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Abstract—While much of the rapidly growing literature on fair
decision-making focuses on metrics for one-shot decisions, recent
work has raised the intriguing possibility of designing sequential
decision-making to positively impact long-term social fairness. In
selection processes such as college admissions or hiring, biasing
slightly towards applicants from under-represented groups is
hypothesized to provide positive feedback that increases the pool
of under-represented applicants in future selection rounds, thus
enhancing fairness in the long term. In this paper, we examine
this hypothesis and its consequences in a setting in which multiple
agents are selecting from a common pool of applicants. We
propose the Multi-agent Fair-Greedy policy, that balances greedy
score maximization and fairness. Under this policy, we prove that
the resource pool and the admissions converge to a long-term
fairness target set by the agents when the score distributions
across the groups in the population are identical. We provide
empirical evidence of existence of equilibria under non-identical
score distributions through synthetic and adapted real-world
datasets. We then sound a cautionary note for more complex
applicant pool evolution models, under which uncoordinated
behavior by the agents can cause negative reinforcement, leading
to a reduction in the fraction of under-represented applicants.
Our results indicate that, while positive reinforcement is a
promising mechanism for long-term fairness, policies must be
designed carefully to be robust to variations in the evolution
model, with a number of open issues that remain to be explored
by algorithm designers, social scientists, and policymakers.

Index Terms—Long-term fairness, positive reinforcement,
sequential decision-making.

I. INTRODUCTION

ITH the increasing use of machine learning models

for decision-making systems with significant societal
impact, such as recruitment [1], criminal justice [2], and credit
lending [3], there is also growing concern that such models
may inherit existing bias in data, perpetuating and poten-
tially exacerbating discrimination against certain groups in the
population. This has prompted a growing body of research
focused on developing fair and unbiased models, with much of
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the early literature focused on imposing notions of statistical
fairness, such as equal selection rates or equal true positive
rates, in static frameworks through pre-processing [4], [5], [6],
in-processing [7], [8], or post-processing [9] mechanisms.

Going beyond concepts of one-shot fairness and unbi-
asedness, there is also increasing interest in the long-term
impacts of automated decisions under various dynamical
models. For example, the potentially adverse consequences
of myopic fairness are pointed out in [10]: unanticipated
feedback dynamics due to the decisions made may change
population statistics in an undesirable manner. For example,
credit lending decisions which equalize true positive rates
across groups to satisfy statistical fairness might lead to
loans being offered to less creditworthy applicants from a
disadvantaged group. Lower repayment rates from this group
may then end up further decreasing its creditworthiness. On
the other hand, feedback dynamics could also be used to shape
population statistics in a desired direction. We take a step in
this direction by hypothesizing that biasing slightly in favor
of an underrepresented group in a selection problem (e.g.,
hiring or college admissions) provides positive reinforcement,
increasing the proportion of applicants from that group in
future selection rounds.

While most prior works on exploring such dynamics con-
sider sequential decision-making by a single agent, we take a
first step towards exploring the dynamics and long-term impact
of multiple decision-making agents competing for a common
pool of resources. We consider a selection problem, where
we wish to use positive feedback to increase the proportion
of underrepresented applicants in the presence of multiple
agents (e.g., universities or companies) selecting from among
a common pool of applicants. In order to focus attention on
feedback dynamics, we consider a simplified model in which
the agents are strictly rank ordered in terms of desirability
from the applicants’ point of view. For this model, we provide
a mathematical framework for studying whether some level
of cooperation between the agents helps promote long-term
fairness, and whether the concept of positive reinforcement is
robust to variations in the evolution model. We propose the
evolution model of positive reinforcement where if a higher
proportion of applicants from a specific group is selected, it
will lead to an increase in the proportion of applicants from
that group in subsequent rounds. We study variants of this
basic model of reinforcement, a particularly interesting one
being the notion of role model reinforcement. Here only a
certain fraction of the admitted applicants (as opposed to all
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admitted applicants) are in a position to influence applicant
proportions in the future, by virtue of being role models.
The idea that role models in society, to which a group can
relate, could positively influence more aspirants to enter a
field is supported by several works in social sciences and
economics [11], [12].

Contributions: The contributions of this work are sum-
marized as follows:

« We propose the Multi-agent Fair-Greedy (MFG) pol-
icy, in which agents operate in a decentralized fashion,
maximizing a greedy utility (based on the scores of
selected applicants) while minimizing the disparity from
a fixed long-term fairness target (based on the devia-
tion of the selected proportion of minority applicants
from a target proportion deemed to be socially fair).
We characterize optimal actions under this policy and
theoretically demonstrate the convergence of the overall
applicant pool and the admission proportions to the
desired long-term fairness target under the pure positive
reinforcement model for the evolution of the composition
of the applicant pool.

« Different population dynamics are studied empirically to
evaluate the impact of variations in population behavior.
We find that while the decentralized MFG policy attains
long-term fairness under pure positive reinforcement, if
the population dynamics follow a simple variant, termed
the role model reinforcement, uncoordinated behavior by
agents can result in an overall negative feedback, leading
to a steady decrease in the number of underrepresented
applicants in the pool. We propose a centralized version
of the MFG policy which can restore positive feedback.

o We illustrate our mathematical framework through com-
prehensive experimental results based on synthetic and
semi-synthetic datasets, highlighting variations in system
behavior under different evolution models, and under
decentralized and centralized MFG policies. These results
show that positive reinforcement indeed has potential for
promoting long-term fairness even with multiple agents,
but that policy design must be carefully considered in
order to be robust to changes in the evolution model.

II. RELATED WORK

There is a rich and rapidly growing literature on
fair strategies that mitigate bias in one-shot algorithmic
decision making, including pre-processing the labels or
data and reweighting costs based on groups [6], reduc-
ing mutual information between sensitive attributes and
predictions [13], [14], adversarial de-biasing [7], addition of
constraints that satisfy fairness criteria [8], learning repre-
sentations that obfuscate group information [4], and other
information theoretic methods [15], [16], [17], [18], [19].
However, recent research has introduced an intriguing possi-
bility: the design of sequential decision-making strategies that
can have a positive long-term impact on social fairness and a
study of their consequence on the population.

The effects of fairness-aware decisions on underlying popu-
lation statistics were first studied in [10] for two-stage models:

in the first stage, the algorithmic decisions are designed such
that fairness constraints such as statistical parity or equal
opportunity are satisfied, while the second stage examines
the impact of these fairness interventions on the groups.
Each sample is associated with a score corresponding to the
probability of a positive outcome, sampled from group-specific
distributions. The policy-maker or institution chooses selection
policies to maximize utility subject to statistical fairness. The
measure of interest in [10] is the expected change in the mean
of the score distributions for the two groups as a result of one
step of feedback. It was found that imposing equal selection
rates or true positives could lead to either improvement or
cause harm, particularly to the minority group, depending on
certain regimes. The results of [10] highlight the importance
of going beyond static notions of fairness in algorithm/policy
design.

Several works propose notions of statistical fairness focused
on improving feature distributions among groups. For exam-
ple, [20] presents a fairness notion that equalizes the maximum
change in reward for groups with the same effort budget for
improving their features. The authors examine how fairness
interventions impact evenness, centralization, and clustering in
the groups through their efforts, affecting score distributions.
In another example, [21] proposes to equalize the proportion
of unqualified candidates from different groups that can be
qualified with a limited effort for improving their features.
The authors investigate how statistical fairness notions change
feature distributions among groups in the long term through
modeling feature evolution.

Formal investigation of temporal effects of decision
feedback and their equilibrium is typically performed in rein-
forcement learning [22], [23], [24], [25] or bandit settings [26],
[27], [28], [29], [30]. The environment is described through
a Markov Decision Process (MDP) framework where at each
time, the decision-maker in a particular state takes an action
and receives a reward. State transitions are governed by update
models, and fairness constraints are included within reward
definitions.

The long-term effects of fair decisions on the qualification
rate of the group, which is defined as the probability of
an individual from a particular group being qualified, is
investigated in [31] under a partially observable MDP setting.
The group proportions over time are fixed, but the decisions
affect the feature distributions which in turn change their
true qualification state, which is modeled as a hidden state.
Decisions are performed on the features to maximize myopic
instantaneous utility, subject to statistical fairness constraints.
Threshold-based policies and their equilibrium are studied
under two regimes: “lack of motivation,” where the probability
of remaining qualified on receiving a positive decision is
less than that on being rejected, and “leg-up,” which is
the opposite, where an accepted individual becomes inspired
to become more qualified. Studies such as [32], [33] also
examine the effects of fair policies on the distributions of
the features. In particular, [32] studies how the qualification
profiles of groups are influenced by a policy that imposes
demographic parity (equal selection rates) across two groups
of the population. They assume that social equity is achieved
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through equalized qualification profiles in equilibrium. The
dynamic model in [33] is motivated by credit lending. The
authors model the distributions of loan repayment likelihood
(payback probabilities) by group, and examine the dynamics
governed by the hypothesis that granting loans leads to upward
mobility for the population if they are repaid. They study
the impact of fair decisions on loan repayment likelihood
and the negative effects of unequal misestimation of payback
probabilities across groups, even if the decisions are fair. In
contrast to studying the effects on group qualification, it is
also imperative to understand how group representation could
vary over time. It was first shown in [34] that empirical
risk minimization can exacerbate the disparity in group rep-
resentation. In the context of long-term fairness, [35] study
how algorithmic decisions which are constrained by statistical
fairness could degrade the representation of a minority group,
and eventually cause the loss of minority representation in the
system.

Our prior work: The work reported here builds upon
preliminary results shown in our conference paper [36], where
we first introduce the problem of selecting applicants from a
pool under the setting of a single institution. We introduce
the positive reinforcement model for evolution of the applicant
pool, which is similar in spirit to the “leg-up” model in [31],
except that it applies at the level of a population rather than an
individual: selection of a larger proportion of applicants from a
specific group feeds back into society and leads to an increase
in the proportion of applicants from that group in future
rounds. The score of an applicant, drawn from a group-specific
distribution, is taken to represent the level of qualification of
that individual. The Fair-Greedy policy, proposed in a single
institution setting, greedily balances the sum of the scores of
selected applicants against a fairness measure which increases
with the deviation of the selected proportion of applicants from
the under-represented group from a specified long-term target
proportion. Theoretical results for identical score distributions
across groups, and empirical results for other models, show
convergence to a long-term fairness target set by the decision-
maker. While the preliminary results in [36] show long-term
fairness through positive feedback under a single institution,
in this journal paper, we extend the promise of positive
reinforcement to multiple-agents, consider variations in the
evolution model, and find that careful design of feedback
mechanism is required.

