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Abstract—While much of the rapidly growing literature on fair
decision-making focuses on metrics for one-shot decisions, recent
work has raised the intriguing possibility of designing sequential
decision-making to positively impact long-term social fairness. In
selection processes such as college admissions or hiring, biasing
slightly towards applicants from under-represented groups is
hypothesized to provide positive feedback that increases the pool
of under-represented applicants in future selection rounds, thus
enhancing fairness in the long term. In this paper, we examine
this hypothesis and its consequences in a setting in which multiple
agents are selecting from a common pool of applicants. We
propose the Multi-agent Fair-Greedy policy, that balances greedy
score maximization and fairness. Under this policy, we prove that
the resource pool and the admissions converge to a long-term
fairness target set by the agents when the score distributions
across the groups in the population are identical. We provide
empirical evidence of existence of equilibria under non-identical
score distributions through synthetic and adapted real-world
datasets. We then sound a cautionary note for more complex
applicant pool evolution models, under which uncoordinated
behavior by the agents can cause negative reinforcement, leading
to a reduction in the fraction of under-represented applicants.
Our results indicate that, while positive reinforcement is a
promising mechanism for long-term fairness, policies must be
designed carefully to be robust to variations in the evolution
model, with a number of open issues that remain to be explored
by algorithm designers, social scientists, and policymakers.

Index Terms—Long-term fairness, positive reinforcement,
sequential decision-making.

I. INTRODUCTION

W
ITH the increasing use of machine learning models

for decision-making systems with significant societal

impact, such as recruitment [1], criminal justice [2], and credit

lending [3], there is also growing concern that such models

may inherit existing bias in data, perpetuating and poten-

tially exacerbating discrimination against certain groups in the

population. This has prompted a growing body of research

focused on developing fair and unbiased models, with much of
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the early literature focused on imposing notions of statistical

fairness, such as equal selection rates or equal true positive

rates, in static frameworks through pre-processing [4], [5], [6],

in-processing [7], [8], or post-processing [9] mechanisms.

Going beyond concepts of one-shot fairness and unbi-

asedness, there is also increasing interest in the long-term

impacts of automated decisions under various dynamical

models. For example, the potentially adverse consequences

of myopic fairness are pointed out in [10]: unanticipated

feedback dynamics due to the decisions made may change

population statistics in an undesirable manner. For example,

credit lending decisions which equalize true positive rates

across groups to satisfy statistical fairness might lead to

loans being offered to less creditworthy applicants from a

disadvantaged group. Lower repayment rates from this group

may then end up further decreasing its creditworthiness. On

the other hand, feedback dynamics could also be used to shape

population statistics in a desired direction. We take a step in

this direction by hypothesizing that biasing slightly in favor

of an underrepresented group in a selection problem (e.g.,

hiring or college admissions) provides positive reinforcement,

increasing the proportion of applicants from that group in

future selection rounds.

While most prior works on exploring such dynamics con-

sider sequential decision-making by a single agent, we take a

first step towards exploring the dynamics and long-term impact

of multiple decision-making agents competing for a common

pool of resources. We consider a selection problem, where

we wish to use positive feedback to increase the proportion

of underrepresented applicants in the presence of multiple

agents (e.g., universities or companies) selecting from among

a common pool of applicants. In order to focus attention on

feedback dynamics, we consider a simplified model in which

the agents are strictly rank ordered in terms of desirability

from the applicants’ point of view. For this model, we provide

a mathematical framework for studying whether some level

of cooperation between the agents helps promote long-term

fairness, and whether the concept of positive reinforcement is

robust to variations in the evolution model. We propose the

evolution model of positive reinforcement where if a higher

proportion of applicants from a specific group is selected, it

will lead to an increase in the proportion of applicants from

that group in subsequent rounds. We study variants of this

basic model of reinforcement, a particularly interesting one

being the notion of role model reinforcement. Here only a

certain fraction of the admitted applicants (as opposed to all
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admitted applicants) are in a position to influence applicant

proportions in the future, by virtue of being role models.

The idea that role models in society, to which a group can

relate, could positively influence more aspirants to enter a

field is supported by several works in social sciences and

economics [11], [12].

Contributions: The contributions of this work are sum-

marized as follows:

• We propose the Multi-agent Fair-Greedy (MFG) pol-

icy, in which agents operate in a decentralized fashion,

maximizing a greedy utility (based on the scores of

selected applicants) while minimizing the disparity from

a fixed long-term fairness target (based on the devia-

tion of the selected proportion of minority applicants

from a target proportion deemed to be socially fair).

We characterize optimal actions under this policy and

theoretically demonstrate the convergence of the overall

applicant pool and the admission proportions to the

desired long-term fairness target under the pure positive

reinforcement model for the evolution of the composition

of the applicant pool.

• Different population dynamics are studied empirically to

evaluate the impact of variations in population behavior.

We find that while the decentralized MFG policy attains

long-term fairness under pure positive reinforcement, if

the population dynamics follow a simple variant, termed

the role model reinforcement, uncoordinated behavior by

agents can result in an overall negative feedback, leading

to a steady decrease in the number of underrepresented

applicants in the pool. We propose a centralized version

of the MFG policy which can restore positive feedback.

• We illustrate our mathematical framework through com-

prehensive experimental results based on synthetic and

semi-synthetic datasets, highlighting variations in system

behavior under different evolution models, and under

decentralized and centralized MFG policies. These results

show that positive reinforcement indeed has potential for

promoting long-term fairness even with multiple agents,

but that policy design must be carefully considered in

order to be robust to changes in the evolution model.

II. RELATED WORK

There is a rich and rapidly growing literature on

fair strategies that mitigate bias in one-shot algorithmic

decision making, including pre-processing the labels or

data and reweighting costs based on groups [6], reduc-

ing mutual information between sensitive attributes and

predictions [13], [14], adversarial de-biasing [7], addition of

constraints that satisfy fairness criteria [8], learning repre-

sentations that obfuscate group information [4], and other

information theoretic methods [15], [16], [17], [18], [19].

However, recent research has introduced an intriguing possi-

bility: the design of sequential decision-making strategies that

can have a positive long-term impact on social fairness and a

study of their consequence on the population.

The effects of fairness-aware decisions on underlying popu-

lation statistics were first studied in [10] for two-stage models:

in the first stage, the algorithmic decisions are designed such

that fairness constraints such as statistical parity or equal

opportunity are satisfied, while the second stage examines

the impact of these fairness interventions on the groups.

Each sample is associated with a score corresponding to the

probability of a positive outcome, sampled from group-specific

distributions. The policy-maker or institution chooses selection

policies to maximize utility subject to statistical fairness. The

measure of interest in [10] is the expected change in the mean

of the score distributions for the two groups as a result of one

step of feedback. It was found that imposing equal selection

rates or true positives could lead to either improvement or

cause harm, particularly to the minority group, depending on

certain regimes. The results of [10] highlight the importance

of going beyond static notions of fairness in algorithm/policy

design.

Several works propose notions of statistical fairness focused

on improving feature distributions among groups. For exam-

ple, [20] presents a fairness notion that equalizes the maximum

change in reward for groups with the same effort budget for

improving their features. The authors examine how fairness

interventions impact evenness, centralization, and clustering in

the groups through their efforts, affecting score distributions.

In another example, [21] proposes to equalize the proportion

of unqualified candidates from different groups that can be

qualified with a limited effort for improving their features.

The authors investigate how statistical fairness notions change

feature distributions among groups in the long term through

modeling feature evolution.

Formal investigation of temporal effects of decision

feedback and their equilibrium is typically performed in rein-

forcement learning [22], [23], [24], [25] or bandit settings [26],

[27], [28], [29], [30]. The environment is described through

a Markov Decision Process (MDP) framework where at each

time, the decision-maker in a particular state takes an action

and receives a reward. State transitions are governed by update

models, and fairness constraints are included within reward

definitions.

The long-term effects of fair decisions on the qualification

rate of the group, which is defined as the probability of

an individual from a particular group being qualified, is

investigated in [31] under a partially observable MDP setting.

The group proportions over time are fixed, but the decisions

affect the feature distributions which in turn change their

true qualification state, which is modeled as a hidden state.

Decisions are performed on the features to maximize myopic

instantaneous utility, subject to statistical fairness constraints.

Threshold-based policies and their equilibrium are studied

under two regimes: “lack of motivation,” where the probability

of remaining qualified on receiving a positive decision is

less than that on being rejected, and “leg-up,” which is

the opposite, where an accepted individual becomes inspired

to become more qualified. Studies such as [32], [33] also

examine the effects of fair policies on the distributions of

the features. In particular, [32] studies how the qualification

profiles of groups are influenced by a policy that imposes

demographic parity (equal selection rates) across two groups

of the population. They assume that social equity is achieved
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through equalized qualification profiles in equilibrium. The

dynamic model in [33] is motivated by credit lending. The

authors model the distributions of loan repayment likelihood

(payback probabilities) by group, and examine the dynamics

governed by the hypothesis that granting loans leads to upward

mobility for the population if they are repaid. They study

the impact of fair decisions on loan repayment likelihood

and the negative effects of unequal misestimation of payback

probabilities across groups, even if the decisions are fair. In

contrast to studying the effects on group qualification, it is

also imperative to understand how group representation could

vary over time. It was first shown in [34] that empirical

risk minimization can exacerbate the disparity in group rep-

resentation. In the context of long-term fairness, [35] study

how algorithmic decisions which are constrained by statistical

fairness could degrade the representation of a minority group,

and eventually cause the loss of minority representation in the

system.

