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Abstract— This paper develops a multi-stage estimation 

algorithm for use on an e-scooter for target vehicle trajectory 

tracking. Previously designed observers for vehicle trajectory 

tracking lacked some essential features such as the ability to 

handle variable velocity, or stable performance in the presence 

of uncertainties in the measurements. To overcome these 

shortcomings, the original model of the non-ego vehicle is 

translated into three separate models for speed, orientation, and 

position. Three stable observers are designed for these models 

which are all shown to be stable and robust to uncertainties, in 

addition to requiring low computational effort. The new 

estimation algorithm outperforms previous observers in both 

simulations and experimental results. The developed observer 

can be especially valuable for use with low-cost sensors in 

collision prediction and avoidance applications. 

 

I. INTRODUCTION 

Vehicle trajectory estimation is a crucial part of self-

driving cars, collision warning systems, and traffic 

monitoring systems. Designing observers and estimation 

algorithms to estimate the trajectories of surrounding vehicles 

is valuable since such systems could be used to predict and 

prevent collisions. Exploiting such trajectory tracking 

systems is more critical when it comes to electric scooter 

users. On one hand, standing e-scooters have proliferated 

rapidly as an inexpensive and easily available mode of 

transportation. A market research company has predicted e-

scooters will grow from a US$14 billion global market in 

2014 to $37 billion in 2024 [1]. On the other hand, e-scooter 

riders are a vulnerable population on roads and are in 

significant danger of suffering from severe injuries in any car-

scooter collision [2]. The growth of e-scooter utilization and 

the vulnerability of the users are the two factors contributing 

to the increase in the number of injuries for e-scooter riders. 

As an example, a retrospective review was performed of the 

medical records of patients seen at an emergency department 

(ED) in Singapore [3], and there was found to be a 2.3-fold 

increase in the number of scooter-rider severe injuries from 

2015 to 2016. It is shown in another study [4] that there were 

an estimated 70,644 ED visits for e-scooter–related injuries 

from 2014 to 2019 in the U.S. The estimated number of ED 

visits for e-scooter injuries increased from 8,269 visits in 

2017 to 15,522 visits in 2018, showing the impact of the 

distribution of e-scooters in major cities by scooter-share 

companies in late 2017 [4].  
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By tracking the trajectories of nearby vehicles using low-

cost sensors, a smart e-scooter can predict a potential collision 

and create a loud honk-like sound to alert the driver of the 

errant vehicle about the presence of the e-scooter. 

 

II. RELATED WORK 

A. Literature Review 

The tracking of other vehicles on highways (and local 

roads) is typically done using radar, Lidar, cameras, or a 

combination of these sensors. Automotive radar provides 

reliable environmental perception in all-weather conditions at 

affordable cost but fails to supply semantic and geometry 

information due to the sparsity of radar detection points [5]. 

It is, however, an appropriate sensor for use in adaptive cruise 

control. In the case of e-scooters, radar may not be able to 

track all the vehicles at an upcoming intersection due to its 

limited field of view. 

Detecting and tracking vehicle objects using 3D high-

density Lidar is an approach that is viable for and often 

utilized on autonomous vehicles [6]. For example, the three-

dimensional position and orientation (pose) is estimated in [6] 

using L-shaped fits to Lidar cloud data and then particle-

filtering is utilized for vehicle trajectory tracking. High-

density 3D Lidar sensors are, however, quite expensive and 

inappropriate for use on e-scooters. 

Cameras are highly useful for lane marker detection, 

lateral lane offset computation, and many other object 

detection applications on advanced vehicles. A significant 

number of research publications consider the use of cameras 

and computer vision for detection and localization 

applications. For example, [7] proposes a framework that uses 

four visual sensors for a full surround view of a vehicle in 

order to achieve an understanding of surrounding vehicle 

behaviors. The trajectories are transformed to a common 

ground plane, where they are associated between perspectives 

and analyzed to reveal tendencies around the ego vehicle. 

Sensor fusion using a combination of millimeter-wave radar 

and cameras for object detection has also been pursued, as 

described in [8]. Further, the use of combined radar and 

camera for pedestrian detection and for occlusion-aware 

sensor fusion has been studied [9]. Maneuver classification 

and motion prediction of surrounding vehicles during 

complex traffic scenarios using vehicle-mounted multi-view 

cameras has also been pursued [10]. 
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Another avenue of research has been the use of predicted 

trajectories for threat assessment. For example, [11] presents 

the use of Monte Carlo simulations to find threats in a road 

scene with the dynamic model used for the targets being 

similar to the one utilized in this present manuscript. An 

intelligent driver model has been utilized to analyze trajectory 

data from several German freeways showing different kinds 

of congested traffic forming near road inhomogeneities, 

specifically lane closings, intersections, or uphill gradients 

[12]. Likewise, a multiple model–based adaptive estimator 

(MMAE) that infers the lane-change intention of the 

surrounding vehicles and then predicts their trajectories has 

been studied in [13]. 

When it comes to vehicle tracking on an e-scooter platform, 

there are multiple challenges to designing such a collision-

warning system. Unlike autonomous vehicles that could be 

equipped with large and expensive sensors or processors, it is 

only reasonable to equip e-scooters with small and cost-

effective sensors. One possible option is low-density 2-D 

LIDAR sensors which are small, affordable, and can detect 

surrounding objects including vehicles. The problem with 

these low-cost sensors is that the reflection point from a target 

vehicle keeps changing due to the low density of 

measurements and hence there are many jumps/ 

discontinuities in the sensor data. Such uncertainties in 

measurement data make the observer design process 

challenging, specifically because vehicle motion models 

typically include nonlinear dynamics. Some previous studies 

addressed the problem of nonlinearity by turning the original 

model into multiple linear models and utilizing Interacting 

Multiple Model (IMM) filters (e. g. IMM Kalman Filters) for 

state estimation [14, 15]. These studies lack proof of stability, 

cannot cover all possible maneuvers, and are computationally 

demanding.  

In our previous work [2], we implemented a linear matrix 

inequality (LMI) based nonlinear observer for vehicle 

tracking on an e-scooter. While the nonlinear observer has 

proof of stability and could estimate the vehicle’s position and 

orientation in the presence of measurement uncertainties, its 

design requires assuming the velocity to be constant [16]. To 

overcome this issue, a coordinate transformation was found 

in [17] to allow for variable velocity and transformed the 

vehicle dynamics model into companion form. This 

transformation to companion form enabled the design of a 

stable high-gain observer with guaranteed feasibility. The 

high-gain observer [17] can estimate the position, velocity, 

orientation, and acceleration of the vehicles using a single 

high-gain matrix. However, with all the advantages of the 

high-gain observer, noise rejection is not addressed in its 

formulation. This causes unreliable estimates of velocity and 

orientation especially when using low-cost LIDAR sensors, 

with jumpy/noisy data.   

