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Multi-Stage Estimation Algorithm for Target Vehicle Trajectory
Tracking with Applications to E-Scooter Protection*

Hamidreza Alai and Rajesh Rajamani

Abstract— This paper develops a multi-stage estimation
algorithm for use on an e-scooter for target vehicle trajectory
tracking. Previously designed observers for vehicle trajectory
tracking lacked some essential features such as the ability to
handle variable velocity, or stable performance in the presence
of uncertainties in the measurements. To overcome these
shortcomings, the original model of the non-ego vehicle is
translated into three separate models for speed, orientation, and
position. Three stable observers are designed for these models
which are all shown to be stable and robust to uncertainties, in
addition to requiring low computational effort. The new
estimation algorithm outperforms previous observers in both
simulations and experimental results. The developed observer
can be especially valuable for use with low-cost sensors in
collision prediction and avoidance applications.

I. INTRODUCTION

Vehicle trajectory estimation is a crucial part of self-
driving cars, collision warning systems, and traffic
monitoring systems. Designing observers and estimation
algorithms to estimate the trajectories of surrounding vehicles
is valuable since such systems could be used to predict and
prevent collisions. Exploiting such trajectory tracking
systems is more critical when it comes to electric scooter
users. On one hand, standing e-scooters have proliferated
rapidly as an inexpensive and easily available mode of
transportation. A market research company has predicted e-
scooters will grow from a US$14 billion global market in
2014 to $37 billion in 2024 [1]. On the other hand, e-scooter
riders are a vulnerable population on roads and are in
significant danger of suffering from severe injuries in any car-
scooter collision [2]. The growth of e-scooter utilization and
the vulnerability of the users are the two factors contributing
to the increase in the number of injuries for e-scooter riders.
As an example, a retrospective review was performed of the
medical records of patients seen at an emergency department
(ED) in Singapore [3], and there was found to be a 2.3-fold
increase in the number of scooter-rider severe injuries from
2015 to 2016. It is shown in another study [4] that there were
an estimated 70,644 ED visits for e-scooter—related injuries
from 2014 to 2019 in the U.S. The estimated number of ED
visits for e-scooter injuries increased from 8,269 visits in
2017 to 15,522 visits in 2018, showing the impact of the
distribution of e-scooters in major cities by scooter-share
companies in late 2017 [4].
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By tracking the trajectories of nearby vehicles using low-
cost sensors, a smart e-scooter can predict a potential collision
and create a loud honk-like sound to alert the driver of the
errant vehicle about the presence of the e-scooter.

II. RELATED WORK

A. Literature Review

The tracking of other vehicles on highways (and local
roads) is typically done using radar, Lidar, cameras, or a
combination of these sensors. Automotive radar provides
reliable environmental perception in all-weather conditions at
affordable cost but fails to supply semantic and geometry
information due to the sparsity of radar detection points [5].
It is, however, an appropriate sensor for use in adaptive cruise
control. In the case of e-scooters, radar may not be able to
track all the vehicles at an upcoming intersection due to its
limited field of view.

Detecting and tracking vehicle objects using 3D high-
density Lidar is an approach that is viable for and often
utilized on autonomous vehicles [6]. For example, the three-
dimensional position and orientation (pose) is estimated in [6]
using L-shaped fits to Lidar cloud data and then particle-
filtering is utilized for vehicle trajectory tracking. High-
density 3D Lidar sensors are, however, quite expensive and
inappropriate for use on e-scooters.

Cameras are highly useful for lane marker detection,
lateral lane offset computation, and many other object
detection applications on advanced vehicles. A significant
number of research publications consider the use of cameras
and computer vision for detection and localization
applications. For example, [7] proposes a framework that uses
four visual sensors for a full surround view of a vehicle in
order to achieve an understanding of surrounding vehicle
behaviors. The trajectories are transformed to a common
ground plane, where they are associated between perspectives
and analyzed to reveal tendencies around the ego vehicle.
Sensor fusion using a combination of millimeter-wave radar
and cameras for object detection has also been pursued, as
described in [8]. Further, the use of combined radar and
camera for pedestrian detection and for occlusion-aware
sensor fusion has been studied [9]. Maneuver classification
and motion prediction of surrounding vehicles during
complex traffic scenarios using vehicle-mounted multi-view
cameras has also been pursued [10].
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Another avenue of research has been the use of predicted
trajectories for threat assessment. For example, [11] presents
the use of Monte Carlo simulations to find threats in a road
scene with the dynamic model used for the targets being
similar to the one utilized in this present manuscript. An
intelligent driver model has been utilized to analyze trajectory
data from several German freeways showing different kinds
of congested traffic forming near road inhomogeneities,
specifically lane closings, intersections, or uphill gradients
[12]. Likewise, a multiple model-based adaptive estimator
(MMAE) that infers the lane-change intention of the
surrounding vehicles and then predicts their trajectories has
been studied in [13].