Our prior work: The work reported here builds upon

preliminary results shown in our conference paper [36], where

we first introduce the problem of selecting applicants from a

pool under the setting of a single institution. We introduce

the positive reinforcement model for evolution of the applicant

pool, which is similar in spirit to the “leg-up” model in [31],

except that it applies at the level of a population rather than an

individual: selection of a larger proportion of applicants from a

specific group feeds back into society and leads to an increase

in the proportion of applicants from that group in future

rounds. The score of an applicant, drawn from a group-specific

distribution, is taken to represent the level of qualification of

that individual. The Fair-Greedy policy, proposed in a single

institution setting, greedily balances the sum of the scores of

selected applicants against a fairness measure which increases

with the deviation of the selected proportion of applicants from

the under-represented group from a specified long-term target

proportion. Theoretical results for identical score distributions

across groups, and empirical results for other models, show

convergence to a long-term fairness target set by the decision-

maker. While the preliminary results in [36] show long-term

fairness through positive feedback under a single institution,

in this journal paper, we extend the promise of positive

reinforcement to multiple-agents, consider variations in the

evolution model, and find that careful design of feedback

mechanism is required.

All of the preceding works on long-term fairness focus

on settings with a single decision-maker accessing a pool of

samples from the population. However, in real-world selection

processes such as college admissions or hiring, there are

often multiple agents or institutions competing for a common

pool of applicants. The composition of the applicant pool

can therefore be affected by the collective decisions of these

agents. To the best of our knowledge, ours is the first work

to study the long-term evolution of fairness in such a multi-

agent setting. While two-sided matching problems, where

multiple agents and resources are to be matched to each other,

are well studied in resource allocation problems and game

theoretic settings [37], [38], the notion of long-term fairness

in such settings is yet to be examined, and the definitions of

fairness considered are quite distinct from those in fairness

literature. Since our focus is on dynamical evolution, we

sidestep the problem of matching between institutions (agents)

and applicants (resources) by assuming that each applicant has

the same fixed preference among the institutions.

III. MODELING MULTI-AGENT DECISION-MAKING

Consider the problem of K agents, or institutions, selecting

from a common pool of resources, or applicants. The applicant

pool is composed of applicants from two groups g = {0, 1},

based on a sensitive attribute. Without loss of generality, we

usually refer to g = 0 as the minority group and g = 1 as

the majority group. We denote the number of applicants in

round t, belonging to group g by N
g
t , and the total number of

applicants as N0
t +N1

t = Nt. Every applicant is associated with

a score which is sampled from a group-dependent distribution

Pg.

In many applications, the institutions have a growth in the

program size, which is typically proportional to the population.

For instance, the University of California system intends to

serve top one-eighth of California’s high school graduating

class population [39]. Motivated by this line of thought,

we consider that every institution fixes the total number of

applicants it can admit, through the capacity ck for institution

k, set as a fraction of applicants it admits, out of the total

number of applicants in the pool in that round. Thus we have
∑K

k=1 ck < 1.

Each institution has to determine how to fill its admission

slots, particularly by deciding how many minority and major-

ity applicants are to be admitted, while satisfying two-fold

objectives: (i) to accept applicants with the largest scores (ii)

to achieve a long-term fairness target (denoted by α ∈ [0, 1])

in the admission of applicants, which measures the proportion

of admitted applicants belonging to the minority group, g = 0.

The goal of the K institutions is to move towards the long-term

fairness target, while admitting applicants with the highest

scores. We denote the number of applicants admitted by

institution k as Ak,t = ckNt, out of which A
g

k,t belong to group

g. Thus, we have Ak,t = A0
k,t+A1

k,t, and the institutions hope to

make decisions such that A0
k,t/Ak,t approaches α in equilibrium

for all k.

We assume that the institutions are ranked, and that every

applicant prefers institutions in the same order. Without loss

of generality, we assume that the institutions are indexed by

rank order, with k = 1 corresponding to the highest-ranked

institution. Since the preference order is fixed, the matching

of applicants to institutions simplifies to institutions picking

from the application pool sequentially, in their ranked order.

The decision variable at each institution in each round is the

fraction of admitted applicants from each group (selecting

from the highest scoring applicants in each group, chosen

from among the pool that remains after higher-ranked insti-

tutions have made their selections). We, therefore, have an

effectively sequential selection process in each round, where

the selections are started by the highest-ranked institution and

completed by the lowest-ranked institution.
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The problem is formulated as a Markov Decision Process

(MDP). The state st ∈ [0, 1] is the fraction of applicants from

group g = 0 in the applicant pool. Thus, at round t we have

st = N0
t /Nt. An institution k is associated with its respective

action ak
t ∈ [0, 1], which is the fraction of applicants admitted

from group g = 0 among the total number of applicants

the institution k admits. Thus, ak
t = A0

k,t/Ak,t. The actions

or the decision variables of each of the institutions are to

be determined based on optimizing their respective fairness-

aware utilities, defined below.

First, a set of Nt applicants in round t are associated

with a set of scores {X
g
i }, where each X

g
i , i ∈ [N

g
t ], is

sampled independently from Pg. Additionally, X
g

(i) denotes the

ith top score out of N
g
t applicants from group g. We define

the score-based reward for an institution with rank k as the

expectation of the sum of scores of the applicants admitted by

the institution normalized by the number of total applicants

it admits. Note that for an institution k, this depends upon

the actions of the preceding [1, k − 1]-ranked institutions, as

each institution selects sequentially from the remnant pool

of applicants. For k ∈ {2, 3 . . . , K}, we define m
g

k,t as the

number of applicants from group g ∈ {0, 1} that have already

been selected by higher ranked institutions 1, . . . , k − 1, with

m
g

1,t = 0. Thus, we have the score-based reward:

Rk

(

st, ak
t

)

=
1

Ak,t

E

£

¤

¥

m0
k,t+A0

k,t
∑

i=m0
k,t+1

X0
(i) +

m1
k,t+A1

k,t
∑

i=m1
k,t+1

X1
(i)

§

¨

©

=
1

Ak,t

E

£

¤

¥

m0
k,t+ak

t Ak,t
∑

i=m0
k,t+1

X0
(i) +

m1
k,t+

(

1−ak
t

)

Ak,t
∑

i=m1
k,t+1

X1
(i)

§

¨

©
(1)

with the group-specific offsets given by

m0
k,t =

k−1
∑

j=1

cjNta
j
t and m1

k,t =

k−1
∑

j=1

cjNt

(

1 − a
j
t

)

. (2)

Each institution is associated with its fairness loss, which is

the squared difference between the proportion of group g = 0

out of the total admitted, and the long-term fairness target α,

given by Lk(a
k
t ) = (ak

t − α)2. The considered fairness loss

is a simple measure of disparity from the long-term fairness

target, and penalizes the bias against both groups on the long

run.

The “multi-agent fairness aware” utility of each institution is

the sum of its score-based reward and fairness loss, expressed

as

Uk

(

st, ak
t

)

= Rk

(

st, ak
t

)

− λLk

(

ak
t

)

. (3)

where λ ≥ 0 is a parameter that governs balancing fairness

objective with score-based reward.

Thus each institution aims to maximize its score-based

reward by admitting applicants with the highest scores, while

minimizing its disparity from the long-term fairness target.

Multi-agent Fair-Greedy (MFG) Policy: We propose the

MFG, which is a set of policies πMFG(st) = {π1
t , π2

t . . . , πK
t },

where each institution optimizes its own multi-agent fairness

aware utility as follows:

πk
t = arg max

ak
t ∈A

k
t

Uk

(

st, ak
t

)

. (4)

where Ak
t is the set of feasible actions for institution k in round

t, which depends on the actions of higher ranked institutions

and the state st. After higher ranked institutions have made

their selections, the feasible action space for institution k is

determined by the remaining capacity of the institution and the

remaining applicants in the pool, and can be written as Ak
t =

[ max(0, 1−
1−st−

∑k−1
j=1 (1−π

j
t )cj

ck
), min(1,

st−
∑k−1

j=1 π
j
t cj

ck
)]. For each

institution, optimization of the instantaneous multi-agent fair-

ness aware utility is equivalent to finding group-specific set

of thresholds on the score distributions. In our rank-ordered

model for institutions, each institution admits applicants whose

scores exceed its threshold, choosing from the pool remaining

after higher-ranked institutions have made their selections.

However, we reiterate that the state st represents the original

minority group proportion in the pool at round t.

Resource pool evolution: A key ingredient of our for-

mulation is modeling the manner in which the collective

decisions of the institutions affect the pool of resources seen

in the subsequent rounds of the problem. This is a complex

relationship requiring data collected from carefully designed

long-term experiments. While such data is not yet available,

we can develop valuable insights by exploring different models

for how the applicant pool might be shaped by institutional

policies.

We assume that the state st is a random variable with

mean θt and bounded variance. We model the number of

applicants from group g = 0 and g = 1 as being sampled

from Poisson distributions, with N0
t ∼ Poisson(θtN) and

N1
t ∼ Poisson((1 − θt)N),where N is the expected number

of applicants in the pool. The total number of applicants

in round t is given by Nt = N0
t + N1

t .1 The choice of

the Poisson distribution is for the sake of simplicity, and

the outcomes of our analysis remain independent of this

particular choice of distribution. We consider different models

for the evolution of θt in this paper, focusing first on the

model of pure positive reinforcement. In this model, a higher

proportion of admission of a particular group in comparison

to its application proportion, motivates more applicants from

the group to participate in future selection rounds. Here the

evolution follows:

θt+1 =
[

θt + ηt

(

πW
t − st

)]

C
(5)

where [ ]C is the projection onto the set C = [0 + ε, 1 − ε]

(or, simply clipping the mean parameter) where ε is a small

positive number to avoid the mean parameter from reaching

the boundary of the set and it implies that the any group cannot

be completely eliminated from the pool. Here, ηt is a step size

parameter and πW
t represents the weighted actions of all the

institutions.