B. Contributions 

In contrast to the observers in literature where only the 

current measurement is used as part of their observer 

dynamics, here we use the last two consecutive measurements 

for estimation. Two consecutive measurements reveal 

important information about the displacement and direction 

of movement of the vehicle, which enables us to have a multi-

stage estimation for vehicle trajectories. Fig. 1 shows two 

consecutive measurement points from the location of a 

vehicle at two different time frames (𝑡𝑖 and 𝑡𝑖−1). As can be 

seen, the vehicle direction of movement and its displacement 

are shown as 𝛼𝑖 and 𝑆𝑖. We use these two new measurements 

in addition to the raw distance measurement of the vehicle to 

design three observers for speed, orientation, and position 

estimation. It is also shown that the three observers are 

robustly stable; the norm of the estimation errors will be 

bounded in the presence of uncertainties. The location 

measurement errors of the vehicles given by the sensors are 

assumed to be bounded (the boundaries are depicted as circles 

with radii 𝑑 in Fig. 1). Therefore, it is assumed that the error 

of the resulting displacement and direction measurements 𝛼𝑖 

and 𝑆𝑖 are bounded as well. A preliminary version of this 

paper is going to be presented at a conference [18].  However, 

detailed proofs could not be included and only two figures 

(one simulation and one experimental result) could be 

included in the conference paper.  The major contributions of 

this paper are: 

• The development of a multi-stage observer with 

guaranteed analytical stability proofs, allowing for 

variations in target vehicle velocity while also 

minimizing the influence of sensor noise on estimates. 

• The implementation of the developed observer on an e-

scooter platform using a low-cost 2D Lidar sensor and 

presentation of extensive experimental results. 
The outline of the paper is as follows. Section III 

introduces the speed, orientation, and position models derived 
from the original vehicle kinematics equations. For each 
model, an observer is designed in section IV, and it is shown 
that the designed observers are guaranteed to have robust 
stability. Section V shows how these observers outperform a 
previous nonlinear observer [2] and a high-gain observer [8] 
in simulation and experiments respectively. Section VI 
contains the conclusions. 

III. VEHICLE TRACKING MODEL 

In this section, speed, orientation, and position models are 

obtained from the original vehicle kinematics. These models 

will be later used in section IV to design stable observers to 

track vehicle trajectories. 

A. Original Bicycle- Model of Vehicle 

Fig. 2 shows a vehicle with velocity 𝑉, orientation (yaw) 

angle 𝜓, slip angle 𝛽, and front steering angle 𝛿𝐹. The vehicle 

(bicycle) equations are [19]: 

 

 𝑋̇ = 𝑉 cos(𝜓 + 𝛽) (1) 

 

  𝑌̇ = 𝑉 sin(𝜓 + 𝛽) (2) 

  

 𝜓̇ = 𝑉(cos𝛽) tan 𝛿𝐹 /𝑙 (3) 

 

where parameter 𝑙 is the wheelbase length of the vehicle: 

 𝑙 = 𝑙𝑓 + 𝑙𝑟 (4) 



Accepted version of paper for the IEEE Transactions on Intelligent Vehicles  

 
Fig. 1. Two consecutive measurements from the location of the vehicle at 

time frames 𝑡𝑖 and 𝑡𝑖−1. The uncertainty boundary of the measurements is 

depicted as circles with radii 𝑑. 

 
 

Fig. 2. Motion schematic and model variables for a Vehicle 

 

Parameters 𝑙𝑓 and 𝑙𝑟 are shown in Fig. 2. The following 

relationship exists between the slip and steering angles [9]: 

 
𝛽 = tan−1 (

𝑙𝑟 tan(𝛿𝐹)

𝑙𝑓 + 𝑙𝑟
) (5) 

 

We are assuming that the non-ego vehicles only steer with 

their front wheels. Furthermore, it is assumed that the rate of 

steering angle and jerk are negligible: 

 

 𝛿̇𝐹 ≈ 0 (6) 

 

 𝐽̇ ≈ 0 (7) 

 

where 𝐽 = 𝑉̈ represents the jerk of the vehicle or the 

derivative of the vehicle’s acceleration. 

In previous papers on the nonlinear observer and high gain 

observer ([2] and [8]), the non-ego vehicles were assumed to 

have constant velocities and accelerations respectively. 

Considering the constant jerk assumption in this paper, the 

performance of the observers designed here will be 

theoretically better than the previous ones in scenarios where 

the speed and acceleration are variable. The slip angle is 

assumed to lie within the following range: 

 −20° ≤ 𝛽 ≤ 20° (8) 

 

For a typical vehicle with 𝑙𝑟/𝑙 = 0.5, the range for the front 

steering angle (based on (5) and (8)) will be: 

 −36° ≤ 𝛿𝐹 ≤ 36° (9) 

 

which is better than what is assumed in [2]. In [2], the range 

of steering angles was assumed to be  
−10° ≤ 𝛿𝐹 ≤ 10°, with the corresponding range of 𝛽 
being −6° ≤ 𝛽 ≤ 6°.  Note that assumptions (8) and (9) 
will be valid for typical vehicle motions and will only be 
violated under high-slip scenarios, for example when the 
vehicle is skidding on ice. Finally, it is assumed that: 

 𝑙𝑟 = 2 𝑚𝑒𝑡𝑒𝑟𝑠 (10) 

 

B. Linear Speed Model 

As mentioned in section II, by using two consecutive 

measurements, we gain access to the displacement of the 

vehicles denoted as 𝑆𝑖 in Fig. 1. Therefore, one can use 

displacement as the measurement in the speed model. By 

taking derivatives of the vehicle’s displacement with respect 

to time, the speed model is derived. Consider the following 

state and output vectors: 

 𝑠 = [𝑆 𝑉 𝐴 𝐽]𝑇, 𝑦𝑠 =  𝑆 + 𝑑𝑠  (11) 

where 𝑆 and 𝐴 represent the displacement and acceleration of 

the vehicle. Also, 𝑑𝑠 represents the uncertainty related to 

displacement measurement. Based on (7): 

 

𝑠̇ = [

𝑆̇
𝑉̇
𝐴̇
𝐽̇

] = [

𝑉
𝐴
𝐽
0

] = 𝐹𝑠𝑠 (12) 

and 

 𝑦𝑠 = 𝐻𝑠𝑠 + 𝑑𝑠 (13) 

 

where: 

 

𝐹𝑠 = [

0 1
0 0

0 0
1 0

0 0
0 0

0 1
0 0

] , 𝐻𝑠 = [1 0 0 0] (14) 

 

As can be seen, the speed model derived here is linear.  

