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Abstract— With increasing exposure to software-based sensing
and control, power electronics systems are facing higher risks of
cyber-physical attacks. To ensure system stability and minimize
potential economic losses, it is critical to monitor the operating
states and detect those attacks at the early stage. However,
anomaly detection and diagnosis of attacks are still challenging,
especially when labeled anomaly data is difficult or even infea-
sible to obtain. To overcome this problem, we propose a Few-
Shot Learning (FSL) based approach for cyber-attack diagnosis
leveraging the waveform data. To the best of our knowledge,
this work is the first attempt at leveraging FSL for cyber-attack
diagnosis in power electronics systems. Extensive experimental
results demonstrate that our proposed approach can achieve
comparable diagnosis accuracy with the state-of-the-art data-
driven methods using less than 0.04% of the training samples.

Index Terms—Few-shot learning, power system, cyber-attack,
attack diagnosis, siamese neural network, deep learning

I. INTRODUCTION

With the booming popularity of the Internet in modern soci-
ety, a huge amount of devices are connected through networks,
and the security of cyberspace has drawn great attention at
present, including the area of power systems. A variety of data-
driven methods have been widely adopted for attack and event
detection in power electronics-based smart grids, including
rule-based data-driven analytics [1] and signal-property-based
approach [2]. In particular, there is proven success in adopting
machine learning and deep learning methods for enhanced
performance [3], [4]. For instance, the multilayer long short-
term memory networks have been used to leverage time-series
electric waveform data from current and voltage sensors for
attack detection [5]. Zhao et al [6] proposed a novel privacy-
preserving decentralized detection framework incorporating
federated learning (FL) that enables collaboratively training
across devices without sharing raw data.

However, the performance of those methods is highly de-
pendent on the data domain. First, a huge volume of the
training dataset is required to feed the model that may not
be available in practical applications, especially for anomaly
or attacked cases. Second, for model adaptation with new data,
retraining the entire model is needed, which is time-consuming
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and not suitable for time-sensitive and resource-constrained
applications. Moreover, in the scenario of cyber-attack de-
tection and diagnosis in the power system, labeled attacked
data is usually difficult or even infeasible to obtain, and it
is common that new types of attacks occur constantly due
to the dynamics of the cyberspace environment. For instance,
zero-day attacks launch on the day when a vulnerability is
discovered [7]. The versatility of the environment makes it
challenging to guarantee cyber-attack diagnosis performance
as the data-driven model needs to adapt quickly to new attacks.

To address the issues above, we aim to close this gap by

developing a Few-Shot Learning (FSL) based paradigm that
can accurately detect cyber-attacks using only a few labeled
samples in power electronics systems, and quickly adapt to
new unseen attacks. In the literature, FSL is mainly focused on
supervised learning problems such as few-shot classification
for image classification [8], and object recognition [9] when
very limited labeled data is available. However, there is little
research using FSL on power electronics system applications.
Based on our previous work [5], [10], [11] that successfully
used data-driven approaches for cyber-attack detection in
power systems, we further adopt FSL for attack diagnosis in
power electronics systems in this work.

The contributions of this work are summarized as follows:

1) This is the first work of data-driven methods for attack
detection in power electronics that considers the con-
straint of limited labeled data and addresses the newly
identified category of unseen attacked data.

2) We developed a novel FSL-based diagnosis framework
that requires only a few labeled samples and can quickly
adapt to a dynamic environment with unseen attacks.

3) Extensive experiments are conducted to validate the
suitability and efficiency of the proposed method in
diagnosing cyber-attacks in solar farm case studies.

