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We evaluate different Neural Radiance Field (NeRF) techniques for the 3D reconstruction of plants in
varied environments, from indoor settings to outdoor fields. Traditional methods usually fail to capture the
complex geometric details of plants, which is crucial for phenotyping and breeding studies. We evaluate
the reconstruction fidelity of NeRFs in 3 scenarios with increasing complexity and compare the results
with the point cloud obtained using light detection and ranging as ground truth. In the most realistic field
scenario, the NeRF models achieve a 74.6% F1 score after 30 min of training on the graphics processing
unit, highlighting the efficacy of NeRFs for 3D reconstruction in challenging environments. Additionally, we
propose an early stopping technique for NeRF training that almost halves the training time while achieving
only a reduction of 74% in the average F1 score. This optimization process substantially enhances the
speed and efficiency of 3D reconstruction using NeRFs. Our findings demonstrate the potential of NeRFs
in detailed and realistic 3D plant reconstruction and suggest practical approaches for enhancing the
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speed and efficiency of NeRFs in the 3D reconstruction process.

Introduction

In recent years, reconstructing 3-dimensional (3D) geometry
has emerged as a critical area within plant sciences. As global
challenges in food production become increasingly complex
[1], gaining a detailed understanding of plant structures has
become essential. This goes beyond mere visual representation;
capturing the intricate details of plant geometry provides valuable
insights into their growth, responses to environmental stress-
ors, and physiological processes [2,3]. Consequently, there are
several efforts for the 3D reconstruction of plants [4-6].

One of the most common approaches for 3D reconstruction
is photogrammetry, which relies on the analysis of discrete 2D
pixels using techniques such as structure from motion (SfM) [7]
and multiview stereo [8]. Another direct approach is utilizing
light detection and ranging (LiDAR) scanners (such as FARO
3D LiDAR scanner) to capture a dense 3D point cloud of the
plants. This approach has been successfully used for the 3D
reconstruction of maize [9] and tomato plants [10]. It is challeng-
ing for contemporary 3D modeling techniques to capture the
minute details inherent in plant structures [2]. The complexity of
plants, from their delicate leaf venation [11] to intricate branch-
ing patterns [12], necessitates models that encompass these spe-
cific details. Scans from multiple angles are essential to capture
every detail, which is challenging since multiple LIDAR scans are
time consuming. Due to the limited poses, this approach does
not scale well to capture minute details in large scenes; conse-
quently, some desired details might be missed in the final model.
Anddjar et al. [13] have emphasized that, even with advanced

Arshad et al. 2024 | https://doi.org/10.34133/plantphenomics.0235

sensors, there are gaps in detailed reconstruction. They also
point out that while devices such as the MultiSense S7 from
Carnegie Robotics combine lasers, depth cameras, and stereo
vision to offer reasonable results, the high acquisition costs can
be prohibitive. At the same time, while photogrammetry is adept
at large-scale reconstructions, it often cannot capture subtle
details of plants [9,10,14].

In addition to the challenges mentioned above, the dynamic
nature of flexible objects such as plants and their environment
introduces an added complexity. Plants, unlike static entities,
undergo growth, exhibit movement in reaction to environ-
mental stimuli such as wind, and demonstrate both diurnal
and seasonal variations. The environmental dynamism, coupled
with plant behavior, further complicates modeling efforts. The
comprehensive investigation of Paturkar et al. [14] underscores
that this dynamism inherently complicates the attainment of
precise 3D models. Factors such as persistent growth, envi-
ronmental dynamism, and external perturbations, notably in
windy scenarios, jeopardize the consistency of data acquisition
during imaging processes [15,16]. Liénard et al. [17] highlight
that errors in postprocessing unmanned aerial vehicle-based
3D reconstructions can lead to severe, irreversible conse-
quences. This complexity necessitates innovative solutions
in 3D modeling and data processing.

One of the most recent approaches for 3D reconstruction is
Neural Radiance Fields (NeRFs). At its core, NeRFs utilize deep
learning to synthesize continuous 3D scenes by modeling the
complete volumetric radiance field [18]. NeRFs enable the
rendering of photorealistic scenes from any viewpoint from
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aneural network trained using a set of 2D images without neces-
sitating explicit 3D geometry or depth maps. NeRFs use implicit
representations of the volumetric scene, in contrast to explicit
representations such as point clouds in SfM and voxel grids in
multiview stereo. The implicit representation utilized by NeRF
is resolution-invariant, allowing for more detailed and granular
modeling without the constraints of resolution-dependent
methods. The versatility and rapid adoption of NeRF as a state-
of-the-art technique in computer vision and graphics under-
score its relevance, with applications ranging from virtual
reality [19] to architectural reconstructions [20]. Particularly in
plant science research, NeRF’s ability to capture fine details offers
the potential for deep insights into plant structures and has the
potential to be a vital tool in plant phenotyping and breeding
(see Fig. 1).

These factors indicate that the challenges in capturing
detailed plant structures remain, even when employing sophis-
ticated sensors. Financial implications further exacerbate these
challenges. Traditional 3D modeling techniques often fall short
of accurately capturing the complex 3D structures of plants
[21]. Although direct techniques such as LIDAR scanners pro-
vide better accuracy, their exorbitant costs often render them
inaccessible to many researchers. Tang et al. [22] delineate that
the financial commitment associated with such advanced
equipment, combined with the specialized expertise requisite
for its operation, limits their adoption within academic and
enthusiast domains.

In this paper, we perform a detailed evaluation of NeRF
methodologies to assess their applicability and effectiveness for

high-resolution 3D reconstruction of plant structures. An essen-
tial part of our study involves a comparative analysis of different
NeRF implementations to determine the most effective frame-
work for specific plant modeling needs. This includes assessing
the methods’ fidelity, computational efficiency, and ability to
adapt to changes in environmental conditions. Such compara-
tive analysis is crucial for establishing benchmarks for NeRF’s
current capabilities and identifying future technological improve-
ment opportunities. Building on this foundation, we introduce
an early stopping algorithm to preemptively terminate the train-
ing process, substantially reducing computational cost while
retaining model precision. We summarize our contributions
as follows:

1. A dataset collection encompassing a wide range of plant
scenarios for reconstruction purposes consisting of images, cam-
era poses, and ground truth terrestrial laser scanning (TLS)
scans.

2. An evaluation of state-of-the-art NeRF techniques across
different 2D and 3D metrics, offering insights for further research.

3. An early stopping algorithm to efficiently halt the NeRF
training when improvements in model fidelity no longer justify
computational costs, ensuring optimal resource use.

4. The development of an end-to-end 3D reconstruction
framework using NeRFs designed specifically for the 3D recon-
struction of plants.

Our research aims to explore the feasibility of NeRFs for the
3D reconstruction of plants offering an in-depth analysis. A piv-
otal aspect of our methodology is using low-cost mobile cameras
for data acquisition. By utilizing the widespread availability and

Pose estimation|—» 5

Data acquisition ~ min

Data processing ~min

—>| Multiple scans registration —>

Cost: $$$

TLS scanner

Data acquisition ~ min

Data processing ~h

Traditional 3D reconstruction

Fig.1.NeRFs are proposed as an alternative to traditional TLS scans for 3D plant reconstruction, offering cost-effective and efficient modeling from images captured at multiple
angles using a smartphone camera, in contrast to the higher expense and extensive processing time required by TLS for multiangle scan registration.

