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Abstract— Extrinsic manipulation, the use of environment
contacts to achieve manipulation objectives, enables strategies
that are otherwise impossible with a parallel jaw gripper.
However, orchestrating a long-horizon sequence of contact
interactions between the robot, object, and environment is noto-
riously challenging due to the scene diversity, large action space,
and difficult contact dynamics. We observe that most extrinsic
manipulation are combinations of short-horizon primitives,
each of which depend strongly on initializing from a desirable
contact configuration to succeed. Therefore, we propose to
generalize one extrinsic manipulation trajectory to diverse
objects and environments by retargeting contact requirements.
We prepare a single library of robust short-horizon, goal-
conditioned primitive policies, and design a framework to
compose state constraints stemming from contacts specifications
of each primitive. Given a test scene and a single demo pre-
scribing the primitive sequence, our method enforces the state
constraints on the test scene and find intermediate goal states
using inverse kinematics. The goals are then tracked by the
primitive policies. Using a 7+1 DoF robotic arm-gripper system,
we achieved an overall success rate of 80.5% on hardware
over 4 long-horizon extrinsic manipulation tasks, each with
up to 4 primitives. Our experiments cover 10 objects and 6
environment configurations. We further show empirically that
our method admits a wide range of demonstrations, and that
contact retargeting is indeed the key to successfully combining
primitives for long-horizon extrinsic manipulation. Code and
additional details are available at stanford-tml.github.
io/extrinsic-manipulation.

I. INTRODUCTION

Extrinsic manipulation describes the usage of environment
contact to aid manipulation [26] and is an emerging field in
robotic manipulation research. Leveraging environment con-
tacts allows simple parallel jaw grippers to achieve complex
tasks that are otherwise impossible. For instance, objects in
ungraspable initial poses can be picked up by first executing
a sequence of pregrasp motions involving pushing, pivoting,
and pulling [3, 36, 35].

Achieving extrinsic manipulation requires a holistic or-
chestration of contacts interactions between the robot, object,
and environment. In particular, the robot must be able
to address the diverse object and environment geometries
present in the real world. Earlier works attempt to perform
control synthesis by modeling contact dynamics explicitly [9,
12, 1]. However, due to the inherent difficulty with modeling
contact dynamics, these works are restricted to manipulating
known objects with simple geometries. Recent literature on

IComputer Science Department, Stanford  University,  Stan-
ford, CA 94305, USA {amhwu, rcwang, ericcsr
,karenliu}@cs.stanford.edu

2NVIDIA, Seattle, WA 98105, USA ceppner@nvidia.com

Fig. 1: Retargeting the object retrieval task from a human demo
(top) to oat (middle) and flapjack (bottom). This 4-primitive task
involves pulling the object from between the obstacles, pushing it
to the wall, pivoting against the wall to expose a graspable edge,
and finally grasping the object. Each row shows a trajectory in
temporal order from left to right. Please refer to our supplementary
video and website for animations.

extrinsic manipulations have sought to produce reinforce-
ment learning(RL)-based extrinsic manipulation policies that
generalizes to novel objects [36, 20, 37, 8, 35], but none
has successfully generalized to novel environments to our
best knowledge.

Furthermore, many applications in manipulation, such as
occluded grasping [36], are long-horizon in nature and re-
quire multiple contact switches. To overcome the difficulty in
producing long-horizon plans, some works in literature seek
to leverage demonstration [14, 6, 22]. However, to achieve
achieve contact-rich manipulation, hundreds of demonstra-
tions for a single task may be necessary [14, 6].