C. Nonlinear Orientation Model 

As mentioned in section II, by using two consecutive 

measurements, we gain access to the direction of motion of 

the vehicles denoted as 𝛼𝑖 in Fig. 1. Equations (1) and (2) 

show that the direction of motion of a vehicle could be 

described as: 

 𝛼 = 𝜓 + 𝛽  (15) 

 

Note that from (5) and (6) we have: 

 𝛽̇ ≈ 0 (16) 

 

Take the following state and output vectors: 

 𝑧 = [𝜓 𝛽]𝑇 , 𝑦𝑧 =  𝛼 + 𝑑𝑧 (17) 

 

where 𝑑𝑧 is the uncertainty of the angle measurement. Now 

taking derivative of (17) and using (3) and (16): 
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𝑧̇ = [

𝜓̇

𝛽̇
] = [

𝑉(cos𝛽) tan 𝛿𝐹 /𝑙
0

] (18) 

 

Replace (5) in (18): 

 
𝑧̇ = [

𝜓̇

𝛽̇
] = [

𝑉 sin 𝛽 /𝑙𝑟
0

] = [
𝑢𝑧𝑓(𝑧)/𝑙𝑟

0
] (19) 

 

and 

 𝑦𝑧 = 𝐻𝑧𝑧 + 𝑑𝑧, 𝑢𝑧 = 𝑉 (20) 

 

where 𝑢𝑧 is the input to this system and: 

 𝑓(𝑧) = sin 𝛽 , 𝐻𝑧 = [1 1] (21) 

 

The orientation model derived here is nonlinear. Note that 

our knowledge about the input of this system (speed) is 

indirect and will depend on the performance of the speed 

observer. We will use the estimated speed when designing the 

orientation observer, instead of the actual speed but will 

account for the error of the speed estimation. 

D. Linear Position Model 

Consider the following state and output vectors: 

 𝑤 = [𝑥 𝑦]𝑇 , 𝑦𝑤 = 𝑤 + 𝑑𝑤  (22) 

 

Taking derivative of the state vector using (1) and (2): 

 
𝑤̇ = [

𝑥̇
𝑦̇
] = [

𝑉 cos(𝜓 + 𝛽)
𝑉 sin(𝜓 + 𝛽)

] = 𝑔(𝑢𝑤) (23) 

 

where 𝑢𝑤 is the input to this system. Note that our knowledge 

about the inputs of this system (speed and orientation) is 

limited and will depend on the performance of the speed and 

orientation observers. We will use the estimated speed and 

orientation instead of their actual values when designing the 

position observer but will account for the errors in these 

estimations.  

IV. MULTI-STAGE OBSERVER DESIGN 

In this section, we design stable observers based on the 

models introduced in section III. Take 𝑤̂, 𝑉̂, 𝐴̂, 𝜓̂, and 𝛽̂ as 

the estimates of vehicle location, speed, orientation, and slip 

angle. The estimated error variables are defined as 𝑤̃ = 𝑤 −

𝑤̂, 𝑉̃ = 𝑉 − 𝑉̂, 𝐴̃ = 𝐴 − 𝐴̂, 𝜓̃ = 𝜓 − 𝜓̂, and 𝛽 = 𝛽 − 𝛽̂. The 

structure of the estimation algorithm is described in Fig. 3. 

The speed observer limits the second norm of the estimated 

speed error. The orientation observer limits the second norm 

of the estimated orientation angle error, and the position 

observer limits the second norm of the estimated location 

error.  

A. Speed Observer Design 

The goal here is to design a robust observer for the model 

(12)- (14). Assuming that the measurement uncertainties are 

bounded, the goal is to guarantee bounded error for the states: 

 
Fig. 3. Schematic of the trajectory estimation algorithm. 

 

 
𝐺𝑜𝑎𝑙: ‖[𝑉̃

𝐴̃
]‖

2

≤ 𝐵𝑉, 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: ‖𝑑𝑠‖2 ≤ 𝐵𝑠 (24) 

The goal in equation (24) can be identically transformed to 

the one in equation (25) using the transformation [𝑉̃
𝐴̃
] = 𝑞𝑉𝑠̃ . 

 

‖𝑞𝑉𝑠̃‖2 ≤ √𝜇𝑠‖𝑑𝑠‖2, with  𝑞𝑉 = [

0 0 0 0
0
0

1 0
0 1

0
0

0 0 0 0

] (25) 

 

where 𝑠̃ = 𝑠 − 𝑠̂, and √𝜇𝑠 = 𝐵𝑉/𝐵𝑠. Rewrite (25) as: 

 𝐺𝑜𝑎𝑙:  𝑠̃𝑇𝑞𝑉
𝑇𝑞𝑉𝑠̃ ≤ 𝜇𝑠𝑑𝑠

𝑇𝑑𝑠 (26) 

 

The observer dynamics are defined to be: 

 𝑠̇̂ = 𝐹𝑠𝑠̂ + 𝐿𝑠(𝑦𝑠 − 𝐻𝑠𝑠̂) (27) 

 

where 𝐿𝑠 is the constant speed observer gain matrix. The 

observer error dynamics 𝑠̃ is derived by subtracting (27) from 

(12) and replacing (13): 

 𝑠̇̃ = 𝑠̇ − 𝑠̇̂ = 𝐹𝑠𝑠 − 𝐹𝑠𝑠̂ − 𝐿𝑠(𝑦𝑠 − 𝐻𝑠𝑠̂)

= (𝐹𝑠 − 𝐿𝑠𝐻𝑠)𝑠̃ − 𝐿𝑠𝑑𝑠 
(28) 

where 𝑠̃ = 𝑠 − 𝑠̂.  

Theorem 1. If there exists a Hermitian matrix 𝑃𝑠 > 0 , an 

observer gain matrix 𝐿𝑠 and a positive scalar 𝜖𝑠 such that: 

 
[
(𝐹𝑠 − 𝐿𝑠𝐻𝑠)

𝑇𝑃𝑠 + 𝑃𝑠(𝐹𝑠 − 𝐿𝑠𝐻𝑠) + 𝜀𝑠𝑞𝑉
𝑇𝑞𝑉 −𝑃𝑠𝐿𝑠

−𝐿𝑠
𝑇𝑃𝑠 −𝜀𝑠𝜇𝑠

] < 0 (29) 

 

then, the goal (26) will be achieved. 

