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Abstract— With increasing exposure to software-based sensing
and control, power electronics systems are facing higher risks of
cyber-physical attacks. To ensure system stability and minimize
potential economic losses, it is critical to monitor the operating
states and detect those attacks at the early stage. However,
anomaly detection and diagnosis of attacks are still challenging,
especially when labeled anomaly data is difficult or even infea-
sible to obtain. To overcome this problem, we propose a Few-
Shot Learning (FSL) based approach for cyber-attack diagnosis
leveraging the waveform data. To the best of our knowledge,
this work is the first attempt at leveraging FSL for cyber-attack
diagnosis in power electronics systems. Extensive experimental
results demonstrate that our proposed approach can achieve
comparable diagnosis accuracy with the state-of-the-art data-
driven methods using less than 0.04% of the training samples.

Index Terms—Few-shot learning, power system, cyber-attack,
attack diagnosis, siamese neural network, deep learning

I. INTRODUCTION

With the booming popularity of the Internet in modern soci-

ety, a huge amount of devices are connected through networks,

and the security of cyberspace has drawn great attention at

present, including the area of power systems. A variety of data-

driven methods have been widely adopted for attack and event

detection in power electronics-based smart grids, including

rule-based data-driven analytics [1] and signal-property-based

approach [2]. In particular, there is proven success in adopting

machine learning and deep learning methods for enhanced

performance [3], [4]. For instance, the multilayer long short-

term memory networks have been used to leverage time-series

electric waveform data from current and voltage sensors for

attack detection [5]. Zhao et al [6] proposed a novel privacy-

preserving decentralized detection framework incorporating

federated learning (FL) that enables collaboratively training

across devices without sharing raw data.

However, the performance of those methods is highly de-

pendent on the data domain. First, a huge volume of the

training dataset is required to feed the model that may not

be available in practical applications, especially for anomaly

or attacked cases. Second, for model adaptation with new data,

retraining the entire model is needed, which is time-consuming

and not suitable for time-sensitive and resource-constrained

applications. Moreover, in the scenario of cyber-attack de-

tection and diagnosis in the power system, labeled attacked

data is usually difficult or even infeasible to obtain, and it

is common that new types of attacks occur constantly due

to the dynamics of the cyberspace environment. For instance,

zero-day attacks launch on the day when a vulnerability is

discovered [7]. The versatility of the environment makes it

challenging to guarantee cyber-attack diagnosis performance

as the data-driven model needs to adapt quickly to new attacks.

To address the issues above, we aim to close this gap by

developing a Few-Shot Learning (FSL) based paradigm that

can accurately detect cyber-attacks using only a few labeled

samples in power electronics systems, and quickly adapt to

new unseen attacks. In the literature, FSL is mainly focused on

supervised learning problems such as few-shot classification

for image classification [8], and object recognition [9] when

very limited labeled data is available. However, there is little

research using FSL on power electronics system applications.

Based on our previous work [5], [10], [11] that successfully

used data-driven approaches for cyber-attack detection in

power systems, we further adopt FSL for attack diagnosis in

power electronics systems in this work.

The contributions of this work are summarized as follows:

1) This is the first work of data-driven methods for attack

detection in power electronics that considers the con-

straint of limited labeled data and addresses the newly

identified category of unseen attacked data.

2) We developed a novel FSL-based diagnosis framework

that requires only a few labeled samples and can quickly

adapt to a dynamic environment with unseen attacks.

3) Extensive experiments are conducted to validate the

suitability and efficiency of the proposed method in

diagnosing cyber-attacks in solar farm case studies.

II. SYSTEM AND ATTACK MODEL

A. System Modeling

To explore the cyber-attack in the power system, we specif-

ically simulated a solar farm system and proposed the cyber-
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Fig. 1. Schematic diagram of the PV farm Simulink model. An attacker
is able to launch cyber-attacks between the controller and DC/DC converter
or DC/AC inverter. The WMU is installed between the transformer and the
power grid, which monitors the raw waveform data.

