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We evaluate different Neural Radiance Field (NeRF) techniques for the 3D reconstruction of plants in 
varied environments, from indoor settings to outdoor fields. Traditional methods usually fail to capture the 
complex geometric details of plants, which is crucial for phenotyping and breeding studies. We evaluate 
the reconstruction fidelity of NeRFs in 3 scenarios with increasing complexity and compare the results 
with the point cloud obtained using light detection and ranging as ground truth. In the most realistic field 
scenario, the NeRF models achieve a 74.6% F1 score after 30 min of training on the graphics processing 
unit, highlighting the efficacy of NeRFs for 3D reconstruction in challenging environments. Additionally, we 
propose an early stopping technique for NeRF training that almost halves the training time while achieving 
only a reduction of 7.4% in the average F1 score. This optimization process substantially enhances the 
speed and efficiency of 3D reconstruction using NeRFs. Our findings demonstrate the potential of NeRFs 
in detailed and realistic 3D plant reconstruction and suggest practical approaches for enhancing the 
speed and efficiency of NeRFs in the 3D reconstruction process.

Introduction

In recent years, reconstructing 3-dimensional (3D) geometry 
has emerged as a critical area within plant sciences. As global 
challenges in food production become increasingly complex 
[1], gaining a detailed understanding of plant structures has 
become essential. This goes beyond mere visual representation; 
capturing the intricate details of plant geometry provides valuable 
insights into their growth, responses to environmental stress-
ors, and physiological processes [2,3]. Consequently, there are 
several efforts for the 3D reconstruction of plants [4–6].

One of the most common approaches for 3D reconstruction 
is photogrammetry, which relies on the analysis of discrete 2D 
pixels using techniques such as structure from motion (SfM) [7] 
and multiview stereo [8]. Another direct approach is utilizing 
light detection and ranging (LiDAR) scanners (such as FARO 
3D LiDAR scanner) to capture a dense 3D point cloud of the 
plants. This approach has been successfully used for the 3D 
reconstruction of maize [9] and tomato plants [10]. It is challeng-
ing for contemporary 3D modeling techniques to capture the 
minute details inherent in plant structures [2]. The complexity of 
plants, from their delicate leaf venation [11] to intricate branch-
ing patterns [12], necessitates models that encompass these spe-
cific details. Scans from multiple angles are essential to capture 
every detail, which is challenging since multiple LiDAR scans are 
time consuming. Due to the limited poses, this approach does 
not scale well to capture minute details in large scenes; conse-
quently, some desired details might be missed in the final model. 
Andújar et al. [13] have emphasized that, even with advanced 

sensors, there are gaps in detailed reconstruction. They also 
point out that while devices such as the MultiSense S7 from 
Carnegie Robotics combine lasers, depth cameras, and stereo 
vision to offer reasonable results, the high acquisition costs can 
be prohibitive. At the same time, while photogrammetry is adept 
at large-scale reconstructions, it often cannot capture subtle 
details of plants [9,10,14].

In addition to the challenges mentioned above, the dynamic 
nature of flexible objects such as plants and their environment 
introduces an added complexity. Plants, unlike static entities, 
undergo growth, exhibit movement in reaction to environ-
mental stimuli such as wind, and demonstrate both diurnal 
and seasonal variations. The environmental dynamism, coupled 
with plant behavior, further complicates modeling efforts. The 
comprehensive investigation of Paturkar et al. [14] underscores 
that this dynamism inherently complicates the attainment of 
precise 3D models. Factors such as persistent growth, envi-
ronmental dynamism, and external perturbations, notably in 
windy scenarios, jeopardize the consistency of data acquisition 
during imaging processes [15,16]. Liénard et al. [17] highlight 
that errors in postprocessing unmanned aerial vehicle-based 
3D reconstructions can lead to severe, irreversible conse-
quences. This complexity necessitates innovative solutions 
in 3D modeling and data processing.

One of the most recent approaches for 3D reconstruction is 
Neural Radiance Fields (NeRFs). At its core, NeRFs utilize deep 
learning to synthesize continuous 3D scenes by modeling the 
complete volumetric radiance field [18]. NeRFs enable the 
rendering of photorealistic scenes from any viewpoint from 
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a neural network trained using a set of 2D images without neces-
sitating explicit 3D geometry or depth maps. NeRFs use implicit 
representations of the volumetric scene, in contrast to explicit 
representations such as point clouds in SfM and voxel grids in 
multiview stereo. The implicit representation utilized by NeRF 
is resolution-invariant, allowing for more detailed and granular 
modeling without the constraints of resolution-dependent 
methods. The versatility and rapid adoption of NeRF as a state-
of-the-art technique in computer vision and graphics under-
score its relevance, with applications ranging from virtual 
reality [19] to architectural reconstructions [20]. Particularly in 
plant science research, NeRF’s ability to capture fine details offers 
the potential for deep insights into plant structures and has the 
potential to be a vital tool in plant phenotyping and breeding 
(see Fig. 1).

These factors indicate that the challenges in capturing 
detailed plant structures remain, even when employing sophis-
ticated sensors. Financial implications further exacerbate these 
challenges. Traditional 3D modeling techniques often fall short 
of accurately capturing the complex 3D structures of plants 
[21]. Although direct techniques such as LiDAR scanners pro-
vide better accuracy, their exorbitant costs often render them 
inaccessible to many researchers. Tang et al. [22] delineate that 
the financial commitment associated with such advanced 
equipment, combined with the specialized expertise requisite 
for its operation, limits their adoption within academic and 
enthusiast domains.

In this paper, we perform a detailed evaluation of NeRF 
methodologies to assess their applicability and effectiveness for 

high-resolution 3D reconstruction of plant structures. An essen-
tial part of our study involves a comparative analysis of different 
NeRF implementations to determine the most effective frame-
work for specific plant modeling needs. This includes assessing 
the methods’ fidelity, computational efficiency, and ability to 
adapt to changes in environmental conditions. Such compara-
tive analysis is crucial for establishing benchmarks for NeRF’s 
current capabilities and identifying future technological improve-
ment opportunities. Building on this foundation, we introduce 
an early stopping algorithm to preemptively terminate the train-
ing process, substantially reducing computational cost while 
retaining model precision. We summarize our contributions 
as follows:

1. A dataset collection encompassing a wide range of plant 
scenarios for reconstruction purposes consisting of images, cam-
era poses, and ground truth terrestrial laser scanning (TLS) 
scans.

2. An evaluation of state-of-the-art NeRF techniques across 
different 2D and 3D metrics, offering insights for further research.

3. An early stopping algorithm to efficiently halt the NeRF 
training when improvements in model fidelity no longer justify 
computational costs, ensuring optimal resource use.

4. The development of an end-to-end 3D reconstruction 
framework using NeRFs designed specifically for the 3D recon-
struction of plants.