All of the preceding works on long-term fairness focus
on settings with a single decision-maker accessing a pool of
samples from the population. However, in real-world selection
processes such as college admissions or hiring, there are
often multiple agents or institutions competing for a common
pool of applicants. The composition of the applicant pool
can therefore be affected by the collective decisions of these
agents. To the best of our knowledge, ours is the first work
to study the long-term evolution of fairness in such a multi-
agent setting. While two-sided matching problems, where
multiple agents and resources are to be matched to each other,
are well studied in resource allocation problems and game
theoretic settings [37], [38], the notion of long-term fairness
in such settings is yet to be examined, and the definitions of
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fairness considered are quite distinct from those in fairness
literature. Since our focus is on dynamical evolution, we
sidestep the problem of matching between institutions (agents)
and applicants (resources) by assuming that each applicant has
the same fixed preference among the institutions.

III. MODELING MULTI-AGENT DECISION-MAKING

Consider the problem of K agents, or institutions, selecting
from a common pool of resources, or applicants. The applicant
pool is composed of applicants from two groups g = {0, 1},
based on a sensitive attribute. Without loss of generality, we
usually refer to g = 0 as the minority group and g = 1 as
the majority group. We denote the number of applicants in
round 7, belonging to group g by N, and the total number of
applicants as N,O +N/! = N,. Every applicant is associated with
a score which is sampled from a group-dependent distribution
Ps.

In many applications, the institutions have a growth in the
program size, which is typically proportional to the population.
For instance, the University of California system intends to
serve top one-eighth of California’s high school graduating
class population [39]. Motivated by this line of thought,
we consider that every institution fixes the total number of
applicants it can admit, through the capacity ci for institution
k, set as a fraction of applicants it admits, out of the total
number of applicants in the pool in that round. Thus we have
YK a<l

Each institution has to determine how to fill its admission
slots, particularly by deciding how many minority and major-
ity applicants are to be admitted, while satisfying two-fold
objectives: (i) to accept applicants with the largest scores (ii)
to achieve a long-term fairness target (denoted by « € [0, 1])
in the admission of applicants, which measures the proportion
of admitted applicants belonging to the minority group, g = 0.
The goal of the K institutions is to move towards the long-term
fairness target, while admitting applicants with the highest
scores. We denote the number of applicants admitted by
institution k as Ag; = cxV;, out of which Af, , belong to group
g. Thus, we have Ay, = Ag t+A}”, and the institutions hope to
make decisions such that A’ /A, approaches « in equilibrium
for all k.

We assume that the institutions are ranked, and that every
applicant prefers institutions in the same order. Without loss
of generality, we assume that the institutions are indexed by
rank order, with k = 1 corresponding to the highest-ranked
institution. Since the preference order is fixed, the matching
of applicants to institutions simplifies to institutions picking
from the application pool sequentially, in their ranked order.
The decision variable at each institution in each round is the
fraction of admitted applicants from each group (selecting
from the highest scoring applicants in each group, chosen
from among the pool that remains after higher-ranked insti-
tutions have made their selections). We, therefore, have an
effectively sequential selection process in each round, where
the selections are started by the highest-ranked institution and
completed by the lowest-ranked institution.
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The problem is formulated as a Markov Decision Process
(MDP). The state s; € [0, 1] is the fraction of applicants from
group g = 0 in the applicant pool. Thus, at round ¢ we have
S = N? /N;. An institution k is associated with its respective
action af € [0, 1], which is the fraction of applicants admitted
from group g = 0 among the total number of applicants
the institution k& admits. Thus, af = Ag’t/Ak,,. The actions
or the decision variables of each of the institutions are to
be determined based on optimizing their respective fairness-
aware utilities, defined below.

First, a set of N; applicants in round ¢ are associated
with a set of scores {X{}, where each X{, i e [Nf], is
sampled independently from P$. Additionally, X‘(gl.) denotes the
i top score out of N¥ applicants from group g. We define
the score-based reward for an institution with rank k as the
expectation of the sum of scores of the applicants admitted by
the institution normalized by the number of total applicants
it admits. Note that for an institution k, this depends upon
the actions of the preceding [1, kK — 1]-ranked institutions, as
each institution selects sequentially from the remnant pool
of applicants. For k € {2,3...,K}, we define mi’t as the
number of applicants from group g € {0, 1} that have already
been selected by higher ranked institutions 1, ..., k — 1, with

m‘f , = 0. Thus, we have the score-based reward:

[0 0 1 1

mk,t+Ak,t mk,t+Ak,r
0 1
> X+ X X

| i=m) +1 i=m +1
m;{)_t—i-alt‘AkJ

1
- F X0 +

i=m +1

mg +(1=d)Ar

2

i=m} +1

1
X |

with the group-specific offsets given by
k—1 k—1
0 ' 1 ‘
m), = ciNd) and ml, = Y ch,(l - aﬂ). )
Jj=1 Jj=1
Each institution is associated with its fairness loss, which is
the squared difference between the proportion of group g =0
out of the total admitted, and the long-term fairness target o,
given by Lk(af) = (af — oc)z. The considered fairness loss
is a simple measure of disparity from the long-term fairness
target, and penalizes the bias against both groups on the long
run.
The “multi-agent fairness aware” utility of each institution is
the sum of its score-based reward and fairness loss, expressed
as

Uk(s,, af) = Rk(s,, a],‘) — ALk(a];). 3)

where A > 0 is a parameter that governs balancing fairness
objective with score-based reward.

Thus each institution aims to maximize its score-based
reward by admitting applicants with the highest scores, while
minimizing its disparity from the long-term fairness target.

Multi-agent Fair-Greedy (MFG) Policy: We propose the
MFG, which is a set of policies myrg(s;) = {7[,1, thz cey ntK }
where each institution optimizes its own multi-agent fairness
aware utility as follows:

n,k = arg max Uk(sl, af). 4)

ake Ak

where A is the set of feasible actions for institution k in round
t, which depends on the actions of higher ranked institutions
and the state s;. After higher ranked institutions have made
their selections, the feasible action space for institution k is
determined by the remaining capacity of the institution and the
remaining applicants in the pool, and can be written as AI,‘ =
k-1 j k=1 _j
[max(0, 1— "= 079) i, "Lt 79)), For each
institution, optimization of the instantaneous multi-agent fair-
ness aware utility is equivalent to finding group-specific set
of thresholds on the score distributions. In our rank-ordered
model for institutions, each institution admits applicants whose
scores exceed its threshold, choosing from the pool remaining
after higher-ranked institutions have made their selections.
However, we reiterate that the state s, represents the original
minority group proportion in the pool at round .

Resource pool evolution: A key ingredient of our for-
mulation is modeling the manner in which the collective
decisions of the institutions affect the pool of resources seen
in the subsequent rounds of the problem. This is a complex
relationship requiring data collected from carefully designed
long-term experiments. While such data is not yet available,
we can develop valuable insights by exploring different models
for how the applicant pool might be shaped by institutional
policies.

We assume that the state s, is a random variable with
mean 6; and bounded variance. We model the number of
applicants from group g = 0 and g = 1 as being sampled
from Poisson distributions, with N,0 ~ Poisson(6;N) and
N,1 ~ Poisson((1 — 6;)N),where N is the expected number
of applicants in the pool. The total number of applicants
in round ¢ is given by N, = N° + N!.! The choice of
the Poisson distribution is for the sake of simplicity, and
the outcomes of our analysis remain independent of this
particular choice of distribution. We consider different models
for the evolution of 6; in this paper, focusing first on the
model of pure positive reinforcement. In this model, a higher
proportion of admission of a particular group in comparison
to its application proportion, motivates more applicants from
the group to participate in future selection rounds. Here the
evolution follows:

Orr1 = [9t + ﬁt(”tw - St)]c (%)

where [ ]¢ is the projection onto the set C = [0 4+ €, 1 — €]
(or, simply clipping the mean parameter) where € is a small
positive number to avoid the mean parameter from reaching
the boundary of the set and it implies that the any group cannot
be completely eliminated from the pool. Here, 1, is a step size
parameter and ntW represents the weighted actions of all the
institutions.

In particular, under the MFG policy, ;¥ depends upon on
the policies of all the institutions weighted by their capacities,

IWhen both N,O and N,1 are equal to zero, the round is completed without
any admissions.
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which is also equivalent to the proportion of minority group
among all the admitted applicants, defined as:

T[tw _ Zl%l Ck”rk.

D k=1 Ck
Thus, the collective decisions of all institutions, in particular
their admission of applicants from a particular group, promote
more such applicants to participate in the process, and shape
the evolution dynamics.

In the remainder of this section, we characterize the MFG
policy in a decentralized setting, under the pure positive
reinforcement model. We show that the optimal policy for
each institution depends on actions that optimize the score-
based reward alone, and the fairness loss alone. We therefore
first derive the reward-optimal and fairness-optimal actions for
each institution, and then characterize the MFG policy ntk, k=
1,..., K in terms of these actions. We then show that, for
pure positive reinforcement and identical score distributions
P8, the applicant pool (state) and the admission proportions
(actions) for all institutions converge to the long-term fairness
target. We use the following assumptions in our convergence
analysis:

Assumption 1: The expected number of applicants in the
pool N is large enough that the empirical distribution of scores
can be replaced by statistical distributions using the law of
large numbers.

This assumption is required for the asymptotic analysis of
the applicant pool and admission proportions. It is also used
to derive the reward-optimal actions for the institutions.

Assumption 2: The score distributions P$ are identical
across groups.

This assumption implies that the only difference in the
groups is the proportion of applicants from each group in the
pool at each round. We relax this assumption in Section V-A
and provide empirical evidence for the existence of equilibria
of the applicant pool proportion and the admission proportions.

Fairness-optimal action: Each institution can minimize
its fairness loss by setting its action to be equal to the long-
term fairness target:

(6)

k

g, = argminLi(a;) = [a] g, Vk€{1.2,....K}.

a,e A¥

)

where [«] Ak is the projection of o onto the feasible action
space AF.

