization helped to remove the mean and scale the data



to unit variance. As a result, the standardized dataset will have

0 as mean and 1 as variance, thereby ensuring that all features

contribute uniformly to the LF model.

B. Model architecture design for ANN

ANN with three hidden layers was used for this research.

Ten neurons are used at the input layer as the dataset has

ten features. The sigmoid activation function was applied

in hidden layers. One output neuron present at output layer

gives the forecasted output in each iteration. To augment the

performance of the proposed method, the Bayesian hyperpa-

rameter optimization technique was implemented to optimize

the epoch, learning rate, and number of neurons in three hidden

layers.

C. Training ANN model

Batch size indicates the number of samples used for every

gradient update. A batch size of 64 is chosen in this research

for its balance between memory efficiency, training stability,

and computation speed. 80% of total dataset is used while

training the LF model. During training through backpropaga-

tion, the weights associated with each neuron and biases are

updated after every iteration. After completion of the training

process, the model runs on forward pass during which the

weight and biases do not change. The learning curve in Fig. 4

depicts the MSE loss during training and validation process.

D. Model evaluation on the test dataset

The remaining 20% of the data split during preprocessing

step is utilized as a test dataset for evaluating the model’s

performance. The Fig. 5 presents the scatter diagram of the

actual system load values versus forecasted system load values

before HPO. The Fig. 6 depicts the scatter plot of actual system

load values versus forecasted system load values after HPO.

In the scatter plot after HPO, the average distance from data

points to the dotted red line has decreased compared to the

plot before HPO. Therefore, HPO has increased the accuracy

of the prediction. However, the plot depicts that not all the

points are exactly on the red dotted line. This signifies that

there are some errors in the prediction. If all the forecasted

values are exactly equal to the target value, the R2 score would

be equal to 1.

The Fig. 7 shows the plot of 100 samples of actual system

load values and predicted system load values before HPO and

Fig. 8 depicts 100 samples of actual system load values and

predicted system load values after HPO. There are 17530 test

data values but only first 100 samples among those values

were plotted for a better visualization.

IV. SIMULATION AND RESULT

A. Dataset Description

The dataset contains eleven features such as electricity price,

humidity, wet bulb, dew point, dry bulb, DoM, DoW, month,

year, ToD, and system load. The first ten features are used as

input features and the system load is used as the target variable

which is to be predicted in this research. These features are

utilized as inputs to the proposed model for forecasting system

load. The dataset contains 87648 samples of data and the target

system load from 2006 to 2010 [16]. The statistics of the

dataset is listed in Tables I and II.

TABLE I: Statistics of Environmental Variables

DryBulb DewPnt WetBulb Humidity ElecPrice

Count 87648 87648 87648 87648 87648
Mean 18.26 11.92 14.88 68.9 42.4
Std 4.89 5.47 4.29 16.86 215.64
Min 3.7 -8.4 2.5 7 -264.31
25% 14.7 8 11.6 58 21.8
50% 18.5 12.45 15.1 70 25.81
75% 21.8 16.35 18.4 82.5 36.94
Max 43.8 24.2 26.3 100 10000

TABLE II: Statistics of Time and Load Variables

Day DoM DoW Month Year ToD Load

Count 87648 87648 87648 87648 87648 87648 87648
Mean 913.52 15.73 3 6.52 2008 705 8894
Std 527.12 8.8 2 3.45 1.41 415.6 1409.05
Min 1 1 0 1 2006 0 5498.36
25% 457 8 1 4 2007 352.5 7879.67
50% 914 16 3 7 2008 705 8992.58
75% 1370 23 5 10 2009 1057.5 9832.85
Max 1827 31 6 12 2011 1410 14274.15

B. Experimental Setup

Python is used for programming due to the availability of

crucial libraries, for instance, numpy, pandas, sklearn, and

matplotlib. The dataset was imported from a csv file and

divided into train and test datasets. DNN with three hidden

layers is used in this research to reduce the model complexity

and time of execution. The model performance was calculated

utilizing three metrics MSE, MAE and, R2 score.