Proof. First assume that the goal (26) is not yet achieved: 

 𝑠̃𝑇𝑞𝑉
𝑇𝑞𝑉𝑠̃ > 𝜇𝑠𝑑𝑠

𝑇𝑑𝑠 (30) 

 

Writing (30) in matrix form: 

 
𝑉1 = [

𝑠̃
𝑑𝑠

]
𝑇

[
−𝑞𝑉

𝑇𝑞𝑉 0

0 𝜇𝑠

] [
𝑠̃
𝑑𝑠

] < 0 (31) 

 

Consider the following Lyapunov function candidate: 

 𝑉𝐿𝑦𝑝,𝑠 = 𝑠̃𝑇𝑃𝑠𝑠̃, 𝑃𝑠 > 0 (32) 

 

where 𝑃𝑠 is Hermitian. Taking derivative of this Lyapunov 

function: 
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 𝑉̇𝐿𝑦𝑝,𝑠 = 𝑠̇̃𝑇𝑃𝑠𝑠̃ + 𝑠̃𝑇𝑃𝑠 𝑠̇̃ (33) 

Replace (28) in (33): 

 𝑉̇𝐿𝑦𝑝,𝑠 = 𝑠̃𝑇[(𝐹𝑠 − 𝐿𝑠𝐻𝑠)
𝑇𝑃𝑠 + 𝑃𝑠(𝐹𝑠 − 𝐿𝑠𝐻𝑠)]𝑠̃ 

−𝑑𝑠
𝑇𝐿𝑠

𝑇𝑃𝑠𝑠̃ − 𝑠̃𝑇𝑃𝑠𝐿𝑠𝑑𝑠 
(34) 

Writing (34) in matrix form: 

 𝑉̇𝐿𝑦𝑝,𝑠 

= [
𝑠̃
𝑑𝑠

]
𝑇

[
(𝐹𝑠 − 𝐿𝑠𝐻𝑠)

𝑇𝑃𝑠 + 𝑃𝑠(𝐹𝑠 − 𝐿𝑠𝐻𝑠) −𝑃𝑠𝐿𝑠

−𝐿𝑠
𝑇𝑃𝑠 0

] [
𝑠̃
𝑑𝑠

] 
(35) 

 

If the derivative of Lyapunov function is negative definite or 

𝑉̇𝐿𝑦𝑝,𝑠 < 0, the goal (26) will be achieved. Using the S- 

procedure lemma [20], 𝑉̇𝐿𝑦𝑝,𝑠 < 0 if and only if there exists a 

positive scalar 𝜖𝑠 > 0 such that: 

𝑉̇𝐿𝑦𝑝,𝑠 < 𝜖𝑠𝑉1 

Substituting from (31) and (35), it follows that a sufficient 

condition for stability is: 

[
(𝐹𝑠 − 𝐿𝑠𝐻𝑠)

𝑇𝑃𝑠 + 𝑃𝑠(𝐹𝑠 − 𝐿𝑠𝐻𝑠) −𝑃𝑠𝐿𝑠

−𝐿𝑠
𝑇𝑃𝑠 0

] < 𝜖𝑠 [
−𝑞𝑉

𝑇𝑞𝑉 0

0 𝜇𝑠

]  

This is nothing but the LMI (29) and the proof is therefore 

complete. 

∎ 

Remarks on LMIs: Inequality (29) is equivalent to a linear 

matrix inequality (LMI). LMIs are inequalities that are linear 

in the matrix variables whose values need to be solved for. 

Excellent numerical tools exist for solving such LMIs [20], 

[21] including software tools that can be easily utilized in 

MATLAB [22]. While inequality (29) appears to have 

bilinear terms involving 𝑃𝑠𝐿𝑠, this bilinear term can be 

replaced using the transformation 𝑌𝑠 = 𝑃𝑠𝐿𝑠 [20]. Then the 

new form of (29) becomes 

[
𝐹𝑠

𝑇𝑃𝑠 − 𝐻𝑠
𝑇𝑌𝑠

𝑇 + 𝑃𝑠𝐹𝑠 − 𝑌𝑠𝐻𝑠 + 𝜀𝑠𝑞𝑉
𝑇𝑞𝑉 −𝑌𝑠

−𝑌𝑠
𝑇 −𝜀𝑠𝜇𝑠

] < 0 (36) 

This transformed inequality is clearly linear in the variables 

𝑃𝑠 and 𝑌𝑠. The LMI Toolbox in MATLAB [22] can then be 

used for solving this LMI. Once 𝑃𝑠 > 0 and 𝑌𝑆 are obtained, 

𝐿𝑠 can be obtained using 𝐿𝑠 = 𝑃𝑠
−1𝑌𝑠. 

For the assumed operating range of equations (8) and (9), 

the following observer gain solution satisfies LMI problem 

(29): 

 𝐿𝑠 = [4.61 12.24 9.83 4.16]𝑇  

 

B. Orientation Observer Design 

The goal here is to design a robust observer for the model 

(19)- (21). Assuming that the measurement uncertainties are 

bounded, the goal is to guarantee bounded error for the states: 

 
𝐺𝑜𝑎𝑙: ‖[

𝜓̃

𝛽
]‖

2

≤ 𝐵𝛼 ,

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: ‖𝑑𝑧‖2 + ‖𝑉̃‖
2

≤ 𝐵𝑧 

(37) 

Based on the assumption in (37), the goal is translated to: 

 ‖𝑞𝛼𝑧̃‖2 ≤ √𝜇𝑧 (‖𝑑𝑧‖2 + ‖𝑉̃‖
2
) , 𝑞𝛼 = [

1 0
0 1

] (38) 

 

where 𝑧 is defined in (17) and √𝜇𝑧 = 𝐵𝛼/𝐵𝑧. Rewrite (38) as: 

 𝐺𝑜𝑎𝑙:  𝑧̃𝑇𝑞𝛼𝑧̃ ≤ 𝜇𝑑𝑑𝑧
𝑇𝑑𝑧 + 𝜇𝑑𝑉̃𝑇𝑉̃ (39) 

 

Take the following observer dynamics: 

 
𝑧̇̂ = [𝑉̂𝑓(𝑧̂)/𝑙𝑟

0
] + 𝐿𝑧(𝑦𝑧 − 𝐻𝑧𝑧̂) (40) 

where 𝐿𝑧 is the constant orientation observer gain matrix. The 

observer error dynamics 𝑧̃ is derived by subtracting (40) from 

(19) and replacing (20): 

 
𝑧̇̃ = 𝑧̇ − 𝑧̇̂ = [(𝑉𝑓 − 𝑉̂𝑓)/𝑙𝑟

0
] − 𝐿𝑧𝐻𝑧𝑧̃ − 𝐿𝑧𝑑𝑧 (41) 

where 𝑧̃ = 𝑧 − 𝑧̂ and 𝑓 = 𝑓(𝑧̂). Add and subtract 𝑉𝑓/𝑙𝑟 to the 

first row of (41): 

 
𝑧̇̃ = [(𝑉𝑓 − 𝑉𝑓 + 𝑉𝑓 − 𝑉̂𝑓)/𝑙𝑟

0
] − 𝐿𝑧𝐻𝑧𝑧̃ − 𝐿𝑧𝑑𝑧 (42) 

or 

 𝑧̇̃ = 𝐺(𝑉𝑓/𝑙𝑟) + 𝐺(𝑉̃𝑓/𝑙𝑟) − 𝐿𝑧𝐻𝑧𝑧̃ − 𝐿𝑧𝑑𝑧 (43) 

 

where 𝐺 = [1 0]𝑇 and 𝑓 = 𝑓 − 𝑓. 

