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Abstract— This paper focuses on the design of a multi-output
high gain observer for a vehicle trajectory tracking application.
Tracking the trajectories of other vehicles on the road is needed
for many applications ranging from collision avoidance to
autonomous driving. Previously, such trajectory tracking has
been done using linearized dynamic models, interacting-
multiple-model (IMM) filters, or else by using LMI-based
nonlinear observers. These estimation techniques suffer from
some crucial shortcomings. Hence, this paper develops a high
gain nonlinear observer for this application. The high gain
observer approach offers the advantages of guaranteed
feasibility and stability with just one constant observer gain for
a wide range of motion. The challenges of transforming the
vehicle dynamic model into the required companion form for
applying the high gain observer technique are addressed. A
coordinate transformation that allows for varying velocity and
varying slip angle is shown to be appropriate. The high gain
observer methodology for a dynamic system with multiple
outputs is presented. Finally, simulation and experimental
results on vehicle tracking are demonstrated. The experimental
results show that, with a high gain observer, vehicle trajectories
that span a large range of orientations can be accurately tracked
using just one constant observer gain.

Key words — vehicle trajectory estimation; vehicle control; filters;
estimation algorithms; nonlinear observer; e-scooter.

I. INTRODUCTION

A. Vehicle Tracking Problem

While estimation and control of the ego vehicle’s variables
are crucial elements in autonomous driving [1], tracking
surrounding vehicles is also a critical aspect for collision
avoidance [2]. By tracking the trajectories of other vehicles
on the road, essential variables in collision prediction (e. g.
time-to-collision) can be calculated using estimates of the
vehicles’ position, velocity, and orientation [3]. Hence,
designing observers to accurately estimate surrounding
vehicles’ states is valuable [4, 5]. However, vehicle motion
typically involves nonlinear dynamic models. Some of the
previous works addressed this problem by turning the original
nonlinear model into multiple linear models typically
including a “straight line driving” and a “constant turn rate
driving” model [6, 7]. Using these linear models, they utilize
Interacting Multiple Model (IMM) filters (e. g. IMM Kalman
Filters) for state estimation [6, 7]. These papers based on
linearization lack a proof of stability and do not cover all
possible maneuvers. Also, implementing IMM filters is more
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computationally demanding as they require real-time
evaluation of each model’s probability.

Several authors have recently explored new types of filters
and estimators for vehicle tracking. For example, Kim, et.al.,
proposed a vehicle tracking algorithm based on a L-shaped
vehicle model with switching for use with a laser scanner [8].
Jo, et. al. presented a unified vehicle tracking and behavior
reasoning algorithm that simultaneously estimated the vehicle
dynamic state and driver intentions based on a multiple model
filter [9]. Cao, et. al. proposed a radar-based tracking method
in which the vehicle’s rectangular area is partitioned into
multiple regions and an approach is proposed to associate
measurements with these regions [10]. All these methods
relied on stochastic estimators or “filters”. Stochastic
estimators such as the Kalman filter and the extended Kalman
filter rely on linearization of the nonlinear vehicle motion
model [9, 10]. When the inherent dynamic system model is
nonlinear, the global stability of the estimator is not
guaranteed [11, 12]. Compared to the extended Kalman filter,
the nonlinear high-gain observer comes with guaranteed
global stability for the entire operating range of the system.

In the domain of deterministic model-based estimators or
“observers”, a few papers have investigated the use of LMI-
based nonlinear observers for vehicle state estimation [2, 13].
Such nonlinear observers are obtained based on a single
nonlinear model and include constant observer gains. Thus,
they are easy to implement. However, they have some
shortcomings including limited stability regions and
simplifying assumptions in the model (e.g., assumption of
constant velocity). The designed observers are guaranteed to
be stable only for a small region of steering angle and limited
range of vehicle direction angle due to the non-monotonic
nonlinear functions involved in the model. Therefore,
switched gain observers with different gains in different
piecewise regions were required to cover the entire operating
range. Also, these observers assume constant velocity and are
not able to accurately estimate the states of vehicles with
variable velocities. Hence, this paper will design high-gain
observers allowing for variable velocity, guaranteed stability,
and guaranteed feasibility.

B. Challenges of High-Gain Observer Design

LMI (Linear Matrix Inequality) based nonlinear observers
[13, 14] are powerful tools in state estimation as they have
proof of stability and are relatively easy to implement in real-
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world cases. The observer gain needs to be found by solving

a LMI problem. If found, the LMI is feasible and the observer

dynamics will be stable. However, there is no guarantee that

a solution can be found for a specific application. Therefore,

one of the challenges of designing these observers is the

unknown feasibility of the LMI problem: the existence of
stable observer gains is not guaranteed.