In particular, under the MFG policy, πW
t depends upon on

the policies of all the institutions weighted by their capacities,

1When both N0
t and N1

t are equal to zero, the round is completed without
any admissions.
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which is also equivalent to the proportion of minority group

among all the admitted applicants, defined as:

πW
t =

∑K
k=1 ckπ

k
t

∑K
k=1 ck

. (6)

Thus, the collective decisions of all institutions, in particular

their admission of applicants from a particular group, promote

more such applicants to participate in the process, and shape

the evolution dynamics.

In the remainder of this section, we characterize the MFG

policy in a decentralized setting, under the pure positive

reinforcement model. We show that the optimal policy for

each institution depends on actions that optimize the score-

based reward alone, and the fairness loss alone. We therefore

first derive the reward-optimal and fairness-optimal actions for

each institution, and then characterize the MFG policy πk
t , k =

1, . . . , K in terms of these actions. We then show that, for

pure positive reinforcement and identical score distributions

Pg, the applicant pool (state) and the admission proportions

(actions) for all institutions converge to the long-term fairness

target. We use the following assumptions in our convergence

analysis:

Assumption 1: The expected number of applicants in the

pool N is large enough that the empirical distribution of scores

can be replaced by statistical distributions using the law of

large numbers.

This assumption is required for the asymptotic analysis of

the applicant pool and admission proportions. It is also used

to derive the reward-optimal actions for the institutions.

Assumption 2: The score distributions Pg are identical

across groups.

This assumption implies that the only difference in the

groups is the proportion of applicants from each group in the

pool at each round. We relax this assumption in Section V-A

and provide empirical evidence for the existence of equilibria

of the applicant pool proportion and the admission proportions.

Fairness-optimal action: Each institution can minimize

its fairness loss by setting its action to be equal to the long-

term fairness target:

ak
F,t = arg min

at∈A
k
t

Lk(at) = [α]
Ak

t
, ∀k ∈ {1, 2, . . . , K}. (7)

where [α]
Ak

t
is the projection of α onto the feasible action

space Ak
t .

The next theorem characterizes the reward-optimal actions

for the institutions.

Theorem 1: Under Assumptions 1 and 2, the score-based

reward function, Rk(st, ak
t ), is concave and the reward-optimal

action for an institution k is given by

ak
S,t = arg max

ak
t ∈A

k
t

Rk

(

st, ak
t

)

=

£

¥st +
1

ck

⎛

¿

k−1
∑

j=1

cj

(

st − π
j
t

)

À

⎠

§

©

Ak
t

, (8)

∀k ∈ {2, 3, . . . , K} and a1
S,t = st where [ · ]

Ak
t

denotes the

projection onto the feasible action space Ak
t .

The detailed proof of this theorem can be found in

Appendix A.

Remark 1: Under the asymptotic regime of Assumption 1

(i.e., assuming that empirical distributions of applicant scores

can be replaced by statistical distributions), the proof of

Theorem 1 can rely on the following simplification. For

institution k, the selection of applicants with top scores is

equivalent to thresholding the group’s score, and admitting

applicants with scores within the group-specific lower and

upper thresholds, denoted by tk,S,low
g and t

k,S,up
g respectively.

The upper threshold t
k,S,up
g equals the lower threshold of

institution k − 1 for group g. In Lemma 2 we show that

for reward optimality for any institution k, its group-specific

lower thresholds should be equal; t
k,S,low
0 = t

k,S,low
1 , if possible.

While this holds even if the group-specific score distributions

are different, we can derive closed-form expressions for

reward-optimal actions as in Theorem 1 when the distributions

are identical across groups.

Remark 2: The optimal policy of institution k that maxi-

mizes its multi-agent fairness aware utility can be expressed as

a convex combination of its pre-projected optimal score-based

reward action and optimal fair-only actions, as πk
t = γk,t(st +

1
ck

(
∑k−1

j=1 cj(st −π
j
t )))+ (1−γk,t)α, where γk,t ∈ [0, 1] (please

refer to Appendix B for details). The closed-form expression

for γk,t is not available in general, but it can be numerically

computed due to the concavity of the fairness-aware utility

function. It can be shown that the reward-optimal action can

be expressed as:

ak
S,t = st +

(st − α)

ck

⎛

¿

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

À

⎠. (9)

Thus, when the hyperparameter λ > 0, if st < α, for k ∈

{2, 3, . . . , K} we have ak
S,t < st, and vice-versa. Note that,

for a special case where there is a single institution, π1
t lies

between the state st and long-term fairness target α. But that

is not necessarily the case for πk
t for k > 1, when there are

multiple institutions.

In the following lemma, we characterize the weighted

policy of the institutions, that ultimately governs the pool

evolution (5).

Lemma 1: Under Assumptions 1 and 2, the weighted MFG

policy πW
t can be expressed as the following under the pure

positive reinforcement model:

πW
t = st + (α − st)

∑K
j=1 cj

∏K
i=j

(

1 − γi,t

)

∑K
j=1 cj

= st + (α − st)γ̄t, (10)

where γ̄t ∈ [0, 1].

Please refer to Appendix B for proof.

We utilize this result to prove the convergence of the

applicant pool and admission proportions to the long-term

fairness target. In the following theorem, we first show that the

target proportion is a unique fixed-point of the pool evolution

update. We then show that the weighted policy lies between the

applicant and target proportions, as a result of which the mean

state parameter and the state converge to the target. Although
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our analysis is for identical group-wise score distributions,

we later provide empirical evidence of equilibrium in state

and actions of all institutions when the score distributions are

different across groups.

Theorem 2: Under Assumptions 1, 2 and λ �= 0, the

weighted MFG policy is such that πW
t ∈ (st, α) if st < α,

or πW
t ∈ (α, st) if st > α. Further, α is a unique fixed-point

of the weighted policy πW
t . In addition, the applicant pool

proportion converges to the long-term fairness target α, if the

step size parameter ηt is decaying with time and satisfies the

assumptions that
∑

t ηt = ∞ and
∑

t η
2
t < ∞. Further, the

admission proportions of all institutions approach the long-

term fairness target at equilibrium.

The proof of this theorem can be found in Appendix B.

Remark 3: For identical group-wise distributions as con-

sidered in Theorem 2, the convergence to the target α holds

irrespective of the value of the hyperparameter λ weighing

fairness in the utility function, as long as it is positive

(λ > 0). For non-identical score distributions across groups,

we provide empirical evidence for the existence of equilibria

of the applicant pool proportion and the admission proportions

in Section V-A. However, the actual value of λ > 0 is now

found to be important in determining how close to the fairness

target we get.

What happens if we ignore fairness?: In the scenario

of identical score distributions, if each institution completely

disregards the fairness objective and optimizes only its score-

based reward, as seen from (9) where γk,t = 1, it follows that

πk
t = ak

S,t = st for all k. Consequently, the mean parameter

θt would not experience any drift, and the composition of

the applicant pool would remain unchanged. While each

institution greedily acquires the best applicants by sacrificing

diversity, there is no hope of influencing the participation of

the underrepresented. However, biasing slightly in favor of the

underrepresented group by introducing the fairness objective

could lead to both θt and πk
t converging to the long-term

fairness target.

IV. VARIATIONS ON THE POOL EVOLUTION MODEL

Achieving long-term fairness relies on how the applicant

pool evolves with institutional decisions over time. In this sec-

tion, we introduce variations of the pure positive reinforcement

model, and examine how the MFG policy fares under these

new variants of the evolution model termed (i) order-based

(ii) weighted (iii) role-model reinforcement. The bulk of our

discussion in this section focuses on the motivation and study

of role-model reinforcement and pitfalls under it, while we

first briefly discuss the other two below:

Order-based positive reinforcement: This simple variant

allows control over the strength of positive reinforcement by

raising the feedback in pure positive reinforcement to a power

β > 0:

θt+1 =
[

θt + ηtsign
(

πW
t − st

)

|πW
t − st|

β
]

C
. (11)

Pure positive reinforcement is a special case of the above

model for β = 1. The feedback is amplified for β < 1 and is

attenuated for β > 1, since 0 ≤ |πW
t − st| ≤ 1.

Weighted positive reinforcement: The second simple vari-

ation allows custom weights {zk > 0} on the institutions’

policies

π z
t =

∑K
k=1 zkπ

k
t

∑K
k=1 zk

, (12)

with pool evolution

θt+1 =
[

θt + ηt

(

π z
t − st

)]

C
. (13)

Here zk = ck reduces back to pure positive reinforcement,

which gives greater influence to an agent with higher capacity.

The more general models (12)-(13) here allow us more

flexibility in assigning influence. For example, we can give

equal influence to all institutions by setting zk = z > 0.

Role model reinforcement: Thus far, we have assumed

that all selected applicants in an institution have equal ability

to influence the reinforcement. However, applicants who do

well post-selection in a given institution, who we term role

models, could influence future applicant pools significantly

more than other admitted applicants in the institution. The

motivation for this model stems from the fact that in practice,

success in an institution depends not just on qualifications

at the time of admission, but on support mechanisms within

the institution to aid in continued growth and success of the

admitted applicants, as well as on circumstances that may be

difficult to characterize. However, to develop analytical insight

into what happens when positive reinforcement occurs due

to the applicants who do well post-selection, we consider a

score-based criterion for identifying these role models: among

all applicants (from both groups) admitted to institution k, the

role models are composed of a fraction r ∈ [0, 1] of applicants

with the highest scores. From among this group, the fraction

of minority (group g = 0) applicants, denoted by rk
t , drive

the pool evolution. We now develop the notation required to

define this model precisely.