II. SYSTEM AND ATTACK MODEL
A. System Modeling

To explore the cyber-attack in the power system, we specif-
ically simulated a solar farm system and proposed the cyber-
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Power grid

Fig. 1. Schematic diagram of the PV farm Simulink model. An attacker
is able to launch cyber-attacks between the controller and DC/DC converter
or DC/AC inverter. The WMU is installed between the transformer and the
power grid, which monitors the raw waveform data.
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Fig. 2. Two-stage two-level PV converter circuit.

attack model to generate the dataset based on the same setting
as our previous work [5]. Fig. 1 shows the schematic diagram
of our solar farm Simulink model. Fig. 2 illustrates one
converter circuit as an example. The main power grid is
modeled as an ideal voltage source, and the load is linear. One
rate voltage of 260V /25kV, 400kVA, transformer connects
the PV farm to the power grid. Note that we are mainly
focusing on the scenario in which a cyber-attack occurs on the
DC/DC converters and DC/AC inverters, which would bring
in unusual harmonics and then affect the power quality in the
power systems. In addition, the waveform measurement unit
(WMU) is installed between the transformer and the power
grid. It monitors changes in the characteristics of the power
system when the DC/AC inverter and DC/DC converter are

under attack.
B. Attack Model

We proposed the following cyber-attack model:

YF(t) = aYO(t - tdelay) + 8, (1)
where Y7 is the manipulated data vector that is the input
of the controller; Yy is the original measurement; « is a
multiplicative factor matrix that defines the weight of the
attack vector; [ is a multiplicative factor that defines the
weight of the real vector; t4e1qy is the delay time injection.
Our cyber-attack models effectively reflect real-world cyber
threats. Validation through hardware experiments and existing
literature ensures that our models align with actual cyber-
attacks observed in similar systems. Fig 3 shows an example
of a DC/AC inverter attack from our PV system. Nevertheless,
our simulation results demonstrate that cyber-attacks could
also result in subtle distortions, which makes detection and
diagnosis tougher. To obtain an accurate model, we have
simulated the following three cases: 1) Normal condition. 2)
False data injection attack on the PV converter controller. 3)
Delay attack on PV converter. With the variation of irradiation
levels and attack parameters, we end up with 9 cases in total.
The details will be discussed in IV-A.
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Fig. 3. Electric waveforms (voltage and current) simulations of a DC/AC
inverter attack example from our PV system.

III. ALGORITHM DESIGN
A. Online Dynamic Attack Diagnosis

To address the concerns outlined in Section I and tackle the
challenge of learning from a limited number of samples, we
propose an online dynamic attack diagnosis approach based on
FSL [12]. The fundamental concept behind FSL is to train a
model that can learn the similarity between two input samples.

During the model prediction stage, the FSL model is pre-
sented with a classification task denoted as 7', along with a
dataset D = {Dguery, Dsupport }- The support set Dgypport
comprises candidate data samples and their corresponding
labels, represented as {(x;,y;)}._,, with I indicating the small
size of the support set (usually fewer than 10). The query
set, denoted by D¢y, comprises data instances that need
to be classified. These are symbolized as {(x])}jzl where J
signifies the total number of queries. The FSL model computes
the similarity between the data samples in the query set and
those in the support set. Subsequently, it assigns the query data
to the class of the most similar candidate within the support
set. Conventionally, one considers the [N-way-K -shot setting
[12], in which Dgypport contains I = KN examples from N
classes each with K candidate data samples.

During the training stage, the parameter 6 of the model is
optimized to minimize the error across training data, where
the error is defined by the loss function such as contrastive
loss, and triplet loss [13]:

>

(("LL 7yi)7(xj sYj ))EDM‘ain

0y = arg min (Wi, 25500), ), (2)

where h denotes the FSL model, Dy, denotes the training
set, § represents whether y; and 3, belong to the same
category, and ¢ is the loss function. The loss function aims
to maximize the proximity of data instances belonging to
the same class in the feature space, while simultaneously en-
couraging a clear separation between instances from different
classes. It is noteworthy that the FSL model has never been
exposed to either the support set or the query set during
training. Additionally, the model has not encountered any
specific classes represented by the query set. This highlights
a notable advantage of the FSL model over conventional
learning approaches: the ability to classify new data classes
with limited samples, without the need for retraining.

Fig 4 illustrates the workflow of our proposed online cyber-
attack diagnosis framework. Two FSL models are trained: one
focuses on detection, while the other is dedicated to diagnosis.
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Fig. 4. Workflow of online dynamic attack diagnosis.