 

Lemma 1. Considering (8) and (21), the following 

inequalities are valid for 𝑓: 

𝑉2 =

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[

𝜌1𝑞𝛽
𝑇𝑞𝛽

−𝑞𝛽

0
0

−𝑞𝛽
𝑇

1
0
0

0
0
0
0

0
0
0
0

]

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
≤ 0 (44) 

 

and 

𝑉3 =

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[

𝑞𝛽
𝑇𝑞𝛽

−𝜌2𝑞𝛽

0
0

−𝜌2𝑞𝛽
𝑇

1
0
0

0
0
0
0

0
0
0
0

]

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
≥ 0 (45) 

where 𝑞𝛽 = [0 1], and 𝜌1 and 𝜌2 are lower bounds on 

cos (𝛽) and cos2(𝛽) as shown in equation (50). 

Proof. Using the Mean Value Theorem (MVT) and (21): 

 𝑓(𝑧̂, 𝑧) = sin𝛽 − sin 𝛽̂ = cos 𝛽̅ 𝛽 (46) 

where 𝛽̅ is some value between 𝛽 and 𝛽̂. Therefore: 

 (𝑓(𝑧̂, 𝑧) − cos 𝛽̅ 𝛽)
2

= 0 (47) 

or 

 𝑓𝑇𝑓 + (cos2 𝛽̅)𝛽𝑇𝛽̃ − cos 𝛽̅ (𝑓𝑇𝛽̃ + 𝛽𝑇𝑓) = 0 (48) 

 

Note that for −20° ≤ 𝛽 ≤ 20°, the function sin 𝛽 is 

monotonically increasing. Therefore: 

 𝑓𝑇𝛽̃ = 𝛽𝑇𝑓 ≥ 0 (49) 

 

Also, for the given range: 

 0.94 = 𝜌2 ≤ cos 𝛽̅ ≤ 1,

0.88 = 𝜌1 ≤ cos2 𝛽̅ ≤ 1 
(50) 

 

Using (49) and (50): 
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 𝑓𝑇𝑓 + 𝜌1𝛽̃
𝑇𝛽̃ − (𝑓𝑇𝛽̃ + 𝛽𝑇𝑓)

≤ 𝑓𝑇𝑓 + cos2 𝛽̅ 𝛽𝑇𝛽̃ − cos 𝛽̅ (𝑓𝑇𝛽̃ + 𝛽𝑇𝑓)

≤ 𝑓𝑇𝑓 + 𝛽𝑇𝛽̃ − 𝜌2(𝑓
𝑇𝛽̃ + 𝛽𝑇𝑓) 

(51) 

Now replace 𝛽 = 𝑞𝛽𝑧̃ and (48) in (51): 

 𝑓𝑇𝑓 + 𝜌1𝑧̃
𝑇𝑞𝛽

𝑇𝑞𝛽𝑧̃ − (𝑓𝑇𝑞𝛽𝑧̃ + 𝑧̃𝑇𝑞𝛽
𝑇𝑓) ≤ 0

≤ 𝑓𝑇𝑓 + 𝑧̃𝑇𝑞𝛽
𝑇𝑞𝛽𝑧̃ − 𝜌2(𝑓

𝑇𝑞𝛽𝑧̃ + 𝑧̃𝑇𝑞𝛽
𝑇𝑓) 

(52) 

Rewriting these two inequalities in matrix form, we will have 

(44) and (45). ∎ 

Lemma 2. If the following inequality is satisfied, goal (39) is 

also satisfied: 

 

𝑉4 =

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[

−𝑞𝛼

0
0
0

0
0
0
0

0
0
𝜇𝑉

0

0
0
0
𝜇𝑑

]

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
≥ 0 (53) 

where: 

 𝜇𝑉 = 36 × 𝜇𝑑 (54) 

Proof. First, note that from (8) and (10): 

 (𝑓/𝑙𝑟)
𝑇
(𝑓/𝑙𝑟) = sin2 𝛽̂ /𝑙𝑟

2 ≤ 1/36 (55) 

Therefore: 

 

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[

−𝑞𝛼

0
0
0

0
0
0
0

0
0
𝜇𝑉

0

0
0
0
𝜇𝑑

]

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 

≤ 𝜇𝑉𝑉̃𝑇𝑉̃/36 + 𝜇𝑑𝑑𝑧
𝑇𝑑𝑧 − 𝑧̃𝑇𝑞𝛼𝑧̃ 

(56) 

Replace (54) in (56) and use (53): 

 

0 ≤

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[

−𝑞𝛼

0
0
0

0
0
0
0

0
0
𝜇𝑉

0

0
0
0
𝜇𝑑

]

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 

≤ 𝜇𝑑𝑉̃𝑇𝑉̃ + 𝜇𝑑𝑑𝑧
𝑇𝑑𝑧 − 𝑧̃𝑇𝑞𝛼𝑧̃ 

(57) 

which is the goal (39) and the proof is complete. ∎ 

Theorem 2. If there exists a Hermitian matrix 𝑃𝑧 > 0, an 

observer gain matrix 𝐿𝑧 and positive scalars 𝜖𝑧,1, 𝜖𝑧,2 and 𝜖𝑧,3 

such that: 

 

[
 
 
 
 
𝑃𝑧𝐿𝑧𝐻𝑧 − 𝐻𝑧

𝑇𝐿𝑧
𝑇𝑃𝑧 𝑃𝑧𝐺𝑉/𝑙 𝑃𝑧𝐺 −𝑃𝑧𝐿𝑧

𝐺𝑇𝑃𝑧𝑉/𝑙

𝐺𝑇𝑃𝑧

−𝐿𝑧
𝑇𝑃𝑧

0        0         0
0        0         0
0        0         0 ]

 
 
 
 

≤ 𝜀𝑧,1 [

0.88𝑞𝛽
𝑇𝑞𝛽

−𝑞𝛽

0
0

−𝑞𝛽
𝑇

1
0
0

0
0
0
0

0
0
0
0

]

− 𝜀𝑧,2

[
 
 
 

𝑞𝛽
𝑇𝑞𝛽

−0.94𝑞𝛽

0
0

−0.94𝑞𝛽
𝑇

1
0
0

0
0
0
0

0
0
0
0]
 
 
 

+ 𝜀𝑧,3 [

−𝑞𝛼

0
0
0

0
0
0
0

0
0
𝜇𝑉

0

0
0
0
𝜇𝑑

] 

(58) 

then, the goal (53) (or equivalently (39)) will be achieved. 