A different kind of estimator is the high-gain observer [15].
For nonlinear systems in (transpose) companion form, stable
high-gain observers are guaranteed to exist, if the involved
nonlinear functions are Lipschitz [15, 16, 17]. Thus, the high-
gain observer always has a feasible solution, while the LMI-
based observers in general do not. With all the benefits of
using high-gain observers, very few real-world applications
of these observers can be found in the literature as the
transformation of the nonlinear systems into the required
companion form is non-trivial. Also, multi-output
applications of high-gain observers have been seldom (if at
all) utilized in the literature. In this paper, we show how to
design a high gain observer for a vehicle system that is
originally not in the companion form and has multiple
outputs. The design process can be inspiring for other systems
and might help lead to more practical applications of high-
gain observers in the future.

The primary contributions of the paper are as follows:

1) The paper presents the challenges in transforming the
vehicle tracking system model to the companion form
needed for high gain observer design. Both failure and
success in achieving this transformation are discussed.

2) This paper is possibly one of the first ever utilizations of a
multi-output  high gain observer to a real-world
application.

3) The paper demonstrates a successful solution to the
vehicle tracking application with significant advantages
compared to previous attempts in literature:

a) Unlike interacting-multiple-model filters which utilize
multiple linearized models, the developed high gain
observer provides guaranteed stability, does not use
linearization and is computationally more efficient.

b) Unlike LMI-based observers which do not have
guaranteed feasibility and require switched gains, the
high gain observer works with a single constant gain
over a wide range of operating conditions and has
guaranteed feasibility.

The outline of the paper is as follows. In section II, it is
shown how to transform the original vehicle model into the
companion form. Section III describes the design of a high-
gain observer for the multi-output vehicle model. Section IV
shows how the high-gain observer outperforms previous
nonlinear observers for vehicle tracking in simulation.
Experimental results for the high-gain observer are presented
in section V. Section VI contains the conclusions.

II. VEHICLE MODEL TRANSFORMATION

In this section, we investigate the transformation of a
vehicle model to the companion form needed for the high-
gain observer design. For each measured output of the system
(), the companion form needs the system to have a specific
relationship between the states of the following form:
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Since most systems are not in the companion form to start
with, one has to find a coordinate transformation to bring the
system into this form. A standard transformation of the
original vehicle model comes with significant disadvantages.
A modified model, on the other hand, is much more effective
for transformation into the companion form.

A. Original Vehicle Model

Fig. 2 shows a vehicle with velocity V, orientation (yaw)
angle v, slip angle 8, and steering angle &¢. In this paper, it
is assumed that the steering angle changes slowly, i.e., its
derivative is small. Such an assumption will hold for nominal
lane change and slow turning maneuvers. The original vehicle
(bicycle) model considered in this paper is [3]:

X =Vcos(y + B) (1)

Y =Vsin(y + B) ()

Y = V(cosB) tané; /1 (3)

6 =0 (4)

where the parameter [ is the wheelbase length of the vehicle:
l=1+1, Q)

Parameters I; and [, are shown in Fig. 1. Also, we use the
following relationship between the slip and steering angles

3]:
o ¢, tan(8;)
£ = tan 1<7€f — ) (©)

In this paper, the slip angle of the vehicle f is assumed to
change slowly and hence its rate of change is assumed to be
negligible or zero. Note that by rewriting (6) as:

tanf tan( 8y )
L1
and substituting in (3), we get:

Y =Vsing/l, ®)

(7




B.  Transformation of the Vehicle Model
We start with the following states and output vectors:
x=[X Y ¥ &ly=I[x vI )
Speed (V;) is not included in the state vector (9) but is

obtained approximately from numerical differentiation of the
measurements. The assumptions in the simplified model are:

V=0, V=V, f=0 (10)
leading to the following vehicle model (based on (1)- (10)):
):( V; cos(y)

. _|Y|_ | vasin(y)
Tl T Vllsin[?/lr an
J4 0

The companion form requires using the two outputs and
their derivatives as the states. To transform the model into
companion form, define:

=y =X, Wy, =y, =Y (12)
Find the derivative of (12) and use (1) and (2):

Wy =w; =X =V, cos(¥)) (13)

W, =w, =Y =V, sin(y) (14)

The dynamic of v is not captured yet and another
derivative is required. Use (11), (13), and (14) to obtain:

Wy =Wy =ws =X = —V2sinBsin@) /I, (15
W, =W, =wg =Y =VZsinfcos(y) /I,  (16)

Note that w; and W, cannot be written in terms of wy, w,,
w3, and w,. Therefore, based on (10), (11), (15), and (16):