The FSL detection model serves as an online attack detector
to analyze the streaming data. Upon identifying an anomalous
data segment, the detection model promptly transfers it to the
FSL diagnosis model. The latter then diagnoses the attack
type. Explicitly, during diagnosis, each streaming data segment
is fed into the FSL model and compared with candidates in
the support set. If all comparison results exceed a predefined
threshold, the segment is identified and labeled as a new
attack type, prompting an update to the support set with this
new category. We developed the online diagnosis algorithm as
Algorithm 1.

Algorithm 1 Algorithm for Online Cyber-Attack Diagnosis
1: Function DIAGNOSEATTACK
Input:
th: a predefined threshold to determine attack categories.
sSet: the support set.

2: sScore + () > Similarity score initialization
3: while true do

4 dS + getNextDataSegment()

5: isAbnormal <+ DetectionFSL(dS)

6: if not isAbnormal then

7 continue

8 end if

9: for c € sSet do

10: sScore[c] + calculateSimilarity(dS, ¢)

11: end for

12: if min(sScore) < th then

13: return arg min(sScore)

14: else

15: newCategory < createNewCategory(dS)

16: addCategoryToSupportSet(newCategory, sSet)
17: return newCategory

18: end if

19: end while

B. Transferable Siamese Neural Network

The Siamese Neural Network (SNN) [14] is adopted to
implement the FSL model. Fig 5a shows the conventional
structure of SNN. Pairs of input are fed into the model that
shares the weights to train the feature embedding. All the
parameters in the dashed box are trainable. Once the network
is well-trained with the capability to capture the similarity
between two inputs, it will be able to predict new classes with
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Fig. 5. (a) conventional SNN arch(?t}ecture for implementing FSL, where all
parameters in the dotted box are trainable. (b) Proposed TSNN architecture
for implementing FSL. The embedding network acts as a frozen weights
backbone, which is transferred from the network for classification.

only a few samples stored in the support set. However, SNN is
trained on pairs of inputs, making the training more complex
and potentially time-consuming compared to traditional neural
networks, and the performance heavily relies on the chosen
similarity metric.

1) Network Architecture: To enhance the performance and
convergence efficiency, we modified the SNN and proposed
a Transferable Siamese Neural Network (TSNN) structure
shown as Fig 5b by utilizing Transfer Learning. The training
stages of our proposed TSNN architecture exhibit enhanced
convergence efficiency and faster training speed per epoch
due to the reduced number of trainable parameters resulting
from the application of Transfer Learning. Specifically, the
training of TSNN will be divided into two steps: (a) Em-
bedding network training. This step focuses on training the
embedding network, where a deep learning model is employed
to train a classifier using the available training data. This
training process continues until the classification results reach
an acceptable level, signifying that the model has acquired the
ability to effectively represent the distinct classes present in
the training data. Then the model of the embedding network
is saved for the next step. In our case, we use a Convolutional
Neural Network (CNN) with residual block thanks to its
remarkable classification performance. (b) Fine-tuning. In this
step, the pre-trained embedding network serves as a frozen
backbone for the SNN. The embedding output is connected to
trainable fully-connected layers.

2) Loss Function Design: We employ a proposed weighted
loss function 3 to optimize the training process:

L(zy,3) = (1 — a)L1(2}) + ala(z, 23), )

where L is the cross-entropy loss, ¢ indexes the ¢-th minibatch
of training data, « is the weight between O to 1, and Lo is the
contrastive loss function defined as:

Ly = (1=Y) ¢ a1 — ol + Y smax (0,m — [Jor = 22*)
4)
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TABLE I
F1-SCORE FOR THE 3, 7, 10-SHOTS ATTACK DETECTION

Support set 3-shots 7-shots 10-shots
attack 1 0.893 0.895 0.898
attack 2 0.901 0.912 0.920
attack 3 0.881 0.891 0.903
attack 4 0.875 0.881 0.897
attack 5 0.912 0.902 0.914
attack 6 0.852 0.869 0.885

where Y = 1 whenever x; and x5 are from the same class
and Y = 0 otherwise, and m, the margin value, determines
when the dissimilar classes are far enough apart. The initial
weights are drawn from a standard normal distribution, and
biases were drawn from a Gaussian with a mean of 0.5 and a
fixed variance of 1072.