Our research aims to explore the feasibility of NeRFs for the 
3D reconstruction of plants offering an in-depth analysis. A piv-
otal aspect of our methodology is using low-cost mobile cameras 
for data acquisition. By utilizing the widespread availability and 

TLS scanner

Smartphone camera

Multiple scans registration

NeRF training

Pose estimation

Cost: $

Cost: $$$

Data acquisition ~ min

Data processing ~ min

Data acquisition ~ min

Data processing ~ h

Text

NeRF-based 3D reconstruction

Traditional 3D reconstruction

Fig. 1. NeRFs are proposed as an alternative to traditional TLS scans for 3D plant reconstruction, offering cost-effective and efficient modeling from images captured at multiple 
angles using a smartphone camera, in contrast to the higher expense and extensive processing time required by TLS for multiangle scan registration.
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imaging capabilities of modern smartphones, we can make high-
quality image data collection more accessible and cost-effective. 
This approach, combined with the NeRFs’ ability to process vari-
ous image datasets for 3D reconstruction, can revolutionize plant 
reconstruction efforts.

The rest of the paper is arranged as follows. In Materials and 
Methods, we outline the dataset collection, NeRF implementa-
tions, evaluation methods, and the Learned Perceptual Image 
Patch Similarity (LPIPS)-based early stopping algorithm. In 
Results, we analyze results from single and multiple plant sce-
narios, both indoors and outdoors, using critical performance 
metrics. Finally, in Discussion, we provide a theoretical discus-
sion on the sampling strategies of different NeRF implementa-
tions and examine their impact on performance.

Materials and Methods
To evaluate 3D plant reconstruction using NeRFs, we propose 
a comprehensive methodology encompassing data collection, 
NeRF implementations, evaluation metrics, and an early stop-
ping algorithm. The overall workflow of the different steps of 
our framework is shown in Fig. 2.

Evaluation scenarios and data collection
We evaluate NeRFs, examining 3 distinct scenarios with ground 
truth data, from controlled indoor to dynamic outdoor envi-
ronments, and a final testing scenario. The 4 scenarios are:

1. Single Corn Plant Indoor: This serves as the simplest test 
case. A solitary corn plant is placed in a controlled indoor envi-
ronment. The lighting, background, and other environmental 
factors are kept constant. The objective is to assess the basic 

capabilities of NeRF in reconstructing an individual plant 
structure [23] (see Fig. 3A).

2. Multiple Corn Plants Indoor: In this case, more than one 
corn plant is situated in an indoor setting. The increased com-
plexity due to multiple plants poses a greater challenge for the 
3D reconstruction. Interplant occlusions and varying plant 
orientations add an additional layer of complexity (see Fig. 3B).

3. Multiple Corn Plants in a Field with Other Plants: This sce-
nario represents a real-world agricultural field, where corn plants 
are interspersed with other types of plants. The added complexity 
due to variable lighting, wind, and other dynamic environmental 
conditions tests the robustness of the NeRF technology (see 
Fig. 3C). We selected a row plot of corn plants planted at approxi-
mately 0.2-m distance, approximately at the V12 stage. The leaves 
between 2 neighboring plants are overlapping.

4. In-field Test Data: For validating the proposed early 
stopping methodology, a diverse dataset was assembled, 
featuring scenarios with soybean, Anthurium hookeri, a mix-
ture of plants, Cymbidium floribundum, and Hydrangea 
paniculata.

Our training dataset for NeRF is sourced from red-green-
blue (RGB) images and LiDAR data captured using a mobile 
phone, with the RGB images aiding in the 3D reconstruction 
of the plants and the LiDAR exclusively for pose capture. For 
all 3 scenarios, data is captured using an iPhone 13 Pro featur-
ing 4K resolution. The device is held at a constant height while 
circling the plant to ensure consistent capture angles. The data 
collection process utilizes the Polycam app [24], with approxi-
mately 2.5 min for Scenario III (multiple plants in the outdoor 
setting) and around 1 min for Scenario I (single plant in the 
indoor setting). To establish accurate ground truth, we utilized 
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(via COLMAP)
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2. Instant-NGP

3. TensoRF
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Fig. 2. Workflow for 3D reconstruction and evaluation. The different steps of the above workflow is explained in detail below.
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A

B

C

Fig. 3. Example images input to NeRFs for reconstruction across 3 different scenarios. (A) Scenario I: Indoor single object. (B) Scenario II: Indoor multiple objects. (C) Scenario III: 
Outdoor scene.
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high-definition terrestrial LiDAR scans using the Faro Focus 
S350 Scanner. The scanner has an angular resolution of 0.011°, 
equating to a 1.5-mm point spacing over a 10-m scanning range, 
and the capacity to acquire point clouds of up to 700 million 
points at 1 million points per second. Additionally, the scanner 
includes a built-in RGB camera that captures 360° images once 
the scanning process is complete.

Both in indoor and outdoor settings, we scan the plants from 
4 (for the single plant) to 6 (for multiple plants) locations around 
the plant(s) at a height of 1.5 m and a distance of 1.5 m from the 
plant(s). To reduce the movement of the leaves during scanning, 
in indoor settings, we ensure that there is no airflow around the 
plants, and in outdoor settings, we waited for a suitable time when 
there was negligible wind flow (2023 August 31, at 8:30 AM). 
Each scan required approximately 2.5 min, totaling a capture time 
of around 18 min in outdoor settings, including manually moving 
the scanner around the plot. The 6 scans were processed in 
SCENE software to add RGB color data to the point clouds, fol-
lowed by the registration of the clouds by minimizing cloud-to-
cloud distance and top view distance. Afterward, we cropped out 
the area of interest from the registered point cloud, removed 
duplicate points, and reduced noise using statistical outlier 
removal based on global and local point-to-point distance distri-
butions. This process resulted in the point cloud having an average 
resolution of about 7 mm. This experimental setup enables the 
NeRF algorithm to work on a range of complexities, from con-
trolled environments to dynamic, real-world conditions.

Camera pose estimation is a crucial second step, typically 
achieved through an SfM pipeline such as COLMAP [25]. This 
process is essential for obtaining accurate 3D structures from 
sequences of images by determining correspondences between 
feature points and by using sequential matching, especially 
effective since our dataset comprises video frames.

NeRFs
NeRFs model a scene as a continuous function mapping a 3D 
position x = (x, y, z) and a 2D viewing direction d = (θ, ϕ) to a 
color c = (r, g, b) and density σ. The function is parameterized 
by a neural network Fθ, expressed as:

Rendering an image involves integrating the color and den-
sity along camera rays, a process formalized as:

where T(t) = exp
(
− ∫ ttn �(r(s))ds

)
 represents the accumulated 

transmittance along the ray r(t) = o + td, with o being the ray 
origin and [tn, tf] the near and far bounds. In our workflow, we 
incorporate some of the state-of-the-art NeRF implementations 
optimized for their 3D reconstruction capabilities, which are criti-
cal to enable large-scale plant phenotyping studies. Specifically, 
we employ Instant-NGP [26], TensoRF [27], and NeRFacto [28].