Fig. 2. Two-stage two-level PV converter circuit.

attack model to generate the dataset based on the same setting

as our previous work [5]. Fig. 1 shows the schematic diagram

of our solar farm Simulink model. Fig. 2 illustrates one

converter circuit as an example. The main power grid is

modeled as an ideal voltage source, and the load is linear. One

rate voltage of 260V /25kV , 400kVA, transformer connects

the PV farm to the power grid. Note that we are mainly

focusing on the scenario in which a cyber-attack occurs on the

DC/DC converters and DC/AC inverters, which would bring

in unusual harmonics and then affect the power quality in the

power systems. In addition, the waveform measurement unit

(WMU) is installed between the transformer and the power

grid. It monitors changes in the characteristics of the power

system when the DC/AC inverter and DC/DC converter are

under attack.
B. Attack Model

We proposed the following cyber-attack model:

YF (t) = ³Y0(t− tdelay) + ´, (1)

where YF is the manipulated data vector that is the input

of the controller; Y0 is the original measurement; ³ is a

multiplicative factor matrix that defines the weight of the

attack vector; ´ is a multiplicative factor that defines the

weight of the real vector; tdelay is the delay time injection.

Our cyber-attack models effectively reflect real-world cyber

threats. Validation through hardware experiments and existing

literature ensures that our models align with actual cyber-

attacks observed in similar systems. Fig 3 shows an example

of a DC/AC inverter attack from our PV system. Nevertheless,

our simulation results demonstrate that cyber-attacks could

also result in subtle distortions, which makes detection and

diagnosis tougher. To obtain an accurate model, we have

simulated the following three cases: 1) Normal condition. 2)

False data injection attack on the PV converter controller. 3)

Delay attack on PV converter. With the variation of irradiation

levels and attack parameters, we end up with 9 cases in total.

The details will be discussed in IV-A.

Fig. 3. Electric waveforms (voltage and current) simulations of a DC/AC
inverter attack example from our PV system.

III. ALGORITHM DESIGN

A. Online Dynamic Attack Diagnosis

To address the concerns outlined in Section I and tackle the

challenge of learning from a limited number of samples, we

propose an online dynamic attack diagnosis approach based on

FSL [12]. The fundamental concept behind FSL is to train a

model that can learn the similarity between two input samples.

During the model prediction stage, the FSL model is pre-

sented with a classification task denoted as T , along with a

dataset D = {Dquery, Dsupport}. The support set Dsupport

comprises candidate data samples and their corresponding

labels, represented as {(xi, yi)}
I
i=1, with I indicating the small

size of the support set (usually fewer than 10). The query

set, denoted by Dquery , comprises data instances that need

to be classified. These are symbolized as {(xj)}
J
j=1, where J

signifies the total number of queries. The FSL model computes

the similarity between the data samples in the query set and

those in the support set. Subsequently, it assigns the query data

to the class of the most similar candidate within the support

set. Conventionally, one considers the N -way-K-shot setting

[12], in which Dsupport contains I = KN examples from N

classes each with K candidate data samples.

During the training stage, the parameter θ0 of the model is

optimized to minimize the error across training data, where

the error is defined by the loss function such as contrastive

loss, and triplet loss [13]:

θ0 = argmin
θ0

∑

((xi,yi),(xj ,yj))∈Dtrain

�(h(xi, xj ; θ0), ŷ), (2)

where h denotes the FSL model, Dtrain denotes the training

set, ŷ represents whether yi and yj belong to the same

category, and � is the loss function. The loss function aims

to maximize the proximity of data instances belonging to

the same class in the feature space, while simultaneously en-

couraging a clear separation between instances from different

classes. It is noteworthy that the FSL model has never been

exposed to either the support set or the query set during

training. Additionally, the model has not encountered any

specific classes represented by the query set. This highlights

a notable advantage of the FSL model over conventional

learning approaches: the ability to classify new data classes

with limited samples, without the need for retraining.

Fig 4 illustrates the workflow of our proposed online cyber-

attack diagnosis framework. Two FSL models are trained: one

focuses on detection, while the other is dedicated to diagnosis.
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Fig. 4. Workflow of online dynamic attack diagnosis.