Other works seeking to achieve long-horizon manipulation
leverage a hierarchical structure to abstract away repetitive,
low-level motion “primitives” [24, 16, 11, 2]. While we
observe that most long-horizon extrinsic manipulation is
nothing more than a combination of short-horizon, fixed-
contact configuration primitives, for instance “push” and
“pivot”, extrinsic manipulation primitives are significantly
more challenging to abstract than simple primitives such as
pick, place, or end effector movement [24, 16]. Extrinsic
manipulation primitives leverage sophisticated contact in-
teractions, for instance “pivot” requires an object to be in
contact with an environment obstacle. This imposes scene-
dependent contact preconditions and exacerbates the sim-
to-real gap. Nevertheless, once the contact precondition is
satisfied, an extrinsic manipulation primitive is much more
likely to succeed.

We therefore propose to solve two subproblems instead of
the full long-horizon extrinsic manipulation problem: obtain-
ing primitives for a given contact configuration that are ro-
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bust under object and environment variations, and initializing
each primitive in the desired contact configuration. Moreover,
we observe that the sequence of primitives is typically fixed
for a given manipulation objective. For instance, “occluded
grasping by pushing object against an obstacle and pivoting
to expose graspable edge” always has a sequence of “push-
pivot-grasp.” Hence, one may circumvent the combinatorially
complex contact sequence planning by collecting a task
demonstration that fixates the contact sequence.

In this paper, we describe a method to generalize long-
horizon extrinsic manipulation plans from a single demon-
stration. Our contributions are:

e Contact retargeting framework to respect contact con-
straints while chaining extrinsic manipulation primitives. We
formalize a process to merge semantic contact specifications
from adjacent primitives, and leverage inverse kinematics
(IK) to find states achieving such requirements.

e One-shot transfer pipeline of extrinsic manipulation
task demo to diverse object and environment. We prepare
one library of 4 extrinsic manipulation primitives robust
to scene variations. By leveraging contact retargeting, our
pipeline merely takes a single task demo of any primitive
combination to achieve the same task in a distinct scene.

o Extensive hardware validation over 4 long-horizon
tasks covering 10 objects and 4 environments using a wide
range of demos. Our method achieved an overall success
rate of 80.5% and outperformed [36] on occluded grasping.
Ablation shows contact retargeting is indeed the key to
successfully chaining extrinsic manipulation primitives.

II. RELATED WORK

A. Manipulation using environment contacts

Many works in literature have explored applications that
require environment contacts, such as in-hand repositioning
with a simple gripper [10, 31], grasping from an initially
ungraspable pose [9, 36, 35, 32, 13, 25], and realignment for
industrial assembly [26]. Typically, the manipulated object is
pushed along or slid against a flat surface in the environment,
such as a tabletop or a wall [9, 36, 20, 37, 12, 8, 35, 18,
13]. In some cases, gravity is also leveraged for in-hand
reorientation [10, 31].

To produce these motions, earlier works often synthesize
control policies through hand-designed strategies [26, 9, 13]
or physical models [10, 9, 12, 1, 18, 5, 25]. However, the
inherent difficulty of modeling contact-rich motion restricts
these works to manipulating known objects with simple
geometries. Other papers recent papers instead uses RL to
obtain a feedback policy [36, 20, 37, 8, 35, 32], which can
be significantly more robust and generalize to geometries
never seen during training [36, 37, 8, 32]. Attention to
variable environments, meanwhile, is much more scarce.
Among the papers reviewed in this section, only [5, 32]
consider environment variability. The discussion in [5] is
limited to simulation experiments, and [32] uses a fingerless,
ball-shaped end effector with no grasping capability.

B. Composing primitives for long-horizon manipulation

Divide-and-conquer has been a popular way to tackle
long-horizon manipulation in literature. The learning-based
robotics community typically leverage the framework of
Parameterized Action MDP [23] to break down tasks into
shorter horizon primitives. The primitives can be manually
specified [11] or learned [24]. A high-level policy, which
may be based on RL [11, 24], Graph Neural Network [2], or
imitation learning [16] is then used to determine the sequence
and parameters of the primitives.