The next theorem characterizes the reward-optimal actions
for the institutions.

Theorem 1: Under Assumptions 1 and 2, the score-based
reward function, Ry(s;, af), is concave and the reward-optimal
action for an institution k is given by

k k
ag, = arg maka<st, al)
ake AF

k—1

! j

= St+_ Cj(St_ﬂt> , (8)

Ck
=1
J AI;

Vk € {2,3,...,K} and aét = s; where [ - ]Aic denotes the
projection onto the feasible action space Af .
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The detailed proof of this theorem can be found in
Appendix A.

Remark 1: Under the asymptotic regime of Assumption 1
(i.e., assuming that empirical distributions of applicant scores
can be replaced by statistical distributions), the proof of
Theorem 1 can rely on the following simplification. For
institution k, the selection of applicants with top scores is
equivalent to thresholding the group’s score, and admitting
applicants with scores within the group-sEeciﬁc lower and

upper thresholds, denoted by tg’s’]ow and tg’S’UP respectively.
k,S,up

The upper threshold 7, equals the lower threshold of
institution k¥ — 1 for group g. In Lemma 2 we show that
for reward optimality for any institution k, its group-specific
lower thresholds should be equal; tlg’s’low = tll(’s’low, if possible.
While this holds even if the group-specific score distributions
are different, we can derive closed-form expressions for
reward-optimal actions as in Theorem 1 when the distributions
are identical across groups.

Remark 2: The optimal policy of institution k that maxi-
mizes its multi-agent fairness aware utility can be expressed as
a convex combination of its pre-projected optimal score-based
reward action and optimal fair-only actions, as rrtk = Vi (st +
L0, (s = 7)) + (1 = yi)er, where vy, € [0, 1] (please
refer to Appendix B for details). The closed-form expression
for yx,; is not available in general, but it can be numerically
computed due to the concavity of the fairness-aware utility
function. It can be shown that the reward-optimal action can
be expressed as:

(s; — Ol) k—1 k-1
alg’t =5+ - ka chl_[(l —Yit) 9)
=i

Thus, when the hyperparameter A > 0, if 5, < «, for k €
{2,3,...,K} we have alg’t < s, and vice-versa. Note that,
for a special case where there is a single institution, 7} lies
between the state s; and long-term fairness target «. But that
is not necessarily the case for ntk for kK > 1, when there are
multiple institutions.

In the following lemma, we characterize the weighted
policy of the institutions, that ultimately governs the pool
evolution (5).

Lemma 1: Under Assumptions 1 and 2, the weighted MFG
policy JTZW can be expressed as the following under the pure
positive reinforcement model:

K K
Zj:l ¢ Hi:j(l - )’i,t)
K
Zj:l G

w
ur

st + (@ —sp)

st + (00— $) Vs, (10)

where y; € [0, 1].

Please refer to Appendix B for proof.

We utilize this result to prove the convergence of the
applicant pool and admission proportions to the long-term
fairness target. In the following theorem, we first show that the
target proportion is a unique fixed-point of the pool evolution
update. We then show that the weighted policy lies between the
applicant and target proportions, as a result of which the mean
state parameter and the state converge to the target. Although
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our analysis is for identical group-wise score distributions,
we later provide empirical evidence of equilibrium in state
and actions of all institutions when the score distributions are
different across groups.

Theorem 2: Under Assumptions 1, 2 and A # 0, the
weighted MFG policy is such that 7" € (s, @) if 5, < «,
or n,W € (o, ;) if s; > «. Further, « is a unique fixed-point
of the weighted policy 7r,W. In addition, the applicant pool
proportion converges to the long-term fairness target «, if the
step size parameter 7; is decaying with time and satisfies the
assumptions that Y, n, = oo and Y ,n? < oc. Further, the
admission proportions of all institutions approach the long-
term fairness target at equilibrium.

The proof of this theorem can be found in Appendix B.

Remark 3: For identical group-wise distributions as con-
sidered in Theorem 2, the convergence to the target o holds
irrespective of the value of the hyperparameter A weighing
fairness in the utility function, as long as it is positive
(A > 0). For non-identical score distributions across groups,
we provide empirical evidence for the existence of equilibria
of the applicant pool proportion and the admission proportions
in Section V-A. However, the actual value of A > 0 is now
found to be important in determining how close to the fairness
target we get.

What happens if we ignore fairness?: In the scenario
of identical score distributions, if each institution completely
disregards the fairness objective and optimizes only its score-
based reward, as seen from (9) where y; = 1, it follows that
ntk = alg’t = s; for all k. Consequently, the mean parameter
6; would not experience any drift, and the composition of
the applicant pool would remain unchanged. While each
institution greedily acquires the best applicants by sacrificing
diversity, there is no hope of influencing the participation of
the underrepresented. However, biasing slightly in favor of the
underrepresented group by introducing the fairness objective
could lead to both 6, and ntk converging to the long-term
fairness target.

IV. VARIATIONS ON THE POOL EVOLUTION MODEL

Achieving long-term fairness relies on how the applicant
pool evolves with institutional decisions over time. In this sec-
tion, we introduce variations of the pure positive reinforcement
model, and examine how the MFG policy fares under these
new variants of the evolution model termed (i) order-based
(ii) weighted (iii) role-model reinforcement. The bulk of our
discussion in this section focuses on the motivation and study
of role-model reinforcement and pitfalls under it, while we
first briefly discuss the other two below:

Order-based positive reinforcement: This simple variant
allows control over the strength of positive reinforcement by
raising the feedback in pure positive reinforcement to a power
B> 0:

(1)

Pure positive reinforcement is a special case of the above
model for 8 = 1. The feedback is amplified for 8 < 1 and is
attenuated for 8 > 1, since 0 < |rrtW — 5 < 1.

01 = [0, + nisign(m — ;)| — stlﬂ]c.

Weighted positive reinforcement: The second simple vari-
ation allows custom weights {zx > 0} on the institutions’
policies

K k
= —ij{l iy (12)
D k=1 T
with pool evolution
Orr1 = [9t + ﬁt(ﬂtz - St)]c- (13)

Here 7z = c¢; reduces back to pure positive reinforcement,
which gives greater influence to an agent with higher capacity.
The more general models (12)-(13) here allow us more
flexibility in assigning influence. For example, we can give
equal influence to all institutions by setting zx = z > 0.

Role model reinforcement: Thus far, we have assumed
that all selected applicants in an institution have equal ability
to influence the reinforcement. However, applicants who do
well post-selection in a given institution, who we term role
models, could influence future applicant pools significantly
more than other admitted applicants in the institution. The
motivation for this model stems from the fact that in practice,
success in an institution depends not just on qualifications
at the time of admission, but on support mechanisms within
the institution to aid in continued growth and success of the
admitted applicants, as well as on circumstances that may be
difficult to characterize. However, to develop analytical insight
into what happens when positive reinforcement occurs due
to the applicants who do well post-selection, we consider a
score-based criterion for identifying these role models: among
all applicants (from both groups) admitted to institution k, the
role models are composed of a fraction r € [0, 1] of applicants
with the highest scores. From among this group, the fraction
of minority (group g = 0) applicants, denoted by rﬂ‘ drive
the pool evolution. We now develop the notation required to
define this model precisely.

Let th denote the set of scores of all applicants admitted
by the institution k at time ¢,

k _ 0 0
Xk = X(mgﬁl), X(()mgﬁz), X

0 0’
(mk,t+Ak,t)

1 1 1
X(m,lm-l-l) ’ X(m,](v,+2) U X(m}{v[-ﬁ-A,'{v[) } a4

The role models for each institution are selected as top r

proportion of the admissions with the highest scores, Rf =

argmax v vk | /=4, ,| erX”“ Then, let rg‘ denote the
1 - B

fraction of the minority group in the role models set R’t‘ for
the institution k at round ¢. It can be written as:
REN 1 X9

0
) <m,e,,+1)’""X(mz,,+Az,,>]
" IR¥| S

~

Then, the pool evolution model depends on the fraction of the
applicants from the minority group among the role models,
rf, instead of the fraction of the applicants from the minority
in the admissions, ntk . The weighted role model parameter is
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defined as

r Zszl CkT, ic

==
D k=1 Ck

If a group has a higher proportion of role models in com-

parison to its application proportion, it will provide positive
reinforcement. The pool update is then governed by:

Ort1 = [9t + 771(7T,r - St)]c-

For r = 1, role model reinforcement reduces back to pure
positive reinforcement. Setting » = 0.5 implies that minority
applicants whose scores are above the median score for
admitted applicants in their institution are role models driving
pool evolution.

While we showed that convergence to long-term fairness
target is assured under pure positive reinforcement, we shall
now see that it is not the case, under this variant evolution
model. First, let us focus first on a special case when K = 1.
Under a limiting case of role-model reinforcement when r = 1,
convergence to long-term fairness is guaranteed. In the other
extreme case, when the bar for role models is extremely high,
ie, r = € (small), ;] = rﬂ‘ ~ s;. Thus, although the MFG
policy biases in favor of minority group, there could be no
drift in the mean state parameter, leading to a stagnation
in the composition of the applicant pool. However, when
there are multiple institutions involved, this could lead to
explicit negative feedback, causing the proportion of minority
in the applicant pool to steadily reduce. We now show in
Proposition 1 below that role model reinforcement can lead
to negative feedback under the MFG policy, specifically when
there are multiple institutions(K > 1). Assuming identical
group-wise score distributions, we show that if the long-term
fairness target is higher than the initial proportion of the
minority group, the first institution will admit more minority
applicants than their application proportion. This results in
the subsequent institutions having a higher proportion of top
admissions from the majority group, leading to a lower propor-
tion of minority group role models. This can eventually cause
the minority group to be removed from the applicant pool,
as formally demonstrated next, and empirically supported
by experiments in Section V-A. Furthermore, we empirically
demonstrate that coordinated behavior by the agents could help
in alleviating this negative feedback.

Proposition 1: Under Assumptions 1 and 2, for role model
reinforcement there exists a role model parameter r that is
small enough such that the MFG policy can cause negative
feedback leading to the loss of representation of the under-
represented group in the pool.

Please see Appendix C for proof.