Arshad et al. 2024 | https://doi.org/10.34133/plantphenomics.0235

GT0T ‘1€ YOI UO AMSIOAIU) 9)e)S BMO] Je S10°00udrds [ds//:sdyy woiy papeojumo


https://doi.org/10.34133/plantphenomics.0235

Plant Phenomics

imaging capabilities of modern smartphones, we can make high-
quality image data collection more accessible and cost-effective.
This approach, combined with the NeRFs’ ability to process vari-
ous image datasets for 3D reconstruction, can revolutionize plant
reconstruction efforts.

The rest of the paper is arranged as follows. In Materials and
Methods, we outline the dataset collection, NeRF implementa-
tions, evaluation methods, and the Learned Perceptual Image
Patch Similarity (LPIPS)-based early stopping algorithm. In
Results, we analyze results from single and multiple plant sce-
narios, both indoors and outdoors, using critical performance
metrics. Finally, in Discussion, we provide a theoretical discus-
sion on the sampling strategies of different NeRF implementa-
tions and examine their impact on performance.

Materials and Methods

To evaluate 3D plant reconstruction using NeRFs, we propose
a comprehensive methodology encompassing data collection,
NeRF implementations, evaluation metrics, and an early stop-
ping algorithm. The overall workflow of the different steps of
our framework is shown in Fig. 2.

Evaluation scenarios and data collection

We evaluate NeRFs, examining 3 distinct scenarios with ground
truth data, from controlled indoor to dynamic outdoor envi-
ronments, and a final testing scenario. The 4 scenarios are:

1. Single Corn Plant Indoor: This serves as the simplest test
case. A solitary corn plant is placed in a controlled indoor envi-
ronment. The lighting, background, and other environmental
factors are kept constant. The objective is to assess the basic

capabilities of NeRF in reconstructing an individual plant
structure [23] (see Fig. 3A).

2. Multiple Corn Plants Indoor: In this case, more than one
corn plant is situated in an indoor setting. The increased com-
plexity due to multiple plants poses a greater challenge for the
3D reconstruction. Interplant occlusions and varying plant
orientations add an additional layer of complexity (see Fig. 3B).

3. Multiple Corn Plants in a Field with Other Plants: This sce-
nario represents a real-world agricultural field, where corn plants
are interspersed with other types of plants. The added complexity
due to variable lighting, wind, and other dynamic environmental
conditions tests the robustness of the NeRF technology (see
Fig. 3C). We selected a row plot of corn plants planted at approxi-
mately 0.2-m distance, approximately at the V12 stage. The leaves
between 2 neighboring plants are overlapping.

4. In-field Test Data: For validating the proposed early
stopping methodology, a diverse dataset was assembled,
featuring scenarios with soybean, Anthurium hookeri, a mix-
ture of plants, Cymbidium floribundum, and Hydrangea
paniculata.

Our training dataset for NeRF is sourced from red-green-
blue (RGB) images and LiDAR data captured using a mobile
phone, with the RGB images aiding in the 3D reconstruction
of the plants and the LiDAR exclusively for pose capture. For
all 3 scenarios, data is captured using an iPhone 13 Pro featur-
ing 4K resolution. The device is held at a constant height while
circling the plant to ensure consistent capture angles. The data
collection process utilizes the Polycam app [24], with approxi-
mately 2.5 min for Scenario III (multiple plants in the outdoor
setting) and around 1 min for Scenario I (single plant in the
indoor setting). To establish accurate ground truth, we utilized

Data capture Pose estimation NeRF training
(via smartphone) (via COLMAP) | 1. NeRFacto > Point cloud
2. Instant-NGP
3. TensoRF
A
\ 4
v Point clouds aligment
Ground truth Rendered validation 1. Trajectory alignment
images images > 2. Cropping
3. ICP registration
\4
Y A
2D-Evaluation metrics Early stopping Registered
LPIPS > algorithm point cloud
PSNR 0
SSIM

Multiple scans /
(TLS scanner)

Scan registration
(FARO SCENE 3D)

Reconstruction

3D-Evaluation metrics
/ Precision
> Point cloud > Recall
/ F1 Score
Evaluation

Fig. 2. Workflow for 3D reconstruction and evaluation. The different steps of the above workflow is explained in detail below.
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Fig. 3. Example images input to NeRFs for reconstruction across 3 different scenarios. (A) Scenario I: Indoor single object. (B) Scenario II: Indoor multiple objects. (C) Scenario Ill:
Outdoor scene.
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high-definition terrestrial LIDAR scans using the Faro Focus
$350 Scanner. The scanner has an angular resolution of 0.011°,
equating to a 1.5-mm point spacing over a 10-m scanning range,
and the capacity to acquire point clouds of up to 700 million
points at 1 million points per second. Additionally, the scanner
includes a built-in RGB camera that captures 360° images once
the scanning process is complete.

Both in indoor and outdoor settings, we scan the plants from
4 (for the single plant) to 6 (for multiple plants) locations around
the plant(s) at a height of 1.5 m and a distance of 1.5 m from the
plant(s). To reduce the movement of the leaves during scanning,
in indoor settings, we ensure that there is no airflow around the
plants, and in outdoor settings, we waited for a suitable time when
there was negligible wind flow (2023 August 31, at 8:30 AM).
Each scan required approximately 2.5 min, totaling a capture time
of around 18 min in outdoor settings, including manually moving
the scanner around the plot. The 6 scans were processed in
SCENE software to add RGB color data to the point clouds, fol-
lowed by the registration of the clouds by minimizing cloud-to-
cloud distance and top view distance. Afterward, we cropped out
the area of interest from the registered point cloud, removed
duplicate points, and reduced noise using statistical outlier
removal based on global and local point-to-point distance distri-
butions. This process resulted in the point cloud having an average
resolution of about 7 mm. This experimental setup enables the
NeRF algorithm to work on a range of complexities, from con-
trolled environments to dynamic, real-world conditions.

Camera pose estimation is a crucial second step, typically
achieved through an SfM pipeline such as COLMAP [25]. This
process is essential for obtaining accurate 3D structures from
sequences of images by determining correspondences between
feature points and by using sequential matching, especially
effective since our dataset comprises video frames.

NeRFs

NeRFs model a scene as a continuous function mapping a 3D
position x = (x, y,z) and a 2D viewing directiond = (6, ¢) to a
color ¢ = (,g,b) and density o. The function is parameterized
by a neural network F,, expressed as:

(¢,0) = Fy(x,d) (1

Rendering an image involves integrating the color and den-
sity along camera rays, a process formalized as:

r

C(r) = J T (o (x(1))e(x(), d)dt )

Iy

where T(t) = exp(— Lt o-(r(s))ds) represents the accumulated

transmittance along the ray r(f) = o + td, with o being the ray
origin and [t tf] the near and far bounds. In our workflow, we
incorporate some of the state-of-the-art NeRF implementations
optimized for their 3D reconstruction capabilities, which are criti-
cal to enable large-scale plant phenotyping studies. Specifically,
we employ Instant-NGP [26], TensoRF [27], and NeRFacto [28].