Proof. First assume that the goal (53) is not yet achieved: 

 

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[

−𝑞𝛼

0
0
0

0
0
0
0

0
0
𝜇𝑉

0

0
0
0
𝜇𝑑

]

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
≤ 0 (59) 

 

Consider the following Lyapunov function candidate: 

 𝑉𝐿𝑦𝑝,𝑧 = 𝑧̃𝑇𝑃𝑧𝑧̃, 𝑃𝑧 > 0 (60) 

where 𝑃𝑧 is Hermitian. Taking derivative of this Lyapunov 

function: 

 𝑉̇𝐿𝑦𝑝,𝑧 = 𝑧̇̃𝑇𝑃𝑧𝑧̃ + 𝑧̃𝑇𝑃𝑧 𝑧̇̃ (61) 

 

Replace (43) in (61): 

 𝑉̇𝐿𝑦𝑝,𝑧

= (𝐺(𝑉𝑓/𝑙𝑟) + 𝐺(𝑉̃𝑓/𝑙𝑟) − 𝐿𝑧𝐻𝑧𝑧̃ − 𝐿𝑧𝑑𝑧) 
𝑇𝑃𝑧𝑧̃

+ 𝑧̃𝑇𝑃𝑧(𝐺(𝑉𝑓/𝑙𝑟) + 𝐺(𝑉̃𝑓/𝑙𝑟) − 𝐿𝑧𝐻𝑧𝑧̃ − 𝐿𝑧𝑑𝑧) 

(62) 

Writing (62) in matrix form: 

 

𝑉̇𝐿𝑦𝑝,𝑧 

=

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
𝑇

[
 
 
 
𝑃𝑧𝐿𝑧𝐻𝑧 − 𝐻𝑧

𝑇𝐿𝑧
𝑇𝑃𝑧 𝑃𝑧𝐺𝑉/𝑙 𝑃𝑧𝐺 −𝑃𝑧𝐿𝑧

𝐺𝑇𝑃𝑧𝑉/𝑙

𝐺𝑇𝑃𝑧

−𝐿𝑧
𝑇𝑃𝑧

0        0         0
0        0         0
0        0         0 ]

 
 
 

[
 
 
 

𝑧̃
𝑓

𝑉̃𝑓/𝑙𝑟
𝑑𝑧 ]

 
 
 
 
(63) 

 

If the derivative of the Lyapunov function candidate is 

negative definite or 𝑉̇𝐿𝑦𝑝,𝑧 < 0, the goal (39) will be 

eventually achieved. Using the S- procedure lemma [20], 

𝑉̇𝐿𝑦𝑝,𝑧 < 0 if and only if: 

𝑉̇𝐿𝑦𝑝,𝑧 < 𝜖𝑧,1𝑉2 − 𝜖𝑧,2𝑉3 + 𝜖𝑧,3𝑉4 

where 𝑉2, 𝑉3 and 𝑉4 are defined in Lemma 1 and Lemma 2. 

Substituting for 𝑉2, 𝑉3 and 𝑉4 from equations (44), (45) and 

(53) and for 𝑉̇𝐿𝑦𝑝,𝑧 from equation (63), the LMI (58) directly 

follows.  The proof is thus complete.  
∎ 

The observer gains are obtained for various nominal speeds 

each representing a range of speed. The LMI (58) is solved 

for the minimum and maximum values in those spans. The 

observer gains are provided in Table 1: 

 
TABLE I 

OBSERVER GAINS FOR VARIOUS NOMINAL SPEEDS 

 Observer Gain for Various Nominal Speeds (m/s) 

𝑉𝑛𝑜𝑚: 1 1.5 2 3 4 5 6 

𝐿𝑧(1): 0.89 0.98 1.37 1.76 2.52 3.67 5.47 

𝐿𝑧(2): 0.25 0.27 0.30 0.33 0.37 0.50 0.70 

 Observer Gain for Various Nominal Speeds (m/s) 

𝑉𝑛𝑜𝑚: 7 8 9 10 11 12 13 

𝐿𝑧(1): 8.05 9.70 5.58 6.08 6.60 7.14 7.70 

𝐿𝑧(2): 0.99 1.17 0.66 0.68 0.71 0.74 0.77 

 Observer Gain for Various Nominal Speeds (m/s) 

𝑉𝑛𝑜𝑚: 14 15 16 17 18 19 20 

𝐿𝑧(1): 8.27 8.84 9.42 9.99 10.49 10.97 11.44 

𝐿𝑧(2): 0.79 0.82 0.85 0.88 0.89 0.91 0.92 
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As an example, if the output of the speed observer is 𝑉̂ =
6.7 𝑚/𝑠, then the observer gain 𝐿𝑧 = [8.05 0.99]𝑇 should 

be used for angle estimation. In other words, the value of the 

nominal speed is at the midpoint of the speed range for each 

entry in the table. The gains in the table can be directly used 

and no interpolation is needed. 

C. Position Observer Design 

The goal here is to design a robust observer for the model 

(22)- (23). Take the following observer dynamics: 

 𝑤̇̂ = 𝑔(𝑤̂) + 𝐿𝑤(𝑦𝑤 − 𝑤̂) (64) 

 

where 𝑔(𝑤̂) = [𝑉̂ cos(𝜓̂ + 𝛽̂) 𝑉̂ sin(𝜓̂ + 𝛽̂)]𝑇 and 𝐿𝑤 is 

the constant position observer gain matrix. The observer error 

dynamics 𝑤̃ is derived by subtracting (64) from (23): 

 𝑤̇̃ = 𝑤̇ − 𝑤̇̂ = 𝑔̃(𝑤, 𝑤̂) − 𝐿𝑤𝑤̃ − 𝐿𝑤𝑑𝑤

= [
𝑉 cos(𝜓 + 𝛽) − 𝑉̂ cos(𝜓̂ + 𝛽̂)

𝑉 sin(𝜓 + 𝛽) − 𝑉̂ sin(𝜓̂ + 𝛽̂)
] − 𝐿𝑤𝑤̃ − 𝐿𝑤𝑑𝑤 

(65) 

 

where 𝑤̃ = 𝑤 − 𝑤̂ and 𝑔̃(𝑤, 𝑤̂) = 𝑔(𝑤) − 𝑔(𝑤̂). Assuming 

that the measurement uncertainties are bounded, goal is to 

guarantee bounded error for the states: 

 𝐺𝑜𝑎𝑙: ‖𝑤̃‖2 ≤ 𝐵𝑤,1,

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: ‖𝑑𝑤‖2 + ‖𝑔̃‖2 ≤ 𝐵𝑤,2 
(66) 

 

Note that: 

 
‖𝑔̃‖2 = √𝑉2 + 𝑉̂2 − 2𝑉𝑉̂ cos(𝜓̃ + 𝛽)

≤ √𝑉̃2 + 2𝑉𝑉̂(𝜓̃ + 𝛽)
2
 

(67) 

 

Therefore, it is reasonable to assume that ‖𝑔̃‖2 is bounded 

in (66) (𝑉̃, 𝜓̃, and 𝛽 are all bounded because of the orientation 

and speed observers). 