Remark 4: The evolution of the applicant pool under role
model reinforcement is such that only admitted applicants
from group g = 0 with scores larger than a group-independent
threshold t*, will contribute to reinforcing the pool. The
threshold increases as we reduce the role model parameter r,
raising the bar for being a role model. Let tlf’ low and tg’ P
denote the lower and upper thresholds of the MFG policy for
group g and institution k. The key idea behind the proof is that
when the initial mean parameter 6, is small, there exists a small

(16)

a7)
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enough r such that for institution k, we have % > tll(’ low

tlg’ low, Using this, we show that the role model proportions are
such that rf < s forke{2,3,...,K} and rtl = s;. Hence, the
mean parameter obtains a negative drift, and the proportion of
the minority group in the applicant pool approaches zero.

In order to mitigate the effects of such negative feedback,
we define a centralized version of the MFG policy in the next
section.

>

A. Centralized Multi-Agent Fair-Greedy Policy

The selection process under the original MFG policy, in
which the institutions do not cooperate, is sequential based
on the ranking order of the institutions. We now consider
decision-making by a central coordinator which knows the
utility of each institution, and maximizes the sum utility across
institutions:

U(s,,atl,a,z,... (18)

K
s af() = Z Uk<s,, af).
k=1
Thus, the Centralized Multi-agent Fair-Greedy (CMFG) policy
is defined as a set of policies mcyrg(sy) = {71},71,2 ...,n,K }
maximizing the total utility over the space of joint actions as:

1.2 K 1 2 K
[ﬂ,,nl R ]= arg max U(s,,a,,a,,...,a,)

1.2 K
a; ,a;,...,a;

K
subject to 0 < a]t‘ <1, Zafclc =S
k=1

K
Z(l —af)ck <1-—s.

k=1
The main difference between the MFG and CMFG policies
lies in the way that institutions work together. Intuitively,
we can view the set of policies as the joint imposition of
group-dependent thresholds corresponding to all institutions
simultaneously in order to maximize the total utility, as
opposed to the earlier decentralized version, where a higher
ranked institution imposes its thresholds without considera-
tion of downstream effects on the utilities of lower-ranked
institutions. Thus, in CMFG policy, institutions collaborate
with each other to maximize their total utility. This allows
a central coordinator to distribute the cost of fairness among
all institutions, potentially leading to a selection policy that is
different from sequential decentralized selection. In particular,
the effects of the negative feedback loop observed with the
sequential selection under role model reinforcement can be
mitigated, as shown in the experimental results in Section V-A.
In summary, the discussion of the role model reinforcement
variant model serves the following objectives within the
context of this study. Firstly, it allows us to simulate a realistic
and plausible scenario wherein only a subset of admitted
applicants possesses the capacity to exert influence on future
participation dynamics. To illustrate this concept, we designate
top applicants from each institution as role models, albeit with
an acknowledgment of the inherent complexity of truly char-
acterizing successful applicants in real-world situations. This
abstraction enables us to underscore the notion that a simplistic
strategy of biasing in favor of minority applicants alone does

19)
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(a) With pure positive reinforcement, the MFG policy reaches long-term fairness when score distributions are identical for both groups. (b) The

MFG policy attains long-term fairness more quickly with order-based positive reinforcement when g = 0.8. (c) Under weighted positive reinforcement, the

MFG policy converges when institution weights are equal, for this setting.

not suffice as a comprehensive solution for fostering future
participation. Instead, it underscores the critical importance of
institutional support for the admitted applicants to facilitate
their growth and eventual success. The effectiveness of this
support hinges upon the mechanisms and extent of backing
provided by each institution. We show that as a growing
number of admitted applicants receive the necessary support
to attain a level of success that qualifies them as symbolic role
models, the potential for positive reinforcement substantially
increases. The precise means by which institutions implement
and coordinate these support mechanisms constitutes an open
question of paramount significance, particularly for policy-
makers tasked with shaping equitable participation.

V. EXPERIMENTAL EVALUATION

We empirically evaluate the proposed MFG policy under
different models for the evolution of the applicant pool. We
begin with experiments on synthetic data, where the scores are
sampled from group-specific Gaussian distributions, followed
by learning the score distributions from real-world datasets.
The MFG and centralized MFG policies are computed numer-
ically and the optimal policies are obtained using the grid
search over the space of policies. The number of applicants is
kept finite in the experiments.

A. Multi-Agent Framework Evaluated on Synthetic Data

Identical score distributions: We first consider the case
when the score distributions across the two groups in the
population are the same. The parameter setting employed for
these experiments is listed next. The long-term fairness target
is set at @« = 0.4. The number of institutions is K = 3 with
capacities c; = 0.1, ¢ = 0.05 and ¢3 = 0.2, resulting in a total
capacity of 0.35. The score distributions are Gaussian, with
means (o = (] = S5 and variances 002 = 012 = 1. The initial
mean parameter is 6y = 0.25, giving the minority group lower
representation in the resource pool. The range of the mean
parameter is [0.01, 0.99], and the mean parameter is projecoted

to the range at each iteration. The state s; is defined as 1%,
t t
where N? follows a Poisson distribution with parameter 6;N,
N,1 follows a Poisson distribution with parameter (1 — 6;)N,
and N = 400. For computational efficiency, once the state

is computed, the total number of applicants is fixed to 400,

Pure Positive Reinforcement MFG - Different A

20 25 35 40
Rounds

e d

Fig. 2. MFG policy under identical scores reaches long-term fairness target,
independent of X.

and the number of applicants from each group is adjusted
according to the state and then rounded to the nearest integer
for numerical convenience. Other parameters include X = 0.75
and the step-size is fixed as n = 0.5. All the plots are averaged
over 200 instances of the problem.

We demonstrate the evolution of the applicant and admis-
sion proportions, and the mean parameter, for the MFG policy
under different reinforcement models. In Figure 1(a), we can
observe that under the pure positive reinforcement model, for
each institution, the admission proportion is larger than the
applicant proportion (state), and hence the weighted MFG
policy being larger than the applicant proportion results in the
positive reinforcement of the applicant pool (observed through
the evolution of mean parameter 6;) and long-term fairness
in admissions as well. Next, we focus on the robustness of
the MFG policy under different evolution models. The order-
based reinforcement in Figure 1(b) uses 8 = 0.8, and shows
that faster convergence can be achieved in comparison to
the pure positive reinforcement model. The weighted positive
reinforcement model in Figure 1(c) uses identical weights
wi = 1 for all institutions, showcasing the pool evolution when
equal importance is assigned to every institution. In both these
cases, for the setting considered, the MFG policy leads to the
achievement of long-term fairness.

Further, we show the evolution of the mean applicant pool
parameter under pure positive reinforcement model and the
MFG policy for different weights, A, allotted to fairness loss in
Figure 2, where we observe that the mean parameter achieves
the same long-term fairness target in equilibrium, independent
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Fig. 3.

Score percentile of the admitted applicant with the least score, from each group and for each institution, under the setting where (i) A = 0.75 for all

institutions (in (a)) (ii) A is in decreasing order for the three institutions (in (b)). The evolution of mean parameter and admission proportions under the case

of decreasing A is in (c).
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Fig. 4. (a) MFG policy creates a negative feedback loop under the role model reinforcement. (b) The evolution of the proportions of role models for

each institution, under MFG policy. (c¢) CMFG policy could potentially alleviate negative feedback under role model reinforcement. (d) The evolution of the

proportions of role models for each institution, under CMFG policy.

of the hyperparameter A, under identical score distributions,
and long as A > 0. However, the rate of convergence depends
on A.

Next, we gain valuable insights into the operational dynam-
ics of the MFG policy. Our objective is to comprehend the
trade-offs made, in terms of scores of admitted applicants
of the majority and minority groups, to foster fairness.
Figure 3(a) depicts the percentile at which the admitted
applicant with the lowest score is positioned, for both the
groups and all institutions, when X 0.75 across all
participating institutions. Next, in Figure 3(b), we extend
our examination to a scenario in which the A values are
decremented across institutions as [0.75, 0.375, 0.1875], sig-
nifying that lower-ranked institutions temporarily de-prioritize
diversity to minimize a significant decline in the quality of
admitted applicants. Consequently, this approach illustrates
how a judicious delay in the pursuit of immediate fairness
objectives by lower-ranked institutions can assist in averting
a large drop in their admission standards. However, this
strategy of decreasing A impacts the overall convergence rate
(see Fig. 3(c)), as all institutions experience a deferment in
the applicant pool reaching the long-term fairness objective.
This serves as an example of the delicate balance that
institutions must navigate between the convergence to fairness
targets and maximization of short-term rewards. Nonetheless,
the precise strategies and mechanisms to be adopted by
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individual institutions in achieving this balance remains
open.

Potential for negative feedback: The evolution dynamics of
role model reinforcement, under the MFG policy is examined
here. We consider a scenario where role model reinforcement
is applied with a parameter of r = 0.5, i.e., the admissions
with scores above the median score in the respective institution
are considered role models for the resource pool evolution.
As seen in Figure 4(a), the MFG policy creates a negative
feedback loop, causing a significant decrease of the minority
group in the applicant pool over time. This is because the role
model proportions rf are such that the weighted role model
policy is consistently smaller than the state. In particular, as
seen in Figure 4(b), the second and the third institutions see a
very small fraction of role models among the minority group,
since the first institution admits the top minority applicants.
These effects could potentially be alleviated by considering a
centralized policy, such as the CMFG policy, whose evolution
for the admitted applicants and the proportion of the role
models under this setting are shown in Figure 4(c) and 4(d).
Although the initial dynamics between the institutions under
CMEFG policy are not desirable in the real-world and not well
understood, it shows a potential of ultimately attaining an
equilibrium close to the long-term fairness target. We also
remark that the adverse effects under role model reinforcement
in conjunction with the MFG policy could be avoided by

on March 31,2025 at 16:56:49 UTC from IEEE Xplore. Restrictions apply.