The main challenge with primitive-based approaches is
ensuring the composability of the primitives. Many advanced
primitives cannot succeed from arbitrary initial states and
experience a large sim-to-real gap. [11] has no hardware
experiments. [24, 16] only have hardware experiments on
pick-and-place tasks and end effector movement. [2] can
only perform a single stowing task. [4] uses dexterous
manipulation primitives that must be fine-tuned for a specific
execution sequence. Composing complex primitives arbitrar-
ily is still a missing ability in literature.

We note that primitive sequence planning, which is con-
sidered in [11, 24, 2], is beyond the scope of this work.
As such, this section excludes the task and motion planning
(TAMP) literature, which has an emphasis on planning such
sequences. The interested reader is referred to [17] for a
thorough review on TAMP. Our contribution focuses on
assuring the feasibility of the primitive sequence; choice of
the discrete sequence is obtained directly from the single
demonstration.

C. Demonstration for manipulation

Leveraging demonstration for robotic manipulation has
gained significant traction in recent years. The robot learning
community has explored many approaches, including varia-
tions of behavior cloning (e.g. [14, 34, 6, 22]) and fine-
tuning a pretrained RL agent (e.g. [30, 29]). We refer the
readers to [27] for a thorough review.

While these methods have achieved many sophisticated
manipulation tasks, the scalability and generalizability of
the policies produced by these methods is unclear. Despite
novel systems such as [15, 7] lowering the barrier to
collect demonstrations, the sheer amount of data needed
means training a policy is still costly. Every task in [6, 14,
7] requires between 50 to over 500 demonstrations. Some
works such as [34, 19, 30] emphasize the use of single
demonstrations, but the tasks achieved by these approaches
are restricted to end-effector pose movement with a firmly
grasped object. Achieving complex manipulation tasks from
few demonstrations remains an open problem to the best of
our knowledge.

III. NOTATION AND PROBLEM DEFINITION

We consider the quasi-static extrinsic manipulation of an
object with geometry O € O in environment £ € € using a
7-degree-of-freedom (DoF) robotic arm with a 1DoF parallel
jaw gripper. The robot system has state ¢ € Q C R®, and
the pose of the object is € € X C SE(3). We adopt the



shorthand s; £ (x4, q;) € S = X x Q to denote the state of
the system. Denote the control action as uw € i/ C R®. The
system is governed by the environment and object dependent,
discretized dynamics: s;11 = g’of(st,ut). A T + 1 step

trajectory can thus be described as {E’Ost}tzo LT

We first make assumptions that are commonly satisfied in
manipulation scenarios.

Assumption 1. & is fixed throughout the task.

Assumption 2. The robotic manipulator is fully actuated. A
motion planner is available such that the robot can reach
anywhere within the workspace without collisions and does
not obstruct any object-environment contacts.

To concretely describe contact configurations in the sys-
tem, we adopt Definitions 1 and 2.

Definition 1 (Contact configuration). A contact configuration
describes a minimal set of semantic contact requirements,
for instance “robot finger in contact with the top of an
object; object in contact with the obstacle.” We denote this
as 0 € Y. We use 0® and o9 to denote the subsets of
o concerning semantic environment-object and robot-object
contact configurations. c® U oc? = o. Under Assumption 2,
robot-environment contact is not considered. While our flex-
ible framework allows each manipulation primitive to define
its own contact requirements, we define a small set of
general contact configurations used to implement all the
manipulation primitives in this paper (Section IV-B).

Definition 2 (Contact configuration in £, O). For a specific
£,0, 895 C S concretely defines a set of robot and object
states that satisfies such semantic contact requirements. By
assumption 2, environment-object contact is independent of
the robot configuration, thus ©©c® C X defines a set of
object states that satisfy o®. On the other hand, robot-object
contact is dependent on both the object state and robot state.
Thus we denote €5 C Q as the set of robot states that
satisfy o9 given a particular x.

To allow abstracting the robot-object interaction away
and admitting demonstrations performed by arbitrary end
effectors, we define the following:

Definition 3 (Freestanding object states). For a given &, O,
the “freestanding object states” are objects states that stay
unchanged indefinitely unless there is robot-object contact.
We denote this as €© X,.

