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Wheat stripe rust (WSR), a fungal disease capable of inflicting severe crop loss,
threatens most of global wheat production. Breeding for genetic resistance is the
primary defense against stripe rust infection. Further development of rust-
resistant wheat varieties depends on the ability to accurately and rapidly
guantify rust resilience. In this study we demonstrate the ability of visible
through shortwave infrared reflectance spectroscopy to effectively provide
high-throughput classification of wheat stripe rust severity and identify
important spectral regions for classification accuracy. Random forest models
were developed using both leaf-level and canopy-level hyperspectral
reflectance observations collected across a breeding population that was
scored for WSR severity using 10 and 5 severity classes, respectively. The
models were able to accurately diagnose scored disease severity class across
these fine scoring scales between 45-52% of the time, which improved to 79-
96% accuracy when allowing scores to be off-by-one. The canopy-level model
demonstrated higher accuracy and distinct spectral characteristics relative to the
leaf-level models, pointing to the use of this technology for field-scale
monitoring. Leaf-level model performance was strong despite clear variation in
scoring conducted between wheat growth stages. Two approaches to reduce
predictor and model complexity, principal component dimensionality reduction
and backward feature elimination, were applied here. Both approaches
demonstrated that model classification skill could remain high while simplifying
high-dimensional hyperspectral reflectance predictors, with parsimonious
maodels having approximately 10 unique components or wavebands. Through
the use of a high-resolution infection severity scoring methodology this study
provides one of the most rigorous tests of the use of hyperspectral reflectance
observations for W5R classification. We demonstrate that machine leaming in
combination with a few carefully-selected wavebands can be leveraged for
precision remote monitoring and management of WSR to limit crop damage
and to aid in the selection of resilient germplasm in breeding programs.

HEYWO RDS

wheat stripe rust, hyperspectral reflectance, remote sensing, machine learning, random
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1 Introduction

Stripe rust, primarily afecting cereals such as wheat, rye, barley,
and various grass species, is one of the most severe and widespread
plant diseages globally (Chen et al, 2002; Wellings, 2011; Figueroa
et al., 2018). Wheat stripe rust (WSR) is cansed by Puccinia striiformis
f.sp. tritici (Pst), an airborne fungal pathogen capable of transmitting
over extensive distances and resulting in total crop loss in severe cases
(Waqar et al, 2018), Characteristically stripe rust manifests through
the formation of yellow to orange stripes on the leaves, leaf sheaths,
glumes, and awns of susceptible plants (Chen etal, 2014). Like many
rust fungi, Pet is an obligate biotrophic parasite that absorbs nutrients
and water from living tissue (Mdntosh et al, 1995; Lin et al., 2018;
Chen, 2020). Stripe rust can canse wp to 100% yield loss in susceptible
cultivars, especially when the disease starts eardy and continues to
develop during the growing season (Chen, 2005). An estimated 88%
of global wheat production is susceptible to Pst, threatening the wheat
industry as a whole (Schirrmann et al., 2021). In 2021, the United
States Department of Agriculture (USDA) reported a 59 million
bushel loss of wheat due to wheat stripe rust, highlighting the
economic and agrAcultural impact of this disease (Kolmer and
Fajolu, 2021). The appearance of new highly aggressive Pt races
with broader virulence profiles and tolerance to high temperature
(Milus et al, 2009 Hovmeller et al, 2015) have prompted the
expansion of Pst epidemics to warmer areas (Hovmeller et al,
2011). The long-range dispersal and rapid evolution of these new
races (Hovmaller et al ., 2008 Milus et al, 200% Ali et al., 2014) have
brought about a rapid erosion of effective resistance genes,
dramatically reducing the number of effective sources of resistance
available for breeders to protect new varieties (Lowe et al,, 2015),

Integrated management strategies that combine genetic resistance
and crop management can help mitigate the effects of the discase
(Beres et al, 2020). Eardy detection is crucial for effective Pst
management, to prevent spore production and dispersal, but ako
reduce fungicide usage overall (Moshou et al, 2004; Carmona et al,
2020; Prahl et al., 2022). Modern fungicides represent a convenient
alternative to control wheat rusts, though their application adds a
significant cost t0 production (Chen, 2005 Chen et al, 2014) and may
lead to health and environmental risks when not used propedy ( Cobo
etal., 2018). Breeding resistant varieties to replace those susceptible to
new Pst races is the most effective, economic, and environmentally
friendly way to control current stripe rust epidemics (Hovmeller et al,
2010; Lin et al, 2017; Cobo etal., 201%; Zhou et al., 2021) and prevent
their further expansion (Cao et al. 2012). Developing genetic
resistance has been at the forefront of efforts to reduce the threat of
stripe rust globally (Singh et al, 2005 Chen, 2020). However, this
strategy requires permanent efforts to identify and deploy new sources
of resistance against the rapidly evolving Pst populations (Cobo et al,
2018; Zhou et al, 2021). The identification of genes associated with
stripe rust resistance, and the type and strength of resstance, requires
field evalnations of segregating populations that have been inoculated
to promote strong and even infection (Cobo et al, 2018; Qiao et al,
2024), Remote sensing offers tremendous potential to provide
accurate, non-invasive and repeatable assessments of plant disease
status and resistance (Milsson, 1995; Mahlein, 2016), particularly as
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advances in imaging technologies and machine leaming converge
(Arsenovic et al., 201% Saleem et al, 201% Sishodia et al, 2020; Weiss
et al., 2020; Schirrmann et al, 2021).