We specifically chose Instant-NGP, TensoRF, and NeRFacto
to evaluate for plant reconstruction since these implementa-
tions are more efficient and achieve comparable results as a
vanilla NeRF approximately 50 times faster. Each of these
implementations introduces several new features over the
vanilla NeRF implementations. Instant-NGP introduces a small
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neural network complemented by a multiresolution hash table,
optimizing the number of operations required for training and
rendering [26]. TensoRE, on the other hand, conceptualizes the
radiance field as a 4D tensor and applies tensor decomposition
to achieve better rendering quality and faster reconstruction
times compared to the traditional NeRF approach [27]. NeRFacto
combines various techniques such as the Multilayer Perceptron
(MLP) adapted from Instant-NGP and the Proposal Network
Sampler from MipNeRF-360 [29]. Apart from these 3 methods, we
also tried the vanilla Mip-NeRF [30]. Unfortunately, Mip-NeRF
fails to reconstruct more complicated 3D scenes (such as Scenario II)
in our testing. Please refer to the Supplementary Materials where
we provide a table for training (over time) of MipNeRF. We
briefly describe the 3 tested NeRF approaches below.

Instant-NGP: Instant-NGP introduces advancements in
NeRFs by focusing on 3 key improvements: enhanced sampling
through occupancy grids, a streamlined neural network archi-
tecture, and a multiresolution hash encoding technique. The
hallmark of Instant-NGP is its multiresolution hash encoding.
This approach maps input coordinates to trainable feature vec-
tors stored across multiple resolutions. For each input coordi-
nate, the method hashes surrounding voxel vertices, retrieves
and interpolates the corresponding feature vectors, and then
inputs these interpolated vectors into the neural network. This
process enhances the model’s ability to learn complex geome-
tries and ensures a smoother function due to the trainable
nature of the feature vectors. The overall design of Instant-NGP
drastically accelerates NeRF training and rendering, enabling
near real-time processing capabilities. These enhancements col-
lectively empower Instant-NGP to achieve speedups of up to
1,000x. The method also employs multiscale occupancy grids
to efficiently bypass empty space and areas beyond dense media
during sampling, thereby reducing the computational load.
These occupancy grids are dynamically updated based on the
evolving understanding of the scene’s geometry, facilitating an
increase in sampling efficiency. In parallel, Instant-NGP adopts
a compact, fully fused neural network architecture designed for
rapid execution. This network is optimized to operate within a
single CUDA kernel, consisting of only 4 layers with 64 neurons
each, resulting in a speed boost—achieving a 5 to 10 times faster
performance than traditional NeRF implementations.

TensoRF: TensoRF improves scene representation by model-
ing the radiance field as a 4D tensor within a 3D voxel grid,
where each voxel is enriched with multichannel features. This
model leverages tensor decomposition to efficiently manage
the high-dimensional data, utilizing 2 key techniques: Canonic
Polyadic (CP) and Vector-Matrix (VM) decompositions. CP
decomposition simplifies the tensor into rank-one components
using compact vectors, reducing the model’s memory footprint.
VM decomposition, alternatively, breaks the tensor into compact
vector and matrix factors, striking a balance between memory
efficiency and detail capture. These enable TensoRF to reduce
memory requirements while enhancing rendering quality and
accelerating reconstruction times. CP decomposition leads to
faster scene reconstruction with improved rendering quality and
a smaller model size compared to conventional NeRF approaches.
VM decomposition takes this further, offering even better ren-
dering quality and quicker reconstruction, all within a compact
model size.

NeRFacto: NeRFacto is an aggregate of techniques optimized
for rendering static scenes from real images. The model enhances
the NeRF framework by incorporating pose refinement and
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advanced sampling strategies to improve the fidelity of the scene
reconstruction. Pose refinement is critical when initial camera
poses are imprecise, which is often the case with mobile capture
technologies. NeRFacto refines these poses, thus mitigating arti-
facts and enhancing detail. The model employs a piecewise sam-
pler for initial scene sampling, allocating samples to optimize
the coverage of both near and distant objects. This is further
refined using a proposal sampler, which focuses on areas that
contribute most to the scene’s appearance and is informed by a
density function derived from a small, fused MLP with hash
encoding. Such a design ensures efficient sampling and better
reconstruction. Further explanation and contrast with Instant-
NGP is given in the discussion section. The implementations for
aforementioned algorithms are taken from the open-source proj-
ect NeRFStudio [28].

There have been several recent works that have compared
NeRF approaches for 3D reconstruction. Table 1 summarizes
some recent work evaluating different NeRF methodologies.
Some of these recent research works also employ additional meth-
ods to improve reconstruction fidelity. For example, SteerNeRF
[31] utilizes neural sparse voxel fields (NSVFs) [32], KiloNeRF
[33], PlenOctree [34], and DIVeR [35], to obtain a smooth ren-
dering from different viewpoints. NSVF introduces a fast, high-
quality, viewpoint-free rendering method using a sparse voxel
octree for efficient scene representation. KiloNeRF accelerates
NeRF’s rendering by 3 orders of magnitude using thousands of
tiny MLPs, maintaining visual quality with efficient training.
PlenOctree uses an Octree data structure to store the Plenoptic
function. DIVeR improves upon NeRF by using deterministic
estimates for volume rendering, allowing for realistic 3D render-
ing from few images. Similar to our work, Azzarelli et al. [36]
propose a framework for evaluating NeRF methods using Instant-
NGP, NeRFacto, and Mip-NeRE, focusing on neural rendering
isolation and parametric evaluation. Radl et al. [37] analyze
trained vanilla NeRFs, Instant-NGP, NeRFActo, and Mip-NeRF,
showing accelerated computations by transforming activation
features, reducing computations by 50%.

Remondino et al. [38] analyze image-based 3D reconstruction
comparing different NeRFs (including Instant-NGP, NeRFacto,
TensoRE, MonoSDF [39], VoISDF [40], NeUS [41], and UniSurf
[42]) with traditional photogrammetry, highlighting their appli-
cability and performance differences for reconstructing heri-
tage scenes and monuments. Balloni et al. [43] does the same
but with using only Instant-NGP. Each of these different NeRF

implementations have some advancements over vanilla NeRE
MonoSDF demonstrates that incorporating monocular geometry
cues improves the quality of neural implicit surface recon-
struction. VolSDF improves the volume rendering of signed
distance fields (SDF) using a new density representation. NeuS
introduces a bias-free volume rendering method for neural surface
reconstruction, outperforming existing techniques in handling
complex structures and self-occlusions. UniSurf combines implicit
surface models and radiance fields, enhancing 3D reconstruction
and novel view synthesis without input masks.

3D registration

We reconstruct the scene and capture point clouds using a FARO
scan for ground truth. 3D registration or alignment is crucial to
perform a one-to-one comparison between the NeRF-based
reconstruction and ground truth. Our alignment and evaluation
methodology is adapted from Knapitsch et al. [44]. In their work,
they evaluate different pipelines and use COLMAP as an “arbi-
trary reference” frame. However, in our case, all the NeRFs use
COLMAP in their pipeline, so the reference and reconstruction
frames become the same. The steps used for registration are:

Preliminary Camera Trajectory Alignment: The NeRF-
reconstructed point cloud is manually aligned with the ground
truth using point-based alignment. Four corresponding points
are selected in both point clouds to compute an initial transfor-
mation matrix. This matrix aligns the camera poses, providing
initial scale and orientation estimates. This initial coarse-
grained alignment step paves the way for more detailed align-
ment procedures.