In the program, data is separated into the training and

test data in proportion of 8/2 which works as an outer loop

for model evaluation. Hyperparameter tuning is performed on

training folds, whereas the validation fold is used to calculate

the accuracy of the DNN model with the selected hyperpa-

rameters. A total 100 number of iterations were performed

for Bayesian Optimization. We have defined a function called

DeepNeuralNetwork, which takes the learning rate, hidden

layer one size, hidden layer two size, hidden layer three size,

and epochs as the arguments. We have provided 0.001, 128, 64,

32, and 20 as default values before implementing the Bayesian

optimization process to check the model’s performance before

HPO.

C. Results

The MSE, MAE and, R2 score were evaluated before and

after implementing the HPO to access the model performance.

The MSE, MAE and, R2 score before and after using HPO

are listed in Table III. There has been a considerable increase

in the model’s performance after HPO which is indicated by

the performance metrics.



Fig. 4: Learning Curve.

Fig. 5: Scatter plot of real versus forecasted system load before

HPO.

Fig. 6: Scatter plot of real versus forecasted system load after

HPO.

Table IV contains the hyperparameters range defined and

tuned values. Randomly selecting hyperparameter values and

running the model repeatedly is not scientific and may not be

feasible for a large range of hyperparameters. The R2 score

improved from 0.9198 for default hyperparameter to 0.9838

for the optimized value of hyperparameters. This indicates

that HPO is crucial and can enhance the model performance

significantly. However, using the HPO algorithm can lead to

longer execution time and may fail to identify the optimal

solution if the defined range for hyperparameters is excessively

broad.

Fig. 7: Line plot of 100 evaluated and 100 actual samples

before HPO.

Fig. 8: Line plot of 100 evaluated and 100 actual samples after

HPO.

TABLE III: Performance metrics values before and after HPO.

Performance metrics before HPO after HPO

MSE 161161.0005 32546.6836

MAE 298.0643 132.9852

R
2 Score 0.9198 0.9838

The improvement of prediction accuracy of the LF can be

observed from Fig. 7 and Fig. 8. The enhancement in system

load prediction accuracy in Fig. 8 is due to the implementation

of HPO. By incorporating all significant factors such as dry



TABLE IV: Hyperparameter values.

Hyperparameters Range defined Tuned value

Hidden layer1 size (8, 256) 165

Hidden layer2 size (8, 128) 99

Hidden layer3 size (8, 128) 55

Number of epochs (10, 110) 97

Learning rate (1e-5, 1e-1) 0.0088

bulb, dew point, wet bulb, humidity, DoM, DoW, month,

year, and ToD during model training, we have enhanced

the practicality and reliability of the load forecast model.

The major factors that can affect electricity demand are

considered, enabling the proposed DNN method to correctly

learn the relationship of input features with the system load.

This enhancement contributes to the overall reliability of the

LF. Additionally, the implementation of HPO has ensured

that the results are optimized across the defined range of

hyperparameters.

V. CONCLUSION

This paper implemented a DL approach for STLF using

weather, time, and cost factors along with the application of

HPO algorithm. HPO technique is implemented to acquire the

optimized hyperparameters to improve the effectiveness of the

LF model. Consideration of all the major factors affecting

the system load makes this method more reliable. The work

has proved that using weather factors, electricity price, and

time factors along with implementing HPO makes forecasting

more realistic and pragmatic for real-world electrical LF

applications. The result indicates that the proposed DNN-based

STLF model has a robust generalizing capability and it has

an excellent forecasting performance. This method helps the

system operator for efficient planning as well as execution

of the power grid because of the reliable and accurate LF.

Additionally, the operation and maintenance cost of the system

can also be reduced significantly considering the advantages

of the proposed method.
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