The timely and reliable discovery and characterization of new
sources of resistance to highly virulent Pst races and the continued
advancement of genetic resistance will depend on new capabilities
to detect and quantify stripe rust through high-throughput
techniques (Schirrmann et al,, 2021), ideally providing objective
and repeatable assessments of the response of plants to the
pathogen to allow for more precise selection of resistant
genotypes. Feature detection in imagery has proven to be a
powerful technique for plant disease detection in general (Saleem
et al., 2019), and WSR detection specifically (Azadbakht et al., 2019
Schirrmann et al, 2021), but requires high-resolution imagery and
sufficient lighting conditions to produce reliable and reproducible
results. Visible through shortwave infrared (VSWIR) spectroscopy,
often referred to as hyperspectral sensing or imaging spectroscopy,
provides a rich source of information on a variety of plant
biophysical traits, e.g. water, pigment and nutrient contents
(Ustin et al., 2004; Goetz, 200% Kokaly et al,, 200% Ustin et al,
2009; Krishna et al., 2014; Asner et al., 2015). Hyperspectral VSWIR
sensing offers significant potential to advance plant disease
detection and rating through detection of changes to plant
biophysical traits impacted by disease, rather than image analysis
(Mahlein et al, 2018). Terentev et al. (2022) recognize the
capabilities of hyperspectral sensing for early plant disease
detection before symptoms are visible to human observers or
typical RGB cameras. The latent period in WSR, the time from
first infection to the appearance of symptoms, can be 10-14 days
under ideal conditions (Murray, 2005). Early detection of WSR
would allow commercial producers to take advantage of early acting
treatments, reducing overall costs and preventing further disease
spread (Carmona et al,, 2020). Automation of disease monitoring
methods promises to expand the capabilities of wheat producers to
protect their fields but has met with several challenges on the
quantification of disease severity and risk (Ashourdoo et al, 2016
Shafi et al., 2022, 2023),

Prior work on wheat disease monitoring has primarily focused
on disease detection and severity assessment through
measurements of the diseased percentage of leaf coverage (Wang
et al., 2007; Zhang et al, 2014; Ashouroo et al., 2014a, b; Yao et al,
2019; Magsood et al., 2021; Jiang et al., 202% Zhao et al., 2023). In
this study, we use a modified 10-class severity scale (Peterson et al,
1948) which is designed to better capture early symptoms of disease
infection providing a rigorous basis for breeders to evaluate WSR
resistance in new accessions. This large number of finely resolved
classes provides a unique challenge for our assessment of the ability
of hyperspectral reflectance and machine leaming to classify
WSR severity.

Here we assess the ability of the information contained in
hyperspectral VSWIR sensing to effectively classify WSR disease
severity at both the leaf and canopy in two susceptible varieties with
different stages of infection. We used random forests as the machine
learning framework, along with dimensionality reduction approaches
to produce efficient models that demonstrate significant skill in disease
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severity identification. Feature importance is used to identify the
specific spectral regions that are most important at both leaf and
canopy scales. This work provides a path to effective utilization of
hyperspectral VSWIR reflectance for the automated scoring of disease
severity in breeding programs and will likewise facilitate timely
precision treatment applications in production contexts to maximize
the efficiency of anti-fungal treatments at field-scale.

2 Materials and methods
2.1 Experimental design

Figure | provides a schematic of the analytical process used in
this experiment. Leaf samples and reflectance spectra were collected
from two susceptible cultivars with a range of stages of P infection.
Leaf and canopy-level hyperspectral reflectance samples were
collected across the range of rust infection spanning a 10-class and
5-class severity classification scale, respectively. Random forests was
used to examine the ability of reflectance across the 450-2400nm
spectral range to classify stripe rust severity across these fine scales
typical of breeding population evaluations. Model performance and
feature importance were quantified. The sub-sections below describe
each component of this process in greater detail.

2.2 Study site and plant material

Field experiments were initiated in mid-Movember at the
University of California field station near Davis, California (387
31" N, 121°46" W) in a Yolo loam soil (fine-silty, mixed,
superactive, nonacid, thermic Mollic Xerofluvents). Fertilization
consisted of 224 kg N ha™ applied as (NH,),50,, half at pre-
planting and the rest at the beginning of jointing.

Highly susceptible common wheat lines “DS86301" (MAYO -54//
(SEL29-1-C)NORIN-10/BREVOR) and ‘Anza’ (LERMA-RDJO-
64//NORIN-1WBREVOR/3/3*ANDES-ENANO) were used as Pst
spreader border at the University of California-Davis wheat
breeding program and replicated throughout the breeding site.
Although natural and strong Pst infections occurred regularly in
this region (Maccaferr etal,, 2015) and no fungicides were applied,
a stripe rust nursery located at an edge of the site was inoculated in
February (at jointing stage) with a mix of Pst spores collected at the
University of Califomia-Davis experimental field station during the

10.3389/fpls.2024. 1429879

previous season to ensure a strong disease pressure (Cobo et al,
2018; Dang et al., 2022}, The variable distance (0-500m) of "DS6301"
and ‘Anza’ non-inoculated replications to the inoculated trials
produced a natural gradient of the progression of the Pst
infection across the field. Data collection was performed on two
dates, March 25™ and April 22™ 2016. Both dates were preceded by
approximately two weeks of no minfall, with a daily maximum
temperature of 74°F on March 257 and 75°F on April 224,
Monthly average daily maximum temperatures for March and
April were 68°F and 76°F respectively. Both data collection days
were characterized by clear skies providing ideal conditions for
canopy reflectance collection. A total of 597 leaf samples were
scored with associated hyperspectral observations collected on two
collection days, 278 samples on March 25% and 319 samples on
April 22™, 2016. In addition, on March 257, 313 canopy
hyperspectral observations were collected.