Cropping: Each ground truth model has a manually de-
fined bounding volume, outlining the evaluation region for
reconstruction.

Iterative Closest Point Registration: Drawing inspiration
from the iterative refinement process detailed by Besl and
McKay [45] and further refined by Zhang [46], we adopt a
3-stage approach [44] for our initial registration framework.
The process begins with a specified voxel size and an associated
threshold for the initial registration. In the next iteration, the
transformation result from the previous step is used as a start-
ing point, with the voxel size reduced by half to achieve finer
detail in the registration. The third stage aims to refine the
alignment further by returning to the original voxel size and
adjusting the threshold to facilitate convergence at each stage.
This multiscale strategy is designed to capture both coarse and

Tablel. Recent works comparing the performance of different NeRF techniques for 3D reconstruction applications

Paper Instant-NGP NeRFacto TensoRF NeRF Additional methods
Azzarelli et al. [36] v/ v/ X X Mip-NeRF

Radl et al.[37] X v/ X v Mip-NeRF

Lietal. [31] v/ X X VP NSVF, PlenOctree, KiloNeRF, DIVeR
Remondino et al. [38] e 7 7" X MonoSDF, VoISDF, NeuS, UniSurf
Balloni et al. [43] VP X X X

Ours v/ v/ /3 X

Used implementation in NeRFStudio or SDFStudio.

®sed original implementation.
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fine details, thereby improving the accuracy and precision of
the model alignment. However, in our adaptation for plant
structure reconstruction, we diverged from Knapitsch et al. [44]
by maintaining the iterative process within a single stage rather
than expanding across multiple stages. We found that increas-
ing the iteration count 10-fold, rather than the number of
stages, prevented the registration process from collapsing [47].

Evaluation metrics
To assess the similarity between the ground truth (obtained
from TLS) and the reconstructed 3D point cloud, the following
metrics are employed:

1. Precision/Accuracy. Given a reconstructed point set R
and a ground truth set G, the precision metric P(d) assesses the
proximity of points in R to G within a distance threshold d.
Mathematically, it is formulated as:

(d)-% <mm||r g||<d> 3)

wherel(-)is an indicator function. Precision values ranges from
0 to 100, with higher values indicating better performance.

2. Recall/Completeness. Conversely, the recall metric R(d) quan-
tifies how well the reconstruction R encompasses the points in the
ground truth G for a given distance threshold d. It is defined as:

llg‘? X (Irréi]g”g—l‘” <d>. @)

Its value ranges from 0 to 100, with higher values indicating
better performance. Both the above 2 metrics are extensively
utilized in recent studies [43,48].

3. F-score. The F-score, denoted as F(d), serves as a har-
monic summary measure that encapsulates both the precision
P(d) and recall R(d) for a given distance threshold d. It is spe-
cifically designed to penalize extreme imbalances between P(d)
and R(d). Mathematically, it can be expressed as:

2 X P(d) X R(d)
F@) P(d)+Rd) - )

The harmonic nature of the F-score ensures that if either
P(d) or R(d) approaches zero, the F-score will also tend toward
zero, providing a more robust summary statistic than the arith-
metic mean. F-score ranges from 0 to 100, with higher values
indicating better performance. The details about value of d
cutoft is given later in discussion about precision-recall curves.

For quantifying the quality of the NeRF-rendered 2D image
compared to the validation image (left out from NeRF training),
the following metrics are used:

4. LPIPS [49]: To quantify the perceptual differences between
2 image patches, x and x;, the LPIPS framework employs activa-
tions from a neural network F. Features are extracted from L
layers and normalized across the channel dimension. For each
layer I, the normalized features are represented by ¥’ and
which exist in the space R/ "1 €. These are then welghted
channel-wise by a vector w, € R, The perceptual distance is
computed using the £, norm, both spatially and across chan-
nels, as expressed in the equation:

d(x,x) = ZHIIWI Z
I h,w

R(d)=

2
Al ~l0
le®<th_th) 5 (6)
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This distance metric, d(x, x,), provides a scalar value indicat-
ing the perceptual dissimilarity between the patches. The vec-
tor w; weights the contribution of each channel to the distance
metric. By setting w, to 1 /4/C;, the computation effectively
measures the cosine distance, highlighting the directional
alignment of the feature vectors instead of their magnitude.
Its value ranges from 0 to 1, with lower values indicating better
performance.

5. Peak signal-to-noise ratio (PSNR) [50]: The PSNR between
2 images, one being the reference and the other the reconstructed
image, is defined as:

MAX?
PSNR =10 - logl() M—SE N (7)

where MAX is the maximum possible pixel value of the image,
and MSE is the mean squared error between the reference and
the reconstructed image. The MSE is given by:

_Lm c .2
MSE=— % > (1()) =K (i) (8)

i=1 j=1

where I is the reference image, K is the reconstructed image,
and m and n are the dimensions of the images. A higher value
of PSNR indicate better performance.

6. Structural Similarity Index (SSIM) [51]: The SSIM index
is a method for predicting the perceived quality of digital televi-
sion and cinematic pictures, as well as other kinds of digital
images and videos. SSIM is designed to improve on traditional
methods like PSNR and MSE, which have proven to be incon-
sistent with human eye perception. The SSIM index between
2 images x and y is defined as:

<2/4x,u}, + C1> (ZO'xy + C2>

24 2 2 4 52
(,ux+;4y+C1><ax+ay+C2>

SSIM(x,y) = SO

where 1, is the average of x, i, is the average ofy, o-fc is the vari-
ance of x, 62 is the variance of y, ¢ 4 18 the covariance of x and
y, and C, and C, are constants to stabilize the division with
weak denominator. These last 3 metrics do not need the 3D
ground truth and are widely used in literature [52,53] for evalu-
ation. SSIM ranges from —1 to 1, with higher values indicating
better performance.

Precision-Recall curves: Precision-recall curves are utilized
to methodically evaluate how distance threshold d changes
influence precision P(d) and recall R(d) metrics, demonstrat-
ing the trade-off between these measurements under varying
threshold conditions. To set the value of d for the final assess-
ment, we opt for a conservative estimate before the plateauing
of precision-recall curves. For indoor scenarios, assuming a
hypothetical grid size of 128 x 128 X 128 for reference, we
establish d at 0.005. In this scenario, the voxel size is calculated
as 1/128 = 0.0078125, which makes the threshold of 0.005
smaller than the voxel size. This indicates a requirement for
points to be closer than the dimensions of a single voxel to be
identified as distinct, highlighting a prioritization of detail
sensitivity within a hypothetically coarser grid. Such a setting
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Algorithm 1 Plateau Detection Algorithm with LPIPS

1: procedure DETECTPLATEAU(S,G,0,C) b Inputs: Sets of images per iteration S, Sets of GT

images G, threshold 6, consistency length C'

> Insufficient data for plateau detection

> Plateau point detected, Output: P

2: Initialize an empty list M to store average LPIPS values over training iterations.
3: for each set Z and corresponding GT set Gy in S and G do
4: Initialize sumLPIPS = 0.
5: for each image I and corresponding GT image G in Z and G; do
6: sumLPIPS += LPIPS(/, G).
7 end for
8: Compute average LPIPS for the set: avgLPIPS = sumLPIPS/|Z]|.
9: Append avgLPIPS to M.