Problem 1 (Retargeting extrinsic manipulation). Consider
{g Ost col-
t=0,1,...,T
lected in environment £ on object O under 5.y, =
£,0 f(8¢,4t). The trajectory satisfies a manipulation objec-
tive G C X, ®&r € G. Additionally, the trajectory progresses
through N contact configurations o1, . ..,0y, and has n—1

contact switches at 0 < t1 < < tny_1 < T at

an extrinsic manipulation trajectory

freestanding states, i.e.
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g@ mEOHlmSO‘X (2)

&y, €

Given a test environment £ and a test object O, find
a policy w(-) such that, under a strictly-increasing time-
remapping function n : R — R n(t), n(0) =
0, dn/dt >0, O achieves G in £

OFf (87,7(8+)) s Tyir) €G, 3)

using the same contact sequence
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Lastly, we make Assumption 3 to ensure the problem can
be solved with the same manipulation strategy as the demo.

Assumption 3. Problem 1 can be solved using contact
switches at freestanding states, i.e.

EOx,NE9%F N80T £0,Vi=1,...,N — 1.

IV. GENERALIZING EXTRINSIC MANIPULATION DEMOS
WITH CONTACT RETARGETING

Offline Execution

T

Demo

Contact rctargjctmgb

xR

remap xJQGretarget xJGretarget g

Define contact

requirements

Fig. 2: Approach overview. We prepare a primitive library and
define each primitive’s contact requirements online. Given a demo
task trajectory and a test scene, we retarget the demo to the test
scene by enforcing contact requirements. The demo’s primitive
sequence is then used to perform the task in the test scene.

Our approach is grounded in the following observation:
1) Long-horizon extrinsic manipulation can be decom-
posed into a sequence of primitives based on contact
switches.
2) A small set of primitives is sufficient to capture most
extrinsic manipulation.
3) The success of each primitive is highly dependent on
satisfying the desired o.
4) Under Assumption 2 and 3, satisfying o only entails
selecting an environment-dependent x .
Observations 1 and 2 motivates building a primitive library
to handle different scenarios. Observations 3 and 4 suggests
that the key to generalizing extrinsic manipulation from &, O
to £, O is to find object states that all os are maintained. We
thus break down Problem 1 into the following steps:



1) Prepare a library of short-horizon primitives for any
E,0 (Sec. IV-A, IV-B)

2) Identify the primitive sequence in the demonstration
(Sec. IV-D)

3) Remap the object states from £, O to £, O (Sec. IV-C)

4) Combine the sequence of remapped primitive sequence
to achieve G (Sec. IV-E)

We summarize our approach in Fig. 2. The rest of this
section describes each of the steps in detail. In Section VI, we
show empirically that this is a much more tractable formu-
lation for generalizing long-horizon extrinsic manipulation.

A. Primitive library

We build a primitive library II to handle short extrinsic
manipulation tasks that start from a single contact configura-
tion ;. In particular, we seek to develop a goal-conditioned
policy 7., where, given any £ € £,0 € O, initial state
so = (@o,q0) € £.94,;, and intermediate manipulation
objective G; C £90% C X, the state evolution

ser1 = 9f (86,70, (56:€,0,G0)), (6)

eventually leads to a state in G;. Table I summarizes our
4 primitives, push, pivot, pull, grasp. The primitives may
be obtained from any technique, including model-based and
learning-based, and leverage different control method. Our
primitives use joint impedance control and operational space
control (OSC). The restriction of initializing in o; and the
short task horizon makes producing 7,, for arbitrary £, O
significantly easier. Our primitive library is scalable: to add
an additional primitive, one only need to provide 7,, and
implement o; (Section IV-B).