When it comes to vehicle tracking on an e-scooter platform,
there are multiple challenges to designing such a collision-
warning system. Unlike autonomous vehicles that could be
equipped with large and expensive sensors or processors, it is
only reasonable to equip e-scooters with small and cost-
effective sensors. One possible option is low-density 2-D
LIDAR sensors which are small, affordable, and can detect
surrounding objects including vehicles. The problem with
these low-cost sensors is that the reflection point from a target
vehicle keeps changing due to the low density of
measurements and hence there are many jumps/
discontinuities in the sensor data. Such uncertainties in
measurement data make the observer design process
challenging, specifically because vehicle motion models
typically include nonlinear dynamics. Some previous studies
addressed the problem of nonlinearity by turning the original
model into multiple linear models and utilizing Interacting
Multiple Model (IMM) filters (e. g. IMM Kalman Filters) for
state estimation [14, 15]. These studies lack proof of stability,
cannot cover all possible maneuvers, and are computationally
demanding.

In our previous work [2], we implemented a linear matrix
inequality (LMI) based nonlinear observer for vehicle
tracking on an e-scooter. While the nonlinear observer has
proof of stability and could estimate the vehicle’s position and
orientation in the presence of measurement uncertainties, its
design requires assuming the velocity to be constant [16]. To
overcome this issue, a coordinate transformation was found
in [17] to allow for variable velocity and transformed the
vehicle dynamics model into companion form. This
transformation to companion form enabled the design of a
stable high-gain observer with guaranteed feasibility. The
high-gain observer [17] can estimate the position, velocity,
orientation, and acceleration of the vehicles using a single
high-gain matrix. However, with all the advantages of the
high-gain observer, noise rejection is not addressed in its
formulation. This causes unreliable estimates of velocity and
orientation especially when using low-cost LIDAR sensors,
with jumpy/noisy data.

B. Contributions

In contrast to the observers in literature where only the
current measurement is used as part of their observer
dynamics, here we use the last two consecutive measurements
for estimation. Two consecutive measurements reveal
important information about the displacement and direction

of movement of the vehicle, which enables us to have a multi-

stage estimation for vehicle trajectories. Fig. 1 shows two

consecutive measurement points from the location of a

vehicle at two different time frames (¢t; and t;_;). As can be

seen, the vehicle direction of movement and its displacement
are shown as ; and S;. We use these two new measurements
in addition to the raw distance measurement of the vehicle to
design three observers for speed, orientation, and position
estimation. It is also shown that the three observers are
robustly stable; the norm of the estimation errors will be
bounded in the presence of uncertainties. The location
measurement errors of the vehicles given by the sensors are
assumed to be bounded (the boundaries are depicted as circles
with radii d in Fig. 1). Therefore, it is assumed that the error
of the resulting displacement and direction measurements «;
and S; are bounded as well. A preliminary version of this
paper is going to be presented at a conference [18]. However,
detailed proofs could not be included and only two figures

(one simulation and one experimental result) could be

included in the conference paper. The major contributions of

this paper are:

e The development of a multi-stage observer with
guaranteed analytical stability proofs, allowing for
variations in target vehicle velocity while also
minimizing the influence of sensor noise on estimates.

e The implementation of the developed observer on an e-
scooter platform using a low-cost 2D Lidar sensor and
presentation of extensive experimental results.

The outline of the paper is as follows. Section III
introduces the speed, orientation, and position models derived
from the original vehicle kinematics equations. For each
model, an observer is designed in section IV, and it is shown
that the designed observers are guaranteed to have robust
stability. Section V shows how these observers outperform a
previous nonlinear observer [2] and a high-gain observer [8]
in simulation and experiments respectively. Section VI
contains the conclusions.

III. VEHICLE TRACKING MODEL

In this section, speed, orientation, and position models are
obtained from the original vehicle kinematics. These models
will be later used in section IV to design stable observers to
track vehicle trajectories.