10: end for

11: if (M| < C then

12: return 0

13: end if

14: for i =1to M| —1do

15: Let consistent = True.

16: for j = max(0,i —C +1) to i do

17: if [M[j] — M[j —1]| > 6 then

18: Set consistent = False and break.

19: end if

20: end for

21: if consistent then

22: return ¢

23: end if

24: end for

25: return M| —1

26: end procedure

> No plateau detected, Output: P

is especially pertinent for capturing the complex geometries of
indoor plants, where precision in detail is crucial. Due to the
size and complexity of the scene, a threshold of 0.01 is selected
for outdoor plant reconstructions.

Early stopping of NeRF training using LPIPS

In training NeRFs for plant scene reconstruction, the F1 score
is essential for validating the accuracy of the reconstructed
point cloud against the ground truth. The inherent challenge
during the training phase of NeRFs is the absence of ground
truth, paradoxically the output we aim to correspond. Moreover,
the training process for NeRFs is notoriously compute-intensive.
The cumulative costs become challenging when scaled to mul-
tiple scenes or across extensive agricultural fields.

Figure 4 shows the scatter plots of PSNR, SSIM, and LPIPS
scores against the F1 score, alongside their respective Pearson
correlation coefficients. This visualization offers an immediate
visual assessment of the relationships between these metrics
and allows for a nuanced understanding of how accurately each
metric predicts the true F1 score. The exceptionally strong
negative correlation between LPIPS and F1 score (—0.82) rein-
forces the notion that LPIPS effectively captures the perceptual
similarity between the reconstructed and ground truth point
clouds, making it a reliable proxy for F1 score, the ultimate
measure of reconstruction fidelity.
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The significant negative correlation between LPIPS and the
F1 score (—0.82), PSNR (—0.81), and SSIM (—0.69) underscore
the impact of LPIPS on the quality of 3D reconstruction (see the
Supplementary Materials for detailed correlation matrix). The
high magnitude of these coefficients, particularly the —0.82 with
the F1 score, indicates that LPIPS is a robust predictor of
reconstruction accuracy: as the perceptual similarity measure
improves (meaning LPIPS decreases), the fidelity of the recon-
structed point cloud to the ground truth improves correspond-
ingly. This observation not only suggests the utility of LPIPS as
a stand-in metric when the ground truth is unavailable but also
highlights its potential as a more influential factor than tradi-
tional metrics such as PSNR (0.58) and SSIM (0.37) in determin-
ing the overall quality of NeRF-generated reconstructions.

Given this strong correlation, LPIPS emerges as a promising
surrogate metric for early stopping during NeRF training. By
monitoring LPIPS, one can infer the likely F1 score and make
informed decisions about halting the training process. This
method could decrease computational costs and time, as one
need not await the completion of full training to predict its
efficacy in terms of F1 score.

Algorithm for Plateau Detection: The plateau detection algo-
rithm identifies a stabilization point in a series of metric values,
such as LPIPS. The updated algorithm computes the average
LPIPS for each set of images in S against their corresponding
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Fig.4.Correlation analysis between different metrics with F1 Score via Pearson coefficients: (A) PSNR, (B) SSIM, and (C) LPIPS.

Scenario I.

Scenario I1.

Scenario 111.

Fig.5.Camera pose estimations across 3 different scenarios. (A) Scenario I. (B) Scenario Il. (C) Scenario Il

ground truth images in . It then assesses the sequence of these
average LPIPS values to identify a plateau, using a specified
threshold @ and a consistency length C. The detection of the
plateau point P is crucial for indicating an optimal stopping
point in the training process. To validate the efficacy of the early
stopping algorithm, we applied it to a diverse dataset compris-
ing 5 plant types captured in both indoor and outdoor settings.
The threshold (6) was set to 0.005, and the consistency length
(C) was fixed at 6. The granularity of interpolation was set
to 1,000, spanning a total of 60,000 training iterations. These
hyperparameters were chosen based on empirical observa-
tions to ensure a balance between computational efficiency and
reconstruction accuracy.

Results

We evaluated the performance of NeRF models across various
scenarios, from controlled indoor environments to complex out-
door field conditions, using key performance metrics to assess
their efficacy in 3D plant reconstruction. The NeRFs were trained
on an NVIDIA A100 graphics processing unit (GPU) with 80GB
GPU RAM attached to an AMD EPYC 7543 32-core central pro-
cessing unit (CPU) with 503GB CPU RAM. Posttraining, the
models are converted into point clouds with approximately a
million points each. Estimated camera poses from COLMAP are
visualized in Fig. 5, and a summary of the performance metrics
of each of the 3 scenarios is given in Table 2. 3D evaluation met-
rics are presented in this section; for a more granular analysis of
2D image metrics, please refer to the Supplementary Materials.
Visually, the performance of each model could be assessed using
Precision and Recall as shown in Fig. 6. The Precision-Recall
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curves of the different scenarios for different threshold values are
shown in Fig. 7.

Visualization Color Code: The color-coded visualizations
employed provide an intuitive understanding of spatial rela-
tionships within the 3D reconstructed plant structures. The
interpretation of colors is as follows:

o Gray: (Correct) Represents points within a predefined
distance threshold relative to the reference point cloud. This
color indicates accurate points in precision and recall evalua-
tions, where precision assesses the reconstruction against the
ground truth, and recall evaluates the ground truth against the
reconstruction.

 Red: (Missing) Depicts points in the point cloud being
tested that are beyond the distance threshold but within 3 stan-
dard deviations from the nearest point in the reference point
cloud. These points are considered inaccuracies, showing miss-
ing details in the reconstruction when assessing precision and
highlighting missing elements in the ground truth during recall
analysis.

« Black: (Outlier) Highlights points in the point cloud being
tested that are more than 3 standard deviations away from any
point in the reference point cloud. These points are extreme
outliers and represent notable errors in the reconstruction rela-
tive to the ground truth for precision evaluations and similarly
notable discrepancies in the ground truth relative to the recon-
struction for recall.

Scenario | - single plants indoors

We first look at the results of reconstructing a single plant in
an indoor environment. Detailed evolution of each metric over
training iterations is given in the Supplementary Materials.
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Table 2. Performance metrics of NeRFs reconstruction techniques across Scenarios |, Il, and IlI

# Model Precisiont Recall F1t PSNR? SSIMt LPIPS| Time ()l

I Instant-NGP 24.66 90.62 38.77 2341 0.81 0.17 756
TensoRF 9.58 43.34 15.69 14.69 0.55 0.66 1,973
NeRFacto 73.57 94.72 82.81 22.24 0.73 0.12 1,938

Il Instant-NGP 23.45 58.57 33.49 19.08 0.64 0.31 1,886
TensoRF 20.5 55.34 29.91 15.54 042 0.56 2,607
TensoRF 64.47 76.8 70.1 18.93 0.64 0.25 1,226

11l Instant-NGP 15.06 59155 24.04 18.54 0.47 04 1,466
TensoRF 40.95 75.62 53.13 17.32 0.39 0.55 1,965
TensoRF 68.29 82.32 74.65 16.7 0.32 0.34 1,499

Precision: For Scenario I, NeRFacto, achieved the highest
precision followed by TensoRF and Instant-NGP (see Fig. 6)
after 30,000 iterations. Across all models, precision generally
increases with the number of iterations.