PURANIK et al.: LONG-TERM FAIRNESS IN SEQUENTIAL MULTI-AGENT SELECTION

Pure Positive Reinforcement MFG - Different A

0 5 10 15 20 25 30 35 10
Rounds

(a)

Pure Positive Reinforcement

- Admitted to inst. k=1
- Admitted to inst. k=2
- Admitted to inst. k=3

R

Applicants state, s,
Mean parameter 0y

0 5 10 15 20 25 30 35 40
Rounds

(b)

fon

Proport

Pure Positive Reinforcement with CMFG

433

0.36

0.34 4

0.32

-~ Admitted to inst
-4- Admitted to ins
-#- Admitted to inst. k=3
== Applicants state, 5,
Mean parameter 0y

0 5 10 15 20 25 30 35 40
Rounds

(©)

Fig. 5.

(a) Convergence of the mean parameter under the MFG policy with pure positive reinforcement is impacted by the fairness loss coefficient, A, when

score distributions are distinct. (b) MFG policy reaches an equilibrium with pure positive reinforcement when score distributions are different. (c¢) CMFG also

reaches an equilibrium, albeit with different decisions.
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(a) depicts score distributions of white and non-white groups in the law school dataset, along with their Gaussian approximations. (b), (c) show

evolution of the mean parameter, 6, and its equilibrium with varying values of fairness loss coefficient, A, under MFG and CMFG policies respectively under

pure positive reinforcement.

increasing the r parameter, which essentially means that the
institutions must design intervention mechanisms or remedies
to support a large fraction of the admissions to eventually be
successful in society, and influence others by being true role
models.

For completeness, we show the evolution of applicant
and admission proportions under the CMFG policy under
pure positive reinforcement, order-based and weighted positive
reinforcement models in Appendix D1.

Distinct score distributions: We now examine the scenario
where the score distributions for the groups are distinct. We
assume that the minority group has a slightly lower mean and
higher variance than the majority group (o = 4.9, u1 = 5
and 002 = 1.1, 012 = 1). The other parameters remain the
same as in the first scenario, with a long-term fairness target
of o = 0.4, capacities ¢; = 0.1, ¢c; = 0.05 and ¢3 = 0.2, an
initial mean parameter 6y = 0.25, and fixed step size n = 0.5.

Figure 5(a) shows evolution of the mean parameter under
different weights, A, for fairness loss, under non-identical
distributions. We observe that by altering A, the equilibrium
point can be varied. Thus, a higher value of XA is required
to achieve the long-term fairness goal. We then show in
Figures 5(b) and 5(c), the evolution of the applicant pool,
admission proportions, and their convergence under the pure
positive reinforcement model, under MFG and CMFG policies
respectively, with A = 1. They both converge to similar
equilibrium although the admission decisions in initial rounds
are quite distinct. We observe a behavior of negative feedback

under the role-model reinforcement model under distinct score
distributions as well. The results showing negative feedback
and the alleviation of this effect through the CMFG policy are
deferred to Appendix D2. In the next section, we will examine
cases where score distributions are significantly different,
obtained from a real-world dataset.

B. Multi-Agent Framework on Semi-Synthetic Dataset

In this section, we report on experiments on the law school
bar study dataset [40]. The dataset is used to construct the
initial setup of the experiments as defined in the previous
section, therefore we refer it to as a semi-synthetic dataset.
This dataset contains information collected by the Law School
Admission Council from law schools in the U.S., including
information on whether an applicant passed the bar exam
based on features such as LSAT scores, undergraduate GPA,
law school GPA, race, gender, family income, age, and others.
We take race as the protected attribute and simplify it to
a binary classification problem by grouping all races except
“white” into the “non-white” category, serving as the minority
group (group 0) with only 25% representation in the dataset.
The dataset used in our experiments contains around 1800
instances and can be found at [41]. Next, we follow the
procedure outlined in [36] to obtain the score distributions for
each group. After pre-processing the data, we fit a logistic
regression model to approximate the score distributions as
Gaussians. This gives us the means pug = —1.46 and pu; =
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0.79, and the variances ag = 2.73 and 012 3.16, as
seen in Figure 6(a). The long-term fairness target is set to
0.5, with three institutions having capacities of ¢y = 0.15,
¢y = 0.10 and ¢3 = 0.05. The step size, n, is fixed at 0.5.
Our first examination is of the pure positive reinforcement
model. Figures 6(b) and 6(c) depict the mean parameter, 6,
at equilibrium for the MFG and CMFG policies, respectively,
with varying fairness loss coefficients, A. A higher value of
A is needed to achieve the long-term fairness goal for both
policies, with the CMFG showing a slightly better equilibrium
point at a smaller value of A (for instance, A = 3). We
defer the evaluation under role-model reinforcement model to
Appendix D3.

Our experiments with distinct distributions illustrate that the
principles of reinforcement and the policies developed in this
paper hold even when the score distributions are non-identical.

VI. CONCLUSION

This paper studies the evolution of long-term fairness in
a selection setting with multiple decision-makers choosing
from a common pool. We have shown that the Multi-
agent Fair-Greedy (MFG) policy does succeed in achieving
long-term fairness targets under the model of pure positive
reinforcement. However, when we set a higher bar for suc-
cessful influence via the role-model reinforcement model, the
minority group may actually experience negative feedback
under MFG policy, and ultimately exit the selection pro-
cess. Centralized coordination among the institutions could
potentially alleviate this problem, raising the question of
whether we can design mechanisms for competing institutions
to collaborate (without laying themselves open to charges of
collusion) in order to advance long-term fairness in society at
large.

We hope that this work, despite the simplicity of the models
considered, stimulates continuing discussion on the long-term
societal impact of automated decision-making in a multi-agent
setting, and how we can shape it. The sensitivity of our simple
system to the model for evolution motivates a concerted effort
to launch real-world experiments and data collection in which
algorithm designers collaborate closely with social scientists
and policymakers. An important complementary effort is to
pursue analytical insights for more complex models that
capture different aspects of the real world. For example, while
our current concept of role model is based on the relative score
upon admission, qualifications upon admission are often not
a predictor of ultimate success; support mechanisms provided
by the institution may be more important. Can we derive
insights from a plausible model for such support mechanisms?
Similarly, is there a qualitative difference in our conclusions
if we relax the simplifying assumption of strict institutional
rankings determining preferences for all applicants?

APPENDIX
A. Optimizing Score-Based Reward Under MFG Policy

We provide below a detailed proof of Theorem 1 for the
optimal action that maximizes the score-based reward of each
institution.
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Proof: Assuming the score distributions’ CDF is denoted by
F. By the Lemma 2, the score-based reward function of the
institution k is concave and it is maximized when the absolute
difference between the lower thresholds of both groups is
minimized, |55 — A51%| For all k € (2,..., K} this is
equivalent to the following minimization;

min | F ! (1 _ E?’k + atck)
aFe Ak St
» &+ (1 —apex
_F (1 = T) . Qo)

0k k=1 _Jj Lk k=1 j

where ¢; i1 mjcj and ¢, = > j—1 (1 = m)cj. Due to
the monotonicity of the inverse CDF, the optimal action that
maximizes the score-based reward is equivalent to minimizing

the following:

-0.k -1,k
> s 1—
min (1 — M) — (1 — M) Q21
ake Ak St 1 — s
This can be simplified to the following:
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The argument of the minimum can be multiplied by s;(1 — s;)
to simplify the expression as follows:
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The terms with the action a; and the terms without the action
a; can be grouped as follows:
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for all k € {2,...,K}. Therefore, the optimal action that

maximizes the score-based reward is as stated in the theorem.
It can also be seen from the Lemma 2 that the score-based
reward function of the institution 1 is maximized when the
lower thresholds of both groups are equal, t(l)’s’low = Sov,
This is satisfied when a! = s,. u

1) Technical Lemmas: In this section, we show that the
score-based reward function of each institution is concave and
has a unique action that maximizes its reward.

Lemma 2: Under Assumption 1, the score-based reward
function, R(ss, a;), is concave and it is maximized when
the absolute difference between the lower thresholds of both
groups is minimized, |t10(’s’10W - t]f’s’lowl. Forallk e {2,...,K}
this is equivalent to the following minimizing;
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min
ake Ak

-0,k
f_(;] (1 . Ct +atCk>
St

_1,k _
_]__1,1 (1 oo +d at)ck>‘ 25)

1—s
where ¢0F = Z;le wlej and ¢ = Z;:f(l — /)¢ and for
k = 1, the action that maximizes the score-based reward is
equivalent to minimizing |]-'0_1(1 — a’s—f‘) — fl_l(l d T a;)tcl ).
Proof: Dropping the superscript k in the notation of the
action for brevity, the score-based reward of the k™ institution

is:

0
mkv,—i-a,Ak, 0
Ri(ss, ar) E[Zi‘mg«r+ : X(’)}
r(sy, ;) = a
¢, At t ary
1
my +(—aDA: g
y )E[Zi=m;,+1 X(z)} o6)
+ 1 —a .
' - at)Ak,z

The number of admitted applicants is approximated as Ag,z =
la:Ak.:] = a;Ar;, as we are considering that the number of
applicants is large. Under this regime, the collection of scores
is in accordance with their respective group-specific score
distributions P$. Following the idea in [36], the average scores
of selected applicants from each group can be represented by
the following conditional expectations:

m2.[+a,Ak,, 0

Zi:mo +1 T
lim Tkt T ]E[XO | Z(I;,SJOW < X{) < tlg,s,up:l 27)
N—oo aiAg;
Zm}(.ﬂr(lfa/)Ak’, 1
i=ml +1 (i)
lim Kt [Xl |tkSIOW <x'< tll(Sup]
N—o00 (1 —apAg;

(28)

Then, the score-based reward function of the institution k can
be written as follows:

k
Rg(s,, a;) = a,]E[XO | tk’s’l"w <x%<¢ ’S’“P]

+ —a,)E[X‘ | AStow < x1 < tksup] (29)
We denote the cumulative distribution function (CDF) of the
score-distributions by Fo and Jj. The tail of the distributions
beyond the upper thresholds represents the proportion of the
applicants from the particular group who have been already
admitted by the better-ranked institutions.

k=1 . _j
Zj:l CjTt

kSup
1—.70( ) S,
-0,k
v ou] A (30)
0 st
k—1 J
|- 7 (tkSup> — Zj:l cj<1 _T[t)
! (1—s)
E‘lk
= S = F 1 - 31)
! I—St