Let X k
t denote the set of scores of all applicants admitted

by the institution k at time t,

X
k
t =

{

X0
(

m0
k,t+1

), X0
(

m0
k,t+2

), . . . , X0
(

m0
k,t+A0

k,t

),

X1
(

m1
k,t+1

), X1
(

m1
k,t+2

), . . . , X1
(

m1
k,t+A1

k,t

)

}

. (14)

The role models for each institution are selected as top r

proportion of the admissions with the highest scores, Rk
t =

argmax
X ′⊂X k

t ,|X ′|=�rAk,t


∑

x∈X ′ x. Then, let rk
t denote the

fraction of the minority group in the role models set Rk
t for

the institution k at round t. It can be written as:

rk
t =

∣

∣

∣

∣

∣

Rk
t ∩

{

X0
(

m0
k,t+1

), . . . , X0
(

m0
k,t+A0

k,t

)

}
∣

∣

∣

∣

∣

|Rk
t |

. (15)

Then, the pool evolution model depends on the fraction of the

applicants from the minority group among the role models,

rk
t , instead of the fraction of the applicants from the minority

in the admissions, πk
t . The weighted role model parameter is
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defined as

π r
t =

∑K
k=1 ckrk

t
∑K

k=1 ck

. (16)

If a group has a higher proportion of role models in com-

parison to its application proportion, it will provide positive

reinforcement. The pool update is then governed by:

θt+1 =
[

θt + ηt

(

π r
t − st

)]

C
. (17)

For r = 1, role model reinforcement reduces back to pure

positive reinforcement. Setting r = 0.5 implies that minority

applicants whose scores are above the median score for

admitted applicants in their institution are role models driving

pool evolution.

While we showed that convergence to long-term fairness

target is assured under pure positive reinforcement, we shall

now see that it is not the case, under this variant evolution

model. First, let us focus first on a special case when K = 1.

Under a limiting case of role-model reinforcement when r = 1,

convergence to long-term fairness is guaranteed. In the other

extreme case, when the bar for role models is extremely high,

i.e., r = ε (small), π r
t = rk

t ≈ st. Thus, although the MFG

policy biases in favor of minority group, there could be no

drift in the mean state parameter, leading to a stagnation

in the composition of the applicant pool. However, when

there are multiple institutions involved, this could lead to

explicit negative feedback, causing the proportion of minority

in the applicant pool to steadily reduce. We now show in

Proposition 1 below that role model reinforcement can lead

to negative feedback under the MFG policy, specifically when

there are multiple institutions(K > 1). Assuming identical

group-wise score distributions, we show that if the long-term

fairness target is higher than the initial proportion of the

minority group, the first institution will admit more minority

applicants than their application proportion. This results in

the subsequent institutions having a higher proportion of top

admissions from the majority group, leading to a lower propor-

tion of minority group role models. This can eventually cause

the minority group to be removed from the applicant pool,

as formally demonstrated next, and empirically supported

by experiments in Section V-A. Furthermore, we empirically

demonstrate that coordinated behavior by the agents could help

in alleviating this negative feedback.

Proposition 1: Under Assumptions 1 and 2, for role model

reinforcement there exists a role model parameter r that is

small enough such that the MFG policy can cause negative

feedback leading to the loss of representation of the under-

represented group in the pool.

Please see Appendix C for proof.

Remark 4: The evolution of the applicant pool under role

model reinforcement is such that only admitted applicants

from group g = 0 with scores larger than a group-independent

threshold tkr , will contribute to reinforcing the pool. The

threshold increases as we reduce the role model parameter r,

raising the bar for being a role model. Let tk, low
g and t

k, up
g

denote the lower and upper thresholds of the MFG policy for

group g and institution k. The key idea behind the proof is that

when the initial mean parameter θt is small, there exists a small

enough r such that for institution k, we have tkr ≥ t
k, low
1 >

t
k, low
0 . Using this, we show that the role model proportions are

such that rk
t < st for k ∈ {2, 3, . . . , K} and r1

t = st. Hence, the

mean parameter obtains a negative drift, and the proportion of

the minority group in the applicant pool approaches zero.

In order to mitigate the effects of such negative feedback,

we define a centralized version of the MFG policy in the next

section.

A. Centralized Multi-Agent Fair-Greedy Policy

The selection process under the original MFG policy, in

which the institutions do not cooperate, is sequential based

on the ranking order of the institutions. We now consider

decision-making by a central coordinator which knows the

utility of each institution, and maximizes the sum utility across

institutions:

U
(

st, a1
t , a2

t , . . . , aK
t

)

=

K
∑

k=1

Uk

(

st, ak
t

)

. (18)

Thus, the Centralized Multi-agent Fair-Greedy (CMFG) policy

is defined as a set of policies πCMFG(st) = {π1
t , π2

t . . . , πK
t }

maximizing the total utility over the space of joint actions as:
{

π1
t , π2

t . . . , πK
t

}

= arg max
a1

t ,a
2
t ,...,a

K
t

U
(

st, a1
t , a2

t , . . . , aK
t

)

subject to 0 ≤ ak
t ≤ 1,

K
∑

k=1

ak
t ck ≤ st,

K
∑

k=1

(

1 − ak
t

)

ck ≤ 1 − st. (19)

The main difference between the MFG and CMFG policies

lies in the way that institutions work together. Intuitively,

we can view the set of policies as the joint imposition of

group-dependent thresholds corresponding to all institutions

simultaneously in order to maximize the total utility, as

opposed to the earlier decentralized version, where a higher

ranked institution imposes its thresholds without considera-

tion of downstream effects on the utilities of lower-ranked

institutions. Thus, in CMFG policy, institutions collaborate

with each other to maximize their total utility. This allows

a central coordinator to distribute the cost of fairness among

all institutions, potentially leading to a selection policy that is

different from sequential decentralized selection. In particular,

the effects of the negative feedback loop observed with the

sequential selection under role model reinforcement can be

mitigated, as shown in the experimental results in Section V-A.

In summary, the discussion of the role model reinforcement

variant model serves the following objectives within the

context of this study. Firstly, it allows us to simulate a realistic

and plausible scenario wherein only a subset of admitted

applicants possesses the capacity to exert influence on future

participation dynamics. To illustrate this concept, we designate

top applicants from each institution as role models, albeit with

an acknowledgment of the inherent complexity of truly char-

acterizing successful applicants in real-world situations. This

abstraction enables us to underscore the notion that a simplistic

strategy of biasing in favor of minority applicants alone does
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Fig. 1. (a) With pure positive reinforcement, the MFG policy reaches long-term fairness when score distributions are identical for both groups. (b) The
MFG policy attains long-term fairness more quickly with order-based positive reinforcement when β = 0.8. (c) Under weighted positive reinforcement, the
MFG policy converges when institution weights are equal, for this setting.

not suffice as a comprehensive solution for fostering future

participation. Instead, it underscores the critical importance of

institutional support for the admitted applicants to facilitate

their growth and eventual success. The effectiveness of this

support hinges upon the mechanisms and extent of backing

provided by each institution. We show that as a growing

number of admitted applicants receive the necessary support

to attain a level of success that qualifies them as symbolic role

models, the potential for positive reinforcement substantially

increases. The precise means by which institutions implement

and coordinate these support mechanisms constitutes an open

question of paramount significance, particularly for policy-

makers tasked with shaping equitable participation.

V. EXPERIMENTAL EVALUATION

We empirically evaluate the proposed MFG policy under

different models for the evolution of the applicant pool. We

begin with experiments on synthetic data, where the scores are

sampled from group-specific Gaussian distributions, followed

by learning the score distributions from real-world datasets.

The MFG and centralized MFG policies are computed numer-

ically and the optimal policies are obtained using the grid

search over the space of policies. The number of applicants is

kept finite in the experiments.

A. Multi-Agent Framework Evaluated on Synthetic Data

Identical score distributions: We first consider the case

when the score distributions across the two groups in the

population are the same. The parameter setting employed for

these experiments is listed next. The long-term fairness target

is set at α = 0.4. The number of institutions is K = 3 with

capacities c1 = 0.1, c2 = 0.05 and c3 = 0.2, resulting in a total

capacity of 0.35. The score distributions are Gaussian, with

means μ0 = μ1 = 5 and variances σ 2
0 = σ 2

1 = 1. The initial

mean parameter is θ0 = 0.25, giving the minority group lower

representation in the resource pool. The range of the mean

parameter is [0.01, 0.99], and the mean parameter is projected

to the range at each iteration. The state st is defined as
N0

t

N0
t +N1

t

,

where N0
t follows a Poisson distribution with parameter θtN,

N1
t follows a Poisson distribution with parameter (1 − θt)N,

and N = 400. For computational efficiency, once the state

is computed, the total number of applicants is fixed to 400,

Fig. 2. MFG policy under identical scores reaches long-term fairness target,
independent of λ.

and the number of applicants from each group is adjusted

according to the state and then rounded to the nearest integer

for numerical convenience. Other parameters include λ = 0.75

and the step-size is fixed as η = 0.5. All the plots are averaged

over 200 instances of the problem.