A. Original Bicycle- Model of Vehicle

Fig. 2 shows a vehicle with velocity V, orientation (yaw)
angle 1, slip angle 3, and front steering angle . The vehicle
(bicycle) equations are [19]:

X =Vcos(y + B) 1))
Y = Vsin@y + B) )
Y = V(cos B) tan 8y /1 ?3)

where parameter [ is the wheelbase length of the vehicle:
L=1+1. “)
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Fig. 1. Two consecutive measurements from the location of the vehicle at
time frames t; and t;_;. The uncertainty boundary of the measurements is
depicted as circles with radii d.

Fig. 2. Motion schematic and model variables for a Vehicle

Parameters I; and [, are shown in Fig. 2. The following
relationship exists between the slip and steering angles [9]:

., (- tan(6F)
B = tan 1 (W) 5

We are assuming that the non-ego vehicles only steer with
their front wheels. Furthermore, it is assumed that the rate of
steering angle and jerk are negligible:

8~ 0 (6)

j=0 0

where | =V represents the jerk of the vehicle or the
derivative of the vehicle’s acceleration.

In previous papers on the nonlinear observer and high gain
observer ([2] and [8]), the non-ego vehicles were assumed to
have constant velocities and accelerations respectively.
Considering the constant jerk assumption in this paper, the
performance of the observers designed here will be
theoretically better than the previous ones in scenarios where
the speed and acceleration are variable. The slip angle is
assumed to lie within the following range:

—20° < B < 20° 8)

For a typical vehicle with ../l = 0.5, the range for the front
steering angle (based on (5) and (8)) will be:

—36° < 8y < 36° )

which is better than what is assumed in [2]. In [2], the range
of  steering angles was assumed to be
—10° < 6r < 10°, with the corresponding range of f8
being —6° < f# < 6°. Note that assumptions (8) and (9)
will be valid for typical vehicle motions and will only be
violated under high-slip scenarios, for example when the
vehicle is skidding on ice. Finally, it is assumed that:

l, = 2 meters

(10)

B. Linear Speed Model

As mentioned in section II, by using two consecutive
measurements, we gain access to the displacement of the
vehicles denoted as S; in Fig. 1. Therefore, one can use
displacement as the measurement in the speed model. By
taking derivatives of the vehicle’s displacement with respect
to time, the speed model is derived. Consider the following
state and output vectors:

s=[s v 4 JI, Ys = S+d; (1
where S and A represent the displacement and acceleration of

the vehicle. Also, d; represents the uncertainty related to
displacement measurement. Based on (7):

S %
.|V A
s = ji =l] =Fs (12)
j 0
and
ye = Hys + d (13)
where:
0100
E=10 0 & U Ho=010 0 0o (4
0000

As can be seen, the speed model derived here is linear.

C. Nonlinear Orientation Model

As mentioned in section II, by using two consecutive
measurements, we gain access to the direction of motion of
the vehicles denoted as a; in Fig. 1. Equations (1) and (2)
show that the direction of motion of a vehicle could be
described as:

a=p+p 15)
Note that from (5) and (6) we have:
'B =~ 0 (16)
Take the following state and output vectors:
zZ= [71[} ﬁ]Tﬁ v, = a +d, (17)

where d, is the uncertainty of the angle measurement. Now
taking derivative of (17) and using (3) and (16):
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. _[¥] _ v(cos p) tan s /1
Z_[[;r]_[ cos,BOan F/] (18)
Replace (5) in (18):
. [¥] 2 [vsing /L) _ juf @11
o 1 i B A B
and
y, = H,z+d,, u, =V (20)
where u, is the input to this system and:
f(2) =sinp, H,=[1 1] @n

The orientation model derived here is nonlinear. Note that
our knowledge about the input of this system (speed) is
indirect and will depend on the performance of the speed
observer. We will use the estimated speed when designing the
orientation observer, instead of the actual speed but will
account for the error of the speed estimation.

D. Linear Position Model
Consider the following state and output vectors:

w=[x YT, Yw =W +d, (22)

Taking derivative of the state vector using (1) and (2):

. [x] Vcos(t/)+ﬁ)] _

w=[5] =y sinp +§)] =90 @)
where u,, is the input to this system. Note that our knowledge
about the inputs of this system (speed and orientation) is
limited and will depend on the performance of the speed and
orientation observers. We will use the estimated speed and
orientation instead of their actual values when designing the
position observer but will account for the errors in these
estimations.

IV. MULTI-STAGE OBSERVER DESIGN

In this section, we design stable observers based on the
models introduced in section III. Take W, 7, A, 1,[7, and B as
the estimates of vehicle location, speed, orientation, and slip
angle. The estimated error variables are defined as W = w —
W V=V-VA=A-A, )=y —1,and f =B — . The
structure of the estimation algorithm is described in Fig. 3.
The speed observer limits the second norm of the estimated
speed error. The orientation observer limits the second norm
of the estimated orientation angle error, and the position
observer limits the second norm of the estimated location
error.