Moreover, the area between the lower and upper thresholds in
the distributions signifies the proportion of applicants admitted
by the specific group from the total number of applicants
belonging to that group at the k" institution. Thus, we have:

agCk

]__0( S p) ]_-O(tlg,s,]ow) =

Fi (tlf’s’”p) - F (tll<Slow> _d

— a)cy,

1= 2

Then using the upper thresholds, we can write the lower
thresholds as follows:

0k
1 — ]_-<t1651ow>= '
St St
alk
1- 7 <t11<810w) _ G
l—S;

aiCx

(I —a)ck
1-— St

(33)

Then, we can write the lower thresholds as follows:

-0,k
kSlow _ -1 ¢+ ack
oSlow — Foif - L T
0 0 N

-1,k
1 —
tll‘SIOW - }‘]—1<1 M) (34)

l—S;

We can write the score reward function of the institution k as
follows:

@ o)
k _ _ o)
Rg(sf’ ar) = a /tk,s,low X kS dxo
0 fksuowfo(xo)dxo
k.S,up
g fi(xr)

+ (1 —a) dx;  (35)

k.S, low JoSup

f kalowfl (x1)dx;

We can move the common denominator out of the integral
since it is a constant:

tk,S,up
a
Ry(st.a) =~z |, ;... Wfox0)dxo
ka]owa('xO)de
k,S,up

(1—a) [

+— s MDA (36)
ka]nwfl (.x])d.X]

Then, the denominator can be written in terms of the CDF as
follows:

K.S.up
Re(si. ar) = k.S.up = k.S, low ktZI *ofo (xo)dxo
Y - (o) Ji
+ (1 —a) /lk’s’“p x1f1(x1)dx;
7 ( tl;,S,up) -7 (tllgs,low) feSlow
(37)

Using the equations (32), we can write the score-based reward
function of the institution k as follows:
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k.S, up

1
k St [0
Rg(staat)z /kSl
Chk Jig> "

(1-sp (1"

— S

+ —t/ x1f1(xp)dxy
Ck tllgS,low

x0f0 (x0)dxo
(38)

The upper thresholds are not dependent on the current insti-
tution’s action. Then, we can use the definitions of lower
thresholds from equations (34) to write the score-based reward
function of the institution k as follows:

k,S,up

)
/f ‘(1—
(1 —Sz)/

Using the fundamental theorem of calculus, we can write the
derivative of the score-based reward function of the institution
k as follows:

St
Rt (Sts ap) =

0
Ck +a;ck

) xofo (x0)dxo

+(1 ar)cy
T I=st

)xlfl (x1)dx; (39)

ng (¢, ar) 1 Z‘?’k + asck
- e ]—'0 1l- "
da, St
—1 E[Lk‘i‘(l _at)ck k,S,low k,S,low
_ ]-'1 1 — T tO -t
(40)

Then, we can write the second derivative as follows:

Ck 1

T -0,k
Stfo(]:-o_l <1 _ G —s&;atck>>

Ck 1

B 1 - — clk —a)c,
( St)fl(]_-l 1(1 G +1(1S[ )k))

Since the PDF functions are non-negative, c; € (0, 1], and
s; € (0, 1), the second derivative is non-positive. This means
the score-based reward function of the institution k is concave.
The score-based reward function of the institution k is concave
and its first derlvatlye is monotone aknd defined on the interval
[ max(0, 1 — 13‘—}(") min(1, é‘%)]. Then, the score-based
reward function of the institution k£ is maximized when the
absolute difference between the lower thresholds of both

d2Rl§ (s¢, ar) _

k2
da;

(41)

groups is minimized, |1‘kS low tll(s oW "This is equivalent to
the following minimization:
-0,k
. _ ¢+ arck
min | F (1 - —r7"
afe Ak St
—l k
— + (1 —a)ck
—F - T T 42)
1—s
t
-0,k k—1_J =1,k k—1 J
where ¢;" = Y0 mlcj and ¢ = i—1 (1 — m)c;. For

k = 1, the action that maximizes the score-based reward is
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acy
)

equivalent to minimizing |F’ Y- ; (=ane; )|

s

-Flta-

B. Proof Details for Applicant Pool Convergence Under
MFG Policy

We first provide a proof of Lemma 1 below.

Proof: Firstly, we observe that the optimal policy of institu-
tion k can be expressed as a convex combination of its optimal
score-based reward action and optimal fair-only action as rrtk =
wk,talgyl—i—(l —a)k’,)all‘p’l, where wy ; € [0, 1]. This follows from
the fact that the fairness-aware utility function is a concave
function of the action, and the score-based reward function
and the fairness loss functions are monotone. Then, we claim
that the optimal policy of institution k can be expressed as a
convex combination of its pre-projection optimal score-based
reward action and pre-projection optimal fairness-aware action
(before being prOJected to the feasible action space Ak) as
7Tt = Yi,(8r + o (Z —1 Cj(st 77;’))) + (1 — vk, where
Vi € 10, 1]. ,

Let a5, = (s + Cl (Z ' ci(s; — 7)) and ay, = a,
which represent the pre- prOJected optimal actions. If both
a’g,t € AF and Zz’fp,t e Ak, then the claim is straight-forward.
Similarly, if only one of them is not in the feasible action
space, then the claim is straightforward. The only case that
needs to be considered is when both pre-projected optimal
actions are not in the feasible action space. If one of them
lies on the left of the feasible action interval and the other
lies on the right of the feasible action interval, then the
claim is straightforward. We will show that pre-projected
optimal actions cannot simultaneously lie on the left/right of
the feasible action interval. The first case is when both pre-
projected optimal actions are on the left of the feasible action
=5 =2} (1=m))e;

interval. Suppose that Z/}J < max(0, 1 — o )

1—s— Y42 (1—m));
ck

equal to O, then there is a contradiction since a’; . € [0,1].
1—s5— Zk L =r)e;
Sk .

. T L (1=m))c;
then there is a contradiction since alg > 1= -’;kl dac
due to the condition that Z]’; 1 ¢ < 1. Thus, pre-projected
optimal actions cannot lie on the left of the feasible action
interval at the same time. The second case is when both pre-
projected optimal actions are on the right of the fea51ble action

-k
Ck

and a’;t < max(0, 1 — ). If the maximum is

Similarly, if the maximum is equal to 1 —

bl

1—s5,—

bl

interval. Suppose that aF , > min(l,
= z,_ ey

)andaSt >

min(1, . If the minimum is equal to 1, then there

isa contradlcnon s1nce ak Fi € € [0, 1]. Similarly, if the minimum

k—1
j=1
.Ck

Sr—

is equal to , then there is a contradiction since

k— 1
Zz§ ;< Piym T , due to the condition that Z —1¢ < L
Thus, the pre- prOJected optimal actions cannot lie on the right
of the feasible action interval at the same time. Therefore, our
claim holds.

By utilizing this relation, equation (8) can be expressed as the
following by iteratively writing expressions for the optimal score-

based reward action in the increasing order of the institutions:
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s k—1 —
k t
g, = | — ck+Zc,H 1—)/”
k—1 —
——qu‘[ (1= i)

(43)
A
(s; —a) k—1 —
= |s+—>F Zc,]"[ 1= vis) (44)
=1 i=j Ak

We use the above expression, and now prove the lemma. The
optimal action of the institution k can be expressed as follows:

nzk = Vk,z<5t+ =) ZCJH 1 Vit ) (1 - Vk,t)a

=1 i=
(45)
We can compute the weighted action as follows;
k=1 k-1
Ckﬂtk = CkVik,St + Vi (st — &) Z le_[(l - Vi,z)
=1 =

+ cr(1 = vir)a (46)
We can add and subtract cgsy;

ckmf = cxse + (1 — )/k z) (a — St)
_th(a—st)zcjl_[ Vzt

We can add and subtract (o — s;) ZJ'.‘:_II cj]_[f:jl(l

(47)

— Vi)

et = cxse + cr(1 = yie) (o — Sz)

k—1 —
(I—sz(a—st)zcjl_[ Vzt
k—1 —
(a—st)Zc,l"[ — Vi)

It can be grouped as follows:

(48)

Ck7Tt = cxst + (@ — 5p) ZC]H — Vi, t

kl —
(a—st)Zc,l"[ (1= i)

It can be seen that the second and third terms are telescoping,
and the summation of the weighted actions of all institutions
can be written as follows:

Zcm, —sl26k+(a—st)26kl_[ — Yir)

k=1 i=k

(49)

(50)

After dividing by the total capacity, we obtain the desired
expression. |

We will now utilize the result of the above lemma in
showing the proof of Theorem 2, where we state that the
applicant pool proportion, and the admission proportions of the
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institutions converge to the long-term fairness target set by the
agents, under the MFG policy with pure positive reinforcement
model.

Proof: Suppose that the state of the MDP equals the fairness
target «. It follows that the top institution maximizes its utility
by selecting o proportion of group 0 among all its admitted

applicants ntl = «, as its optimal score-based reward action

itself is a}g’t = s5; = «. Further, ag,t = o by equation (8),
which implies that 7> = «. It can be seen that ¥ = a, Vk,
due to which the weighted average r([W = «a,i.e., it is a fixed-
point of the weighted policy. We will show the uniqueness of
the fixed point by showing y;; # 1,Vi € [K]. Assume that
s; < «. Then, the optimal score-based reward action of the
top institution is aé,[ = s, since the top institution maximizes
its score-based reward when it sets same threshold for both
groups. The optimal fair-only action is alF,t = [«] Al Since
a}m > s; the MFG policy for the top institution will accept
more from the minority group than the applicant proportion
due to the structure of the weighted MFG policy. Then,
ntl > §; and y1; # 1. The score-based reward of the second
institution is maximized when it sets the same threshold for
both groups, this implies that a_%’t < s; because the first
institution admitted more from the minority group than the
applicant proportion. The optimal fair-only action is a% ;=
[o] A2 Then, ntz > s; and y»; # 1. The same argument can be
made for the subsequent institutions, smce the optimal score-
based reward action of the institution & is a% S < St because the
previous institutions admitted more from the minority group
than the applicant proportion. The optimal fair-only action is
a’}t ] Ak Then, n,k > s; and yx; # 1. The same argument
can be used to when Sr > Q.