We demonstrate the evolution of the applicant and admis-

sion proportions, and the mean parameter, for the MFG policy

under different reinforcement models. In Figure 1(a), we can

observe that under the pure positive reinforcement model, for

each institution, the admission proportion is larger than the

applicant proportion (state), and hence the weighted MFG

policy being larger than the applicant proportion results in the

positive reinforcement of the applicant pool (observed through

the evolution of mean parameter θt) and long-term fairness

in admissions as well. Next, we focus on the robustness of

the MFG policy under different evolution models. The order-

based reinforcement in Figure 1(b) uses β = 0.8, and shows

that faster convergence can be achieved in comparison to

the pure positive reinforcement model. The weighted positive

reinforcement model in Figure 1(c) uses identical weights

wk = 1 for all institutions, showcasing the pool evolution when

equal importance is assigned to every institution. In both these

cases, for the setting considered, the MFG policy leads to the

achievement of long-term fairness.

Further, we show the evolution of the mean applicant pool

parameter under pure positive reinforcement model and the

MFG policy for different weights, λ, allotted to fairness loss in

Figure 2, where we observe that the mean parameter achieves

the same long-term fairness target in equilibrium, independent
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Fig. 3. Score percentile of the admitted applicant with the least score, from each group and for each institution, under the setting where (i) λ = 0.75 for all
institutions (in (a)) (ii) λ is in decreasing order for the three institutions (in (b)). The evolution of mean parameter and admission proportions under the case
of decreasing λ is in (c).

Fig. 4. (a) MFG policy creates a negative feedback loop under the role model reinforcement. (b) The evolution of the proportions of role models for
each institution, under MFG policy. (c) CMFG policy could potentially alleviate negative feedback under role model reinforcement. (d) The evolution of the
proportions of role models for each institution, under CMFG policy.

of the hyperparameter λ, under identical score distributions,

and long as λ > 0. However, the rate of convergence depends

on λ.

Next, we gain valuable insights into the operational dynam-

ics of the MFG policy. Our objective is to comprehend the

trade-offs made, in terms of scores of admitted applicants

of the majority and minority groups, to foster fairness.

Figure 3(a) depicts the percentile at which the admitted

applicant with the lowest score is positioned, for both the

groups and all institutions, when λ = 0.75 across all

participating institutions. Next, in Figure 3(b), we extend

our examination to a scenario in which the λ values are

decremented across institutions as [0.75, 0.375, 0.1875], sig-

nifying that lower-ranked institutions temporarily de-prioritize

diversity to minimize a significant decline in the quality of

admitted applicants. Consequently, this approach illustrates

how a judicious delay in the pursuit of immediate fairness

objectives by lower-ranked institutions can assist in averting

a large drop in their admission standards. However, this

strategy of decreasing λ impacts the overall convergence rate

(see Fig. 3(c)), as all institutions experience a deferment in

the applicant pool reaching the long-term fairness objective.

This serves as an example of the delicate balance that

institutions must navigate between the convergence to fairness

targets and maximization of short-term rewards. Nonetheless,

the precise strategies and mechanisms to be adopted by

individual institutions in achieving this balance remains

open.

Potential for negative feedback: The evolution dynamics of

role model reinforcement, under the MFG policy is examined

here. We consider a scenario where role model reinforcement

is applied with a parameter of r = 0.5, i.e., the admissions

with scores above the median score in the respective institution

are considered role models for the resource pool evolution.

As seen in Figure 4(a), the MFG policy creates a negative

feedback loop, causing a significant decrease of the minority

group in the applicant pool over time. This is because the role

model proportions rk
t are such that the weighted role model

policy is consistently smaller than the state. In particular, as

seen in Figure 4(b), the second and the third institutions see a

very small fraction of role models among the minority group,

since the first institution admits the top minority applicants.

These effects could potentially be alleviated by considering a

centralized policy, such as the CMFG policy, whose evolution

for the admitted applicants and the proportion of the role

models under this setting are shown in Figure 4(c) and 4(d).

Although the initial dynamics between the institutions under

CMFG policy are not desirable in the real-world and not well

understood, it shows a potential of ultimately attaining an

equilibrium close to the long-term fairness target. We also

remark that the adverse effects under role model reinforcement

in conjunction with the MFG policy could be avoided by
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Fig. 5. (a) Convergence of the mean parameter under the MFG policy with pure positive reinforcement is impacted by the fairness loss coefficient, λ, when
score distributions are distinct. (b) MFG policy reaches an equilibrium with pure positive reinforcement when score distributions are different. (c) CMFG also
reaches an equilibrium, albeit with different decisions.

Fig. 6. (a) depicts score distributions of white and non-white groups in the law school dataset, along with their Gaussian approximations. (b), (c) show
evolution of the mean parameter, θt , and its equilibrium with varying values of fairness loss coefficient, λ, under MFG and CMFG policies respectively under
pure positive reinforcement.

increasing the r parameter, which essentially means that the

institutions must design intervention mechanisms or remedies

to support a large fraction of the admissions to eventually be

successful in society, and influence others by being true role

models.

For completeness, we show the evolution of applicant

and admission proportions under the CMFG policy under

pure positive reinforcement, order-based and weighted positive

reinforcement models in Appendix D1.

Distinct score distributions: We now examine the scenario

where the score distributions for the groups are distinct. We

assume that the minority group has a slightly lower mean and

higher variance than the majority group (μ0 = 4.9, μ1 = 5

and σ 2
0 = 1.1, σ 2

1 = 1). The other parameters remain the

same as in the first scenario, with a long-term fairness target

of α = 0.4, capacities c1 = 0.1, c2 = 0.05 and c3 = 0.2, an

initial mean parameter θ0 = 0.25, and fixed step size η = 0.5.

Figure 5(a) shows evolution of the mean parameter under

different weights, λ, for fairness loss, under non-identical

distributions. We observe that by altering λ, the equilibrium

point can be varied. Thus, a higher value of λ is required

to achieve the long-term fairness goal. We then show in

Figures 5(b) and 5(c), the evolution of the applicant pool,

admission proportions, and their convergence under the pure

positive reinforcement model, under MFG and CMFG policies

respectively, with λ = 1. They both converge to similar

equilibrium although the admission decisions in initial rounds

are quite distinct. We observe a behavior of negative feedback

under the role-model reinforcement model under distinct score

distributions as well. The results showing negative feedback

and the alleviation of this effect through the CMFG policy are

deferred to Appendix D2. In the next section, we will examine

cases where score distributions are significantly different,

obtained from a real-world dataset.

B. Multi-Agent Framework on Semi-Synthetic Dataset

In this section, we report on experiments on the law school

bar study dataset [40]. The dataset is used to construct the

initial setup of the experiments as defined in the previous

section, therefore we refer it to as a semi-synthetic dataset.

This dataset contains information collected by the Law School

Admission Council from law schools in the U.S., including

information on whether an applicant passed the bar exam

based on features such as LSAT scores, undergraduate GPA,

law school GPA, race, gender, family income, age, and others.

We take race as the protected attribute and simplify it to

a binary classification problem by grouping all races except

“white” into the “non-white” category, serving as the minority

group (group 0) with only 25% representation in the dataset.

The dataset used in our experiments contains around 1800

instances and can be found at [41]. Next, we follow the

procedure outlined in [36] to obtain the score distributions for

each group. After pre-processing the data, we fit a logistic

regression model to approximate the score distributions as

Gaussians. This gives us the means μ0 = −1.46 and μ1 =
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0.79, and the variances σ 2
0 = 2.73 and σ 2

1 = 3.16, as

seen in Figure 6(a). The long-term fairness target is set to

0.5, with three institutions having capacities of c1 = 0.15,

c2 = 0.10 and c3 = 0.05. The step size, η, is fixed at 0.5.

Our first examination is of the pure positive reinforcement

model. Figures 6(b) and 6(c) depict the mean parameter, θt

at equilibrium for the MFG and CMFG policies, respectively,

with varying fairness loss coefficients, λ. A higher value of

λ is needed to achieve the long-term fairness goal for both

policies, with the CMFG showing a slightly better equilibrium

point at a smaller value of λ (for instance, λ = 3). We

defer the evaluation under role-model reinforcement model to

Appendix D3.

Our experiments with distinct distributions illustrate that the

principles of reinforcement and the policies developed in this

paper hold even when the score distributions are non-identical.

VI. CONCLUSION

This paper studies the evolution of long-term fairness in

a selection setting with multiple decision-makers choosing

from a common pool. We have shown that the Multi-

agent Fair-Greedy (MFG) policy does succeed in achieving

long-term fairness targets under the model of pure positive

reinforcement. However, when we set a higher bar for suc-

cessful influence via the role-model reinforcement model, the

minority group may actually experience negative feedback

under MFG policy, and ultimately exit the selection pro-

cess. Centralized coordination among the institutions could

potentially alleviate this problem, raising the question of

whether we can design mechanisms for competing institutions

to collaborate (without laying themselves open to charges of

collusion) in order to advance long-term fairness in society at

large.

We hope that this work, despite the simplicity of the models

considered, stimulates continuing discussion on the long-term

societal impact of automated decision-making in a multi-agent

setting, and how we can shape it. The sensitivity of our simple

system to the model for evolution motivates a concerted effort

to launch real-world experiments and data collection in which

algorithm designers collaborate closely with social scientists

and policymakers. An important complementary effort is to

pursue analytical insights for more complex models that

capture different aspects of the real world. For example, while

our current concept of role model is based on the relative score

upon admission, qualifications upon admission are often not

a predictor of ultimate success; support mechanisms provided

by the institution may be more important. Can we derive

insights from a plausible model for such support mechanisms?

Similarly, is there a qualitative difference in our conclusions

if we relax the simplifying assumption of strict institutional

rankings determining preferences for all applicants?

APPENDIX

A. Optimizing Score-Based Reward Under MFG Policy

We provide below a detailed proof of Theorem 1 for the

optimal action that maximizes the score-based reward of each

institution.