2.3 Wheat stripe rust scoring

Leaves for the leaf-level analysis were sampled from ‘DS6301"
{sown in 1-m rows) and ‘Anza’ (4.4 m? plots), while canopy-level
hyperspectral reflectance samples were collected from ‘Anza’ plots
only to ensure the sensor field of view was completely composed of
the plot canopy. Along with hyperspectral reflectance sampling, we
used a modified severity index to estimate the progression of the Pst
infection as the proportion of the flag leaf affected by rust (Peterson
et al, 1948). We modified the commonly used severity index,
measured as the percentage of the leaf affected by the disease, and
used a 10-step scale to capture early symptoms of infection. Severity
class 0 indicates no visible infection symptoms, class 1 shows traces
of chlorotic dots, class 2 possess chlorotic spots with traces of
sporulation, class 3 shows small stripes with sporulation, and class 4
presents well defined stripes with some sporulation. Severity classes
5-9 all present broad stripes with active sporulation, gradually
increasing in percent leaf coverage from 50% (class 5) to 100%
(class 9) of disease coverage. Figure 2 provides example
photographic representations of individual leaves in each of the
10-step classification scale used here. Canopy observations were
scored using a simplified S5-step scale derived from the more
detailed 10-step scale used for individual leaf samples.
Consecutive classes are merged together, such that classes (0, 1);
(2, 3% (4,5); (6, 7) and (8, 9) for leaf samples become classes @, 1, 2,
3, and 4 for canopy observations respectively. Experiments were

Model Development

Feature Selection

Iterative Backwards
Feature Selection

Severity Classification

Canopy-lavel and leaf-level
spectrometer
measurements

Principal Component
Analysis

Model Training

Feature importance Analysis

Contrast class

80420 Training Split izl

200 Repetitions

Idantify correlating
phenomanon

FIGURE 1
Schematic of the experiment and analytical process.
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1] 1 2 3 4 5 [ 7 8 9
FIGURE 2
Photographic representations of individual leaves in each of the 10-
step classification scale used here for foliar W5R severity

assessment. These images were taken from leaves of the highly
susceptible "DS6301 line.

scored between the heading (Z50) and grain filling (Z80) stages
(Zadoks et al., 1974). The Pst races detected at the UCD field during
the 2016 season, together with their virulence profiles were
described previously (Cobo et al,, 2018).

2.4 Hyperspectral data collection

Visible through shortwave infrared (VSWIR) reflectance
spectra were collected with a FieldSpec4 Standard Res field
spectroradiometer (Malvern Panalytical, Boulder, CO, USA). This
instrument collects rmdiometrically calibrated radiance observations
that are then nommalized to reflectance wsing a standard white
reference. The instroment contains three detectors spanning the full
350-2500nm range of the instrument, providing 3nm resolution in
the visible through near infrared (VNIR; 350-1000nm) and 10nm
resolution at longer wavelengths. Each spectrum sampled is the
average of ten spectral samples collected by the system over an
approximate one second period The spectra were then interpolated
to Inm resolution (2151 integer wavelengths) across the full spectral
range. Wavelengths less than 450nm and greater than 2400nm were
removed due to measurement noise, Model development and
analysis was conducted using the reduced spectral range of 450-
2400nm (1951 wavebands).

For each leaf sampled on March 25™ and April 227, leaf-level
reflectance was measured with the optical fiber attached to a plant
probe connected to a leaf clip assembly. This attachment provided a
light source, white reference, and black background against which leaf
reflectance was collected. On March 257 and April 22™, 278 and 319
leaf-level spectra were collected, respectively. A combined total of 61,
62, 57, 65, 64, 66, 63, 56, 55, and 48 samples were collected for classes
0 through 9 respectively, approximately evenly split between the two
days. Each leaf spectrum represents the average of three unique leaf
samples assessed to be at the same rust severity class from the same
plot. The models developed here include leaf-level models for samples
collected on each day, as well as a modd developed using all leaf-level
data spanning the two collection days.

Immediately following the collection of reflectance spectra all
leaf samples were weighed to obtain fresh weight. The samples were
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then dried for several days in an oven at 40°C until the samples were
completely dry. The samples were then weighed again to provide
dry weight. Water content was then calculated as the percentage of
the fresh weight that was water: (fresh weight - dry weight)/fresh
weight * 100,

Canopy-scale reflectance spectra were collected on March 25%
using the bare fiber of the spectrometer pointed down onto a wheat
plot from a height of approxi mately one meter above the canopy top.
The bare fiber has a 25-degree field of view, producing an
approximate 40 cm diameter circular area viewed at the top of the
canopy. Measurements were made at the center of each plot, ensuring
the entire field of view of the fiber did not extend beyond the plot
canopy. A total of 313 canopy spectra were collected across plots
spanning the full range of canopy-level severity classes. 67, 55, 70, 54,
and 67 samples were collected for classes 1 through 5 respectively.
The 1350-1500nm and 1800-1950nm ranges were excluded from the
canopy spectra analysis due to noise from atmospheric moisture
content in the path of the observation

2.5 Machine learning methodology

Random forests (RF) is a widely utilized machine learning
method that determines the classification of each sample from the
majority vote' from an ensemble of decision trees (Breiman, 2001;
Ham et al, 2005). This ensemble approach addresses the concemn
that any single tree might not be optimal due to a random
partitioning of the data that results in a bias. This approach
likewise improves overall model reliability, particularly in the case
of highly collinear features as is often the case with hyperspectral
data (Ma et al, 2013; Maxwell et al., 2018). RF has been shown to
have superior accuracy and reliability in classifying multispectral
data in a suite of case smdies relative to other state-of-the-art
machine learning techniques (Lawrence and Moran, 2015), In the
context of hyperspectral data, RF ensembles require relatively low
computational time and demonstrate robustness and high
performance relative to other machine learning techniques (Ham
et al, 2005; Joelsson et al, 2005), in part due to the ability of RF to
handle data characterized by a large number of features and
relatively small sample size (Ghamisi et al,, 2017).

In addition to the extensive demonstrations of RF performance
across disparate problem domains, RF provides valuable analytical
tools such as out-of-bag error estimation and feature importance
estimation that provide insights on model reliability and the
significance of specific spectral features, aiding in the interpretation
of the classification results (L et al,, 2023),

Here we utilize random forests for the dassification of wheat stripe
rust severity at both the leaf and canopy scales, utilizing dimensionality
reduction to reduce noise while improving model performance and
reliability. We contrast two feature reduction methods, principal
component analysis (PCA) and backward feature elimination, which
are further detailed in the following section.