We specifically chose Instant-NGP, TensoRF, and NeRFacto 
to evaluate for plant reconstruction since these implementa-
tions are more efficient and achieve comparable results as a 
vanilla NeRF approximately 50 times faster. Each of these 
implementations introduces several new features over the 
vanilla NeRF implementations. Instant-NGP introduces a small 

neural network complemented by a multiresolution hash table, 
optimizing the number of operations required for training and 
rendering [26]. TensoRF, on the other hand, conceptualizes the 
radiance field as a 4D tensor and applies tensor decomposition 
to achieve better rendering quality and faster reconstruction 
times compared to the traditional NeRF approach [27]. NeRFacto 
combines various techniques such as the Multilayer Perceptron 
(MLP) adapted from Instant-NGP and the Proposal Network 
Sampler from MipNeRF-360 [29]. Apart from these 3 methods, we 
also tried the vanilla Mip-NeRF [30]. Unfortunately, Mip-NeRF 
fails to reconstruct more complicated 3D scenes (such as Scenario II) 
in our testing. Please refer to the Supplementary Materials where 
we provide a table for training (over time) of MipNeRF. We 
briefly describe the 3 tested NeRF approaches below.

Instant-NGP: Instant-NGP introduces advancements in 
NeRFs by focusing on 3 key improvements: enhanced sampling 
through occupancy grids, a streamlined neural network archi-
tecture, and a multiresolution hash encoding technique. The 
hallmark of Instant-NGP is its multiresolution hash encoding. 
This approach maps input coordinates to trainable feature vec-
tors stored across multiple resolutions. For each input coordi-
nate, the method hashes surrounding voxel vertices, retrieves 
and interpolates the corresponding feature vectors, and then 
inputs these interpolated vectors into the neural network. This 
process enhances the model’s ability to learn complex geome-
tries and ensures a smoother function due to the trainable 
nature of the feature vectors. The overall design of Instant-NGP 
drastically accelerates NeRF training and rendering, enabling 
near real-time processing capabilities. These enhancements col-
lectively empower Instant-NGP to achieve speedups of up to 
1,000×. The method also employs multiscale occupancy grids 
to efficiently bypass empty space and areas beyond dense media 
during sampling, thereby reducing the computational load. 
These occupancy grids are dynamically updated based on the 
evolving understanding of the scene’s geometry, facilitating an 
increase in sampling efficiency. In parallel, Instant-NGP adopts 
a compact, fully fused neural network architecture designed for 
rapid execution. This network is optimized to operate within a 
single CUDA kernel, consisting of only 4 layers with 64 neurons 
each, resulting in a speed boost—achieving a 5 to 10 times faster 
performance than traditional NeRF implementations.

TensoRF: TensoRF improves scene representation by model-
ing the radiance field as a 4D tensor within a 3D voxel grid, 
where each voxel is enriched with multichannel features. This 
model leverages tensor decomposition to efficiently manage 
the high-dimensional data, utilizing 2 key techniques: Canonic 
Polyadic (CP) and Vector-Matrix (VM) decompositions. CP 
decomposition simplifies the tensor into rank-one components 
using compact vectors, reducing the model’s memory footprint. 
VM decomposition, alternatively, breaks the tensor into compact 
vector and matrix factors, striking a balance between memory 
efficiency and detail capture. These enable TensoRF to reduce 
memory requirements while enhancing rendering quality and 
accelerating reconstruction times. CP decomposition leads to 
faster scene reconstruction with improved rendering quality and 
a smaller model size compared to conventional NeRF approaches. 
VM decomposition takes this further, offering even better ren-
dering quality and quicker reconstruction, all within a compact 
model size.

NeRFacto: NeRFacto is an aggregate of techniques optimized 
for rendering static scenes from real images. The model enhances 
the NeRF framework by incorporating pose refinement and 

(1)(c, �) = F�(x, d)

(2)C(r) = ∫
tf

tn

T(t)�(r(t))c(r(t), d)dt
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advanced sampling strategies to improve the fidelity of the scene 
reconstruction. Pose refinement is critical when initial camera 
poses are imprecise, which is often the case with mobile capture 
technologies. NeRFacto refines these poses, thus mitigating arti-
facts and enhancing detail. The model employs a piecewise sam-
pler for initial scene sampling, allocating samples to optimize 
the coverage of both near and distant objects. This is further 
refined using a proposal sampler, which focuses on areas that 
contribute most to the scene’s appearance and is informed by a 
density function derived from a small, fused MLP with hash 
encoding. Such a design ensures efficient sampling and better 
reconstruction. Further explanation and contrast with Instant-
NGP is given in the discussion section. The implementations for 
aforementioned algorithms are taken from the open-source proj-
ect NeRFStudio [28].

There have been several recent works that have compared 
NeRF approaches for 3D reconstruction. Table 1 summarizes 
some recent work evaluating different NeRF methodologies. 
Some of these recent research works also employ additional meth-
ods to improve reconstruction fidelity. For example, SteerNeRF 
[31] utilizes neural sparse voxel fields (NSVFs) [32], KiloNeRF 
[33], PlenOctree [34], and DIVeR [35], to obtain a smooth ren-
dering from different viewpoints. NSVF introduces a fast, high-
quality, viewpoint-free rendering method using a sparse voxel 
octree for efficient scene representation. KiloNeRF accelerates 
NeRF’s rendering by 3 orders of magnitude using thousands of 
tiny MLPs, maintaining visual quality with efficient training. 
PlenOctree uses an Octree data structure to store the Plenoptic 
function. DIVeR improves upon NeRF by using deterministic 
estimates for volume rendering, allowing for realistic 3D render-
ing from few images. Similar to our work, Azzarelli et al. [36] 
propose a framework for evaluating NeRF methods using Instant-
NGP, NeRFacto, and Mip-NeRF, focusing on neural rendering 
isolation and parametric evaluation. Radl et al. [37] analyze 
trained vanilla NeRFs, Instant-NGP, NeRFActo, and Mip-NeRF, 
showing accelerated computations by transforming activation 
features, reducing computations by 50%.

Remondino et al. [38] analyze image-based 3D reconstruction 
comparing different NeRFs (including Instant-NGP, NeRFacto, 
TensoRF, MonoSDF [39], VolSDF [40], NeUS [41], and UniSurf 
[42]) with traditional photogrammetry, highlighting their appli-
cability and performance differences for reconstructing heri-
tage scenes and monuments. Balloni et al. [43] does the same 
but with using only Instant-NGP. Each of these different NeRF 

implementations have some advancements over vanilla NeRF. 
MonoSDF demonstrates that incorporating monocular geometry 
cues improves the quality of neural implicit surface recon-
struction. VolSDF improves the volume rendering of signed 
distance fields (SDF) using a new density representation. NeuS 
introduces a bias-free volume rendering method for neural surface 
reconstruction, outperforming existing techniques in handling 
complex structures and self-occlusions. UniSurf combines implicit 
surface models and radiance fields, enhancing 3D reconstruction 
and novel view synthesis without input masks.