Proof: Assuming the score distributions’ CDF is denoted by

F . By the Lemma 2, the score-based reward function of the

institution k is concave and it is maximized when the absolute

difference between the lower thresholds of both groups is

minimized, |t
k,S,low
0 − t

k,S,low
1 |. For all k ∈ {2, . . . , K} this is

equivalent to the following minimization;

min
ak

t ∈A
k
t

∣

∣

∣

∣

∣

F
−1

(

1 −
c̄

0,k
t + atck

st

)

− F
−1

(

1 −
c̄

1,k
t + (1 − at)ck

1 − st

)
∣

∣

∣

∣

∣

, (20)

where c̄
0,k
t =

∑k−1
j=1 π

j
t cj and c̄

1,k
t =

∑k−1
j=1 (1 − π

j
t )cj. Due to

the monotonicity of the inverse CDF, the optimal action that

maximizes the score-based reward is equivalent to minimizing

the following:

min
ak

t ∈A
k
t

∣

∣

∣

∣

∣

(

1 −
c̄

0,k
t + atck

st

)

−
(

1 −
c̄

1,k
t + (1 − at)ck

1 − st

)

∣

∣

∣

∣

∣

(21)

This can be simplified to the following:

min
ak

t ∈A
k
t

∣

∣

∣

∣

∣

c̄
0,k
t + atck

st

−
c̄

1,k
t + (1 − at)ck

1 − st

∣

∣

∣

∣

∣

(22)

The argument of the minimum can be multiplied by st(1 − st)

to simplify the expression as follows:

min
ak

t ∈A
k
t

∣

∣

∣

∣

atck(1 − st) − (1 − at)ckst

−

k−1
∑

j=1

(

1 − π
j
t

)

cjst +

k−1
∑

j=1

π
j
t cj(1 − st)

∣

∣

∣

∣

(23)

The terms with the action at and the terms without the action

at can be grouped as follows:

min
ak

t ∈A
k
t

∣

∣

∣

∣

∣

∣

at − st −
1

ck

⎛

¿

k−1
∑

j=1

cj

(

st − π
j
t

)

À

⎠

∣

∣

∣

∣

∣

∣

=

£

¥st +
1

ck

⎛

¿

k−1
∑

j=1

cj

(

st − π
j
t

)

À

⎠

§

©

Ak
t

(24)

for all k ∈ {2, . . . , K}. Therefore, the optimal action that

maximizes the score-based reward is as stated in the theorem.

It can also be seen from the Lemma 2 that the score-based

reward function of the institution 1 is maximized when the

lower thresholds of both groups are equal, t
1,S,low
0 = t

1,S,low
1 .

This is satisfied when a1
t = st.

1) Technical Lemmas: In this section, we show that the

score-based reward function of each institution is concave and

has a unique action that maximizes its reward.

Lemma 2: Under Assumption 1, the score-based reward

function, Rk(st, at), is concave and it is maximized when

the absolute difference between the lower thresholds of both

groups is minimized, |t
k,S,low
0 − t

k,S,low
1 |. For all k ∈ {2, . . . , K}

this is equivalent to the following minimizing;
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min
ak

t ∈A
k
t

∣

∣

∣

∣

∣

F
−1
0

(

1 −
c̄

0,k
t + atck

st

)

− F
−1
1

(

1 −
c̄

1,k
t + (1 − at)ck

1 − st

)
∣

∣

∣

∣

∣

(25)

where c̄
0,k
t =

∑k−1
j=1 π

j
t cj and c̄

1,k
t =

∑k−1
j=1 (1 − π

j
t )cj and for

k = 1, the action that maximizes the score-based reward is

equivalent to minimizing |F−1
0 (1−

atc1
st

)−F
−1
1 (1−

(1−at)c1
1−st

)|.

Proof: Dropping the superscript k in the notation of the

action for brevity, the score-based reward of the kth institution

is:

Rk(st, at) = at

E

[

∑m0
k,t+atAk,t

i=m0
k,t+1

X0
(i)

]

atAk,t

+ (1 − at)

E

[

∑m1
k,t+(1−at)Ak,t

i=m1
k,t+1

X1
(i)

]

(1 − at)Ak,t

(26)

The number of admitted applicants is approximated as A0
k,t =

�atAk,t
 ≈ atAk,t, as we are considering that the number of

applicants is large. Under this regime, the collection of scores

is in accordance with their respective group-specific score

distributions Pg. Following the idea in [36], the average scores

of selected applicants from each group can be represented by

the following conditional expectations:

lim
N→∞

∑m0
k,t+atAk,t

i=m0
k,t+1

X0
(i)

atAk,t

= E

[

X0 | t
k,S,low
0 ≤ X0 ≤ t

k,S,up

0

]

(27)

lim
N→∞

∑m1
k,t+(1−at)Ak,t

i=m1
k,t+1

X1
(i)

(1 − at)Ak,t

= E

[

X1 | t
k,S,low
1 ≤ X1 ≤ t

k,S,up

1

]

(28)

Then, the score-based reward function of the institution k can

be written as follows:

Rk
g(st, at) = atE

[

X0 | t
k,S,low
0 ≤ X0 ≤ t

k,S,up

0

]

+ (1 − at)E

[

X1 | t
k,S,low
1 ≤ X1 ≤ t

k,S,up

1

]

(29)

We denote the cumulative distribution function (CDF) of the

score-distributions by F0 and F1. The tail of the distributions

beyond the upper thresholds represents the proportion of the

applicants from the particular group who have been already

admitted by the better-ranked institutions.

1 − F0

(

t
k,S,up

0

)

=

∑k−1
j=1 cjπ

j
t

st

=⇒ t
k,S,up

0 = F
−1
0

(

1 −
c̄

0,k
t

st

)

(30)

1 − F1

(

t
k,S,up

1

)

=

∑k−1
j=1 cj

(

1 − π
j
t

)

(1 − st)

=⇒ t
k,S,up

1 = F
−1
1

(

1 −
c̄

1,k
t

1 − st

)

(31)

Moreover, the area between the lower and upper thresholds in

the distributions signifies the proportion of applicants admitted

by the specific group from the total number of applicants

belonging to that group at the kth institution. Thus, we have:

F0

(

t
k,S,up

0

)

− F0

(

t
k,S,low
0

)

=
atck

st

F1

(

t
k,S,up

1

)

− F1

(

t
k,S,low
1

)

=
(1 − at)ck

1 − st

(32)

Then using the upper thresholds, we can write the lower

thresholds as follows:

1 − F0

(

t
k,S,low
0

)

=
c̄

0,k
t

st

+
atck

st

1 − F1

(

t
k,S,low
1

)

=
c̄

1,k
t

1 − st

+
(1 − at)ck

1 − st

(33)

Then, we can write the lower thresholds as follows:

t
k,S,low
0 = F

−1
0

(

1 −
c̄

0,k
t + atck

st

)

t
k,S,low
1 = F

−1
1

(

1 −
c̄

1,k
t + (1 − at)ck

1 − st

)

(34)

We can write the score reward function of the institution k as

follows:

Rk
g(st, at) = at

∫ t
k,S,up
0

t
k,S,low
0

x0
f0(x0)

∫ t
k,S,up
0

t
k,S,low
0

f0(x0)dx0

dx0

+ (1 − at)

∫ t
k,S,up
1

t
k,S,low
1

x1
f1(x1)

∫ t
k,S,up
1

t
k,S,low
1

f1(x1)dx1

dx1 (35)

We can move the common denominator out of the integral

since it is a constant:

Rk
g(st, at) =

at

∫ t
k,S,up
0

t
k,S,low
0

f0(x0)dx0

∫ t
k,S,up
0

t
k,S,low
0

x0f0(x0)dx0

+
(1 − at)

∫ t
k,S,up
1

t
k,S,low
1

f1(x1)dx1

∫ t
k,S,up
1

t
k,S,low
1

x1f1(x1)dx1 (36)

Then, the denominator can be written in terms of the CDF as

follows:

Rk
g(st, at) =

at

F0

(

t
k,S,up

0

)

− F0

(

t
k,S,low
0

)

∫ t
k,S,up
0

t
k,S,low
0

x0f0(x0)dx0

+
(1 − at)

F1

(

t
k,S,up

1

)

− F1

(

t
k,S,low
1

)

∫ t
k,S,up
1

t
k,S,low
1

x1f1(x1)dx1

(37)

Using the equations (32), we can write the score-based reward

function of the institution k as follows:
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Rk
g(st, at) =

st

ck

∫ t
k,S,up
0

t
k,S,low
0

x0f0(x0)dx0

+
(1 − st)

ck

∫ t
k,S,up
1

t
k,S,low
1

x1f1(x1)dx1 (38)

The upper thresholds are not dependent on the current insti-

tution’s action. Then, we can use the definitions of lower

thresholds from equations (34) to write the score-based reward

function of the institution k as follows:

Rk
g(st, at) =

st

ck

∫ t
k,S,up
0

F
−1
0

(

1−
c̄
0,k
t +atck

st

) x0f0(x0)dx0

+
(1 − st)

ck

∫ t
k,S,up
1

F
−1
1

(

1−
c̄
1,k
t +(1−at)ck

1−st

) x1f1(x1)dx1 (39)

Using the fundamental theorem of calculus, we can write the

derivative of the score-based reward function of the institution

k as follows:

dRk
g(st, at)

dat

= F
−1
0

(

1 −
c̄

0,k
t + atck

st

)

− F
−1
1

(

1 −
c̄

1,k
t + (1 − at)ck

1 − st

)

= t
k,S,low
0 − t

k,S,low
1

(40)

Then, we can write the second derivative as follows:

d2Rk
g(st, at)

dak
t

2
= −

ck

st

1

f0

(

F
−1
0

(

1 −
c̄

0,k
t +atck

st

))

−
ck

(1 − st)

1

f1

(

F
−1
1

(

1 −
c̄

1,k
t +(1−at)ck

1−st

)) (41)

Since the PDF functions are non-negative, ck ∈ (0, 1], and

st ∈ (0, 1), the second derivative is non-positive. This means

the score-based reward function of the institution k is concave.