We note that a robustly designed 7,, may relax the
requirements specified by o;. Enforcing contact configura-
tions often requires real-time feedback control. To increase
hardware performance, 7, may be designed such that states
in the vicinity of £©o can still successfully execute. Our
pivot and pull primitives leverage compliance and feedback
control to ensure the robot-object and environment-object
contacts are maintained. We also discovered the pushing
policy performs better without specifying the robot-object
contact; the RL policy is able to choose the contact implicitly.

B. Implementing o

We implement o as state constraints in the inverse kine-
matics (IK) problem detailed in Section IV-C. States satis-
fying the constraints here are states in the set -“¢, though
the set is not computed explicitly in practice. The following
environment-object constraint types are implemented for o®.

1) Ground: the object is in contact with the ground.

2) Wall: a lower edge of the object is in contact and
orthogonal to the wall normal. This is implemented
using the bounding box of the object. Of the 4 vertices
that are closest to the wall, the 2 lowest ones must be
on the wall, and the distance between the wall and the
object is 0.

The following robot-object constraint types are defined for
0d1® As x is given, constraints specified relative to the world
frame and environment are well defined.

1) Top: the gripper fingertips are approximately in contact
with the “top” of the object. This is implemented
by finding the 4 vertices with the highest world z
coordinate of the object’s bounding box, then finding
the geometric center of the 4 points. The robot-object
contact point is found by moving the end effector
from geometric center along world —z until contact
established.

2) Antipodal: the gripper fingertips are in contact with
the object on the opposite side of the wall-object
contact. This is implemented as an intersection of two
constraints: the distances between the object and the
fingertips are zero; the fingertips are within a cone
centered at the object’s geometric center, has the wall’s
normal as its axis, and has a half-angle of 7/6.

3) Grasp: the end effector is placed such that closing the
gripper results in a top-down object grasp.

The usage of these constraints in our extrinsic manipulation
primitives is summarized in Table L.

C. Contact retargeting

We propose a contact retargeting procedure to ensure each
primitive is started from a state in its contact configuration
regardless of &£, . First, we observed from Assumption 3
that the robot g can change arbitrarily during each primitive
switch:

Proposition 1 (Arbitrary robot-object contact switch at a
freestanding state). Vo € ©:9X, N &0 N €96 |, there
exists q1 € 5’Oag|w and qo € g’oafﬁ such that (x,q) €

57OO'Z‘ and (m,qg) S 5"00'1‘4_1.

By Proposition 1, in order to start the next primitive
To,y, from a state in 90,41, we only need the previous
primitive to end at an object state in £ ©o¥, ;. The robot can
be moved subsequently to satisfy € ’Oag_H. This leads to a
two-stage contact retargeting subroutine: retarget_x and
retarget_g. Both are implemented as IK problems using
Drake [33]. Additionally, we map the demo object states to
the test object using remap_x to serve as the initial guess
for retarget_x.

remap_x extracts the relative transforms {*X"*1} in the
demo object states {Z+, } and apply them to the test object’s
initial state o to obtain a sequence of initial guess object
states {&;}, i.e.

jtz‘ﬂ = iXi+1(:Eti)» iiiJrl 2ot (wl) )
retarget x finds G; C &%% N £9%  given
of, 08 1,E,0,Z;y1 by solving the following IK problem:

min d(z,#41), st.x €N %%, (@8)
€T

d(-,-) is implemented as the Ly norm of the position dif-
ference. This formulation encourages the retargeted object



TABLE I: Extrinsic manipulation primitives.

Push Pull Pivot Grasp
Description Push from side Pull from top | Pivot against environment | Top-down grasp
Type RL policy Designed Designed Designed
Control type Joint impedance OSC OSC OSC
State feedback x,q Open loop q x
Environment contact requirements o® Ground Ground Ground, wall Ground
Robot contact requirements o9 (0 (decided by ) Top Antipodal Grasp

state to stay close to the initial guess from demonstration if
possible. G; is defined as the e-ball around the solution x.

retarget_q find g given x € S’OJZ” N g’ooﬁ_l,g, o,
such that (x,q) € ©%0,,,. This is summarized by the
following IK feasibility problem:

£,0 _qlz
0i+1'

min 0, s.t.q € )
q

The usage of these subroutines is summarized in Algo-
rithm 1. Implementation of the state constraints in Equa-
tions 8 and 9 is described in Section IV-B.