3D registration
We reconstruct the scene and capture point clouds using a FARO 
scan for ground truth. 3D registration or alignment is crucial to 
perform a one-to-one comparison between the NeRF-based 
reconstruction and ground truth. Our alignment and evaluation 
methodology is adapted from Knapitsch et al. [44]. In their work, 
they evaluate different pipelines and use COLMAP as an “arbi-
trary reference” frame. However, in our case, all the NeRFs use 
COLMAP in their pipeline, so the reference and reconstruction 
frames become the same. The steps used for registration are:

Preliminary Camera Trajectory Alignment: The NeRF-
reconstructed point cloud is manually aligned with the ground 
truth using point-based alignment. Four corresponding points 
are selected in both point clouds to compute an initial transfor-
mation matrix. This matrix aligns the camera poses, providing 
initial scale and orientation estimates. This initial coarse-
grained alignment step paves the way for more detailed align-
ment procedures.

Cropping: Each ground truth model has a manually de
fined bounding volume, outlining the evaluation region for 
reconstruction.

Iterative Closest Point Registration: Drawing inspiration 
from the iterative refinement process detailed by Besl and 
McKay [45] and further refined by Zhang [46], we adopt a 
3-stage approach [44] for our initial registration framework. 
The process begins with a specified voxel size and an associated 
threshold for the initial registration. In the next iteration, the 
transformation result from the previous step is used as a start-
ing point, with the voxel size reduced by half to achieve finer 
detail in the registration. The third stage aims to refine the 
alignment further by returning to the original voxel size and 
adjusting the threshold to facilitate convergence at each stage. 
This multiscale strategy is designed to capture both coarse and 

Table 1. Recent works comparing the performance of different NeRF techniques for 3D reconstruction applications

Paper Instant-NGP NeRFacto TensoRF NeRF Additional methods

Azzarelli et al. [36] ✓ a ✓ a × × Mip-NeRF

Radl et al. [37] × ✓ a × ✓ a Mip-NeRF

Li et al. [31] ✓ a × × ✓ b NSVF, PlenOctree, KiloNeRF, DIVeR

Remondino et al. [38] ✓ b ✓ a ✓ b × MonoSDF, VolSDF, NeuS, UniSurf

Balloni et al. [43] ✓ b × × × -

Ours ✓ a ✓ a ✓ a × -

aUsed implementation in NeRFStudio or SDFStudio.
bUsed original implementation.
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fine details, thereby improving the accuracy and precision of 
the model alignment. However, in our adaptation for plant 
structure reconstruction, we diverged from Knapitsch et al. [44] 
by maintaining the iterative process within a single stage rather 
than expanding across multiple stages. We found that increas-
ing the iteration count 10-fold, rather than the number of 
stages, prevented the registration process from collapsing [47].

Evaluation metrics
To assess the similarity between the ground truth (obtained 
from TLS) and the reconstructed 3D point cloud, the following 
metrics are employed:

1. Precision/Accuracy. Given a reconstructed point set  
and a ground truth set , the precision metric P(d) assesses the 
proximity of points in  to  within a distance threshold d. 
Mathematically, it is formulated as:

where �( ⋅ ) is an indicator function. Precision values ranges from 
0 to 100, with higher values indicating better performance.

2. Recall/Completeness. Conversely, the recall metric R(d) quan-
tifies how well the reconstruction  encompasses the points in the 
ground truth  for a given distance threshold d. It is defined as:

Its value ranges from 0 to 100, with higher values indicating 
better performance. Both the above 2 metrics are extensively 
utilized in recent studies [43,48].

3. F-score. The F-score, denoted as F(d), serves as a har-
monic summary measure that encapsulates both the precision 
P(d) and recall R(d) for a given distance threshold d. It is spe-
cifically designed to penalize extreme imbalances between P(d) 
and R(d). Mathematically, it can be expressed as:

The harmonic nature of the F-score ensures that if either 
P(d) or R(d) approaches zero, the F-score will also tend toward 
zero, providing a more robust summary statistic than the arith-
metic mean. F-score ranges from 0 to 100, with higher values 
indicating better performance. The details about value of d 
cutoff is given later in discussion about precision–recall curves.

For quantifying the quality of the NeRF-rendered 2D image 
compared to the validation image (left out from NeRF training), 
the following metrics are used:

4. LPIPS [49]: To quantify the perceptual differences between 
2 image patches, x and x0, the LPIPS framework employs activa-
tions from a neural network F. Features are extracted from L 
layers and normalized across the channel dimension. For each 
layer l, the normalized features are represented by ŷl and ŷl0, 
which exist in the space ℝH

l
 × Wl × C

l. These are then weighted 
channel-wise by a vector wl ∈ ℝC

l. The perceptual distance is 
computed using the ℓ2 norm, both spatially and across chan-
nels, as expressed in the equation:

This distance metric, d(x, x0), provides a scalar value indicat-
ing the perceptual dissimilarity between the patches. The vec-
tor wl weights the contribution of each channel to the distance 
metric. By setting wl to 1∕

√
Cl , the computation effectively 

measures the cosine distance, highlighting the directional 
alignment of the feature vectors instead of their magnitude. 
Its value ranges from 0 to 1, with lower values indicating better 
performance.

5. Peak signal-to-noise ratio (PSNR) [50]: The PSNR between 
2 images, one being the reference and the other the reconstructed 
image, is defined as:

where MAXI is the maximum possible pixel value of the image, 
and MSE is the mean squared error between the reference and 
the reconstructed image. The MSE is given by:

where I is the reference image, K is the reconstructed image, 
and m and n are the dimensions of the images. A higher value 
of PSNR indicate better performance.

6. Structural Similarity Index (SSIM) [51]: The SSIM index 
is a method for predicting the perceived quality of digital televi-
sion and cinematic pictures, as well as other kinds of digital 
images and videos. SSIM is designed to improve on traditional 
methods like PSNR and MSE, which have proven to be incon-
sistent with human eye perception. The SSIM index between 
2 images x and y is defined as:

where μx is the average of x, μy is the average of y, �2x is the vari-
ance of x, �2y is the variance of y, σxy is the covariance of x and 
y, and C1 and C2 are constants to stabilize the division with 
weak denominator. These last 3 metrics do not need the 3D 
ground truth and are widely used in literature [52,53] for evalu-
ation. SSIM ranges from −1 to 1, with higher values indicating 
better performance.

Precision–Recall curves: Precision–recall curves are utilized 
to methodically evaluate how distance threshold d changes 
influence precision P(d) and recall R(d) metrics, demonstrat-
ing the trade-off between these measurements under varying 
threshold conditions. To set the value of d for the final assess-
ment, we opt for a conservative estimate before the plateauing 
of precision–recall curves. For indoor scenarios, assuming a 
hypothetical grid size of 128 × 128 × 128 for reference, we 
establish d at 0.005. In this scenario, the voxel size is calculated 
as 1/128 ≈ 0.0078125, which makes the threshold of 0.005 
smaller than the voxel size. This indicates a requirement for 
points to be closer than the dimensions of a single voxel to be 
identified as distinct, highlighting a prioritization of detail 
sensitivity within a hypothetically coarser grid. Such a setting 

(3)P(d)=
100

∣ ∣

∑

r∈
�

(

min
g∈ ∥r−g∥ <d

)

,

(4)R(d)=
100

∣ ∣
∑

g∈
�

(

min
r∈ ∥g−r∥ <d

)

.