Recall: The recall metric follows a similar trend, with
Instant-NGP and NeRFacto showing increases with more itera-
tions, indicating an enhanced ability to encompass points from
the ground truth. Notably, NeRFacto achieves remarkably
high recall values (over 90) at higher iterations, suggesting its
superiority in the completeness of reconstruction. TensoRF’s
recall values are markedly lower, indicating that it may miss
more details from the ground truth compared to the other
models.

F1 Score: The F1 score, balancing precision and recall, high-
lights NeRFacto as the most balanced model, especially at
higher iterations, with scores above 80. Instant-NGP shows a
substantial improvement in F1 scores as iterations increase, but
it does not reach the same peak as NeRFacto. TensoRF lags in
this metric, indicating a less balanced performance between
precision and recall.

Computation Time: Time efficiency is a crucial factor, espe-
cially for practical applications. Instant-NGP demonstrates a
relatively balanced approach between efliciency and perfor-
mance, with time increments correlating reasonably with the
increase in iterations. However, it becomes time-consuming at
high iterations (20,000 and 30,000). NeRFacto, while showing
better performance in many metrics, demands considerably
more time, especially at higher iterations, which could be a limit-
ing factor in time-sensitive scenarios. The evolution of precision
over training time for NeRFacto is given in the Supplementary
Materials. TensoRE despite its lower performance in other met-
rics, maintains a more consistent time efficiency, suggesting its
suitability for applications where time is a critical constraint.

Overall Performance and Suitability: In sum, NeRFacto
emerges as the most robust model in terms of precision, recall,
F1 score, and image quality metrics (PSNR, SSIM, and LPIPS),
making it highly suitable for applications demanding high accu-
racy and completeness in 3D modeling. However, its time inef-
ficiency at higher iterations might restrict its use in time-sensitive
contexts. Instant-NGP presents a good balance between perfor-
mance and efficiency, making it a viable option for moderately
demanding scenarios. Detailed results are given in Table 2, after
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complete training. The Precision-Recall curves based on vary-
ing distance threshold after maximum training of 30,000 itera-
tions is given in Fig. 7.

Insight 1: Computational Cost and Accuracy Trade-off in
Instant-NGP and NeRFacto: The steep increase in performance
metrics with the number of iterations for both Instant-NGP
and NeRFacto suggests that these models require a substantial
amount of data processing to achieve high accuracy, which is
critical in high-fidelity 3D modeling. However, this also implies
a higher computational cost, which needs to be considered in
practical applications.

Insight 2: Model Suitability in High-Detail 3D Reconstructions:
The notable disparity in the performance of TensoRF com-
pared to the other 2 models, particularly in precision and recall,
indicates that not all NeRF models are equally suited for tasks
requiring high-detail 3D reconstructions. This highlights the
importance of model selection based on the specific require-
ments of the application.

Insight 3: Divergence in 2D Image Quality and 3D Recon-
struction in Instant-NGP: A detailed examination reveals that
Instant-NGP demonstrates strength in 2D image quality met-
rics such as PSNR, SSIM, and LPIPS, reflecting its ability to
produce better rendered image quality. However, this excel-
lence in 2D imaging does not correspondingly extend to 3D
reconstruction metrics like Precision, Recall, and F1 Score.
This observation highlights a notable distinction in the chal-
lenges associated with optimizing for high-quality image ren-
dering as opposed to achieving accurate 3D representations.
The model’s adeptness at rendering highly detailed 2D images
does not necessarily imply its effectiveness in accurately recon-
structing complex 3D structures, particularly in the context of
intricate plant models. This insight underscores the need for a
nuanced approach in evaluating the performance of models
that are tasked with both 2D image rendering and 3D spatial
reconstruction.

Scenario Il - multiple plants indoors

We observe marked differences in model behaviors compared
to the single plant scenario, likely attributed to the added intri-
cacy of multiple plants in a single scene. Detailed evolution of
each metric over training iterations is given in the Supplementary
Materials.
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Precision Recall Precision Recall Precision

Recall

Scenario III
TensoRF

Instant-NGP

NeRFacto

Fig. 6. Precision and recall of 3D reconstruction using different NeRF techniques across different scenarios. Legend: B Correct, ll Missing, ll Outlier.

Precision: As shown in Fig. 6, Instant-NGP exhibits a steady
increase in precision with more iterations, peaking at a high
value. However, NeRFacto starts at a higher precision and
reaches an even higher peak, indicating a more accurate recon-
struction of the corn plants. TensoRF, although improving with
more iterations, lags behind the others in terms of precision.
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Recall: A similar pattern is observed for recall, with NeRFacto
consistently maintaining a higher recall compared to the other
methods, suggesting its ability to better encompass points
in the ground truth. Both Instant-NGP and TensoRF exhibit
increasing recall with more iterations but at lower levels than
NeRFacto.

1

GT0T ‘1€ YOI UO AMSIOAIU) 9)e)S BMO] Je S10°00udrds [ds//:sdyy woiy papeojumo


https://doi.org/10.34133/plantphenomics.0235

Plant Phenomics

A B C
F-score: 38.77 F-score: 15.69 F-score: 82.81
,; S 100 T 100 : 100
2 @2 7151/ 7541 751
< £ 1 1 1
g 8 501 ! 50 - ! 50 !
[} “6 1 1
N 25 25 A 1 25 1 1
0 : T T 0 I T T O : T T
0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02
Threshold (m) Threshold (m) Threshold (m)
F-score: 33.49 F-score: 29.91 F-score: 70.10
— o 100 T 100 T 100 T
— 2\/ 1 1 1
S o 7154 7541 75 -
5 £ !
= 8 504 - 50 - d 50 !
SEERS i i i
N g 254 25 | 25 - |
1 1 1
0 I T T 0 I T T O I T T
0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02
Threshold (m) Threshold (m) Threshold (m)
F-score: 24.04 F-score: 53.13 F-score: 74.65
100 T 100 T 100 T
= g | | '
— & 754 1 75 75 |
S £ i i
‘Y £ 50+ i 50 - 50 | |
g g 1 1
D w254 ! 25 - ! 25 - !
o © 1 1
U) 4:.: 0 I T T 0 I T T 0 I T T
0.00 0.02 0.04 0.00 0.02 0.04 0.00 0.02 0.04
Threshold (m) Threshold (m) Threshold (m)
Instant-NGP TensoRF NeRFuacto
Precision = ——— Recall

Fig. 7. Precision-recall curves for the three scenarios based on varying distance thresholds after 30,000 iterations (Scenarios | and Il) and 60,000 iterations (Scenario III)

for (A) Instant-NGP, (B) TensoRF, and (C) NeRFacto.