The score-based reward function of the institution k is concave

and its first derivative is monotone and defined on the interval

[ max(0, 1 −
1−st−c̄

1,k
t

ck
), min(1,

st−c̄
0,k
t

ck
)]. Then, the score-based

reward function of the institution k is maximized when the

absolute difference between the lower thresholds of both

groups is minimized, |t
k,S,low
0 − t

k,S,low
1 |. This is equivalent to

the following minimization:

min
ak

t ∈A
k
t

∣

∣

∣

∣

∣

F
−1
0

(

1 −
c̄

0,k
t + atck

st

)

− F
−1
1

(

1 −
c̄

1,k
t + (1 − at)ck

1 − st

)
∣

∣

∣

∣

∣

(42)

where c̄
0,k
t =

∑k−1
j=1 π

j
t cj and c̄

1,k
t =

∑k−1
j=1 (1 − π

j
t )cj. For

k = 1, the action that maximizes the score-based reward is

equivalent to minimizing |F−1
0 (1−

atc1
st

)−F
−1
1 (1−

(1−at)c1
1−st

)|.

B. Proof Details for Applicant Pool Convergence Under

MFG Policy

We first provide a proof of Lemma 1 below.

Proof: Firstly, we observe that the optimal policy of institu-

tion k can be expressed as a convex combination of its optimal

score-based reward action and optimal fair-only action as πk
t =

ωk,ta
k
S,t +(1−ωk,t)a

k
F,t, where ωk,t ∈ [0, 1]. This follows from

the fact that the fairness-aware utility function is a concave

function of the action, and the score-based reward function

and the fairness loss functions are monotone. Then, we claim

that the optimal policy of institution k can be expressed as a

convex combination of its pre-projection optimal score-based

reward action and pre-projection optimal fairness-aware action

(before being projected to the feasible action space Ak
t ), as

πk
t = γk,t(st + 1

ck
(
∑k−1

j=1 cj(st − π
j
t ))) + (1 − γk,t)α, where

γk,t ∈ [0, 1].

Let āk
S,t = (st + 1

ck
(
∑k−1

j=1 cj(st − π
j
t ))) and āk

F,t = α,

which represent the pre-projected optimal actions. If both

āk
S,t ∈ Ak

t and āk
F,t ∈ Ak

t , then the claim is straight-forward.

Similarly, if only one of them is not in the feasible action

space, then the claim is straightforward. The only case that

needs to be considered is when both pre-projected optimal

actions are not in the feasible action space. If one of them

lies on the left of the feasible action interval and the other

lies on the right of the feasible action interval, then the

claim is straightforward. We will show that pre-projected

optimal actions cannot simultaneously lie on the left/right of

the feasible action interval. The first case is when both pre-

projected optimal actions are on the left of the feasible action

interval. Suppose that āk
F,t < max(0, 1 −

1−st−
∑k−1

j=1 (1−π
j
t )cj

ck
)

and āk
S,t < max(0, 1 −

1−st−
∑k−1

j=1 (1−π
j
t )cj

ck
). If the maximum is

equal to 0, then there is a contradiction since āk
F,t ∈ [0, 1].

Similarly, if the maximum is equal to 1 −
1−st−

∑k−1
j=1 (1−π

j
t )cj

ck
,

then there is a contradiction since āk
S,t > 1−

1−st−
∑k−1

j=1 (1−π
j
t )cj

ck
,

due to the condition that
∑K

j=1 cj < 1. Thus, pre-projected

optimal actions cannot lie on the left of the feasible action

interval at the same time. The second case is when both pre-

projected optimal actions are on the right of the feasible action

interval. Suppose that āk
F,t > min(1,

st−
∑k−1

j=1 π
j
t cj

ck
) and āk

S,t >

min(1,
st−

∑k−1
j=1 π

j
t cj

ck
). If the minimum is equal to 1, then there

is a contradiction since āk
F,t ∈ [0, 1]. Similarly, if the minimum

is equal to
st−

∑k−1
j=1 π

j
t cj

ck
, then there is a contradiction since

āk
S,t <

st−
∑k−1

j=1 π
j
t cj

ck
, due to the condition that

∑K
j=1 cj < 1.

Thus, the pre-projected optimal actions cannot lie on the right

of the feasible action interval at the same time. Therefore, our

claim holds.

By utilizing this relation, equation (8) can be expressed as the

followingbyiterativelywritingexpressionsfor theoptimalscore-

based reward action in the increasing order of the institutions:
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ak
S,t =

£

¥

st

ck

⎛

¿ck +

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

À

⎠

−
α

ck

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

§

©

Ak
t

(43)

=

£

¥st +
(st − α)

ck

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

§

©

Ak
t

(44)

We use the above expression, and now prove the lemma. The

optimal action of the institution k can be expressed as follows:

πk
t = γk,t

(

st +
(st − α)

ck

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

)

+
(

1 − γk,t

)

α

(45)

We can compute the weighted action as follows;

ckπ
k
t = ckγk,tst + γk,t(st − α)

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

+ ck

(

1 − γk,t

)

α (46)

We can add and subtract ckst;

ckπ
k
t = ckst + ck

(

1 − γk,t

)

(α − st)

− γk,t(α − st)

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

(47)

We can add and subtract (α − st)
∑k−1

j=1 cj

∏k−1
i=j (1 − γi,t);

ckπ
k
t = ckst + ck

(

1 − γk,t

)

(α − st)

+
(

1 − γk,t

)

(α − st)

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

− (α − st)

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

(48)

It can be grouped as follows:

ckπ
k
t = ckst + (α − st)

k
∑

j=1

cj

k
∏

i=j

(

1 − γi,t

)

− (α − st)

k−1
∑

j=1

cj

k−1
∏

i=j

(

1 − γi,t

)

(49)

It can be seen that the second and third terms are telescoping,

and the summation of the weighted actions of all institutions

can be written as follows:

K
∑

k=1

ckπ
k
t = st

K
∑

k=1

ck + (α − st)

K
∑

k=1

ck

K
∏

i=k

(

1 − γi,t

)

(50)

After dividing by the total capacity, we obtain the desired

expression.

We will now utilize the result of the above lemma in

showing the proof of Theorem 2, where we state that the

applicant pool proportion, and the admission proportions of the

institutions converge to the long-term fairness target set by the

agents, under the MFG policy with pure positive reinforcement

model.

Proof: Suppose that the state of the MDP equals the fairness

target α. It follows that the top institution maximizes its utility

by selecting α proportion of group 0 among all its admitted

applicants π1
t = α, as its optimal score-based reward action

itself is a1
S,t = st = α. Further, a2

S,t = α by equation (8),

which implies that π2
t = α. It can be seen that πk

t = α,∀k,

due to which the weighted average πW
t = α, i.e., it is a fixed-

point of the weighted policy. We will show the uniqueness of

the fixed point by showing γi,t �= 1,∀i ∈ [K]. Assume that

st < α. Then, the optimal score-based reward action of the

top institution is a1
S,t = st, since the top institution maximizes

its score-based reward when it sets same threshold for both

groups. The optimal fair-only action is a1
F,t = [α]

A1
t
. Since

a1
F,t > st the MFG policy for the top institution will accept

more from the minority group than the applicant proportion

due to the structure of the weighted MFG policy. Then,

π1
t > st and γ1,t �= 1. The score-based reward of the second

institution is maximized when it sets the same threshold for

both groups, this implies that a2
S,t < st because the first

institution admitted more from the minority group than the

applicant proportion. The optimal fair-only action is a2
F,t =

[α]
A2

t
. Then, π2

t > st and γ2,t �= 1. The same argument can be

made for the subsequent institutions, since the optimal score-

based reward action of the institution k is ak
S,t < st because the

previous institutions admitted more from the minority group

than the applicant proportion. The optimal fair-only action is

ak
F,t = [α]

Ak
t
. Then, πk

t > st and γk,t �= 1. The same argument

can be used to when st > α.

Next, since from the update for pure positive reinforce-

ment (5), it follows that the mean parameter θt drifts towards

the fairness target α, irrespective of the state, due to the

structure of the weighted MFG policy. In addition, since α is

a unique fixed-point, as the step size is decaying with time,

it can be shown that the mean parameter converges to the

fairness target. Let dt = 1
2
(θt − α)2. Fix an ε > 0. Then, we

need to show that there exists some t0(ε) such that for all

t > t0(ε),

dt+1 ≤ dt − ζt, if dt ≥ ε (51)

dt+1 ≤ cε if dt < ε (52)

where c is a positive constant. Moreover ζt > 0 and
∑∞

t=0 ζt = ∞. If the above conditions are satisfied, then

eventually for some t1(ε) ≥ t0(ε), we have dt < ε. But due to

equations (51) and (52), we have dt+1 ≤ cε for all t > t1(ε).