(5)F(d) =
2 × P(d) × R(d)

P(d) + R(d)
.

(6)d
(
x, x0

)
=
∑

l

1

HlWl

∑

h,w

‖‖‖‖
wl⊙

(
�y
l
hw−�y

l0
hw

)‖‖‖‖

2

2

(7)PSNR = 10 ⋅ log10

(
MAX2

I

MSE

)

,

(8)MSE=
1

mn

m∑

i=1

n∑

j=1

(
I
(
i, j
)
−K

(
i, j
))2

,

(9)SSIM
(
x, y

)
=

(
2�x�y + C1

)(
2�xy + C2

)

(
�2
x + �2

y + C1

)(
�2x + �2y + C2

) ,

D
ow

nloaded from
 https://spj.science.org at Iow

a State U
niversity on M

arch 31, 2025

https://doi.org/10.34133/plantphenomics.0235


Arshad et al. 2024 | https://doi.org/10.34133/plantphenomics.0235 8

is especially pertinent for capturing the complex geometries of 
indoor plants, where precision in detail is crucial. Due to the 
size and complexity of the scene, a threshold of 0.01 is selected 
for outdoor plant reconstructions.

Early stopping of NeRF training using LPIPS
In training NeRFs for plant scene reconstruction, the F1 score 
is essential for validating the accuracy of the reconstructed 
point cloud against the ground truth. The inherent challenge 
during the training phase of NeRFs is the absence of ground 
truth, paradoxically the output we aim to correspond. Moreover, 
the training process for NeRFs is notoriously compute-intensive. 
The cumulative costs become challenging when scaled to mul-
tiple scenes or across extensive agricultural fields.

Figure 4 shows the scatter plots of PSNR, SSIM, and LPIPS 
scores against the F1 score, alongside their respective Pearson 
correlation coefficients. This visualization offers an immediate 
visual assessment of the relationships between these metrics 
and allows for a nuanced understanding of how accurately each 
metric predicts the true F1 score. The exceptionally strong 
negative correlation between LPIPS and F1 score (−0.82) rein-
forces the notion that LPIPS effectively captures the perceptual 
similarity between the reconstructed and ground truth point 
clouds, making it a reliable proxy for F1 score, the ultimate 
measure of reconstruction fidelity.

The significant negative correlation between LPIPS and the 
F1 score (−0.82), PSNR (−0.81), and SSIM (−0.69) underscore 
the impact of LPIPS on the quality of 3D reconstruction (see the 
Supplementary Materials for detailed correlation matrix). The 
high magnitude of these coefficients, particularly the −0.82 with 
the F1 score, indicates that LPIPS is a robust predictor of 
reconstruction accuracy: as the perceptual similarity measure 
improves (meaning LPIPS decreases), the fidelity of the recon-
structed point cloud to the ground truth improves correspond-
ingly. This observation not only suggests the utility of LPIPS as 
a stand-in metric when the ground truth is unavailable but also 
highlights its potential as a more influential factor than tradi-
tional metrics such as PSNR (0.58) and SSIM (0.37) in determin-
ing the overall quality of NeRF-generated reconstructions.

Given this strong correlation, LPIPS emerges as a promising 
surrogate metric for early stopping during NeRF training. By 
monitoring LPIPS, one can infer the likely F1 score and make 
informed decisions about halting the training process. This 
method could decrease computational costs and time, as one 
need not await the completion of full training to predict its 
efficacy in terms of F1 score.

Algorithm for Plateau Detection: The plateau detection algo-
rithm identifies a stabilization point in a series of metric values, 
such as LPIPS. The updated algorithm computes the average 
LPIPS for each set of images in  against their corresponding 
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ground truth images in . It then assesses the sequence of these 
average LPIPS values to identify a plateau, using a specified 
threshold θ and a consistency length C. The detection of the 
plateau point P is crucial for indicating an optimal stopping 
point in the training process. To validate the efficacy of the early 
stopping algorithm, we applied it to a diverse dataset compris-
ing 5 plant types captured in both indoor and outdoor settings. 
The threshold (θ) was set to 0.005, and the consistency length 
(C) was fixed at 6. The granularity of interpolation was set 
to 1,000, spanning a total of 60,000 training iterations. These 
hyperparameters were chosen based on empirical observa-
tions to ensure a balance between computational efficiency and 
reconstruction accuracy.

Results

We evaluated the performance of NeRF models across various 
scenarios, from controlled indoor environments to complex out-
door field conditions, using key performance metrics to assess 
their efficacy in 3D plant reconstruction. The NeRFs were trained 
on an NVIDIA A100 graphics processing unit (GPU) with 80GB 
GPU RAM attached to an AMD EPYC 7543 32-core central pro-
cessing unit (CPU) with 503GB CPU RAM. Posttraining, the 
models are converted into point clouds with approximately a 
million points each. Estimated camera poses from COLMAP are 
visualized in Fig. 5, and a summary of the performance metrics 
of each of the 3 scenarios is given in Table 2. 3D evaluation met-
rics are presented in this section; for a more granular analysis of 
2D image metrics, please refer to the Supplementary Materials. 
Visually, the performance of each model could be assessed using 
Precision and Recall as shown in Fig. 6. The Precision–Recall 

curves of the different scenarios for different threshold values are 
shown in Fig. 7.

Visualization Color Code: The color-coded visualizations 
employed provide an intuitive understanding of spatial rela-
tionships within the 3D reconstructed plant structures. The 
interpretation of colors is as follows:

• Gray: (Correct) Represents points within a predefined 
distance threshold relative to the reference point cloud. This 
color indicates accurate points in precision and recall evalua-
tions, where precision assesses the reconstruction against the 
ground truth, and recall evaluates the ground truth against the 
reconstruction.

• Red: (Missing) Depicts points in the point cloud being 
tested that are beyond the distance threshold but within 3 stan-
dard deviations from the nearest point in the reference point 
cloud. These points are considered inaccuracies, showing miss-
ing details in the reconstruction when assessing precision and 
highlighting missing elements in the ground truth during recall 
analysis.

• Black: (Outlier) Highlights points in the point cloud being 
tested that are more than 3 standard deviations away from any 
point in the reference point cloud. These points are extreme 
outliers and represent notable errors in the reconstruction rela-
tive to the ground truth for precision evaluations and similarly 
notable discrepancies in the ground truth relative to the recon-
struction for recall.

Scenario I - single plants indoors
We first look at the results of reconstructing a single plant in 
an indoor environment. Detailed evolution of each metric over 
training iterations is given in the Supplementary Materials.

A B C

Fig. 4. Correlation analysis between different metrics with F1 Score via Pearson coefficients: (A) PSNR, (B) SSIM, and (C) LPIPS.