For each of the four datasets (March 25" leaf dataset, April 22™
leaf dataset, combined leaf dataset and canopy dataset) the optimal
mumber of PCA components was determined by minim ization of the
Corrected Akaike Information Criterion (AIC:) scores. The average
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AIC for a given number of PCA components was calculated from
60 repetitions, usinga 20% validation holdout partition of the dataset
for PCA models spanning from 1 to 150 components. In each
training repetition, random forest hyperparameters were tuned
following MATLAB's hyperparameter optimization scheme for the
“fitcensemble” function on a 5-kfold internal cross-validation. We
narrowed this optimization to adjust only the number of leaming
cycles and the leamning rate of the model. The number of ensemble
trees was set to 100 and bagging was selected for the ensemble
aggregation method. Other hyperparameters were left at default
values and are the same for all models developed in this sudy. The
AIC. scores for each dataset were fit to a smoothing spline to reduce
variance for identification ofthe optimal number of PCA components
that provides the best trade-of between model complexity and
perfformance (ie. parsimonious model selection). Once the optimal
number of components to use for each dataset was determined, the
final models were retrained with a 20% validation holdout across 200
repetitions. Holdout data was selectal at mndom for each repetition.

A similar framework was employed for models using bacloward
feature elimination. For each of the four datasets, 100 models were
initialized with individual 20% validation holdouts. Each model
begins with a feature vector spanning wavelengths from 450-
2400nm, 1951 bins for leaf-level models and 1651 bins for
canopy-level models. Models iterate through cycles of training
and pruning, removing the least significant 10% of features based
on feature importance assessment of the trained model to
streamline the dataset to the features that are most impactful for
prediction. As before, a 5-kfold cross-validated hyperparameter
optimization is performed during each training phase.
Performance metrics are calculated from the withheld validation
data, which is unique to each of the 100 repetitions.

Human labels for each sample were used to train and validate
maodels for rust severity classification. We use two evaluation
metrcs: accuracy and “of-by-one”™ accuracy. Accuracy measures
the fraction of predicted labels that exactly match the human labels.
“Off-by-one™ accuracy accounts for human variability by
considering a prediction correct if it matches the human label or
is within one severity class above or below the human label.

2.6 Dimensionality reduction

High-dimensional data such as that produced by spectroscopy
provides unique challenges for classification problems due to high
data volume, multicollinearity, and a tendency towards overfitting
due to the subtle variations in spectral observations (Thenkabail
et al, 2014; Ghamisi et al., 2017; Gewali et al., 2018; Bumett et al,
2021; Wang et al,, 2021). These challenges are often dealt with by
focusing on a limited set of wavelengths (Deng et al, 2023), typically
those taken from existing vegetation indices that have demonstrated
value in other scenarios (Ashourdoo et al., 2014a, b). Problems such
as plant disease detection and severity quantification may require
unique combinations of wavelengths to optimize model
performance (Ashourdoo et al,, 2014a), ideally taking advantage of
relevant information across the full spectral domain (Ashoudoo
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et al, 2016; Schirrmann et al, 2021). High-resolution spectra
inherently contain many correlated bands, each potentially
providing relevant information that may be redundant with other
portions of the spectrum. This redundancy can diminish the
performance of classification models by introducing wnnecessary
complexity and noise (Dormann et al, 2013), while simultaneously
incurring the costs of Hughes phenomenon (Li et al., 2023).
Determining a reasonable trade-off for complexity and accuracy
is crucial for model simplification. In cases with limited sample
sizes, the Corrected Akaike Information Criterion (Equation 1)
provides a metric for quantifying mode] performance as a function
of complexity, where N is the number of samples and K is the
number of features (Sugiura, 1978; Akaike, 1998; Portet, 2020).

2K(K +1)
N-K-1

For classification problems with a large number of classes, the
maximum likelihood error (MLE) is equivalent to cross entropy,
which was calculated here using votes of individual learners

(regression trees) within each ensemble to estimate class
likeliboods for each data sample (De Boer et al., 2005)

AKC, = MIE-K + (1)

2.6.1 Principal component
dimensionality reduction

Dimensionality reduction techniques such as Principal
Component Analysis (PCA) are used to preserve data
information while reducing dimensionality. PCA aims to produce
an orthogonal set of basis vectors that maximally describe the
variance in data (Jolliffe, 1990; Jolliffe and Cadima, 2016). This
application of PCA centers on maximizing the information content
in the input spectra while reducing redundancy, without any
influence of a predetermined output or desired classification
result. Using this approach a significant reduction of the
dimensionality of the input data is possible, greatly enhancing the
computational efficiency of ML model development (Herrig
Fudanetto et al.,, 2021). It is important to note however that PCA
might overlook fine-scale, yet critical details to the problem of
interest, as it is limited by the number of specified components and
to patterns in the input data, rather than the classification target
(Shafizadeh-Moghadam, 2021; Li et al,, 2023).

A key characteristic of PCA is the potential to capture the
majority of the variation in a dataset in relatively few components.
This allows an approximate reconstruction of the complete spectral
observation from only a few components and can aid in associating
feature importance as well Supplementary Figure 51 (see
Appendix) displays the relative PCA feature importance
determined for the datasets examined here. These scores were
transformed by multiplication of the absolute value of the PCA
coefficients by feature importance scores to yield importance score
spectra. The resulting spectra were summed to yield a single
importance spectrum. Through this process, the relative
importance of each waveband can be approximated, without
directly training on the complete spectral dataset. A similar
approach is wsed in Ginshurg et al. (2015) to rank features on
both their PCA embedding and class correlations.
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2.6.2 Backward feature elimination

Backward feature elimination is a supervised method that
iteratively trains a model and prunes the least relevant features for
the task (Speiser et al, 2019). Strting with the entire refledtance
spectrum, backward feature elimination methodically removes the
least important wavebands, streamlining the dataset to those
wavebands that are most important for prediction. The mationale
behind selecting only a few wavebands lies in the simplicity and
efficiency it offers. We evaluate the optimal selection of features
through an iterative backward feature elimination approach,
removing the least significant 10% of features based on feature
importance assessment in each iteration. We use the built-in feature
importance metrics of MATLAB's Classification Ensembles, which is
derived from Gini Importance (Menze et al, 2009). In contrast to
PCA, this method removes wavebands from the dataset and focuses
on the wavebands that are most relevant for prediction. This difference
may make the results of feature elimination more meaningful for the
development of vegetative indices and low-cost multispectral
instruments for managing wheat stripe rust (Liu et al, 2016).