IV. EXPERIMENTAL EVALUATION

In this section, we conducted experiments on two study
cases to evaluate our method’s performance. First, we analyze
its performance based on the model in Section II. Then, we
explore its adaptability in a more challenging case. Both cases
are detailed in Section IV-C1 and IV-C2, respectively.

A. Dataset

As discussed in Section II, the PV system is simulated in
MATLAB Simulink (2021a) and we assume a 6-dimensional
waveform data vector is sampled from WMU with a 20kHz
sampling rate. We conducted simulations for 9 cases, consider-
ing normal conditions along with a variety of attack parameters
and irradiation levels. Among them, there are 55,322 normal
cases. For cyber attacks 1 through 6, there are 390 cases each.
Additionally, there are 17,849 cases pertaining to fault 1 and
7,124 cases associated with fault 2. The normal, fault 1, and
fault 2 cases are used to train our FSL model.

B. Model Definition

We used CNN with residual block to train the embedding
(embedding layers in Fig. 5). Initially, the model employs a
1-dimensional convolution layer, batch normalization, a ReLU
activation function, and max-pooling. Sequentially connected,
six residual blocks follow, each comprising two sets of batch
normalization, ReLLU activation, dropout, and 1-dimensional
convolution layers, intertwined with a skip connection that
employs max-pooling for shape alignment. A flattening layer
subsequently precedes two fully connected layers, the final one
matching our number of classes, concluding the model struc-
ture. Thus, this structure effectively combines convolutional
layers’ feature extraction capabilities with residual blocks’
ability to leverage multi-layer feature representations, tailoring
itself as a potent model for the following classification. Due
to page constraints, the detailed structure is illustrated in [15].

C. Experiment Results

In this subsection, we delineate the findings from two case
studies conducted to evaluate the performance of our proposed
methodology.

1) Case Study One: We first validate the attack diagnosis
performance of the proposed FSL approach with various
shots (i.e. samples in the support set). Table I shows the
attack detection F; score for the 3-shots, 7-shots, 10-shots,
individually. The performance improves as the number of shots
in the support set increases, allowing for more candidate com-
parisons. Highlighting the advantages of FSL, we conducted
a comparison against prevalent machine learning and deep
learning methods, including Support Vector Machine (SVM),
Random Forest (RF), Convolutional Neural Network (CNN)
and Long Short-term Memory (LSTM). For the machine learn-
ing models, features such as magnitude, frequency, and phase
angle were extracted from the data segments. The comparative
experiments used six distinct training sizes (20%, 30%, 40%,
50%, 60%, 100%), focusing on both attack detection and
classification, as detailed in Table II. The table illustrates that
FSL surpasses all other methods when the training dataset is
relatively small, requiring only 30 samples for each attack type
in the support set. When the benchmarks are trained using the
complete dataset (100%), FSL, despite utilizing significantly
fewer samples, achieves results that are comparable to most
benchmarks. This observation shows the capability of our
method to adapt to unseen attacks with only a few examples
in the support set.

2) Case Study Two: In order to augment the rigor of
the experiment, we conducted an analysis of our method’s
performance using a new case study derived from our previous
work [16]. In this work, an online hardware-in-the-loop (HIL)
testbed using the OPAL-RT has been built for study on
power electronics converters (PECs)-enabled PV farms. The
monitoring system runs in real-time while using HIL as an
operational solar farm and a National Instruments (NI) data
acquisition card as the electric waveform sensor at the point of
coupling. Similarly, this work collects data from one PCC node
to identify the cyber-attacks and physical faults. The evaluation
encompassed various types of cyber-attacks, including denial
of service attacks, replay attacks, and fault data injection
attacks. Additionally, a normal scenario involving different
levels of solar irradiation was considered. The resulting dataset
consisted of a total of 91 cases, thereby introducing complexity
to the FSL process. In each case, 40 seconds of data samplings
of the PV farm are collected, where the sampling rate is 20
kHz. We arbitrarily choose 1 normal case (/N1) and 7 attack
cases (Al...A7) for building the training set and test set, and
another 5 cases (A8...A12) for building the support set and
query set. It is noted that the query set is unseen during all
training phases.