A B C

Fig. 5. Camera pose estimations across 3 different scenarios. (A) Scenario I. (B) Scenario II. (C) Scenario III.
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Precision: For Scenario I, NeRFacto, achieved the highest 
precision followed by TensoRF and Instant-NGP (see Fig. 6) 
after 30,000 iterations. Across all models, precision generally 
increases with the number of iterations. 

Recall: The recall metric follows a similar trend, with 
Instant-NGP and NeRFacto showing increases with more itera-
tions, indicating an enhanced ability to encompass points from 
the ground truth. Notably, NeRFacto achieves remarkably 
high recall values (over 90) at higher iterations, suggesting its 
superiority in the completeness of reconstruction. TensoRF’s 
recall values are markedly lower, indicating that it may miss 
more details from the ground truth compared to the other 
models.

F1 Score: The F1 score, balancing precision and recall, high-
lights NeRFacto as the most balanced model, especially at 
higher iterations, with scores above 80. Instant-NGP shows a 
substantial improvement in F1 scores as iterations increase, but 
it does not reach the same peak as NeRFacto. TensoRF lags in 
this metric, indicating a less balanced performance between 
precision and recall.

Computation Time: Time efficiency is a crucial factor, espe-
cially for practical applications. Instant-NGP demonstrates a 
relatively balanced approach between efficiency and perfor-
mance, with time increments correlating reasonably with the 
increase in iterations. However, it becomes time-consuming at 
high iterations (20,000 and 30,000). NeRFacto, while showing 
better performance in many metrics, demands considerably 
more time, especially at higher iterations, which could be a limit-
ing factor in time-sensitive scenarios. The evolution of precision 
over training time for NeRFacto is given in the Supplementary 
Materials. TensoRF, despite its lower performance in other met-
rics, maintains a more consistent time efficiency, suggesting its 
suitability for applications where time is a critical constraint. 

Overall Performance and Suitability: In sum, NeRFacto 
emerges as the most robust model in terms of precision, recall, 
F1 score, and image quality metrics (PSNR, SSIM, and LPIPS), 
making it highly suitable for applications demanding high accu-
racy and completeness in 3D modeling. However, its time inef-
ficiency at higher iterations might restrict its use in time-sensitive 
contexts. Instant-NGP presents a good balance between perfor-
mance and efficiency, making it a viable option for moderately 
demanding scenarios. Detailed results are given in Table 2, after 

complete training. The Precision–Recall curves based on vary-
ing distance threshold after maximum training of 30,000 itera-
tions is given in Fig. 7.

Insight 1: Computational Cost and Accuracy Trade-off in 
Instant-NGP and NeRFacto: The steep increase in performance 
metrics with the number of iterations for both Instant-NGP 
and NeRFacto suggests that these models require a substantial 
amount of data processing to achieve high accuracy, which is 
critical in high-fidelity 3D modeling. However, this also implies 
a higher computational cost, which needs to be considered in 
practical applications.

Insight 2: Model Suitability in High-Detail 3D Reconstructions: 
The notable disparity in the performance of TensoRF com-
pared to the other 2 models, particularly in precision and recall, 
indicates that not all NeRF models are equally suited for tasks 
requiring high-detail 3D reconstructions. This highlights the 
importance of model selection based on the specific require-
ments of the application.

Insight 3: Divergence in 2D Image Quality and 3D Recon
struction in Instant-NGP: A detailed examination reveals that 
Instant-NGP demonstrates strength in 2D image quality met-
rics such as PSNR, SSIM, and LPIPS, reflecting its ability to 
produce better rendered image quality. However, this excel-
lence in 2D imaging does not correspondingly extend to 3D 
reconstruction metrics like Precision, Recall, and F1 Score. 
This observation highlights a notable distinction in the chal-
lenges associated with optimizing for high-quality image ren-
dering as opposed to achieving accurate 3D representations. 
The model’s adeptness at rendering highly detailed 2D images 
does not necessarily imply its effectiveness in accurately recon-
structing complex 3D structures, particularly in the context of 
intricate plant models. This insight underscores the need for a 
nuanced approach in evaluating the performance of models 
that are tasked with both 2D image rendering and 3D spatial 
reconstruction.

Scenario II - multiple plants indoors
We observe marked differences in model behaviors compared 
to the single plant scenario, likely attributed to the added intri-
cacy of multiple plants in a single scene. Detailed evolution of 
each metric over training iterations is given in the Supplementary 
Materials.

Table 2. Performance metrics of NeRFs reconstruction techniques across Scenarios I, II, and III

# Model Precision↑ Recall↑ F1↑ PSNR↑ SSIM↑ LPIPS↓ Time (s)↓

I Instant-NGP 24.66 90.62 38.77 23.41 0.81 0.17 756

TensoRF 9.58 43.34 15.69 14.69 0.55 0.66 1,973

NeRFacto 73.57 94.72 82.81 22.24 0.73 0.12 1,938

II Instant-NGP 23.45 58.57 33.49 19.08 0.64 0.31 1,886

TensoRF 20.5 55.34 29.91 15.54 0.42 0.56 2,607

TensoRF 64.47 76.8 70.1 18.93 0.64 0.25 1,226

III Instant-NGP 15.06 59.55 24.04 18.54 0.47 0.4 1,466

TensoRF 40.95 75.62 53.13 17.32 0.39 0.55 1,965

TensoRF 68.29 82.32 74.65 16.7 0.32 0.34 1,499
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Precision: As shown in Fig. 6, Instant-NGP exhibits a steady 
increase in precision with more iterations, peaking at a high 
value. However, NeRFacto starts at a higher precision and 
reaches an even higher peak, indicating a more accurate recon-
struction of the corn plants. TensoRF, although improving with 
more iterations, lags behind the others in terms of precision.

Recall: A similar pattern is observed for recall, with NeRFacto 
consistently maintaining a higher recall compared to the other 
methods, suggesting its ability to better encompass points 
in the ground truth. Both Instant-NGP and TensoRF exhibit 
increasing recall with more iterations but at lower levels than 
NeRFacto.

Fig. 6. Precision and recall of 3D reconstruction using different NeRF techniques across different scenarios. Legend:  Correct,  Missing,  Outlier.
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F1 Score: The F1 Score, balancing precision and recall, fol-
lows a similar trend. NeRFacto demonstrates the best balance 
between precision and recall, with its F1 score peaking at 70.10, 
while Instant-NGP and TensoRF achieve lower peak F1 scores.

Computation Time: The time taken for iterations is crucial 
for efficiency. Instant-NGP and NeRFacto have comparable 
times, but TensoRF takes substantially longer at higher itera-
tions, indicating less time efficiency. 

Overall Performance and Suitability: NeRFacto emerges as 
the most balanced and efficient model, exhibiting high preci-
sion, recall, and F1 scores, along with favorable PSNR, SSIM, 
and LPIPS values. Its efficiency in time taken is also comparable 
to Instant-NGP. Instant-NGP, while showing improvements, 
does not quite match NeRFacto’s balance of precision and recall. 
TensoRF, despite its merits, falls behind in several key metrics, 
particularly in precision, recall, SSIM, and LPIPS. The results 
after complete training are given in Table 2. The Precision–
Recall curves based on varying distance thresholds after maxi-
mum training of 30,000 iterations are given in Fig. 7.