D. Demonstration collection

The key information to be extracted to the demonstration
are the object state trajectory {&;},_, . the associated
contact sequence {O’t}tzov_”T, and the contact transitions
{titici No1:%t C £.0x,. Not needing g explicitly
allows great flexibility in how the demo is obtained. In
this paper, we simply have a human manipulate the object.
The top row of Fig. 1 shows an example of demonstrating
retrieval on cracker. The human also provides the primitive
label. Each demo takes fewer than 30 seconds to complete.

E. Policy composition and execution

Algorithm 1 summarizes an N-primitive demo is retar-
geted to the test time £, O and object initial state x. Each
primitive is given a concrete objective using retarget_x.
Upon completion of the current primitive and prior to
executing the next primitive, we leverage retarget_g
at each (freestanding) contact switch state to compute the
robot-object contact for the next primitive. We assume the
availability of an additional subroutine move_robot_to,
which relocates the robot to a new state without collision.
In our experiments, move_robot_to is implemented as a
joint position controller, and the robot is always returned to
a default configuration prior to moving to the next target g.

V. SYSTEM SETUP

Our hardware setup is shown in Fig. 6. More details are
available on our project website.
e Robot. A 2-finger Franka Hand mounted to a 7-DoF
Franka Research 3 robot. The gripper has 1 DoF, leading to a
8-DoF action space. Deoxys [38] is used to control the robot
system. We choose the Franka’s base frame as the world
frame and use it to define the environment configuration.
e Environment. A 10 cm tall, 101.5 cm long acrylic “wall”
is erected at variable distances and orientations from the
robot. The wall’s pose is expressed with the world z

Algorithm 1 compose_policy

Input: £,0,G, 1,V {Z, 0}, {t:}, x0o

I G+ {}
: {&;} +remap_x({&, },x0,&,0)
for:=0,...,N—1do
G.append(retarget _x(o;,0i4+1,&,0,&;11))
: G.append(G)
T < X9
:fori=1,...,N do
q +relocate _g(xz,O,¢&)
5= (x,q)
move_robot_to (q)
while = ¢ GJi| do

S < 870.](((83 Ty, (st; g» 07 gl))

— = =
N e

position of its center and its yaw angle about the world
z, where 0° is when the wall is parallel to y. Up to
3 obstacles may be mounted on the ground in the orien-
tation in Fig. 3a. The dimensions of obstacles 1,2,3 in
cm are (25.8,30.8,7.7), (18.5,23.5,14.0), (21.0, 25.5,16.3).
We express the position of an obstacle with the world (z, y)
coordinate of its geometric center.

e Objects. 7 standard objects weighing 120g — 400g are
tested on all tasks. 3 short objects are tested on the occluded
grasping task. 3 impossible objects difficult to manipulate
with the gripper are used solely to collect demonstrations in
Section VI-B. A textured mesh of each object is captured
with Kiri Engine for pose tracking, IK, and training the
pushing primitive.

e Compute. A desktop computer with Intel i9-13900K CPU

(b) Object set

(a) Robot setup

Fig. 3: Hardware setup. Fig. 3a shows the world frame, the 3
obstacles, and the wall at (75¢m, 0°). Fig. 3b show the 13 objects,
from left to right beginning with the frontmost row: camera*,
onion*, meat*, salt{; cracker, cocoa, seasoning, flapjack, coffeef;
oat, cereal, wafer, chocolatet. *=short objects(3). f=impossible
objects(3). The rest are standard objects(7).



and NVIDIA GeForce RTX 4090 GPU is used to run the
pose estimation pipeline. A laptop computer with Intel i7-
11800H CPU and NVIDIA GeForce RTX 3080 is used to
run the primitives.

e Perception and pose estimation. A calibrated Microsoft
Azure Kinect RGB-D camera is used to capture the scene.
Textured meshes of the objects are used to get 6D pose
estimations with Megapose [21].