Next, since from the update for pure positive reinforce-
ment (5), it follows that the mean parameter 6; drifts towards
the fairness target «, irrespective of the state, due to the
structure of the weighted MFG policy. In addition, since « is
a unique fixed-point, as the step size is decaying with time,
it can be shown that the mean parameter converges to the
fairness target. Let d; = %(9, — «)?. Fix an € > 0. Then, we
need to show that there exists some fy(€) such that for all
t > to(e€),

diy1 <di— &, ifdi > € (51)
dt+1 < ce if dt < € (52)
where ¢ is a positive constant. Moreover { > 0 and

Yool = oo. If the above conditions are satisfied, then
eventually for some #1(¢) > fy(€), we have d; < €. But due to
equations (51) and (52), we have d;11 < ce for all t > 11 (¢€).
Since € is arbitrary, we have 6, — « as t — oo.

1
diy1 = 5(91-{-1 - 0‘)2

1
= 5([91 + 7];(7T,W - S[)]C — 05)2

IA

1
56+ Y — s —a)’

tW - 51)2

1
=d; + n:(6; — oc)(n,W — st) + 577,2(71
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1
<di+m® —o)(r" —s)+ nf (53)
s _ 2 1,
<di+ 2 (G- +1) + 0] (54)

Since n; — 0, if d; < €, then d;4 < ce for some ¢ > 0.
When d; > €, first we will account for the stochasticity of
sr. We have r¥ —s; = 7V — 0,4 (9, —s,). Denoting z; = 6,—s,
using equation (53), we have
1
57%2
where z; is a zero-mean random variable. Also E[ztz]
var(s;) < oo, which is bounded. Therefore, v, := Z;=0 n:zi 18
a martingale and E[v,z] is also bounded. This implies by the
martingale convergence theorem that v, converges to a finite
random variable. Therefore, we have Zﬁt nizi — 0. Since,
|6; — a| is bounded, the effect of the noise z; is negligible.
Therefore we have

dryy < dp + 116 — Ol)(ﬂtw — 0+ Zz) +

1
07

@4s¢+mwrwmwﬂ—@y+2

We want to show that

O — o) (7" —6) < =5(e) (55)
for some &(¢) > 0. If this holds, we have
772

dir1 < dr —mid(€) + 7; (56)

Let us denote & = n8(e) — % Since, n; — 0, there exists
t2(€) such that ¢ > O for all + > f;(e). Moreover, due to
assumptions on the step size, we have ) o, {; = 00.

What remains to show is equation (55). In the regime where
the number of applicants N is large, we can see that the state s;
is equal to its mean 6, with probability approaching 1 through
Chebyshev inequality. When d; > €, since s; is equal to its
mean 6;, we need to consider only cases (i) s; < « and (ii)
s; > a. Under both cases, we have (6; — oz)(rrtW —6;) <0 due
to the structure of the weighted MFG policy when the score
distributions are identical. ]

C. Negative Feedback in Role Model Reinforcement

Here, we provide a proof for Proposition 1, and show that
MFG policy can cause negative feedback under role model
reinforcement and drive the under-represented group out of
the system.

Proof: We assume that the MFG policy assigns non-zero
weight to the long-term fairness objective, ie., A > 0.
Since we are interested in the regime where the number of
applicants N; is large, we assume that the histograms of the
scores of applicants approach the distribution. Without loss
of generality, we denote group O to be the under-represented
group, and assume that the initial state is less than the fairness
target, s, < «. However, the same procedure applies when
group O has a higher proportion than the long-term fairness
target. We will also assume that the initial mean parameter 6,
is small.

We recall that for the top institution, the action maxi-
mizing its score-based reward a_lg’t = s, the current state,
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by Theorem 1 and the action minimizing its fairness loss
a}p’ ; = la] 41, the long-term fairness target. We also know the
MFG policy for the top institution will be the convex combi-
nation ntl =18 + (1 — yp). Then, ntl > s, because o > s;
by our assumption. Viewing the first institution’s MFG policy
as applying group-dependent lower and upper thresholds on
the score distributions as in the proof of Theorem 1, and
admitting all applicants between the group-specific thresholds,
we can infer that the lower threshold for group O (denoted
by 7y '°") is strictly less than the lower threshold for group 1
(denoted by t%’ oWy " due to the fact that 7! admits more from
the minority group than the applicant proportion. Implicitly,
the upper thresholds for the first institution are infinity. Thus
we have:

1, low

1, low
)

<t1

(57)

Note that these thresholds are different from the thresholds
optimizing only for the score-based rewards, which have also
been described by the same notation in the proof of Theorem 1.

Let us assume that the fraction of the role models r = €.
The evolution of the applicant pool is such that only those
admitted applicants with scores larger than a certain threshold
determined by parameter r will contribute to reinforcing the
pool. Let us denote this threshold for institution & as #X. As the
parameter r decreases, the threshold t’,‘ increases. It follows
that there exists r small enough, such that the role model
threshold for the first institution is 7. > £"'°¥. We remark
that the role model threshold is independent of the group
membership.

Now, note that r,l is equivalent to the ratio of the number of
group 0 applicants with scores higher than t}, to the number
of applicants with scores larger than t}. Thus we can write an
expression for 7! in terms of the CDF of the score distribution,
denoted by F, as

o si(1 = F (1))
CT s (1= F () + A —sp(1 = F(i))

For the subsequent institutions, it is known from (44) that
for all k > 2, if s; < «, the action optimizing the score-based
reward is a’bi’ , < st. Therefore, the policy for the k™ institution
(k>12)is

(58)

= St.

k—1
1 )
7T[k = (1 - )/k,t)Ol + Vk’t St + a ch(sl — jTl{)
=1
k
> dgy 59)

since we have o > s; > alg’t. Note that for the MFG policies
of the institutions, the lower threshold of institution k — 1 will
be equal to the upper threshold of institution k, as it would
admit all applicants with scores in between the lower and
upper thresholds.

If the institutions with k > 2 were optimizing only the score-
based reward their lower thresholds would be equal across
the groups, as argued in the equation (42). But here, since
the MFG policy admits a higher proportion from group 0,
i.e., (59), the thresholds are such that the lower threshold of
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The centralized MFG policy achieves long-term fairness under pure positive (a), order-based (b) and the weighted positive(c) reinforcement models.
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Fig. 8.

(a) MFG policy creates negative feedback under role-model reinforcement, under distinct score distributions. (b) The evolution of the proportions

of role models for each institution, under MFG policy. (¢) CMFG policy avoids negative feedback under distinct score distributions. (d) The evolution of the

proportions of role models for each institution, under CMFG policy.

group O is always less than the lower threshold of group 1,
Vk € [K]

k,Jlow

k,low
1y .

<t]

(60)

Furthermore, if r is small enough, the role model thresholds for
all subsequent institutions are large enough to satisfy tll(’low <
t’r‘. Then, we can express the proportion of the role models
from group O for the institution k as

B St (]:(tlg’up) — .7-(1‘];))
L s(FE - Fab) + (1 —so(FA™ - Fab)

Using tlf’uP > tg’u]), we can upper bound rf as
si(Fag*D) - Fab)
rf < ku k,u
si(FE) = F@) ) + (1 = sp(Fg™ - Fb)
— g (©61)

for all k € {2,3,...,K} and r} =s,.

Under the role model reinforcement, group 0’s applicant
proportion receives a positive drift only if the weighted
parameter 7/ in equation (16) is larger than s,. Due to (58)
and (61), the weighted proportion of the role models is

K
r_ D k=1 Ckrf

n) = (62)
Zszl Ck

<s = 7w/ —s5 <0.

Hence, the pool update parameter 6,41 = 6; + n(w] —
§;) < 6;. If the initial mean parameter 6; is small enough,
i.e., group O is heavily under-represented in the initial pool,
with a large probability the future state s,4; < o. Hence
we can approximately see that the mean parameter of the
proportion of minority group in the applicant pool decreases
to zero. Therefore, we show that MFG policy can cause a
negative feedback loop under role model reinforcement if the
role model proportion is small enough, driving the under-
represented group out of the system. |

D. Additional Experimental Results

1) Identical Score Distributions: We show the evolution
of applicant and admission proportions of the CMFG policy
under the pure positive reinforcement model, order-based and
weighted positive reinforcement models in Figures 7(a), 7(b)
and 7(c). The parameter settings are exactly the same as in
Section V-A for the case when the score distributions are
identical. In these figures, we can observe that an institution’s
admission proportion is larger than the applicant proportion,
and since the weighted average of the admission proportion
governs the evolution, the pool gets positive feedback and
approaches the fairness target.

2) Distinct Score Distributions: Here, we consider the role
model reinforcement with » = 0.5, under distinct score distri-
butions, with all other parameters as described in Section V-A.
As seen in Figure 8(a), the MFG policy again leads to a
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Fig. 9. (a), (b) evolution of the mean parameter, 6, and its equilibrium with varying values of A, under both the MFG and CMFG policies, under role-model
reinforcement.

negative feedback loop with the distinct score distributions,
resulting in the reduction of the minority group in the appli-
cants pool. As seen in Figure 8(b), the second and the third
institutions have a very small fraction of role models as a result
of the first institution admitting the top minority applicants.
However, the CMFG policy could alleviate this, resulting in
an equilibrium point lower than the initial mean parameter
as shown in Figure 8(c). In Figure 8(d), it is evident that
all institutions feature role models from the minority group,
leading to an equilibrium point within the applicant pool.

3) Semi-Synthetic Dataset: We consider the role-model
reinforcement with r 0.8, where the top 80% of the
admitted applicants are considered role models for the resource
pool. Figures 9(a) and 9(b) show the mean parameter 6, at
equilibrium for the MFG and CMFG policies, respectively,
with varying values of A. Both policies perform similarly on
the law school dataset, possibly due to a larger difference
between the score distributions of the groups.