Insight 1: Improved Performance of TensoRF in Scenario II: 
In the second scenario, TensoRF demonstrated an improvement 

compared to its performance in the first scenario. Specifically, 
its F1 score, a critical metric for 3D modeling accuracy, 
increased from 15.69 in the first scenario to 29.91 after 30,000 
iterations in the second scenario. This improvement highlights 
TensoRF’s potential in more complex or demanding 3D model-
ing tasks, especially when allowed to complete its training 
process.

Insight 2: 2D Metrics Versus 3D F1 Score for Instant-NGP 
and NeRFacto: While Instant-NGP and NeRFacto show com-
parable results in 2D image quality metrics such as PSNR and 
SSIM, a distinct difference is observed in their 3D modeling 
capabilities, as reflected in their F1 scores, as observed in last 
scenario. This suggests that NeRFacto might be a more reli-
able choice for applications requiring high accuracy in 3D 
reconstructions.

Scenario III - multiple plants outdoors
Scenario III is the most complex, with multiple overlapping 
plants captured in field conditions. The models were also trained 
until 60,000 iterations, while the previous 2 scenarios were 
trained only for 30,000 iterations. Detailed evolution of each 

A B C

Fig. 7. Precision-recall curves for the three scenarios based on varying distance thresholds after 30,000 iterations (Scenarios I and II) and 60,000 iterations (Scenario III) 
for (A) Instant-NGP, (B) TensoRF, and (C) NeRFacto.
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Fig. 8. Scenes for validating the early stopping algorithm and their 3D reconstructions: original scenes in the first column, iterative reconstructions in the right column, and 
optimal iterations in the third column (*).
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metric over training iterations is given in the Supplementary 
Materials.

Precision: As observed in Fig. 6, NeRFacto consistently demon-
strates the highest precision across all iterations, peaking at 68.29%, 
suggesting its ability to reconstruct points close to the ground truth. 
Instant-NGP shows a steady increase in precision with more itera-
tions, while TensoRF, although starting lower, reaches a comparable 
precision to Instant-NGP at higher iterations.

Recall: NeRFacto leads in recall, achieving a high of 82.32%, 
indicating its effectiveness in encompassing points from the 
ground truth. Instant-NGP shows substantial improvement in 
recall with increased iterations but remains behind NeRFacto. 
TensoRF’s recall growth positions it between Instant-NGP and 
NeRFacto in terms of completeness.

F1 Score: Reflecting the balance between precision and 
recall, NeRFacto emerges as the superior model, with its F1 
score peaking at 74.65%. Instant-NGP’s F1 score improves 
with more iterations but remains much lower, while TensoRF’s 
F1 score surpasses Instant-NGP, reaching 53.13%.

Computation Time: In terms of efficiency, Instant-NGP and 
NeRFacto are the fastest, followed by TensoRF.

Overall Performance and Suitability: NeRFacto again emerges 
as the most balanced and robust model, excelling in precision, 
recall, F1 score, and LPIPS. Detailed results are given in Table 2, 
after complete training. The Precision–Recall curves based on 
varying distance threshold after maximum training of 60,000 
iterations is given in Fig. 7. The GPU memory usage of this sce-
nario comes out to be approximately a constant 3GB (for the total 
memory of GPU being 80GB).

Insight 1: Enhanced Performance of TensoRF in Outdoor 
Settings: TensoRF demonstrates substantial improvement in 
its performance in the third scenario compared to the first. 
Specifically, its F1 score has seen a good increase, from 15.69 
in the first scenario to 29.91 in the second and reaching 53.13 
after 30,000 iterations in the current outdoor scenario. This 
upward trajectory in F1 scores, which is a balanced measure of 
precision and recall, indicates TensoRF’s enhanced capability 
in outdoor environments, potentially outperforming Instant-
NGP in these settings. This suggests that TensoRF might be a 
more suitable choice for outdoor 3D modeling tasks where both 
precision and completeness are crucial. This property may have 
contributed in the selection of TensoRF as a building block for 
using multiple local radiance fields, during in-the-wild recon-
struction [54].

Insight 2: LPIPS as a Strong Indicator of 3D Model Quality: 
The LPIPS metric appears to be a more representative measure 
of the quality of the resulting 3D models. In the analysis, we 
observe that models with lower LPIPS scores consistently show 
better performance across other metrics. This trend indicates 
the relevance of LPIPS in assessing the perceptual quality of 
3D models. The further investigation into how LPIPS correlates 
with other metrics could provide deeper insights into model 
performance, especially in the context of realistic and perceptu-
ally accurate 3D reconstructions.

Early stopping algorithm
The implementation of early stopping based on the LP-IPS met-
ric yielded substantial savings in computational time across all 
scenarios, with a minor sacrifice in the fidelity of 3D reconstruc-
tions, as measured by the F1 score. Time savings were notable 
across the 3 tested methodologies—Instant-NGP, TensorRF, and 
NeRFacto—with each showing a marked decrease in training 

time without a commensurate loss in F1 score accuracy. For a 
deeper look of LPIPS, F1 Score and the recommended stopping 
point for each case, please consult the Supplementary Materials.

On average, the early stopping strategy resulted in a 61.1% 
reduction in training time, suggesting a substantial efficiency 
gain in the process of 3D plant reconstruction using NeRFs. 
Concurrently, the average F1 score loss was contained to 7.4%, 
indicating that the early plateau detection has a moderate impact 
on the quality of the 3D point cloud reconstructions. Specifically, 
Instant-NGP presented a more pronounced variation in F1 score 
loss, which was notably higher in Scenario III, thereby affecting 
its average loss more than TensorRF and NeRFacto. TensorRF 
and NeRFacto showed a remarkable consistency in time savings, 
which was mirrored in their comparable F1 score losses, high-
lighting the robustness of these methods in early stopping 
scenarios.

These findings articulate a compelling case for the utilization 
of early stopping in NeRF-based 3D reconstruction tasks, empha-
sizing the need to balance between computational resources and 
reconstruction precision. Such a balance is pivotal in scenarios 
where time efficiency is paramount yet a minimal compromise 
on reconstruction accuracy is permissible.

Scenario IV - validation examples in field conditions
The efficacy of the LPIPS-based early stopping algorithm 
was validated using a diverse dataset comprising images from 
5 different types of plants captured in both indoor and outdoor 
settings, as illustrated in Fig. 8. The validation process employed 
a threshold θ set to 0.005 and a consistency length C of 6, with 
the granularity of interpolation fixed at 1,000, spanning a total 
of 60,000 training iterations. For practical application, check-
points, inherently exponential in nature, necessitated linear 
interpolation to facilitate algorithm execution. Figure 8 shows 
the rendered point clouds at 3 stages: after 1,000 iterations, at 
the recommended early stopping iteration, and upon complet-
ing the full 60,000 iterations of training. Each row of the figure 
corresponds to one of the 5 validation scenes, providing a quali-
tative comparative analysis.