Based on assumption in (66), the goal is translated to: 

 ‖𝑤̃‖2 ≤ √𝜇𝑤(‖𝑑𝑤‖2 + ‖𝑔̃‖2) (68) 

where √𝜇𝑤 = 𝐵𝑤,1/𝐵𝑤,2. Rewrite (68) as: 

 𝐺𝑜𝑎𝑙:  𝑤̃𝑇𝑤̃ ≤ 𝜇𝑤𝑑𝑤
𝑇 𝑑𝑤 + 𝜇𝑤𝑔̃𝑇𝑔̃ (69) 

 

Theorem 3. If there exists Hermitian 𝑃𝑤 > 0 and 𝐿𝑤 such 

that: 

 
[

−𝐿𝑤
𝑇𝑃𝑤 − 𝑃𝑤𝐿𝑤 𝑃𝑤 −𝑃𝑤𝐿𝑤

𝑃𝑤 0 0

−𝐿𝑤
𝑇𝑃𝑤 0 0

] < 𝜀𝑤 [
−𝐼 0 0
0 𝜇𝑤 0
0 0 𝜇𝑤

] (70) 

then, the goal (69) will be achieved. 

Proof. First assume that the goal (69) is not yet achieved: 

 𝑤̃𝑇𝑤̃ ≥ 𝜇𝑤𝑑𝑤
𝑇 𝑑𝑤 + 𝜇𝑤𝑔̃𝑇𝑔̃ (71) 

Then writing (71) in matrix form: 

 

𝑉5 = [
𝑤̃
𝑔̃
𝑑𝑤

]

𝑇

[
−𝐼 0 0
0 𝜇𝑤 0
0 0 𝜇𝑤

] [
𝑤̃
𝑔̃
𝑑𝑤

] ≤ 0 (72) 

Consider the following Lyapunov function candidate: 

 𝑉𝐿𝑦𝑝,𝑤 = 𝑤̃𝑇𝑃𝑤𝑤̃, 𝑃𝑤 > 0 (73) 

 

and 𝑃𝑤 is Hermitian. Taking derivative of this Lyapunov 

function: 

 𝑉̇𝐿𝑦𝑝,𝑤 = 𝑤̇̃𝑇𝑃𝑤𝑤̃ + 𝑤̃𝑇𝑃𝑤𝑤̇̃ (74) 

 

Replace (65) in (74): 

 𝑉̇𝐿𝑦𝑝,𝑤 = 𝑔̃𝑇𝑃𝑤𝑤̃ − 𝑤̃𝑇𝐿𝑤
𝑇 𝑃𝑤𝑤̃ − 𝑑𝑇𝐿𝑤

𝑇 𝑃𝑤𝑤̃ 

+𝑤̃𝑇𝑃𝑤𝑔̃ − 𝑤̃𝑇𝑃𝑤𝐿𝑤𝑤̃ − 𝑤̃𝑇𝑃𝑤𝐿𝑤𝑑𝑤 
(75) 

 

Writing (75) in matrix form: 

 

𝑉̇𝐿𝑦𝑝,𝑤 = [

𝑤̃
𝑔̃
𝑑𝑤

]

𝑇

[

−𝐿𝑤
𝑇𝑃𝑤 − 𝑃𝑤𝐿𝑤 𝑃𝑤 −𝑃𝑤𝐿𝑤

𝑃𝑤 0 0

−𝐿𝑤
𝑇𝑃𝑤 0 0

] [

𝑤̃
𝑔̃
𝑑𝑤

] (76) 

 

If the derivative of the Lyapunov function is negative definite 

or 𝑉̇𝐿𝑦𝑝,𝑤 < 0, the goal (69) will be eventually achieved. 

Using the S- procedure lemma, 𝑉̇𝐿𝑦𝑝,𝑤 < 0 if and only if 

𝑉̇𝐿𝑦𝑝,𝑤 < 𝜖𝑤𝑉5 

 

Substituting for 𝑉̇𝐿𝑦𝑝,𝑤 from equation (76) and for 𝑉5 from 

equation (72), the inequality specified in (70) (i.e., in the 

statement of the Theorem) directly follows. The proof is 

therefore complete.  
∎ 

For the assumed operating range of equations (8) and (9), 

the observer gain solution 𝐿𝑤 obtained by solving the LMI 

problem (70) is found to be: 

 𝐿𝑤 = [
20 0
0 20

] (77) 

V. SIMULATIONS AND EXPERIMENTS 

A. Simulation Results  

In this section, the multi-stage observer is compared to 

previously designed nonlinear [2] and high-gain observers 

[17] in simulation. As shown in Fig. 4, all the observers have 

a good performance when the speed and vehicle orientation 

are constant, one of the simple scenarios that could occur. Fig. 

5 shows all the observers having acceptable performance 

when the speed is constant, but the orientation angle is 

changing. The high-gain observer is the best, and the multi-

stage observer outperforms the nonlinear LMI observer in 

orientation estimation. 

The nonlinear observer in [2] was designed based on a 

constant velocity assumption (using 𝑉 = 10 𝑚/𝑠) due to 

limitations in exploiting the Mean Value Theorem (MVT) 

[16]. Therefore, the multi-stage observer and the high-gain 

observer both outperform the nonlinear observer in scenarios 

where the speed is not constant. This is visible in Fig. 6, where 

the scenario includes variable speed. 

As can be seen in Fig. 5 and Fig. 6, the convergence rate of 

the multi-stage observer is slower than the high-gain observer, 

as the gains of the multi-stage observer are smaller because of 
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the 𝐻∞ constraint exploited in the LMI problems. While this 

feature slows down the convergence rate, it is necessary for 

noise rejection. The estimation results of the multi-stage 

observer are smoother than the high-gain observer in real-

world scenarios as the noise rejection constraint is not 

included in the high-gain observer design [17]. 

Using previous data to approximately measure speed and 

orientation as measurements can cause additional errors in the 

multi-stage observer. The effects of these approximations are 

visible as small offset errors in the simulations of the multi-

stage observer. We accept this disadvantage to be able to 

improve the results compared to the nonlinear observer in 

terms of relaxing the constant velocity assumption, and the 

high gain observer in terms of noise rejection. Except for the 

minor disadvantages of the multi-stage observer over the 

high-gain observer, both show promising results in theory and 

simulation. In the experimental results, however, the multi-

stage observer outperforms the high-gain observer in speed 

and orientation estimation. In the experimental results, we 

also present additional comparisons with an extended Kalman 

filter which is a standard nonlinear estimation algorithm for 

systems with noise. 

The root-mean-square errors of the observers for the 

simulation results are presented in Table 2. The results show 

that the high-gain observer has the best performance since 

there is no added noise in the simulations. It will be shown in 

experimental results that the multi-stage observer works 

better in terms of noise rejection. The nonlinear observer 

performs poorly compared to the other two observers in cases 

where the speed is variable. 