The FSL detection model serves as an online attack detector

to analyze the streaming data. Upon identifying an anomalous

data segment, the detection model promptly transfers it to the

FSL diagnosis model. The latter then diagnoses the attack

type. Explicitly, during diagnosis, each streaming data segment

is fed into the FSL model and compared with candidates in

the support set. If all comparison results exceed a predefined

threshold, the segment is identified and labeled as a new

attack type, prompting an update to the support set with this

new category. We developed the online diagnosis algorithm as

Algorithm 1.

Algorithm 1 Algorithm for Online Cyber-Attack Diagnosis

1: Function DIAGNOSEATTACK

Input:

th: a predefined threshold to determine attack categories.

sSet: the support set.

2: sScore ← ∅ � Similarity score initialization

3: while true do

4: dS ← getNextDataSegment()

5: isAbnormal ← DetectionFSL(dS)
6: if not isAbnormal then

7: continue

8: end if

9: for c ∈ sSet do

10: sScore[c] ← calculateSimilarity(dS, c)
11: end for

12: if min(sScore) < th then

13: return argmin(sScore)
14: else

15: newCategory ← createNewCategory(dS)
16: addCategoryToSupportSet(newCategory, sSet)
17: return newCategory

18: end if

19: end while

B. Transferable Siamese Neural Network

The Siamese Neural Network (SNN) [14] is adopted to

implement the FSL model. Fig 5a shows the conventional

structure of SNN. Pairs of input are fed into the model that

shares the weights to train the feature embedding. All the

parameters in the dashed box are trainable. Once the network

is well-trained with the capability to capture the similarity

between two inputs, it will be able to predict new classes with

Fig. 5. (a) conventional SNN architecture for implementing FSL, where all
parameters in the dotted box are trainable. (b) Proposed TSNN architecture
for implementing FSL. The embedding network acts as a frozen weights
backbone, which is transferred from the network for classification.

only a few samples stored in the support set. However, SNN is

trained on pairs of inputs, making the training more complex

and potentially time-consuming compared to traditional neural

networks, and the performance heavily relies on the chosen

similarity metric.

1) Network Architecture: To enhance the performance and

convergence efficiency, we modified the SNN and proposed

a Transferable Siamese Neural Network (TSNN) structure

shown as Fig 5b by utilizing Transfer Learning. The training

stages of our proposed TSNN architecture exhibit enhanced

convergence efficiency and faster training speed per epoch

due to the reduced number of trainable parameters resulting

from the application of Transfer Learning. Specifically, the

training of TSNN will be divided into two steps: (a) Em-

bedding network training. This step focuses on training the

embedding network, where a deep learning model is employed

to train a classifier using the available training data. This

training process continues until the classification results reach

an acceptable level, signifying that the model has acquired the

ability to effectively represent the distinct classes present in

the training data. Then the model of the embedding network

is saved for the next step. In our case, we use a Convolutional

Neural Network (CNN) with residual block thanks to its

remarkable classification performance. (b) Fine-tuning. In this

step, the pre-trained embedding network serves as a frozen

backbone for the SNN. The embedding output is connected to

trainable fully-connected layers.

2) Loss Function Design: We employ a proposed weighted

loss function 3 to optimize the training process:

L(xi
1, x

i
2) = (1− ³)L1(x

i
1) + ³L2(x

i
1, x

i
2), (3)

where L1 is the cross-entropy loss, i indexes the i-th minibatch

of training data, ³ is the weight between 0 to 1, and L2 is the

contrastive loss function defined as:

L2 = (1−Y )∗‖x1 − x2‖
2
+Y ∗max

(

0,m− ‖x1 − x2‖
2
)

,

(4)
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TABLE I
F1-SCORE FOR THE 3, 7, 10-SHOTS ATTACK DETECTION

Support set 3-shots 7-shots 10-shots

attack 1 0.893 0.895 0.898

attack 2 0.901 0.912 0.920

attack 3 0.881 0.891 0.903

attack 4 0.875 0.881 0.897

attack 5 0.912 0.902 0.914

attack 6 0.852 0.869 0.885

where Y = 1 whenever x1 and x2 are from the same class

and Y = 0 otherwise, and m, the margin value, determines

when the dissimilar classes are far enough apart. The initial

weights are drawn from a standard normal distribution, and

biases were drawn from a Gaussian with a mean of 0.5 and a

fixed variance of 10−2.