Notably, for all indoor scenes, the algorithm recommended 
halting training at 20,000 iterations, whereas for outdoor scenes, 
the suggestion extended to 30,000 iterations. This distinction 
underscores the algorithm’s sensitivity to environmental vari-
ables affecting perceptual similarity metrics. The rendered point 
clouds, particularly at the early stopping points, exhibit minimal 
visual discrepancies when compared to those obtained after the 
full training duration. By reducing computational demands with-
out much loss in fidelity, this approach is a cost-effective strategy 
for enhancing modeling throughput in precision agriculture and 
botanical research. We substantiate the hypothesis that LPIPS 
can serve as a reliable surrogate for direct F1 score estimation in 
the context of NeRF training. The algorithm’s ability to accurately 
predict optimal stopping points—balancing computational effi-
ciency with reconstruction accuracy—presents a compelling case 
for its adoption in scenarios where resource conservation is para-
mount, yet quality cannot be entirely sacrificed.

Discussion

In this section, we discuss the findings from our comparative 
analysis of NeRF models for 3D plant reconstruction. The 
results indicate that the Nerfacto model achieved the best 
performance, and we explore the theoretical basis for its 
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superiority by examining the sampling strategies employed by 
the different models. Understanding these strategies provides 
insights into why Nerfacto outperformed the other models in 
terms of reconstruction quality. In our experiments, we found 
that the Nerfacto model produced the highest quality 3D 
reconstructions compared to Instant-NGP and other NeRF 
models. To understand the theoretical basis for Nerfacto’s supe-
rior performance, in this section, we take a deeper look at the 
sampling strategies used by Nerfacto and Instant-NGP and 
how they influence the visual quality and level of detail in the 
rendered scenes.

The divergent performance of the NeRF models necessitates 
a deeper examination of their underlying sampling strategies 
and their influence on the quality of 3D reconstruction. The 
difference in the output quality between Instant-NGP and 
Nerfacto, especially concerning the density and crispness of 
the rendered scenes, could indeed be related to the sampling 
strategies used by each algorithm.

Instant-NGP Sampling Strategy: Instant-NGP uses an improved 
training and rendering algorithm that involves a ray marching 
scheme with an occupancy grid. This means that when the algo-
rithm shoots rays into the scene to sample colors and densities, it 
uses an occupancy grid to skip over empty space, as well as areas 
behind high-density regions to improve efficiency.

• The occupancy grid used in Instant-NGP is a multiscale 
grid that coarsely marks empty and nonempty space and is used 
to determine where to skip samples to speed up processing.

• This approach is quite effective in terms of speed, leading 
to substantial improvements over naive sampling methods.

• However, if the occupancy grid is not fine-grained enough 
or if the method for updating this grid is not capturing the 
scene’s density variations accurately, it could lead to a “muddy” 
or overly dense rendering because it might not be sampling the 
necessary areas with enough precision.

NeRFacto Sampling Strategy: Nerfacto, on the other hand, 
uses a combination of different sampling techniques:

• Camera Pose Refinement: By refining camera poses, Nerfacto 
ensures that the samples taken are based on more accurate view-
points, which directly affects the clarity of the rendered images.

• Piecewise Sampler: This sampler is used to produce an 
initial set of samples, with a distribution that allows both dense 
sampling near the camera and appropriate sampling further 
away. This could lead to clearer images since it captures details 
both near and far from the camera.

• Proposal Sampler: This is a key part of the Nerfacto method. 
It uses a proposal network to concentrate sample locations in 
regions that contribute most to the final render, usually around 
the first surface intersection. This targeted sampling could be a 
major reason why Nerfacto produces crisper images—it focuses 
computational resources on the most visually relevant parts of 
the scene.

• Density Field: By using a density field guided by a hash 
encoding and a small fused MLP, Nerfacto can efficiently 
guide sampling even further. It does not require an extremely 
detailed density map since it is used primarily for guiding 
the sampling process, which means that it balances quality 
and speed without necessarily impacting the final image’s 
detail.

Instant-NGP’s sampling strategy is built for speed, with an 
occupancy grid that helps skip irrelevant samples. This approach 
is great for real-time applications but can potentially miss subtle 
density variations, leading to a denser and less clear output if 

the grid is not capturing all the necessary detail. Nerfacto’s sam-
pling strategy is more complex and layered, with multiple mech-
anisms in place to ensure that sampling is done more effectively 
in areas that greatly affect the visual output. The combination 
of pose refinement, piecewise sampling, proposal sampling, and 
an efficient density field leads to more accurate sampling, which 
in turn produces crisper images. In summary, the reason for 
Nerfacto’s better reconstruction likely stems from its more 
refined and targeted approach to sampling, which concentrates 
computational efforts on the most visually impactful parts of 
the scene. In contrast, Instant-NGP’s faster but less targeted 
sampling may result in less clarity and more visual artifacts.

Finally, to retrieve the scale of the 3D reconstruction in the 
absence of reference point cloud data, a known scale can be placed 
on the ground during data collection. The exported point cloud 
can then be proportionally scaled based on this reference scale, 
which allows the size of the reconstructed plant to be calibrated 
to match its real-world dimensions. In order to show the practi-
cality of this approach, we placed a 3D printed sphere of known 
diameter for the plant in Scenario I and captured the images. We 
then go through our pipeline of NeRF reconstruction, and instead 
of registering and scaling the scene to the ground truth LiDAR 
data, we scale it to the known sphere size. We then measured the 
height of the plant in this scenario. We find that by using this 
approach, the error in the height of the plant is within 1%. We 
provide additional details of this experiment in the Supplementary 
Materials. We note that this is a preliminary result, and more 
detailed studies need to be performed in the future on extracting 
the correct scale from NeRF reconstructions.

In conclusion, the findings of this research underscore the 
value of NeRFs as a nondestructive approach for 3D plant 
reconstruction in precision agriculture. Our methodology 
more effectively facilitates critical agricultural tasks, such as 
growth monitoring, yield prediction, and early disease detec-
tion from accurate reconstruction of plant structures. Our 
comparative analysis, which benchmarks different NeRF mod-
els against ground truth data, highlights the method’s efficiency, 
achieving a 74.65% F1 score within 30 min of GPU training. 
Introducing an early stopping algorithm based on LPIPS fur-
ther enhances this process, reducing training time by 61.1% 
while limiting the average F1 score loss to just 7.4%.

Additionally, our work provides a comprehensive dataset and 
an evaluation framework, aiding the validation of current models 
and serving as a foundation for developing future NeRF applica-
tions in agriculture. The detailed insights into model performance 
across varied scenarios, coupled with the early stopping case study, 
offer practical guidance for 3D reconstruction using NeRFs. This 
research supports the advancement of nonintrusive agricultural 
technologies and also sets a baseline for future work at the inter-
section of NeRF technologies and agriculture, aiming to improve 
efficiency and accuracy in plant phenotyping and breeding.
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