F1 Score: The F1 Score, balancing precision and recall, fol-
lows a similar trend. NeRFacto demonstrates the best balance
between precision and recall, with its F1 score peaking at 70.10,
while Instant-NGP and TensoRF achieve lower peak F1 scores.

Computation Time: The time taken for iterations is crucial
for efficiency. Instant-NGP and NeRFacto have comparable
times, but TensoRF takes substantially longer at higher itera-
tions, indicating less time efficiency.

Opverall Performance and Suitability: NeRFacto emerges as
the most balanced and efficient model, exhibiting high preci-
sion, recall, and F1 scores, along with favorable PSNR, SSIM,
and LPIPS values. Its efficiency in time taken is also comparable
to Instant-NGP. Instant-NGP, while showing improvements,
does not quite match NeRFacto’s balance of precision and recall.
TensoRE, despite its merits, falls behind in several key metrics,
particularly in precision, recall, SSIM, and LPIPS. The results
after complete training are given in Table 2. The Precision-
Recall curves based on varying distance thresholds after maxi-
mum training of 30,000 iterations are given in Fig. 7.

Insight 1: Improved Performance of TensoRF in Scenario II:
In the second scenario, TensoRF demonstrated an improvement
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compared to its performance in the first scenario. Specifically,
its F1 score, a critical metric for 3D modeling accuracy,
increased from 15.69 in the first scenario to 29.91 after 30,000
iterations in the second scenario. This improvement highlights
TensoRF’s potential in more complex or demanding 3D model-
ing tasks, especially when allowed to complete its training
process.

Insight 2: 2D Metrics Versus 3D F1 Score for Instant-NGP
and NeRFacto: While Instant-NGP and NeRFacto show com-
parable results in 2D image quality metrics such as PSNR and
SSIM, a distinct difference is observed in their 3D modeling
capabilities, as reflected in their F1 scores, as observed in last
scenario. This suggests that NeRFacto might be a more reli-
able choice for applications requiring high accuracy in 3D
reconstructions.

Scenario Il - multiple plants outdoors

Scenario IIT is the most complex, with multiple overlapping
plants captured in field conditions. The models were also trained
until 60,000 iterations, while the previous 2 scenarios were
trained only for 30,000 iterations. Detailed evolution of each
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Scene-1

1,000 Iterations

Scene-2

1,000 Iterations

Scene-3

20,000 Iterations* 60,000 Iterations

Scene-4

Scene-5

H. paniculata 1,000 Iterations 30,000 Iterations*

Fig. 8. Scenes for validating the early stopping algorithm and their 3D reconstructions: original scenes in the first column, iterative reconstructions in the right column, and
optimal iterations in the third column (*).
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metric over training iterations is given in the Supplementary
Materials.

Precision: As observed in Fig. 6, NeRFacto consistently demon-
strates the highest precision across all iterations, peaking at 68.29%,
suggesting its ability to reconstruct points close to the ground truth.
Instant-NGP shows a steady increase in precision with more itera-
tions, while TensoRE, although starting lower, reaches a comparable
precision to Instant-NGP at higher iterations.

Recall: NeRFacto leads in recall, achieving a high of 82.32%,
indicating its effectiveness in encompassing points from the
ground truth. Instant-NGP shows substantial improvement in
recall with increased iterations but remains behind NeRFacto.
TensoRF’s recall growth positions it between Instant-NGP and
NeRFacto in terms of completeness.

F1 Score: Reflecting the balance between precision and
recall, NeRFacto emerges as the superior model, with its F1
score peaking at 74.65%. Instant-NGP’s F1 score improves
with more iterations but remains much lower, while TensoRF’s
F1 score surpasses Instant-NGP, reaching 53.13%.

Computation Time: In terms of efficiency, Instant-NGP and
NeRFacto are the fastest, followed by TensoRF.

Overall Performance and Suitability: NeRFacto again emerges
as the most balanced and robust model, excelling in precision,
recall, F1 score, and LPIPS. Detailed results are given in Table 2,
after complete training. The Precision-Recall curves based on
varying distance threshold after maximum training of 60,000
iterations is given in Fig. 7. The GPU memory usage of this sce-
nario comes out to be approximately a constant 3GB (for the total
memory of GPU being 80GB).

Insight 1: Enhanced Performance of TensoRF in Outdoor
Settings: TensoRF demonstrates substantial improvement in
its performance in the third scenario compared to the first.
Specifically, its F1 score has seen a good increase, from 15.69
in the first scenario to 29.91 in the second and reaching 53.13
after 30,000 iterations in the current outdoor scenario. This
upward trajectory in F1 scores, which is a balanced measure of
precision and recall, indicates TensoRF’s enhanced capability
in outdoor environments, potentially outperforming Instant-
NGP in these settings. This suggests that TensoRF might be a
more suitable choice for outdoor 3D modeling tasks where both
precision and completeness are crucial. This property may have
contributed in the selection of TensoRF as a building block for
using multiple local radiance fields, during in-the-wild recon-
struction [54].

Insight 2: LPIPS as a Strong Indicator of 3D Model Quality:
The LPIPS metric appears to be a more representative measure
of the quality of the resulting 3D models. In the analysis, we
observe that models with lower LPIPS scores consistently show
better performance across other metrics. This trend indicates
the relevance of LPIPS in assessing the perceptual quality of
3D models. The further investigation into how LPIPS correlates
with other metrics could provide deeper insights into model
performance, especially in the context of realistic and perceptu-
ally accurate 3D reconstructions.

Early stopping algorithm

The implementation of early stopping based on the LP-IPS met-
ric yielded substantial savings in computational time across all
scenarios, with a minor sacrifice in the fidelity of 3D reconstruc-
tions, as measured by the F1 score. Time savings were notable
across the 3 tested methodologies—Instant-NGP, TensorRE and
NeRFacto—with each showing a marked decrease in training
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time without a commensurate loss in F1 score accuracy. For a
deeper look of LPIPS, F1 Score and the recommended stopping
point for each case, please consult the Supplementary Materials.

On average, the early stopping strategy resulted in a 61.1%
reduction in training time, suggesting a substantial efficiency
gain in the process of 3D plant reconstruction using NeRFs.
Concurrently, the average F1 score loss was contained to 7.4%,
indicating that the early plateau detection has a moderate impact
on the quality of the 3D point cloud reconstructions. Specifically,
Instant-NGP presented a more pronounced variation in F1 score
loss, which was notably higher in Scenario III, thereby affecting
its average loss more than TensorRF and NeRFacto. TensorRF
and NeRFacto showed a remarkable consistency in time savings,
which was mirrored in their comparable F1 score losses, high-
lighting the robustness of these methods in early stopping
scenarios.

These findings articulate a compelling case for the utilization
of early stopping in NeRF-based 3D reconstruction tasks, empha-
sizing the need to balance between computational resources and
reconstruction precision. Such a balance is pivotal in scenarios
where time efficiency is paramount yet a minimal compromise
on reconstruction accuracy is permissible.