 

 

 

 

 
Fig. 4. Simulation Result: 𝑉 = 10

𝑚

𝑠
, 𝐴 = 0, 𝛿̇ = 0 

 

 

 

 

 
Fig. 5. Simulation Result: 𝑉 = 10
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Fig. 6. Simulation Result: 𝑉 = 15
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TABLE II 

OBSERVERS’ RMSE VALUES IN SIMULATIONS 

Case # Observer Type 
𝑤̃ 

(m) 
𝑉𝑥̃ 

(m/s) 

𝑉𝑦̃ 

(m/s) 

𝜓̃ 

(rad) 

Simulation 1: 

𝐴 = 0 

𝛿̇ = 0 

Nonlinear 0.01 0.07 0.38 0.04 

High-Gain 0.00 0.05 0.29 0.04 

Multi-Stage 0.01 0.07 0.38 0.04 

Simulation 2:  

𝐴 = 0 

𝛿̇ = 10 °/𝑠 

Nonlinear 0.01 0.07 0.4 0.10 

High-Gain 0.00 0.06 0.3 0.05 

Multi-Stage 0.01 0.40 0.6 0.07 

Simulation 3:  

𝐴 = −1 𝑚/𝑠2 

𝛿̇ = −5 °/𝑠 

Nonlinear 0.27 4.09 0.68 0.25 

High-Gain 0.00 0.48 0.55 0.04 

Multi-Stage 0.04 1.64 0.74 0.06 

 

 
Fig. 7. RPLIDAR sensor and the camera on the Ninebot MAX e-Scooter. 

 

 

 

 
Fig. 8. Experimental Results of Scenario 1 in which the vehicle moves 

straight from left to right perpendicular to the e-scooter’s direction. The 

high-gain and the multi-stage nonlinear observers are compared. 

 

 

 

 

 
Fig. 9. Experimental Results of Scenario 2 in which the vehicle turns left in 

front of the e-scooter and eventually travels opposite to the e-scooter’s 

direction. The high-gain and multi-stage nonlinear observers are compared. 

 

B. Experimental Results  

Fig. 7 shows our experimental setup including a RPLIDAR 

Mapper sensor mounted on a Ninebot MAX e-scooter. The 

RPLIDAR is an affordable sensor that provides a low-density 

2-D point cloud map of the environment. The RPLIDAR’s 

reflection points from moving objects in the environment 

(here vehicles) keep changing due to a low density of 

measurements and hence there are many jumps and 

discontinuities in the sensor data. Unlike the multi-stage 

observer, the jumps and noise were not addressed when 

designing the high-gain observer. The estimation results of 

the multi-stage observer are therefore smoother and more 

reliable than the high-gain observer in the experiments. 

In the first experiment shown in Fig. 8, a vehicle moves 

straight on a road perpendicular to the e-scooter’s lane 

location. The orientation estimation of the vehicle remains at 

zero which agrees with the straight motion of the vehicle 

along the x-axis. The estimated velocity is also increasing 

suggesting that the vehicle is accelerating. In the second 

experiment shown in Fig. 9, a left-turning vehicle moves in 

front of the e-scooter. The estimate of the orientation angle 

for this vehicle changes from 180 degrees to 230 degrees as 

can be seen in Fig. 9. This result also agrees with the left-

turning trajectory of vehicle 2. The smoother results of the 

multi-stage observer suggest that it is more reliable when it 

comes to speed and orientation estimation in the presence of 

measurement uncertainties. 

We also compare the results of the high-gain and multi-

stage observers with two cases of the Extended Kalman Filter 

(EKF) in Fig. 10 and Fig. 11. Both figures are based on the 

same experimental scenario in which a vehicle starts moving 

initially straight in the opposite direction to the e-scooter, and 
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then turns left in front of the e-scooter, potentially creating 

some danger for the e-scooter rider. Fig. 10 shows the 

performance in which the EKF is designed assuming a low 

noise covariance matrix for sensor noise. In this case, the EKF 

has a very similar performance to the high-gain observer 

(especially in position and velocity estimation) as both 

observers use high values of feedback gain and rely heavily 

on the measurements. On the other hand, Fig. 11 shows the 

performance with the EKF having been designed with a 

higher noise covariance matrix. In this case, the performance 

of the EKF is seen to be very slow compared to the multi-

stage nonlinear observer. Additionally, a major disadvantage 

of the EKF is that it might not be robust in the presence of 

model uncertainties in the nonlinear functions [23], while the 

multi-stage observer is guaranteed to be robust with the valid 

proofs presented in this paper. It is expected that the resulting 

estimates of the multi-stage observer always converge to the 

close neighborhood of the true state values when the basic 

assumptions (e. g. equations (6) and (7)) are followed. This is 

not necessarily true about the resulting estimates of the EKF 

even with perfectly chosen covariance matrices.  

 

 

 

 

Fig. 10. Experimental Results of Scenario 3 in which the vehicle turns left 

in front of the e-scooter and eventually travels perpendicular to the e-

scooter’s direction. The EKF and the high-gain observer are compared. 

 

 

 

 

Fig. 11. Experimental Results of Scenario 3 in which the vehicle turns left 

in front of the e-scooter and eventually travels perpendicular to the e-

scooter’s direction. The EKF and the multi-stage observer are compared. 

VI. CONCLUSION 

A multi-stage estimation algorithm was developed in this 

paper for tracking the trajectories of other vehicles on the 

road. A kinematic model of the non-ego vehicle’s motion was 

translated into three separate models for speed, orientation, 

and position. Three stable observers were then subsequently 

designed for these models which were all shown to be both 

stable and capable of rejecting the influence of uncertainties 

and disturbances.  

The new estimation algorithm outperformed previous 

observers from the literature in simulations and experiments. 

Compared to the extended Kalman filter, the new observer 

provides smoother estimates and is also theoretically 

guaranteed to be asymptotically stable in the absence of 

disturbances. Compared to LMI-based nonlinear observers, 

the new observer theoretically supports variations in velocity 

and is shown to outperform the LMI observer in scenarios 

involving changes in velocity and steering. Compared to the 

high-gain nonlinear observer, the new observer requires 

smaller gains and outperforms the high-gain observer in terms 
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of smoother estimates for the jumpy RPLIDAR 

measurements. 

A limitation of the developed multi-stage observer is that it 

still needs constraints on the allowable range of steering 

angles and slip angles. While the constraints in equations (8) 

and (9) allow for typical vehicle motions, they are violated 

under skidding on ice and other high-slip scenarios. 

Addressing these limitations will require stronger design 

methods for each of the three observers in this multi-stage 

algorithm. 

The application of the developed observer was shown for 

an e-scooter protection system. Applications to other domains 

could also be evaluated in the future. 
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