A. Speed Observer Design

The goal here is to design a robust observer for the model
(12)- (14). Assuming that the measurement uncertainties are
bounded, the goal is to guarantee bounded error for the states:

* Objective:

Position * [1#Wllz < By

Estimation

* Objective:

Orientation i
Estimation . ”’ L]
B

=B,
2

* Objective:

AT
I, ==

Fig. 3. Schematic of the trajectory estimation algorithm.

A

The goal in equation (24) can be identically transformed to

Speed Estimation

Goal: |

< By, Assumption: ||dg|l, < Bs  (24)
2

the one in equation (25) using the transformation [Z] =qyS§.

0 0 0O

~ . 0 0 0
ligv3llz < uslldsllz, with gy = (25)

0 010

0 0 0O

where § = s — §, and \/E = By /B,. Rewrite (25) as:
Goal: 5Tqlqys < udld, (26)

The observer dynamics are defined to be:

$ = FES+ Ly(ys — Hy9) @7

where Lg is the constant speed observer gain matrix. The
observer error dynamics § is derived by subtracting (27) from
(12) and replacing (13):
§=$_§:F;S_F;§_Ls(ys_Hs§) (28)
= (Fs — LgH,)3 — Lgd;
where § = s — 8.

Theorem 1. If there exists a Hermitian matrix P, > 0 , an
observer gain matrix Ly and a positive scalar € such that:
Ii(Es‘ - LSHS)TPS + Rs(’f;‘ - LSHS) + Esqg% _RSLS] <0 (29)
_LsPs —E&sls
then, the goal (26) will be achieved.
Proof. First assume that the goal (26) is not yet achieved:

§Tavqys > psdsd; (30)
Writing (30) in matrix form:
w9 Do o
Consider the following Lyapunov function candidate:
Viyps = 5T B3, P>0 (32)

where P; is Hermitian. Taking derivative of this Lyapunov
function:
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Vigps = §TPS + §TR§ (33)
Replace (28) in (33):
VLYP,S = §T[(Fs - LsHs)TPs + Ps(Fs - LsHs)]§ (34)
—dILTP,5 — §TP,L.d,
Writing (34) in matrix form:
VLyp,s
_ [§ ]T [(Es - LsHs)TPs + Ps(Fs - LsHs) _PSLS] [§] (35)
 lds A 0 ds

If the derivative of Lyapunov function is negative definite or
VLyp‘s < 0, the goal (2.6) will be achieved. Using the S-
procedure lemma [20], V,,, s < 0 if and only if there exists a
positive scalar € > 0 such that:

VLyp,s < ESVI
Substituting from (31) and (35), it follows that a sufficient
condition for stability is:

(Fs — LsHg)" Py + P(F; — LgHy) —PSLS] ~ . |mavay 0]
—1TP, 0 I 0 U

This is nothing but the LMI (29) and the proof is therefore

complete.

]

Remarks on LMIs: Inequality (29) is equivalent to a linear
matrix inequality (LMI). LMlIs are inequalities that are linear
in the matrix variables whose values need to be solved for.
Excellent numerical tools exist for solving such LMIs [20],
[21] including software tools that can be easily utilized in
MATLAB [22]. While inequality (29) appears to have
bilinear terms involving P;L,, this bilinear term can be
replaced using the transformation Yy = P;Lg [20]. Then the
new form of (29) becomes

I:FS‘TPS‘ - HsTYsT + PSFS - YSHS + 55‘15% _Ys <0

_YsT —Esls

This transformed inequality is clearly linear in the variables
P; and Y;. The LMI Toolbox in MATLAB [22] can then be
used for solving this LMI. Once P; > 0 and Ys are obtained,
Lg can be obtained using Ly = P1Y,.