VI. EXPERIMENTS
A. Extrinsic manipulation tasks

We evaluate our framework on 4 real-world extrinsic
manipulation tasks, which are illustrated in Fig. 4.
e Obstacle avoidance. Push the object forward, switch
contact and push again to avoid the obstacle.
e Object storage. Push an object toward the wall, pivot to
align with an opening between the wall and the object, then
pull it into the opening for storage.
e Occluded grasping. Push the object in an ungraspable
pose toward the wall, pivor it to expose a graspable edge,
and grasp it. On short objects only, an additional pull is
performed after pivot to create space between the wall and
the object for inserting the gripper. To compare with [36], a
simplified version with no push and x( by the wall is also
performed on standard objects.
e Object retrieval. Pull the object from between two
obstacles, push toward the wall, pivor it to expose a
graspable edge, and grasp it.

Various environments are used for the demonstrations and
tests to showcase our method’s robustness against environ-
ment changes. All demonstrations are collected on cracker.
Every task is evaluated on the 7 standard objects, each with
5 trials. Additionally, occluded grasping is evaluated on the
3 short with an extra pull step.

Numerical results and task parameters are summarized in
Table II for standard object tasks. Short object grasping is
summarized in Table III. Our method achieved an overall
success rate of 80.5% (81.7% for standard objects) in
Section VI-A experiments. Despite not being tailored to
occluded grasping, we outperformed the equivalent exper-
iments in [36], both when the initial object state is against
(88.6% vs. 78%) and away from (77.1% vs. 56%) the wall.

(d) Retrieval

(a) Avoidance

(b) Storage (c¢) Grasping

Fig. 4: Extrinsic manipulation tasks. The numbers and colors
denote the primitive sequence. Push: red. Pull: green. Pivot: yellow.
Grasp: orange. An additional “pull” is necessary for short objects,
as the a and b branches illustrate in Fig. 4c.

Fig. 5: Executing extrinsic manipulation tasks, in temporal order
from left to right. From top row to bottom: avoidance on wafer,
storage on cereal, grasping on cocoa and camera(short object). An
extra pull (5th frame) is necessary to create clearance between the
wall and gripper prior to grasping camera. Video is available in our
supplementary material and on our website. Please refer to Table II
for detailed task setups and Fig. 1 for the retrieval task.

B. Retargeting from different demonstrations

To show that our method is agnostic to the specific
demonstration, we collect demos for grasping on oat and
the 3 impossible objects that are unlikely to be graspable by
the robot. We then retarget all demos onto cracker from 5
different initial poses. We achieved 100% success rate across
20 trials (Table III), showing that our method is capable of
retargeting from a wide variety of demos.

TABLE III: Additional grasping experiments.

Short objects Retargeting to cracker
Primitives Push-pivot-pull-grasp Primitives Push-pivot-grasp
Demo wall 80cm, 0° Demo wall 75cm, 0°
Test wall 75cm, 0° Test wall 77.5cm, 8.5°
Camera 3/5 Chocolate 5/5
Meat 4/5 Coffee 5/5
Onion 3/5 Oat 5/5
- - Salt 5/5
Overall 66.7% Overall 100%

C. Ablation and comparison

The occluded grasping task (push-pivot-grasp) is chosen
for our ablation study and comparison.
e Ablation of retarget_x shows the merit of contact
retargeting. Here, @; are directly set as G;. This drops the
success rate to 37.1% (Table II). Without retarget _x, the
intermediate goals G; seldom satisfy the contact requirements
of the subsequent primitive. This is illustrated in Fig. 6a.
e End-to-end reinforcement learning (RL) serves as a
comparison where contact information is not used and the
task is treated as one long-horizon task. An RL agent is
trained with proximal policy optimization [28] to move
cracker from one initial pose to a goal pose corresponding to
a successful grasping execution on hardware (Fig. 6b). RL
failed to learn meaningful actions using a reward function
similar to the one we trained the push primitive with.