3 Results

3.1 Model complexity and
dimensionality reduction

The results of applying PCA dimensionality reduction to the
four datasets are presented in Figure 3. The red lines represent
smoothing splines fit to the average AIC: scores found for models
using from 1 to 150 PCA components. The minimum AIC- values

10.3389/fpls. 2024. 1429879

define the optimal number of PCA components used in the
development of the final models for each dataset, and were found
tobe20, 22, 18, and 16 for the March 257 leaf model, April 22™ leaf
model, combined leaf model and canopy model, respectively. The
corresponding optimal number of features resulting from feature
elimination are 9,7, 11, and 9 respectively (see Table 1).

3.2 PCA classification accuracy

In evaluating the effectiveness of hyperspectral data for
classifying WSR severity, we developed four random forest
models. Three of these models focused on leaf-level observations
and utilized data collected on March 22™ and April 25, as well as
the combined leaf dataset from both dates. The fourth model
analyzed canopy-level observations from March 22™, which
exhibited distinct spectral characteristics compared to the leaf-
level data. The results presented here are the average performance
of the 200 unique models developed for each dataset, specifically on
the 20% of validation data held out during each repetition.

Confusion matrices describing the predictive accuracy of each
of the four models on the held-out validation data are presented in
Figure 4, The leaf-level models for March, April and the combined
leaf-level dataset exhibit overall accuracies of 45%, 52%, and 48%,
respectively. Similar to eady results from Franke and Menz (2007)
we find that the presence of fungal spores become easier to detect
over time as the symptoms become more pronounced.

We note that for all models and all classes the predicted class is
correct more often than an estimation for any single ermoneous class.
An exception is observed in the April leaf model's class 2.

1200 - 1200
{A) March 25th Leal Model (B April Z2nd Leal Model
1000 - 1000
B0 =
600 -
400 8
E 0 50 100 150 0 50 100 150
uﬂ
= 12007 1200
() Combined Leaf Model (D) Canopy Model
10040 1000
L]
BO0 - 800
600 - 600 1*
400 - 400
200 - 200
0 50 100 150 0 50 100 150
PCA Components

FIGURE S

Comrected AIC curves against the number of PCA components used for dimensionality reduction. Individusl points (black dots] are the average AN
of 60 independent models for esch number of PCA components evaluated. Fitting splines (red lines) wene used to find the minimum AIC: (blue
triangles], which determined the optimal number of components to use in the development of the final random forest models. Results are presented
for the 10-dass severity scale used for lesves: [A) March 25 dataset, (B} April 22 datsset and (C) combined leaf dataset; and (D) the 5-class severity

scale used for canopy-scale observations.
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TABLE1 Optimal wavelengths retained in the parsimoniocus models
selected using backward feature elimination.

Dataset | Optimal Number | Optimal Wavelengths [nm]
of Wavelengths

Canopy 9 454, 643, 668, 680, &0, T2, 758,
Toh, TH2

Combined 11 457, 501, 361, 396, 625, 676, 87, 703,
719, 1425, 1471

March 9 452, 515, 613, 632, 653, 6RO, 604,
W, 726

April 7 686, 697, 1, TS5, 772, W410, 1470

‘Wavelengths are presented in numerical order, nat in the onder of importance for maodel
prediction. The optimal number of wavelengths is determined from minimum AIC-
{mee Figure 3L

Observations labeled as class 2 are more frequently predicted as class
3 (35.2%) rather than class 2 (30.7%). We also note that the largest
percentage of class mis-predictions occur for classes off-by-one, ie.
that differ from the correct class by one higher or lower severity class.
This is true in all instances except for a small number of cases. This
suggests that in addition to inherent error that may exist in the RF
models that human error in class identification in the field may play
an important role in these small errors in class identification.
Previous studies have resolved this by reducing the granularity of
their classification indices to improve class distinction (Shafl et al,
2023), often using three to four categories that include descriptions

A} March 25th Leaf Model
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such as “asymptomatic”, “pre-symptomatic”, “highly sym ptomatic”,
etc Here we maintain the original class structure that represents the
state-of-the-art in breeding assessments but use an additional “off-by-
one” metric, which considers a classification as correct if it falls within
one class of the expert human label. Applying this metric, the
accuracies for the March, April, and combined leaflevel models
improve significantly to 79%, 86%, and 82%, respectively. This
approach provides a more realistic assessment of the models’
performance relative to the ground truth observations.

The canopy-level model achieves an overall 78% accuracyand a
96% accuracy using the off-by-one metric. One aspect of this
improved performance relative to the leaf-level models is the use
of five classes when applying expert human labels in the field for
canopy-scale observations, relative to the ten classes used for the
leaf-level observations. Similar to the leaf-level models, the canopy-
level model exhibited the largest number of misclassifications in
classes adjacent to the true class of an observation.