(36)

For the assumed operating range of equations (8) and (9),
the following observer gain solution satisfies LMI problem
(29):

Ly =1[461 1224 9.83 4.16]"

B. Orientation Observer Design

The goal here is to design a robust observer for the model
(19)- (21). Assuming that the measurement uncertainties are
bounded, the goal is to guarantee bounded error for the states:

i

Assumption: ||d,||, + ||I7'||2 <B,

Goal:

<B,
. 37)

Based on the assumption in (37), the goal is translated to:

laa?l < itz (Idlle + [71,), aa=[g 5] G9)

where z is defined in (17) and v/, = B, /B,. Rewrite (38) as:

Goal: 77q,2 < ugdid, + ug Vv (39)
Take the following observer dynamics:
5= T OM] 41,0, - 1,2) (40)

where L, is the constant orientation observer gain matrix. The
observer error dynamics Z is derived by subtracting (40) from
(19) and replacing (20):

b=z_4= [(Vf _O?f)/lr] —LH,7—L,d, (41)

where Z = z — 2 and f = f(2). Add and subtract V £ /L, to the
first row of (41):

=] - vf +(§’f ~VO — Lz 1,4, (42)
or

z= G(Vf/lr) + G(Vf/lr) —LH,Z—L,d, (43)
where G =[1 0]"and f = f — f.

Lemma 1. Considering (8) and
inequalities are valid for f:

(21), the following

~ T .
[€]p1q;§qﬁ -qz 0 O[Z.]
|/ -5 1 0 Of f
& il 0 0 0o [Vf/lrJSO @
d, 0 o 0 O0Il g,
and
Z {'rabag —pds 0 0] Z
erf ] —p2tg 1 O OLT ]20 (45)
Vil 0 0 Of1vVf/L,
| d, | 0 0 o o]l d, |

where gz =[0 1], and p; and p, are lower bounds on
cos (B) and cos?(B) as shown in equation (50).
Proof. Using the Mean Value Theorem (MVT) and (21):

f(2,2z) =sinf —sinf = cos (46)
where 8 is some value between 8 and . Therefore:
(fz,2) —cos,[?ﬁ)z =0 47)

or

fTf + (cos? B)BTR —cos B (FTB+BTf) =0 (48)

Note that for —20° < f <20° the function sinf is
monotonically increasing. Therefore:

ffB=B"F=20 (49)
Also, for the given range:
=p, < R <
094 =p, <cosf <1, (50

088 =p; <cos’f <1

Using (49) and (50):
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fTf+p:B7B = (fTB +B7f)

<fTf+cos? BB —cosB(fTB+B"F) (5
<ff+B"B—p(FTB+B"f)
Now replace f = qpZ and (48) in (51):
FTF+pi2qpqpz — (fTapz + 27 qf) < 52)

<f'f+2"qpapz — po(fTapz + 2 qTf)
Rewriting these two inequalities in matrix form, we will have
(44) and (45). m
Lemma 2. If the following inequality is satisfied, goal (39) is
also satisfied:

[ Z 1[99 0 0o O Z ]
f 00 0 Off f | o (s3
|l 0 0wy Of[7F/L,
d, 0 0 0 Hall a,
where:
Proof. First, note that from (8) and (10):
(F/1.) (F/1,) = sin? f /12 < 1/36 (55)
Therefore:
s T
z —qa 0
f 0 0
Vf/L.l 1 0 0 wy Vf/l (56)
d, 0 0 0 U4
SMVVTV/36+ﬂddgdz z" Qa
Replace (54) in (56) and use (53):
~ T ~
Z 4« 0 0 O] %
0 < f 0 0 0 Of f
Vil 0 0 p O|7F/L, (57)
d, J 0 0 0 uall d, J

< .UdVTV +uqdzd, — 27 q,Z
which is the goal (39) and the proof is complete. m
Theorem 2. If there exists a Hermitian matrix P, > 0, an

observer gain matrix L, and positive scalars €, 1, €,, and €, 3
such that:

[PL,H, —HILTP, P,GV/l P,G —P,L,]
G"RV/1 0 0 0
GTP, 0 0 0
-LTP, 0 0 0

0.88q5q5 —qp 8 8
—dqp 1
<&, : 0 0 0
0 o 00 (58)
apqp  —094q; 0 0
_ —0.94q 1 0 0
52,2 ﬁ 0 0 0
0 o 00
Gz 0 0 O
N 0 0 0 O
€23 0 0 Uy 0
0 0 0 Mg

then, the goal (53) (or equivalently (39)) will be achieved.
Proof. First assume that the goal (53) is not yet achieved:

[ ]Z; T [%
0
[Vf/lrj 0 0 u “Vf/l =0 69
d, 0 0 HUg

Consider the following Lyapunov function candidate:
P,>0 (60)

where P, is Hermitian. Taking derivative of this Lyapunov
function:

— 5T 5
Viypz = Z FZ,

Vigpz = 2"P2 + 2TP,Z (61)
Replace (43) in (61):
VLyp,z
= (G(Vf/lr) + G(Vf/lr) - LZHZZ~ - dez) TPZZ~ (62)
+ ZTPZ(G(Vf/lr) + G(Vf/lr) - LZHZZ - dez)
Writing (62) in matrix form:
VLyp,z
Z \'[PL.H,—HJLLP, RGV/l PG —PBL,[ Z
|/ GTRV/l 0 0 0 f[(63)
“|vis, GTP, 0 0 0 ||VF/L.
d, —LTP, 0 0 0 d,

If the derivative of the Lyapunov function candidate is
negative definite or V,y,, <0, the goal (39) will be
eventually achieved. Using the S- procedure lemma [20],
Viypz < 0 if and only if:

Viypz < €21Ve = €52V + €3V
where V,, V; and V, are defined in Lemma | and Lemma 2.
Substituting for V,, V3 and V, from equations (44), (45) and
(53) and for VLW‘Z from equation (63), the LMI (58) directly
follows. The proof is thus complete.
]

The observer gains are obtained for various nominal speeds
each representing a range of speed. The LMI (58) is solved
for the minimum and maximum values in those spans. The
observer gains are provided in Table 1:

TABLEI
OBSERVER GAINS FOR VARIOUS NOMINAL SPEEDS

Observer Gain for Various Nominal Speeds (m/s)

Vim: | 1 1151 2 1 3 4 5 6
L,(1): | 0.89 | 0.98 | 1.37 | 1.76 | 2.52 | 3.67 | 5.47
L,(2): 1 025027 1030 033|037 | 0.50 | 0.70

Observer Gain for Various Nominal Speeds (m/s)
Viom: 7 8 9 10 11 12 13

L,(1): : 8.05:9.70 : 558 { 6.08 : 6.60 | 7.14 | 7.70
L,(2): 1099 i 1.17 {0.66 i 0.68 : 0.71 | 0.74 | 0.77
Observer Gain for Various Nominal Speeds (m/s)
Viom: 14 15 16 17 18 19 20

L,(1): { 827 {884 942999 : 1049 {1097 | 11.44
L,(2): 1079 {0.82:0.850.88:0.89 {091 |0.92
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As an example, if the output of the speed observer is V =
6.7 m/s, then the observer gain L, = [8.05 0.99]7 should
be used for angle estimation. In other words, the value of the
nominal speed is at the midpoint of the speed range for each
entry in the table. The gains in the table can be directly used
and no interpolation is needed.

C. Position Observer Design
The goal here is to design a robust observer for the model
(22)- (23). Take the following observer dynamics:

‘7.‘7 = g(W) + Lw(yw - W) (64)

where g(W) = [V cos( + ) Vsin@ + )" and L,, is
the constant position observer gain matrix. The observer error
dynamics W is derived by subtracting (64) from (23):

W=w-—w=gww)—L,Ww—Lyd,
3 Vcos(y + B) — V cos(P + B)
| vsin@ + B) = Vsin(p + B)

LW —Lyd,

where W = w — W and §(w, W) = g(w) — g(W). Assuming
that the measurement uncertainties are bounded, goal is to
guarantee bounded error for the states:
Goal: ||#W|l, < By 1, 66)
Assumption: ||dy ||, + [Igll2 < Bw,:

Note that:

Igll, = JVZ + V2 =2V cos(y + fB)

(67)
< \/]72 +2v0(F + B)°

Therefore, it is reasonable to assume that || ||, is bounded
in (66) (7,1, and f are all bounded because of the orientation
and speed observers).

Based on assumption in (66), the goal is translated to:

1wl < ewldwllz + 11g112) (68)
where /1, = By, 1/B,y 2. Rewrite (68) as:
Goal: WTW < p,,dbd, + p,G' g (69)

Theorem 3. If there exists Hermitian P, > 0 and L,, such
that:

-L,"P, - P,L, B, —P,L, -1 0 0
P, 0 0 <&, |0 py O ] (70)
-L,"B, 0 0 0 0

then, the goal (69) will be achieved.
Proof. First assume that the goal (69) is not yet achieved:

w'w = p,dydy, + g’ g (1)
Then writing (71) in matrix form:
wi'r-1 0 07[w
Vs = gl [O Hw Ol[glﬁo (72)
d,, 0o 0 u,lld,

Consider the following Lyapunov function candidate:

Viypw = W' B, W, B,>0 (73)
and P, is Hermitian. Taking derivative of this Lyapunov
function:

Viypw = W' B, W + W R, W (74)
Replace (65) in (74):
Viypw = G ByW — wTLL, B, W — dT LY, P, W 75)
+wTB,§ — W' B, L, w — WP, L,d,
Writing (75) in matrix form:
w1 [-L, By —ByLy, B, —PByL,][W
Vigpw = | 3 ] P, 0 0 [ J ] (76)
dy -L,7B, 0 0 dy

If the derivative of the Lyapunov function is negative definite

or VLyp‘W < 0, the goal (69) will be eventually achieved.