Table. III displays the attack detection F1 scores, precision
and recall for 3-shot, 7-shot, and 10-shot scenarios, further
highlighting FSL’s effectiveness in performing well with lim-
ited samples. To illustrate the advantages of our proposed
TSNN implementation for FSL, we also visualize the output
embeddings of both the SNN and TSNN models in a 2D space.
Figure 6 presents the distinct clustering results obtained from
the two implementations. Notably, the clustering results of the
TSNN implementation (Figure 6b) surpass those of the SNN
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F1 SCORE COMPARISON BETWEEN OUR FSL METHOD (30-SHOTS) AND OTHERS WITH SMALLER TRAINING SIZE (20%, 30%, 40 %, 50%, 60 % , 100 %)

TABLE II

Classification

0.535/°0.568/ 0.587/ 0.601/ 0.642/ 0.903
0.525/ 0.533/ 0.549/ 0.571/ 0.618/ 0.827
0.565/ 0.573/ 0.593/ 0.603/ 0.629/ 0.702
0.791/ 0.800/ 0.833/ 0.835/ 0.843/ 0.914
0.798/ 0.808/ 0.840/ 0.842/ 0.850/ 0.920

Detection
SVM 0.864/ 0.869/ 0.883/ 0.891/ 0.901/ 0.953
RF 0.623/ 0.655/ 0.678/ 0.682/ 0.707/ 0.861
KNN 0.579/ 0.593/ 0.628/ 0.631/ 0.637/ 0.789
LSTM 0.826/ 0.844/ 0.879/ 0.885/ 0.901/ 0.958
CNN 0.834/ 0.853/ 0.887/ 0.893/ 0.910/ 0.965
FSL (30-shots) 0.937

0.899

TABLE III
DETECTION ON STUDY CASE TWO (F1/ RECALL/ PRECISION)

Support set 3-shots 7-shots 10-shots
attack 8 0.895/ 0.900/ 0.890 0.805/ 0.850/ 0.765 0.824/ 0.880/ 0.775
attack 9 0.955/ 0.960/ 0.950 0.960/ 0.970/ 0.950 0.976/ 0.980/ 0.972
attack 10 0.835/ 0.860/ 0.811 0.945/ 0.950/ 0.940 0.998/ 0.999/ 0.997
attack 11 0.980/ 0.985/ 0.975 0.980/ 0.983/ 0.977 0.988/ 0.992/ 0.984
attack 12 0.960/ 0.975/ 0.945 0.904/ 0.920/ 0.889 0.932/ 0.940/ 0.924
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Fig. 6. Comparison‘a(,)f 2D clustering results between SNI{\?]implementation (a)
and our proposed TSNN implementation (b). The legend is shared between
the two subfigures. In the SNN implementation, triplet loss is employed, while
the proposed weighted loss function is utilized in the TSNN implementation.

implementation (Figure 6a). While the SNN can group samples
from the same class together, it struggles to effectively separate
them from samples belonging to different classes. Conversely,
the TSNN demonstrates improved performance by maintaining
both low coupling (distinct separation between classes) and
high cohesion (tight clustering of samples within each class).
This enhanced clustering capability of the TSNN highlights
its efficacy in facilitating accurate discrimination between
different classes, thereby enhancing the FSL performance.

V. CONCLUSIONS

In this paper, we investigate an under-explored research area
in power electronics systems in which only limited labeled
and imbalanced data samples are available for cyber-attack
diagnosis. We developed an FSL-based approach, which learns
the similarity distance among attack samples according to their
optimized feature representation. Our proposed framework is
capable of 1) dealing with the issue of lacking labeled data for
model training, and 2) adapting quickly to detect new attacks
without the need to retrain the model. Extensive experimental
results demonstrate the effectiveness and efficiency of our
proposed approach in detecting cyber-attacks in solar farms
and potentially other power electronics systems.
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