Since ε is arbitrary, we have θt → α as t → ∞.

dt+1 =
1

2
(θt+1 − α)2

=
1

2

([

θt + ηt(π
W
t − st)

]

C
− α

)2

≤
1

2

(

θt + ηt(π
W
t − st) − α

)2

= dt + ηt(θt − α)
(

πW
t − st

)

+
1

2
η2

t

(

πW
t − st

)2
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≤ dt + ηt(θt − α)
(

πW
t − st

)

+
1

2
η2

t (53)

≤ dt +
ηt

2

(

(θt − α)2 + 1
)

+
1

2
η2

t (54)

Since ηt → 0, if dt < ε, then dt+1 < cε for some c > 0.

When dt ≥ ε, first we will account for the stochasticity of

st. We have πW
t −st = πW

t −θt+(θt−st). Denoting zt = θt−st,

using equation (53), we have

dt+1 ≤ dt + ηt(θt − α)
(

πW
t − θt + zt

)

+
1

2
η2

t

where zt is a zero-mean random variable. Also E[z2
t ] =

var(st) < ∞, which is bounded. Therefore, νt :=
∑t

i=0 ηtzi is

a martingale and E[ν2
t ] is also bounded. This implies by the

martingale convergence theorem that νt converges to a finite

random variable. Therefore, we have
∑∞

i=t ηtzi → 0. Since,

|θt − α| is bounded, the effect of the noise zt is negligible.

Therefore we have

dt+1 ≤ dt + ηt(θt − α)
(

πW
t − θt

)

+
1

2
η2

t

We want to show that

(θt − α)
(

πW
t − θt

)

≤ −δ(ε) (55)

for some δ(ε) > 0. If this holds, we have

dt+1 ≤ dt − ηtδ(ε) +
η2

t

2
(56)

Let us denote ζt = ηtδ(ε) −
η2

t

2
. Since, ηt → 0, there exists

t2(ε) such that ζt > 0 for all t > t2(ε). Moreover, due to

assumptions on the step size, we have
∑∞

t=0 ζt = ∞.

What remains to show is equation (55). In the regime where

the number of applicants N is large, we can see that the state st

is equal to its mean θt with probability approaching 1 through

Chebyshev inequality. When dt ≥ ε, since st is equal to its

mean θt, we need to consider only cases (i) st < α and (ii)

st > α. Under both cases, we have (θt −α)(πW
t − θt) < 0 due

to the structure of the weighted MFG policy when the score

distributions are identical.

C. Negative Feedback in Role Model Reinforcement

Here, we provide a proof for Proposition 1, and show that

MFG policy can cause negative feedback under role model

reinforcement and drive the under-represented group out of

the system.

Proof: We assume that the MFG policy assigns non-zero

weight to the long-term fairness objective, i.e., λ > 0.

Since we are interested in the regime where the number of

applicants Nt is large, we assume that the histograms of the

scores of applicants approach the distribution. Without loss

of generality, we denote group 0 to be the under-represented

group, and assume that the initial state is less than the fairness

target, st < α. However, the same procedure applies when

group 0 has a higher proportion than the long-term fairness

target. We will also assume that the initial mean parameter θt

is small.

We recall that for the top institution, the action maxi-

mizing its score-based reward a1
S,t = st, the current state,

by Theorem 1 and the action minimizing its fairness loss

a1
F,t = [α]

A1
t
, the long-term fairness target. We also know the

MFG policy for the top institution will be the convex combi-

nation π1
t = γ1st + (1 − γk)α. Then, π1

t > st because α > st

by our assumption. Viewing the first institution’s MFG policy

as applying group-dependent lower and upper thresholds on

the score distributions as in the proof of Theorem 1, and

admitting all applicants between the group-specific thresholds,

we can infer that the lower threshold for group 0 (denoted

by t
1, low
0 ) is strictly less than the lower threshold for group 1

(denoted by t
1, low
1 ), due to the fact that π1 admits more from

the minority group than the applicant proportion. Implicitly,

the upper thresholds for the first institution are infinity. Thus

we have:

t
1, low
0 < t

1, low
1 (57)

Note that these thresholds are different from the thresholds

optimizing only for the score-based rewards, which have also

been described by the same notation in the proof of Theorem 1.

Let us assume that the fraction of the role models r = ε.

The evolution of the applicant pool is such that only those

admitted applicants with scores larger than a certain threshold

determined by parameter r will contribute to reinforcing the

pool. Let us denote this threshold for institution k as tkr . As the

parameter r decreases, the threshold tkr increases. It follows

that there exists r small enough, such that the role model

threshold for the first institution is t1r ≥ t
1, low
1 . We remark

that the role model threshold is independent of the group

membership.

Now, note that r1
t is equivalent to the ratio of the number of

group 0 applicants with scores higher than t1r , to the number

of applicants with scores larger than t1r . Thus we can write an

expression for r1
t in terms of the CDF of the score distribution,

denoted by F , as

r1
t =

st

(

1 − F
(

t1r
))

st

(

1 − F
(

t1r
))

+ (1 − st)
(

1 − F
(

t1r
)) = st. (58)

For the subsequent institutions, it is known from (44) that

for all k ≥ 2, if st < α, the action optimizing the score-based

reward is ak
S,t < st. Therefore, the policy for the kth institution

(k ≥ 2) is

πk
t =

(

1 − γk,t

)

α + γk,t

⎛

¿st +
1

ck

k−1
∑

j=1

cj

(

st − π
j
t

)

À

⎠

> ak
S,t (59)

since we have α > st > ak
S,t. Note that for the MFG policies

of the institutions, the lower threshold of institution k −1 will

be equal to the upper threshold of institution k, as it would

admit all applicants with scores in between the lower and

upper thresholds.

If the institutions with k ≥ 2 were optimizing only the score-

based reward their lower thresholds would be equal across

the groups, as argued in the equation (42). But here, since

the MFG policy admits a higher proportion from group 0,

i.e., (59), the thresholds are such that the lower threshold of
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Fig. 7. The centralized MFG policy achieves long-term fairness under pure positive (a), order-based (b) and the weighted positive(c) reinforcement models.

Fig. 8. (a) MFG policy creates negative feedback under role-model reinforcement, under distinct score distributions. (b) The evolution of the proportions
of role models for each institution, under MFG policy. (c) CMFG policy avoids negative feedback under distinct score distributions. (d) The evolution of the
proportions of role models for each institution, under CMFG policy.

group 0 is always less than the lower threshold of group 1,

∀k ∈ [K]

t
k,low
0 < t

k,low
1 . (60)

Furthermore, if r is small enough, the role model thresholds for

all subsequent institutions are large enough to satisfy t
k,low
1 ≤

tkr . Then, we can express the proportion of the role models

from group 0 for the institution k as

rk
t =

st

(

F(t
k,up

0 ) − F(tkr )
)

st

(

F(t
k,up

0 ) − F(tkr )
)

+ (1 − st)

(

F(t
k,up

1 ) − F(tkr )
) .

Using t
k,up

1 > t
k,up

0 , we can upper bound rk
t as

rk
t <

st

(

F(t
k,up

0 ) − F(tkr )
)

st

(

F(t
k,up

0 ) − F(tkr )
)

+ (1 − st)

(

F(t
k,up

0 ) − F(tkr )
)

=⇒ rk
t < st (61)

for all k ∈ {2, 3, . . . , K} and r1
t = st.

Under the role model reinforcement, group 0’s applicant

proportion receives a positive drift only if the weighted

parameter π r
t in equation (16) is larger than st. Due to (58)

and (61), the weighted proportion of the role models is

π r
t =

∑K
k=1 ckrk

t
∑K

k=1 ck

< st =⇒ π r
t − st < 0. (62)

Hence, the pool update parameter θt+1 = θt + ηt(π
r
t −

st) < θt. If the initial mean parameter θt is small enough,

i.e., group 0 is heavily under-represented in the initial pool,

with a large probability the future state st+1 < α. Hence

we can approximately see that the mean parameter of the

proportion of minority group in the applicant pool decreases

to zero. Therefore, we show that MFG policy can cause a

negative feedback loop under role model reinforcement if the

role model proportion is small enough, driving the under-

represented group out of the system.

D. Additional Experimental Results

1) Identical Score Distributions: We show the evolution

of applicant and admission proportions of the CMFG policy

under the pure positive reinforcement model, order-based and

weighted positive reinforcement models in Figures 7(a), 7(b)

and 7(c). The parameter settings are exactly the same as in

Section V-A for the case when the score distributions are

identical. In these figures, we can observe that an institution’s

admission proportion is larger than the applicant proportion,

and since the weighted average of the admission proportion

governs the evolution, the pool gets positive feedback and

approaches the fairness target.

2) Distinct Score Distributions: Here, we consider the role

model reinforcement with r = 0.5, under distinct score distri-

butions, with all other parameters as described in Section V-A.

As seen in Figure 8(a), the MFG policy again leads to a
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Fig. 9. (a), (b) evolution of the mean parameter, θt , and its equilibrium with varying values of λ, under both the MFG and CMFG policies, under role-model
reinforcement.

negative feedback loop with the distinct score distributions,

resulting in the reduction of the minority group in the appli-

cants pool. As seen in Figure 8(b), the second and the third

institutions have a very small fraction of role models as a result

of the first institution admitting the top minority applicants.

However, the CMFG policy could alleviate this, resulting in

an equilibrium point lower than the initial mean parameter

as shown in Figure 8(c). In Figure 8(d), it is evident that

all institutions feature role models from the minority group,

leading to an equilibrium point within the applicant pool.

3) Semi-Synthetic Dataset: We consider the role-model

reinforcement with r = 0.8, where the top 80% of the

admitted applicants are considered role models for the resource

pool. Figures 9(a) and 9(b) show the mean parameter θt at

equilibrium for the MFG and CMFG policies, respectively,

with varying values of λ. Both policies perform similarly on

the law school dataset, possibly due to a larger difference

between the score distributions of the groups.
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