Using the S- procedure lemma, VLyp‘W < 0 ifand only if
VLyp,W < ewVS

Substituting for VLyp,W from equation (76) and for Vs from
equation (72), the inequality specified in (70) (i.e., in the
statement of the Theorem) directly follows. The proof is
therefore complete.
]

For the assumed operating range of equations (8) and (9),
the observer gain solution L,, obtained by solving the LMI
problem (70) is found to be:

L, = [200 200] 7

V. SIMULATIONS AND EXPERIMENTS

A. Simulation Results

In this section, the multi-stage observer is compared to
previously designed nonlinear [2] and high-gain observers
[17] in simulation. As shown in Fig. 4, all the observers have
a good performance when the speed and vehicle orientation
are constant, one of the simple scenarios that could occur. Fig.
5 shows all the observers having acceptable performance
when the speed is constant, but the orientation angle is
changing. The high-gain observer is the best, and the multi-
stage observer outperforms the nonlinear LMI observer in
orientation estimation.

The nonlinear observer in [2] was designed based on a
constant velocity assumption (using V = 10m/s) due to
limitations in exploiting the Mean Value Theorem (MVT)
[16]. Therefore, the multi-stage observer and the high-gain
observer both outperform the nonlinear observer in scenarios
where the speed is not constant. This is visible in Fig. 6, where
the scenario includes variable speed.

As can be seen in Fig. 5 and Fig. 6, the convergence rate of
the multi-stage observer is slower than the high-gain observer,
as the gains of the multi-stage observer are smaller because of
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the H,, constraint exploited in the LMI problems. While this
feature slows down the convergence rate, it is necessary for
noise rejection. The estimation results of the multi-stage
observer are smoother than the high-gain observer in real-
world scenarios as the noise rejection constraint is not
included in the high-gain observer design [17].

Using previous data to approximately measure speed and
orientation as measurements can cause additional errors in the
multi-stage observer. The effects of these approximations are
visible as small offset errors in the simulations of the multi-
stage observer. We accept this disadvantage to be able to
improve the results compared to the nonlinear observer in
terms of relaxing the constant velocity assumption, and the
high gain observer in terms of noise rejection. Except for the
minor disadvantages of the multi-stage observer over the
high-gain observer, both show promising results in theory and
simulation. In the experimental results, however, the multi-
stage observer outperforms the high-gain observer in speed
and orientation estimation. In the experimental results, we
also present additional comparisons with an extended Kalman
filter which is a standard nonlinear estimation algorithm for
systems with noise.

The root-mean-square errors of the observers for the
simulation results are presented in Table 2. The results show
that the high-gain observer has the best performance since
there is no added noise in the simulations. It will be shown in
experimental results that the multi-stage observer works
better in terms of noise rejection. The nonlinear observer
performs poorly compared to the other two observers in cases
where the speed is variable.

10F
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TABLEII
OBSERVERS’ RMSE VALUES IN SIMULATIONS
w Vy v Y
Case # Observer Type @ | @ss) | mrs) | (rad)
Simulation 1: Nonlinear 0.01 0.07 0.38 0.04
A=0 High-Gain 0.00 | 0.05 0.29 0.04
§=0 Multi-Stage 0.01 0.07 0.38 0.04
Simulation 2: Nonlinear 0.01 0.07 0.4 0.10
A=0 High-Gain 0.00 | 0.06 0.3 0.05
8§ =10°/s Multi-Stage | 0.01 | 040 | 0.6 | 0.07
Simulation 3: Nonlinear 0.27 | 4.09 0.68 0.25
A=—-1m/s? High-Gain 0.00 | 0.48 0.55 0.04
§=-5°s Multi-Stage 0.04 1.64 0.74 0.06

Fig. 7. RPLIDAR sensor and the
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Fig. 8. Experimental Results of Scenario 1 in which the vehicle moves
straight from left to right perpendicular to the e-scooter’s direction. The
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Fig. 9. Experimental Results of Scenario 2 in which the vehicle turns left in
front of the e-scooter and eventually travels opposite to the e-scooter’s
direction. The high-gain and multi-stage nonlinear observers are compared.