3.3 Severity class representation

The mean spectra for each class for each of the foliar datasets
and the canopy-scale spectra are presented in Figure 5. Generally,
an increase in WSR severity class results in increased reflectance
across the full 450-2400nm spectral range for the leaf samples.
Some variation in the mean reflectance for each severity class can be

B} April 22nd Leaf Model
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FIGURE 4

Confusion matrices for RF models folowing PCA dimensionality reduction. Cell walues are the percentage of dassifications made for each dlass.
Classification results presented here are for the 20% of data held out for validation, averaged owver the 200 model repetitions performed for each
dataset. Diagonal (blue] cells show the percentage of accurate wheat stripe rust severity dassifications made for each dass. Results are presented for
the 10-da=s severity scale used for leaves: [A) March 25 dataset, (B) April 22 dataset and (C) combined leaf dataset; and (D) the 5-class severity scale

used for canopy-scale observations.
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seen in the two leaflevel datasets collected approximately one
month apart. The April 22™ dataset shows larger increases in
reflectance in the visible range as severity increases, relative to the
data collected on March 25™ The highest severity classes in
the April 22™ data show higher reflectance in the red portion of
the spectrum, and a reduced red-edge transition, perhaps due to
increased severity of disease symptoms during this latter data
collection period and the onset of necrosis by this date. For
canopy-level data the mean spectra show more subtle variations
across the 5 severity classes. There is a similar increase in reflectance
as severity increases in the visible, but this trend reverses itself in the
near-infrared portion of the spectrum. Despite these more subtle
variations in reflectance the canopy-scale models showed strong
predictive performance across the five severity classes (Figure 4),
Figure 6 emphasizes the difference between the March 25™ and
April 22" human labelling practices, along with different stages of the
disease and characteristics of the lesions produced (orange fungal
tissue vs. necrotic tissue). The trend toward higher reflectance in the
April 22 data is apparent with higher severity classes showing more
pronounced differences with the March data. Up to severity class 5,
there is a significant degree of overlap between the respective classes
of March and April, indicating a reasonable similarity between them.
From the first two PCA components, classes 7, 8, and 9 show both an
increased difference between the two dates as wdl as an increased
variance within chss labelling relative to the lower classes. These
changes are seen in Figure 6B which shows the mean reflectance
difference between identical classes for the two leaf collection dates.
These differences highlight the variability in human labelling and
point to the need for objective and repeatable approaches to quantify
severity, particularly in programs targeting the development of
resistant germplasm, These diferences in foliar scoring between the
two dates could be expected to have a confounding effect on the
performance of the model devdoped for the combined leaf dataset,

10.3389/fpls.2024. 1429879

relative to the performance of the models developed for each
collection date, but in general this was not found to be the
case (Figure 4).

The feature importance for each model projected onto the spectral
(450-2400nm) space is presented in Figure 7. This measure, derived
from the final ensemble of decision trees, shows the impadt of each
wavdength on the model’s prediction by accumulating the impacts of
each PCA component of the final model at each wavelength. The leaf-
level models (Figures 7A=C) exhibit similar feature importance profiles,
with notable peaks at approximately 520, 700, 1400, and 19%00nm
(vertical grey lines). The April 22™ leaflevel model however, shows
less importance at 520nm and more at 1900nm relative to the March
25 model, perhaps due to changes in pigment and water contents as
the plants aged The combined leaf-level model’s importance profile
combines elements of importance seen in the individual models, with
lower variability across the 800-2400nm range.

In general, the canopy-level model shares these regions of
spectral importance with the leaf-level models but includes new
regions of importance at approximately 920 and 1100nm that are
not evident in the leaf-level models. The importance peaks located
at 1350, 1800, and 1950nm occur at the edges of the regions
removed from the amalysis due to influences of atmospheric water
content. Due to the removal of adjacent wavelengths, these
important wavelengths are those that contain information on
plant water content, which is likely the reason that the regions
around 1400 and 1900nm are important for the leaf-level models.
The symptoms of severity class vary as the plants age as seen in
Figures 5A, B, 7A, B, Despite this, the similarities between leaf-level
feature importance for the two individual leaf-level models suggest
that similar patterns in reflectance are consistent with WSR classes
as disease symptoms become more severe,

An evaluation of leaf-level model performance when applied to
datasets for which the model was not specifically trained are
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FIGURE 5

Mean reflectance spectra for each seventy class for the two foliar datasets that use 10 severity classes (A, B), the combined foliar dataset (C) and the
canopy-scale dataset using 5 severity classes (D). Severity class of 0 indicates no infection. The gray regions show the full range of reflectance

observed for each dataset.
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presented in Figure 8, Confusion matrices for the models developed
using March and April data and applied to observations from the
other month are presented in Figures 8A, C, The performance of the
model developed using the combined leaf datasets, and applied to

March and April observations is presented in Figures 8B, D, These
applications allow us to assess the impacts of temporal variability on
model perfformance. When the March model is used to predict April
data, performance accuracy drops from 45% (79% of-by-one) to 25%
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FKGURE 7

Relative feature importance [black lines] projected across the full spectral mnge for the final models using PCA dimensionadity reduction for each of
the [A)} March, (B} April, and (C) combined 10-class leaf datssets, and the (D) 5-dass canopy dataset. The average spectral reflectance (red lines) is
presented for each dataset for reference. Vertical grey lines indicate regions of importance in the specta.
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Confusion matrices for leaf models (A) developed on March data and applied to April data, [B) developed on Aprl data and applied to March data, (C)
developed on the combined dataset applied to April and (D) March data. Cell vdues are normaized against the number of observed samples in each
dlass. Results are awveraged owver 200 repetitions of 20% data holdout. Disgonal [blue) cells indicate the fraction of acourate classifications.

(60% off-by-one). A bias is apparent in the predictions, with very few
samples being accurately predicted in the severity classes 3, 4, and 5.
In contrast, when the April model is applied to March data it shows a
decrease in accuracy from 52% (86% off-by-one) to 22% (54% off-by-
one), with a noticeable bias towards overpredicting classes 3 and 8.
The combined modd, whidh incorporates data from both periods in
model development, demonstrates improved performance. It
maintains relatively consistent accuracies of 47% (79% of-by-one)
on the March data and 48% (85% offby-one) on the April data,
suggesting that a model trained on a broader range of data can better
account for variations due to changes in time of data collection and
variability in human labeling on the symptoms and manifestations of
wheat stripe rust.