TABLE II: Summary of experiments on 7 standard objects.

A |
Xo (estimated) G (ablation) G2 (ablation)

(a) Effect of retarget_x on G;

(b) RL scene

Fig. 6: Ablation and RL comparison. Fig. 6a shows the effects
of ablating retarget_x away on the grasping task. The initial
state o, push and pivot intermediate goals G, G2 are shown. Gy,
which is just ; as computed by remap_x without retarget_x,
is too far from the wall for pivor. Fig. 6b shows the scene, initial
(on ground), and goal (floating) poses used to train RL.

D. Failure analysis

Despite not being a part of our contribution, the perception
system and IK solver significantly affect our pipeline’s suc-
cess rate. Poor state estimation and G; almost always result
in failed execution. A better engineered solution can directly
replace our implementation to boost performance. The failure
rate of each primitive across experiments in Section VI-
A are reported below. Standard (bold) and short objects
are reported separately. Push: 7.5%,0%. Pull: 4.5%,18.2%.
Pivot: 9.6%,15.4%. Grasp: 6.6%,10%. We attribute the
higher failure rate on short objects to perception challenges
and the small sizes. Occlusion from the wall is more sig-
nificant when the object is shorter, and the pose estimation
error may be larger. Furthermore, while action noises in our
pipeline are of similar magnitude across objects, they also
represent a relatively larger impact when the object is small.

VII. CONCLUSION AND FUTURE WORK

This work presents a framework for generalizing long-
horizon extrinsic manipulation from a single demonstration.
Our method retargets the demonstration trajectory to the
test scene by enforcing contact constraints with IK at every
contact switches. The retargeted trajectory is then tracked
with a sequence of short-horizon policies for each contact
configuration. Our method achieved an overall success rate of

Avoidance Storage Grasping Retrieval Grasping (Ablation)
Primitives Push-push Push-pivot-pull | Pivot-grasp | Push-pivot-grasp Pull-push-pivot-grasp Push-pivot-grasp
Demo wall 80cm, 0° 80cm, 0° 75cm, 0° 75cm, 0° 75cm, 0° 75cm, 0°
Test wall 80cm, 0° 75cm, 0° 75cm, 0° 77.5¢cm, —8.5° 80cm, 0° 77.5¢cm, —8.5°
Demo obstacles | 1:(—7.1,14.6) | 2:(10.8,31.2) None None 2:(—19,49),3 : (23.8,33) None
Test obstacles 1:(—7.1,14.6) | 2:(10.8,31.2) None None 2:(—19,54),3:(23.8,35.3) None
Cracker 4/5 5/5 4/5 4/5 4/5 2/5
Cereal 4/5 5/5 5/5 5/5 5/5 3/5
Cocoa 4/5 4/5 4/5 3/5 2/5 1/5
Flapjack 4/5 3/5 4/5 3/5 3/5 1/5
Oat 5/5 4/5 5/5 3/5 5/5 2/5
Seasoning 5/5 3/5 4/5 5/5 3/5 1/5
Wafer 4/5 5/5 5/5 4/5 4/5 3/5
Overall 85.7% 82.9% 88.6% 77.1% 74.3% 37.1%
[ . . .
& A ) 81.7% on real-world objects over 4 challenging long-horizon
- ' ' extrinsic manipulation tasks. Additional experiments show
w that contact retargeting is crucial to successfully retargeting
o f g: such long-horizon plans, and a wide range of demonstration
° . ] 4 can be successfully retargeted with our pipeline. Future

directions of this work include admitting language-based
or simulation-based demonstrations, and generalizing the
contact retargeting formulation to remove Assumption 3.
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