Scenario IV - validation examples in field conditions
The efficacy of the LPIPS-based early stopping algorithm
was validated using a diverse dataset comprising images from
5 different types of plants captured in both indoor and outdoor
settings, as illustrated in Fig. 8. The validation process employed
a threshold @ set to 0.005 and a consistency length C of 6, with
the granularity of interpolation fixed at 1,000, spanning a total
of 60,000 training iterations. For practical application, check-
points, inherently exponential in nature, necessitated linear
interpolation to facilitate algorithm execution. Figure 8 shows
the rendered point clouds at 3 stages: after 1,000 iterations, at
the recommended early stopping iteration, and upon complet-
ing the full 60,000 iterations of training. Each row of the figure
corresponds to one of the 5 validation scenes, providing a quali-
tative comparative analysis.

Notably, for all indoor scenes, the algorithm recommended
halting training at 20,000 iterations, whereas for outdoor scenes,
the suggestion extended to 30,000 iterations. This distinction
underscores the algorithm’s sensitivity to environmental vari-
ables affecting perceptual similarity metrics. The rendered point
clouds, particularly at the early stopping points, exhibit minimal
visual discrepancies when compared to those obtained after the
full training duration. By reducing computational demands with-
out much loss in fidelity, this approach is a cost-effective strategy
for enhancing modeling throughput in precision agriculture and
botanical research. We substantiate the hypothesis that LPTPS
can serve as a reliable surrogate for direct F1 score estimation in
the context of NeRF training. The algorithm’s ability to accurately
predict optimal stopping points—balancing computational effi-
ciency with reconstruction accuracy—presents a compelling case
for its adoption in scenarios where resource conservation is para-
mount, yet quality cannot be entirely sacrificed.

Discussion

In this section, we discuss the findings from our comparative
analysis of NeRF models for 3D plant reconstruction. The
results indicate that the Nerfacto model achieved the best
performance, and we explore the theoretical basis for its
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superiority by examining the sampling strategies employed by
the different models. Understanding these strategies provides
insights into why Nerfacto outperformed the other models in
terms of reconstruction quality. In our experiments, we found
that the Nerfacto model produced the highest quality 3D
reconstructions compared to Instant-NGP and other NeRF
models. To understand the theoretical basis for Nerfacto’s supe-
rior performance, in this section, we take a deeper look at the
sampling strategies used by Nerfacto and Instant-NGP and
how they influence the visual quality and level of detail in the
rendered scenes.

The divergent performance of the NeRF models necessitates
a deeper examination of their underlying sampling strategies
and their influence on the quality of 3D reconstruction. The
difference in the output quality between Instant-NGP and
Nerfacto, especially concerning the density and crispness of
the rendered scenes, could indeed be related to the sampling
strategies used by each algorithm.

Instant-NGP Sampling Strategy: Instant-NGP uses an improved
training and rendering algorithm that involves a ray marching
scheme with an occupancy grid. This means that when the algo-
rithm shoots rays into the scene to sample colors and densities, it
uses an occupancy grid to skip over empty space, as well as areas
behind high-density regions to improve efficiency.

o The occupancy grid used in Instant-NGP is a multiscale
grid that coarsely marks empty and nonempty space and is used
to determine where to skip samples to speed up processing.

« This approach is quite effective in terms of speed, leading
to substantial improvements over naive sampling methods.

» However, if the occupancy grid is not fine-grained enough
or if the method for updating this grid is not capturing the
scene’s density variations accurately, it could lead to a “muddy”
or overly dense rendering because it might not be sampling the
necessary areas with enough precision.

NeRFacto Sampling Strategy: Nerfacto, on the other hand,
uses a combination of different sampling techniques:

o Camera Pose Refinement: By refining camera poses, Nerfacto
ensures that the samples taken are based on more accurate view-
points, which directly affects the clarity of the rendered images.

o Piecewise Sampler: This sampler is used to produce an
initial set of samples, with a distribution that allows both dense
sampling near the camera and appropriate sampling further
away. This could lead to clearer images since it captures details
both near and far from the camera.

« Proposal Sampler: This is a key part of the Nerfacto method.
It uses a proposal network to concentrate sample locations in
regions that contribute most to the final render, usually around
the first surface intersection. This targeted sampling could be a
major reason why Nerfacto produces crisper images—it focuses
computational resources on the most visually relevant parts of
the scene.

« Density Field: By using a density field guided by a hash
encoding and a small fused MLP, Nerfacto can efficiently
guide sampling even further. It does not require an extremely
detailed density map since it is used primarily for guiding
the sampling process, which means that it balances quality
and speed without necessarily impacting the final image’s
detail.

Instant-NGP’s sampling strategy is built for speed, with an
occupancy grid that helps skip irrelevant samples. This approach
is great for real-time applications but can potentially miss subtle
density variations, leading to a denser and less clear output if
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the grid is not capturing all the necessary detail. Nerfacto’s sam-
pling strategy is more complex and layered, with multiple mech-
anisms in place to ensure that sampling is done more effectively
in areas that greatly affect the visual output. The combination
of pose refinement, piecewise sampling, proposal sampling, and
an efficient density field leads to more accurate sampling, which
in turn produces crisper images. In summary, the reason for
Nerfactos better reconstruction likely stems from its more
refined and targeted approach to sampling, which concentrates
computational efforts on the most visually impactful parts of
the scene. In contrast, Instant-NGP’s faster but less targeted
sampling may result in less clarity and more visual artifacts.

Finally, to retrieve the scale of the 3D reconstruction in the
absence of reference point cloud data, a known scale can be placed
on the ground during data collection. The exported point cloud
can then be proportionally scaled based on this reference scale,
which allows the size of the reconstructed plant to be calibrated
to match its real-world dimensions. In order to show the practi-
cality of this approach, we placed a 3D printed sphere of known
diameter for the plant in Scenario I and captured the images. We
then go through our pipeline of NeRF reconstruction, and instead
of registering and scaling the scene to the ground truth LIDAR
data, we scale it to the known sphere size. We then measured the
height of the plant in this scenario. We find that by using this
approach, the error in the height of the plant is within 1%. We
provide additional details of this experiment in the Supplementary
Materials. We note that this is a preliminary result, and more
detailed studies need to be performed in the future on extracting
the correct scale from NeRF reconstructions.

In conclusion, the findings of this research underscore the
value of NeRFs as a nondestructive approach for 3D plant
reconstruction in precision agriculture. Our methodology
more effectively facilitates critical agricultural tasks, such as
growth monitoring, yield prediction, and early disease detec-
tion from accurate reconstruction of plant structures. Our
comparative analysis, which benchmarks different NeRF mod-
els against ground truth data, highlights the method’s efficiency,
achieving a 74.65% F1 score within 30 min of GPU training.
Introducing an early stopping algorithm based on LPIPS fur-
ther enhances this process, reducing training time by 61.1%
while limiting the average F1 score loss to just 7.4%.

Additionally, our work provides a comprehensive dataset and
an evaluation framework, aiding the validation of current models
and serving as a foundation for developing future NeRF applica-
tions in agriculture. The detailed insights into model performance
across varied scenarios, coupled with the early stopping case study,
offer practical guidance for 3D reconstruction using NeRFs. This
research supports the advancement of nonintrusive agricultural
technologies and also sets a baseline for future work at the inter-
section of NeRF technologies and agriculture, aiming to improve
efficiency and accuracy in plant phenotyping and breeding.
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