3.4 Feature elimination and
model parsimony

In addition to the PCA-based dimensionality reduction
approach we also implemented a bacloward feature elimination
strategy to select individual wavelengths as model features, rather
than the composite values of PCA. This method progressively
eliminates the least effective wavebands, allowing us to identify
parsimonious models that utilize a redoced set of wavelengths
(reduced model complexity) and provide near-optimal model
performance. Figure 9 shows how model accuracy for the
four datasets changes as the number of features (wavebands)
is increased.

For the case of the canopy model adding relevant features
enhances model accuracy from approximately 75% correct off-by-
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one classifications to over 30% when using 10 features. Beyond this
pointa performance plateau is reached where additional features do
not improve model performance. This behavior is consistent across
all models with only slight variations. In each model the most
significant wavebands are predominantly between 680-705 nm (see
Table 1), except for the March leaf-level model, which also includes
450nm and 522nm. These two wavelengths correspond to the
regions of peak chlorophyll b absorption (Sauer et al, 1966) and
peak reflectance in the green portion of the spectrum, respectively.

In comparison with PCA dimensionality reduction all models
exhibit a slight decrease in accuracy when using backward feature
elimination, while responses to the off-by-one metric are mixed.
Specifically, the combined leaf-level model shows a slight decrease
in accuracy from 48% (82% off-by-one) with PCA selection to 45%
(83% off-by-one) with backward selection. Similarly, the March and
April leaf-level models experience slight drops from 45% (79% off-
by-one) to 41% (79% off-by-one) and from 52% (86% off-by-one) to
46% (87% off-by-one), respectively. The ideal number of wavebands
was determined using the minimized AIC: score resulting in 9, 7,
11, and 9 wavebands for the March leaf model, April leaf model,
combined leaf model and canopy model, respectively. This
contrasts with the number of components found with PCA
dimensionality reduction at 20, 22, 18, and 16 components
respectively, while maintaining a similar level of accuracy.

While these two approaches to reduce the dimensionality of the
predictor variables show comparable performance, they differ in
how and why they are applied. PCA dime nsionality reduction is an
unsupervised method which seeks to explain the variance contained
in the predictor dataset without consideration of a specific modeling
goal. Feature elimination is designed to find the features best suited
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to the specific modeling task to which it is applied. Speiser et al.
(2019) acknowledges that feature elimination methods are well-
suited for random forests but are more at risk of overfitting than
other feature selection methods. Applications of feature elimination
need to consider the specific feature importance metric and how it is
used to assess the utility of each feature. This process can be
impacted by the general challenges associated with high-
dimensional data, particularly sparsity and collinearity.

4 Discussion

4.1 Feature selection

The two contrasting methods of feature selection and
dimensionality reduction (DE) were utilized in this study to
provide insights into the most important wavebands for WSR
severity quantification, leveraging datasets with high resolution in
disease severity scoring and high speciral resolution spanning the
full VSWIR region. PCA DR resulted in the identification of regions
of importance around 520, 700, 1400, and 1900nm for leaf-level
reflectance. The canopy-scale proximal sensing approach also
identified 950 and 1100nm as important wavebands. Backwards
feature elimination identified narrow regions at 450, 510, 560, 590,
640, 670-700, 720, 760, and 1420nm. These bands include those in
the blue (450nm), green (510, 520, 560, and 590nm), and red (670-
700nm) as well as the red edge (690-720nm) spectral regions,
highlighting the importance of visible color changes associated
with fungal growth and possibly changes in pigment contents.
When vsing high spectral resolution data as we have done here
(1nm resolution) several neighboring wavelengths may be needed
to leverage their relative values, similar to narrow-band vegetation
indices (Gupta et al., 2003).
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Previous studies have identified a number of wavebands and
indices useful in assessing wheat stripe rust incidence and severity.
Broadly, wavelengths spanning the green (450-550nm) and red
(550-700nm) portions of the spectrum have previously been
identified for wheat leaf rust detection (Azadbakht et al., 2019).
Several two-band indices commonly used in vegetation remote
sensing (Le. NDVI: [675nm, 800nm], NBNDVL: [680nm, 850nm]
and PRL [5331nm, 570nm]) have been shown to be effective for
wheat leaf rust assessment ( Azadbakht et al,, 2019) and detection
(Ashourdoo et al., 2014b). In a search for optimal combinations of
wavebands Deng et al. (2023) identified several wavebands
spanning the green, red and red-edge regions of the spectrum as
particularly effective for severity assessment, confirming similar
findings of Ashourdoo et al. (2014a). The findings of these studies
suppaort the significance of our identified wavebands for wheat st
assessment. Simultaneously, we identify a few spectral regions that
may yield im provements for wheat rust assessment: 640nm, 760nm,
1100nm, 1400nm, and 1950nm.

Previous research has demonstrated that increased reflectance
around 1400nm and 1950nm correlates with decreased water
content and increased rust severity in wheat (Moshou et al,,
2004). Figure 10 supports these findings for the detailed
classification used in this study, showing how leaf water content
and its influence on reflectance spectra change with severity class
for the March 22 dataset Figure 10A shows that as wheat stripe must
severity increases the water content in the wheat leaves decreases,
providing support for an area of relative importance in the
reflectance spectra in the region where sensitivity to water
content exists. We see that at 1400 and 1950nm a significant
increase in correlation is evident across all classes (black line). At
the most severe stages of infection (yellow line) correlation is
increased owverall, particulady across the near-infrared region
(B00-1100nm) and longer wavelengths,

4.2 Extension to multi-spectral
sensing technologies

Remaote sensing applications in agriculture are often constrained
by trade-offs related to sensor cost, size and performance attributes
such as spectral coverage and resolution. Multispectral sensors have
gained popularity and are now widely deployed in agricultural
monitoring due t©o these considerations. These sensors typically
utilize on the order of ten waveband ranges, with some sensors
offering flexibility in the selection of the wavebands. Previous smdies
have demonstrated positive results in the use of multispectral imaging
for WSR severity assessment (Su et al, 2018; Heidarian Dehkordi et al,,
2020} Our results demonstrate that roughly ten marrow wavebands
result in parsimonious modds that while much simpler than models
utilizing the complete spectra available to us offer excellent
performance in 'WSR severity estimation. Here we further simplify
the information in our dataset to explore how common multi-spectral
instruments would perform for this problem. We use the five
waveband ranges of the MicaSense RedEdge-M (MicaSense, Seattle,
WA, USA) instrument which spans the visible through near infrared
regions with bandwidths ranging from 10 to 40nm: blue (475 + 10nm),
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green (560 + 10nm), red (668 + 5nm), red edge (717 + 5nm) and NIR
(B40 + 20nm).