IV. EXPERIMENTAL EVALUATION

In this section, we conducted experiments on two study

cases to evaluate our method’s performance. First, we analyze

its performance based on the model in Section II. Then, we

explore its adaptability in a more challenging case. Both cases

are detailed in Section IV-C1 and IV-C2, respectively.

A. Dataset

As discussed in Section II, the PV system is simulated in

MATLAB Simulink (2021a) and we assume a 6-dimensional

waveform data vector is sampled from WMU with a 20kHz

sampling rate. We conducted simulations for 9 cases, consider-

ing normal conditions along with a variety of attack parameters

and irradiation levels. Among them, there are 55,322 normal

cases. For cyber attacks 1 through 6, there are 390 cases each.

Additionally, there are 17,849 cases pertaining to fault 1 and

7,124 cases associated with fault 2. The normal, fault 1, and

fault 2 cases are used to train our FSL model.

B. Model Definition

We used CNN with residual block to train the embedding

(embedding layers in Fig. 5). Initially, the model employs a

1-dimensional convolution layer, batch normalization, a ReLU

activation function, and max-pooling. Sequentially connected,

six residual blocks follow, each comprising two sets of batch

normalization, ReLU activation, dropout, and 1-dimensional

convolution layers, intertwined with a skip connection that

employs max-pooling for shape alignment. A flattening layer

subsequently precedes two fully connected layers, the final one

matching our number of classes, concluding the model struc-

ture. Thus, this structure effectively combines convolutional

layers’ feature extraction capabilities with residual blocks’

ability to leverage multi-layer feature representations, tailoring

itself as a potent model for the following classification. Due

to page constraints, the detailed structure is illustrated in [15].

C. Experiment Results

In this subsection, we delineate the findings from two case

studies conducted to evaluate the performance of our proposed

methodology.

1) Case Study One: We first validate the attack diagnosis

performance of the proposed FSL approach with various

shots (i.e. samples in the support set). Table I shows the

attack detection F1 score for the 3-shots, 7-shots, 10-shots,

individually. The performance improves as the number of shots

in the support set increases, allowing for more candidate com-

parisons. Highlighting the advantages of FSL, we conducted

a comparison against prevalent machine learning and deep

learning methods, including Support Vector Machine (SVM),

Random Forest (RF), Convolutional Neural Network (CNN)

and Long Short-term Memory (LSTM). For the machine learn-

ing models, features such as magnitude, frequency, and phase

angle were extracted from the data segments. The comparative

experiments used six distinct training sizes (20%, 30%, 40%,

50%, 60%, 100%), focusing on both attack detection and

classification, as detailed in Table II. The table illustrates that

FSL surpasses all other methods when the training dataset is

relatively small, requiring only 30 samples for each attack type

in the support set. When the benchmarks are trained using the

complete dataset (100%), FSL, despite utilizing significantly

fewer samples, achieves results that are comparable to most

benchmarks. This observation shows the capability of our

method to adapt to unseen attacks with only a few examples

in the support set.

2) Case Study Two: In order to augment the rigor of

the experiment, we conducted an analysis of our method’s

performance using a new case study derived from our previous

work [16]. In this work, an online hardware-in-the-loop (HIL)

testbed using the OPAL-RT has been built for study on

power electronics converters (PECs)-enabled PV farms. The

monitoring system runs in real-time while using HIL as an

operational solar farm and a National Instruments (NI) data

acquisition card as the electric waveform sensor at the point of

coupling. Similarly, this work collects data from one PCC node

to identify the cyber-attacks and physical faults. The evaluation

encompassed various types of cyber-attacks, including denial

of service attacks, replay attacks, and fault data injection

attacks. Additionally, a normal scenario involving different

levels of solar irradiation was considered. The resulting dataset

consisted of a total of 91 cases, thereby introducing complexity

to the FSL process. In each case, 40 seconds of data samplings

of the PV farm are collected, where the sampling rate is 20

kHz. We arbitrarily choose 1 normal case (N1) and 7 attack

cases (A1...A7) for building the training set and test set, and

another 5 cases (A8...A12) for building the support set and

query set. It is noted that the query set is unseen during all

training phases.