REFERENCES
[11 L. Li, T. Lassiter, J. Oh, and M. K. Lee, “Algorithmic hir-
ing in practice: Recruiter and HR professional’s perspectives on
Al use in hiring,” in Proc. AAAI/ACM Conf. Al, Ethics, Soc.,
New York, NY, USA, 2021, pp. 166-176. [Online]. Available:
https://doi.org/10.1145/3461702.3462531
J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting
recidivism,” Sci. Adv., vol. 4, no. 1, 2018, Art. no. eaao5580.
J. A. Berkovec, G. B. Canner, S. A. Gabriel, and T. H. Hannan,
“Mortgage discrimination and FHA loan performance,” in Mortgage
Lending, Racial Discrimination, and Federal Policy. Milton Park, U.K.:
Routledge, 2018, pp. 289-305.
R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair
representations,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 325-333.
P. Gordaliza, E. Del Barrio, G. Fabrice, and J.-M. Loubes, “Obtaining
fairness using optimal transport theory,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 2357-2365.
F. Kamiran and T. Calders, “Data preprocessing techniques for classifi-
cation without discrimination,” Knowl. Inf. Syst., vol. 33, no. 1, pp. 1-33,
2012.
B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted biases
with adversarial learning,” in Proc. AAAI/ACM Conf. Al, Ethics, Soc.,
2018, pp. 335-340.
M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi,
“Fairness beyond disparate treatment & disparate impact: Learning
classification without disparate mistreatment,” in Proc. 26th Int. Conf.
World Wide Web, 2017, pp. 1171-1180.
M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised
learning,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1-9.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10] L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt, “Delayed
impact of fair machine learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 3150-3158.

T. Morgenroth, M. K. Ryan, and K. Peters, “The motivational theory of
role modeling: How role models influence role aspirants’ goals,” Rev.
Gener. Psychol., vol. 19, no. 4, pp. 465-483, 2015.

E. P. Bettinger and B. T. Long, “Do faculty serve as role models? The
impact of instructor gender on female students,” Am. Econ. Rev., vol. 95,
no. 2, pp. 152-157, 2005.

J. Cho, G. Hwang, and C. Suh, “A fair classifier using mutual
information,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2020,
pp. 2521-2526.

T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Fairness-aware
classifier with prejudice remover regularizer,” in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discovery Databases, 2012, pp. 35-50.

F. Calmon, D. Wei, B. Vinzamuri, K. Natesan Ramamurthy, and
K. R. Varshney, “Optimized pre-processing for discrimination preven-
tion,” in Proc. 31st Conf. Neural Inf. Process. Syst., 2017, pp. 1-10.
A. Ghassami, S. Khodadadian, and N. Kiyavash, “Fairness in supervised
learning: An information theoretic approach,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2018, pp. 176-180.

P. J. Kenfack, A. R. Rivera, A. M. Khan, and M. Mazzara, “Learning
fair representations through uniformly distributed sensitive attributes,”
in Proc. IEEE Conf. Secure Trustworthy Mach. Learn. (SaTML), 2023,
pp. 58-67.

P. Kairouz, J. Liao, C. Huang, M. Vyas, M. Welfert, and L. Sankar,
“Generating fair universal representations using adversarial models,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 1970-1985, 2022.

X. Shen, Y. Wong, and M. Kankanhalli, “Fair representation:
Guaranteeing approximate multiple group fairness for unknown tasks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1, pp. 525-538,
Jan. 2023.

H. Heidari, V. Nanda, and K. Gummadi, “On the long-term impact of
algorithmic decision policies: Effort unfairness and feature segregation
through social learning,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 2692-2701.

O. Guldogan, Y. Zeng, J. Yong Sohn, R. Pedarsani, and K. Lee, “Equal
improvability: A new fairness notion considering the long-term impact,”
in Proc. Int. Conf. Learn. Represent., 2023, pp. 1-31.

S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, and A. Roth, “Fairness
in reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1617-1626.

M. Wen, O. Bastani, and U. Topcu, “Algorithms for fairness in
sequential decision making,” in Proc. Int. Conf. Artif. Intell. Statist.,
2021, pp. 1144-1152.

H. Heidari and A. Krause, “Preventing disparate treatment in sequential
decision making,” in Proc. IJCAI, 2018, pp. 2248-2254.

T. Yin, R. Raab, M. Liu, and Y. Liu, “Long-term fairness with
unknown dynamics,” in Proc. Adv. Neural Inf. Process. Syst., 2023,
pp. 55110-55139.

M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and A. Roth,
“Meritocratic fairness for infinite and contextual bandits,” in Proc.
AAAI/ACM Conf. Al, Ethics, Soc., 2018, pp. 158-163.

Y. Chen, A. Cuellar, H. Luo, J. Modi, H. Nemlekar, and S. Nikolaidis,
“Fair contextual multi-armed bandits: Theory and experiments,” in Proc.
Conf. Uncertainty Artif. Intell., 2020, pp. 181-190.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 31,2025 at 16:56:49 UTC from IEEE Xplore. Restrictions apply.



PURANIK et al.: LONG-TERM FAIRNESS IN SEQUENTIAL MULTI-AGENT SELECTION 441

[28] S. Gillen, C. Jung, M. Kearns, and A. Roth, “Online learning with an
unknown fairness metric,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 1-10.

V. Patil, G. Ghalme, V. Nair, and Y. Narahari, “Achieving fairness

in the stochastic multi-armed bandit problem,” in Proc. AAAI, 2020,

pp. 5379-5386.

[30] G. Ghalme, V. Nair, V. Patil, and Y. Zhou, “Long-term resource alloca-
tion fairness in average Markov decision process (AMDP) environment,”
2021, arXiv:2102.07120.

[31] X. Zhang et al., “How do fair decisions fare in long-term qualification?”
in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 18457-18469.

[32] H. Mouzannar, M. 1. Ohannessian, and N. Srebro, “From fair decision
making to social equality,” in Proc. Conf. Fairness, Accountabil.,
Transp., 2019, pp. 359-368.

[33] J. Williams and J. Z. Kolter, “Dynamic modeling and equilibria in fair
decision making,” 2019, arXiv:1911.06837.

[34] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang, “Fairness

without demographics in repeated loss minimization,” in Proc. Int. Conf.

Mach. Learn., 2018, pp. 1929-1938.

X. Zhang, M. Khaliligarekani, C. Tekin, and M. Liu, “Group retention

when using machine learning in sequential decision making: The

interplay between user dynamics and fairness,” in Proc. Adv. Neural Inf.

Process. Syst., 2019, pp. 1-10.

[36] B. Puranik, U. Madhow, and R. Pedarsani, “A dynamic decision-making

framework promoting long-term fairness,” in Proc. AAAI/ACM Conf.

Al Ethics, Soc., New York, NY, USA, 2022, pp. 547-556. [Online].

Available: https://doi.org/10.1145/3514094.3534127

X. Dai and M. Jordan, “Learning in multi-stage decentralized

matching markets,” in Proc. Adv. Neural Inf. Process. Syst., 2021,

pp. 12798-12809.

[38] S.-H. Cho, T. Todo, and M. Yokoo, “Two-sided matching over social
networks,” in Proc. 31st Int. Joint Conf. Artif. Intell., (IJCAI), 2022,
pp. 186-193.

[39] “California master plan for higher education.” Accessed: Mar. 18, 2024.
[Online].  Available:  https://web.archive.org/web/20240318074731/
https://www.ucop.edu/institutional-research-academic-planning/content-
analysis/academic-planning/california-master-plan.html

[40] L. F. Wightman, LSAC National Longitudinal Bar Passage Study, LSAC
Research Report Series, Law School Admission Council, Newtown, PA,
USA, 1998.

[41] “Law school bar study dataset.” 2018. [Online]. Available: https://github.
com/algowatchpenn/GerryFair/blob/master/dataset/lawschool.csv

[29]

[35]

[37]

Bhagyashree Puranik received the B.E. degree
in electronics and communication engineering from
PES University, Bengaluru, India, in 2015, and the
M.E. degree in electrical communication engineering
from the Indian Institute of Science, Bengaluru, in
2017. She is currently pursuing the Ph.D. degree
in electrical and computer engineering with the
University of California at Santa Barbara (UCSB),
Santa Barbara, CA, USA. Her research interests
include robustness and fairness in machine learn-
ing, and deep representation learning. She was the
recipient of the Regents Fellowship at UCSB.

Ozgur Guldogan received the B.Sc. degrees in elec-
trical and electronics engineering and mathematics
from Bogazi¢i University, Istanbul, Tiirkiye, in 2021.
He is currently pursuing the Ph.D. degree in electri-
cal and computer engineering with the University of
California at Santa Barbara (UCSB), Santa Barbara,
CA, USA. His research interests include fairness and
domain generalization in machine learning. He was
the recipient of the Regents Fellowship at UCSB.

Upamanyu Madhow (Fellow, IEEE) received the
bachelor’s degree in electrical engineering from
the Indian Institute of Technology Kanpur, Kanpur,
India, in 1985, and the Ph.D. degree in elec-
trical engineering from the University of Illinois
at Urbana—Champaign, Champaign, IL, USA, in
1990. He is currently a Professor of Electrical
and Computer Engineering with the University of
California at Santa Barbara, Santa Barbara, CA,
USA. He was a Research Scientist with Bell
Communications Research, Morristown, NJ, USA,
and a Faculty Member with the University of Illinois at Urbana—Champaign.
He is the author of two textbooks Fundamentals of Digital Communication
(Cambridge University Press, 2008) and Introduction to Communication
Systems (Cambridge University Press, 2014). His current research interests
focus on next-generation communication, sensing and inference infrastructures
centered around millimeter-wave systems, and robust machine learning. He is
the recipient of the 1996 NSF CAREER Award, and co-recipient of the 2012
IEEE Marconi Prize Paper Award in wireless communications. He was an
Associate Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON INFORMATION THEORY, and the IEEE TRANSACTIONS
ON INFORMATION FORENSICS AND SECURITY.

Ramtin Pedarsani (Senior Member, IEEE) received
the B.Sc. degree in electrical engineering from the
University of Tehran, Tehran, Iran, in 2009, the
M.Sc. degree in communication systems from the
Swiss Federal Institute of Technology, Lausanne,
Switzerland, in 2011, and the Ph.D. degree from
the University of California at Berkeley, Berkeley,
CA, USA, in 2015. He is currently an Associate
Professor with the ECE Department, University of
California at Santa Barbara, Santa Barbara, CA,
USA. His research interests include machine learn-
ing, information and coding theory, networks, and transportation systems. He
was the recipient of the Communications Society and Information Theory
Society Joint Paper Award in 2020, the Best Paper Award in the IEEE
International Conference on Communications in 2014, and the NSF CRII
Award in 2017.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 31,2025 at 16:56:49 UTC from IEEE Xplore. Restrictions apply.