B.  Experimental Results

Fig. 7 shows our experimental setup including a RPLIDAR
Mapper sensor mounted on a Ninebot MAX e-scooter. The
RPLIDAR is an affordable sensor that provides a low-density
2-D point cloud map of the environment. The RPLIDAR’s
reflection points from moving objects in the environment
(here vehicles) keep changing due to a low density of
measurements and hence there are many jumps and
discontinuities in the sensor data. Unlike the multi-stage
observer, the jumps and noise were not addressed when
designing the high-gain observer. The estimation results of
the multi-stage observer are therefore smoother and more
reliable than the high-gain observer in the experiments.

In the first experiment shown in Fig. 8, a vehicle moves
straight on a road perpendicular to the e-scooter’s lane
location. The orientation estimation of the vehicle remains at
zero which agrees with the straight motion of the vehicle
along the x-axis. The estimated velocity is also increasing
suggesting that the vehicle is accelerating. In the second
experiment shown in Fig. 9, a left-turning vehicle moves in
front of the e-scooter. The estimate of the orientation angle
for this vehicle changes from 180 degrees to 230 degrees as
can be seen in Fig. 9. This result also agrees with the left-
turning trajectory of vehicle 2. The smoother results of the
multi-stage observer suggest that it is more reliable when it
comes to speed and orientation estimation in the presence of
measurement uncertainties.

We also compare the results of the high-gain and multi-
stage observers with two cases of the Extended Kalman Filter
(EKF) in Fig. 10 and Fig. 11. Both figures are based on the
same experimental scenario in which a vehicle starts moving
initially straight in the opposite direction to the e-scooter, and
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then turns left in front of the e-scooter, potentially creating
some danger for the e-scooter rider. Fig. 10 shows the
performance in which the EKF is designed assuming a low
noise covariance matrix for sensor noise. In this case, the EKF
has a very similar performance to the high-gain observer
(especially in position and velocity estimation) as both
observers use high values of feedback gain and rely heavily
on the measurements. On the other hand, Fig. 11 shows the
performance with the EKF having been designed with a
higher noise covariance matrix. In this case, the performance
of the EKF is seen to be very slow compared to the multi-
stage nonlinear observer. Additionally, a major disadvantage
of the EKF is that it might not be robust in the presence of
model uncertainties in the nonlinear functions [23], while the
multi-stage observer is guaranteed to be robust with the valid
proofs presented in this paper. It is expected that the resulting
estimates of the multi-stage observer always converge to the
close neighborhood of the true state values when the basic
assumptions (e. g. equations (6) and (7)) are followed. This is
not necessarily true about the resulting estimates of the EKF
even with perfectly chosen covariance matrices.
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Fig. 10. Experimental Results of Scenario 3 in which the vehicle turns left
in front of the e-scooter and eventually travels perpendicular to the e-
scooter’s direction. The EKF and the high-gain observer are compared.
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Fig. 11. Experimental Results of Scenario 3 in which the vehicle turns left
in front of the e-scooter and eventually travels perpendicular to the e-
scooter’s direction. The EKF and the multi-stage observer are compared.

VI. CONCLUSION

A multi-stage estimation algorithm was developed in this
paper for tracking the trajectories of other vehicles on the
road. A kinematic model of the non-ego vehicle’s motion was
translated into three separate models for speed, orientation,
and position. Three stable observers were then subsequently
designed for these models which were all shown to be both
stable and capable of rejecting the influence of uncertainties
and disturbances.

The new estimation algorithm outperformed previous
observers from the literature in simulations and experiments.
Compared to the extended Kalman filter, the new observer
provides smoother estimates and is also theoretically
guaranteed to be asymptotically stable in the absence of
disturbances. Compared to LMI-based nonlinear observers,
the new observer theoretically supports variations in velocity
and is shown to outperform the LMI observer in scenarios
involving changes in velocity and steering. Compared to the
high-gain nonlinear observer, the new observer requires
smaller gains and outperforms the high-gain observer in terms
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of smoother estimates for the
measurements.

A limitation of the developed multi-stage observer is that it
still needs constraints on the allowable range of steering
angles and slip angles. While the constraints in equations (8)
and (9) allow for typical vehicle motions, they are violated
under skidding on ice and other high-slip scenarios.
Addressing these limitations will require stronger design
methods for each of the three observers in this multi-stage
algorithm.

The application of the developed observer was shown for
an e-scooter protection system. Applications to other domains
could also be evaluated in the future.

jumpy RPLIDAR
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