Table. III displays the attack detection F1 scores, precision

and recall for 3-shot, 7-shot, and 10-shot scenarios, further

highlighting FSL’s effectiveness in performing well with lim-

ited samples. To illustrate the advantages of our proposed

TSNN implementation for FSL, we also visualize the output

embeddings of both the SNN and TSNN models in a 2D space.

Figure 6 presents the distinct clustering results obtained from

the two implementations. Notably, the clustering results of the

TSNN implementation (Figure 6b) surpass those of the SNN
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TABLE II
F1 SCORE COMPARISON BETWEEN OUR FSL METHOD (30-SHOTS) AND OTHERS WITH SMALLER TRAINING SIZE (20%, 30%, 40%, 50%, 60%, 100%)

.

Detection Classification

SVM 0.864/ 0.869/ 0.883/ 0.891/ 0.901/ 0.953 0.535/ 0.568/ 0.587/ 0.601/ 0.642/ 0.903
RF 0.623/ 0.655/ 0.678/ 0.682/ 0.707/ 0.861 0.525/ 0.533/ 0.549/ 0.571/ 0.618/ 0.827

KNN 0.579/ 0.593/ 0.628/ 0.631/ 0.637/ 0.789 0.565/ 0.573/ 0.593/ 0.603/ 0.629/ 0.702
LSTM 0.826/ 0.844/ 0.879/ 0.885/ 0.901/ 0.958 0.791/ 0.800/ 0.833/ 0.835/ 0.843/ 0.914
CNN 0.834/ 0.853/ 0.887/ 0.893/ 0.910/ 0.965 0.798/ 0.808/ 0.840/ 0.842/ 0.850/ 0.920

FSL (30-shots) 0.937 0.899

TABLE III
DETECTION ON STUDY CASE TWO (F1/ RECALL/ PRECISION)

Support set 3-shots 7-shots 10-shots

attack 8 0.895/ 0.900/ 0.890 0.805/ 0.850/ 0.765 0.824/ 0.880/ 0.775
attack 9 0.955/ 0.960/ 0.950 0.960/ 0.970/ 0.950 0.976/ 0.980/ 0.972

attack 10 0.835/ 0.860/ 0.811 0.945/ 0.950/ 0.940 0.998/ 0.999/ 0.997

attack 11 0.980/ 0.985/ 0.975 0.980/ 0.983/ 0.977 0.988/ 0.992/ 0.984

attack 12 0.960/ 0.975/ 0.945 0.904/ 0.920/ 0.889 0.932/ 0.940/ 0.924

Fig. 6. Comparison of 2D clustering results between SNN implementation (a)
and our proposed TSNN implementation (b). The legend is shared between
the two subfigures. In the SNN implementation, triplet loss is employed, while
the proposed weighted loss function is utilized in the TSNN implementation.

implementation (Figure 6a). While the SNN can group samples

from the same class together, it struggles to effectively separate

them from samples belonging to different classes. Conversely,

the TSNN demonstrates improved performance by maintaining

both low coupling (distinct separation between classes) and

high cohesion (tight clustering of samples within each class).

This enhanced clustering capability of the TSNN highlights

its efficacy in facilitating accurate discrimination between

different classes, thereby enhancing the FSL performance.

V. CONCLUSIONS

In this paper, we investigate an under-explored research area

in power electronics systems in which only limited labeled

and imbalanced data samples are available for cyber-attack

diagnosis. We developed an FSL-based approach, which learns

the similarity distance among attack samples according to their

optimized feature representation. Our proposed framework is

capable of 1) dealing with the issue of lacking labeled data for

model training, and 2) adapting quickly to detect new attacks

without the need to retrain the model. Extensive experimental

results demonstrate the effectiveness and efficiency of our

proposed approach in detecting cyber-attacks in solar farms

and potentially other power electronics systems.
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