To assess the potential of a multispectral instrument for
classification tasks across our fine-scale classification system we
convolved our hyperspectral reflectance data to the spectral
responses of this 5-band sensor, using the waveband ranges above.
We note that there are numerous factors (sensitivity, signal to noise
ratio, illumination, blur, and pixel uncertainty) which would
ordinarily introduce additional noise into a real-world application
of this sensor, so these findings should be considered an upper-bound
on dassification performance.

Using spectra that have been adjusted to represent this much
reduced spectral domain we developed RF models using 60
repetitions with an 80%/20% traming spli. This “multi-spectral™
(MS) modd produced an average classification accuracy of 58.76%
(89.92% off-by-one). In comparison, applying our backwards feature
selection methodology on our original 1-nm resolution spectra to
derive an optimal five-wavelength model resulted in average
classification accuracy of 61.18% (93.58% off-by-one) under the
same training conditions. This model used wavelengths at 453nm,
628nm, 689%9nm, 04nm, and 764nm, confirming the importance of
visible wavelengths for this problem, particularly in the red and red-
edge regions of the spectrum. Both models produced similar
distributions in predictions and misclassifications, suggesting that
no significant bias was introduced by the M S model.

In a study using a MS instrument to assess yellow rust severity
through unmanned airbome wehicles (UAVs), Su et al (2018)
achieved an accuracy of 89.3% across three severity classes.
Spectral indices were derived from the five wavebands and used
as features. Due to the nature of how field measurements were
conducted, these results are not direcly comparable to ours, but
generally provide confirmation that sensors providing information
ina carefully-chosen small set of wavebands can provide excellent
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performance and promise to dramatically advance WSR
monitoring and management practices.

When applied to our leaflevel data we see an off-by-one
accuracy of 74.30%, 87.14%, and 81.36% on the March, April,
and Combined leaf datasets for the MS model. When we use
backwards feature selection to develop an optimal 5-band model
for our leaf data we found that five wavebands can yield off-by-one
accuracies of 81.36%, 88.54%, and 84.08% for the March, April, and
Combined leaf datasets, respectively. We find that the optimal 5-
band model outperforms the MS model for the March dataset for
classes 0-4 by approximately 10%. This points to the need to
carefully select the specific waveband regions, and spectral
resolution, when developing sensors targeting this specific
classification problem, particulady when eardy detection is critical.
We found that adding a waveband centered between 640 and
650nm could increase overall off-by-one accuracy to 79.67%,
improving early-stage off-by-one accuracy from 64.13% to 79.50%
for severity classes 0-4.

5 Conclusion

This study focused on the application of hyperspectral reflectance
observations to classify wheat stripe rust severity fora 10-class and 5-
class scale for leaflevel and canopy-level spectra, respectively. We
developed and evaluated four mndom forest models to assess the
ability of machine leaming to accuratey classify WSR severity across
this finely resolved severity classification system. The three leaf-level
models (one for each collection date, and one for combined data
across both collection dates) exhibited overall accuracies between 45%
and 52%. The introduction of an “off -by-one™ metric, which considers
a classification correct if it falls within one class of the expert human
label, provides a more meaningful comparison given the error-prone
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nature of human classification. This approach realized accuracies
between 78% and 82%. This supgests that severity classes have
distinct spectral features that become more pronounced as the
disease symptoms become more severe. The canopy-level model,
with a 5-class system, achieved an owverall accuracy of 78%,
increasing to 96% using an “offby-one™ assessment This study
provides one of the most rigorous tests of the use of hyperspectral
reflectance observations for WSR classification and provides evidence
that machine leaming and hyperspectral reflectance observation can
be leveraged for precision remote monitoring and management of
WSR w0 limit crop damage and to aid in the selection of resilient
germplism in breeding programs.

Analysis of reflectance spedra for severity classes identified both
temporal and structural varation in human labdling, complicating
the classification problem. Leaflevel data revealed that human
labeling can vary over time as observations made at different
growth stages may be biased by the progression in disease severity
across an experiment, or phenological changes of the plants. Leaf-
level and canopy-level (proximal) reflectance classification
experiments demonstrated consistency in the important regions of
the reflectance spectrum required for accurate class identification.

Owerall, feature importance amalysis across models indicated
that wavelengths in the green, red, and red-edge portions of the
spectrum were important for WSR classification, as well as regions
associated with variations in plant water content. Commonly
deployed multispectral instruments may be adequate for late-
stage wheat rust classification. We find that the addition of a
single narrowband observation around 640nm has the potential
to significantly improve ead y-stage wheat rust detection in standard
(3-5 band) multi-spectral instruments.

We contrasted two approaches to reduce the dimensionality of
high-dimensional hyperspectral reflectance data. Methods based on
both PCA projection and waveband feature elimination demonstrated
that hyperspectral observations can be greatly simplified while
maintaining a high degree of dassification accuracy. Parsimonious
maodels were identified that required approximately ten wavebands
for both leaf and canopy-level data, providing an optimal trade-off
between model complexity and performance. This points to the
potential to develop multi-spectral sensors specifically for fine-scale
classification of WSR for precision treatment and enhancing breeding
program evaluations. This study demonstrates the potential of
hyperspectral measurements to accurately distinguish and classify
WSR severity during the critical early stages of leaf infection for
targeted and efficient stripe rust management.
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