W, = ws =X = —V3sin? B cos(y) /12 (17)
W, = Wwg =Y = —V3sin? g sin(y) /12 (18)
Considering (15)- (18), Lisinf smﬁ is related to the new states:
(Wew3 — W5W4)/V1 =Vysing /1, (19)
Replacing (19), (13), and (14) in (17) and (18):
2
WeW3 — WsW,
We = —wy <%> 20)
Vi
Wews — wswy )’
We = —w, (%) ©3))
V.
In summary, the transformed model in companion form is:
Wil 01 0 0 0 0 00
V}’3 0 01 0 0 O 0 0
- _|ws| 1o 0 0 0 0 0 10
W=1i|=lo 0 0 0 1 of"T|o of®™) 2D
W, 0 0 0 0 01 0 0
lw,) Lo 0o 0o o0 0 0 01
and
<W6W3 W5W4)
. —Ws
w
ron =[] = 23)
6 (W6W3 W5W4>
—w,

While the model (11) had four states, the transformed

system (22) has six states. The redundancy of model (22) can
be explained by two constraints. The first constraintis V = V;
from (10). Note that we have w; = X and w, = Y from (13)
and (14). The first constraint can be written as:
(24)
The second constraint comes from the constant velocity or
V = A =~ 0 based on (10). Note that from (15) and (16) we
have w3 = wy and W, = wg. Therefore, taking derivative
from (24) will give us the second constraint:

w2 +wi =V?

wiws + wawg = 0 (25)

A fourth order system has been translated to a sixth order
system plus two constraints. To design a high-gain observer
only model (20) must be utilized. The constraints (24) and
(25) must be ignored and cannot be utilized in the estimation,
since the high gain observer cannot utilize a model involving

constraint equations.

C. Transformation of a Modified Vehicle Model

By removing some of the assumptions in (10), we
improved the previous model and solved the issue with the
disadvantages of increase in system order:

i) Instead of constant velocity, we assume constant
acceleration so that the observer will have much better
performance when the velocity is changing.

it) Also, the assumption that the velocity V = V; is known
is no longer needed.

The states and output vectors for the improved model are:

x=X vy v Ay Bly=I[x vI" (26
Thus, two new states V and A have been added. The new
assumption is:

A=0 (27)
Also, from (4) and (6):
B =0 (28)
The improved vehicle model based on assumptions (27) is:
X Vcos(y + )
Pl vsinw + )
_|V|- A
X = A = 0 (29)
Y Vsinp /L.
It 0

Note that the model (29) is written w.r.t. a fixed frame. For
a moving sensor frame that does not rotate, model (29) will
represent the relative motion of the target vehicle w.r.t. the
sensor frame (e.g., Y will be the relative orientation). If the
sensor frame rotates, the variables V, 4, ¥, and 8 no longer
represent the true relative speed, acceleration, orientation, and
slip angle. But model (29) still will be valid for time-to-
collision estimation. The model (29) is in sixth order form but
not in the companion form and cannot directly be used for

high-gain observer design. Consider the following
transformed states and output vectors:
=lx x X v v vI"y=1I[x vI" (30

The transformed vehicle model can be written as:



z+ f(z) (31
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We need to calculate f(z) in equation (31):

=[] ][

The first step is to calculate the acceleration:

X = d—Vcos(l/) + ) —M Vsin(y + )

(32)

(33)

de—Vsin(1p+[>’)+ (lp ﬁ)V cos( + B)

dt
Use (29) in (33) and (34):

(34)

VZsinp
L

VZsinp

X=2z,=Acos(y +B) —

sin(yp + B) (35)

Y =z =Asin(y + ) + cos(P +B) (36)
or
2 .

: B i@ + B

Acos(Pp +fB) =z3 + (37

2

Asin(p + B) = z5 — ] P cos(y + B) (38)

Rewriting equations (35) and (36) in the following forms:

VZsinp
( [ sin( + ﬁ)) SN +B) )
= (z3 —Acos(y + B)) sin(¥ + B)
V2sinp
( L cos(y + ,8)) cos(P + f) (40)
= (z¢ — Asin(} + B)) cos(y + B)
Subtract (39) from (40):
VZsinp .
L = z5cos(Y + B) — zg sin(P + B) 41)
Note that from (29) and (30):

cos(y + B) = 72 (42)
sin(y + ) = 77 (43)

and velocity is assumed to be non-zero. It is true that vehicles
with zero velocity, such as parked cars, will be detected by
the RPLIDAR sensor. However, the tracks for such non-
moving vehicles will get dropped after recognition that these
are non-moving or static objects and are therefore not targets
for tracking. This is done in the real-time software which
controls how many tracks are updated every sampling interval
and which ones do not need to be updated. Using (42) and
(43), (41) is written as:

Vsinf  zgz, — 2325

L V2

(44)

The second step is to calculate jerk from (35) and (36) by
considering (28):

. d(X) dA
X = 7 —ECOS(lp +ﬁ)
—Asin(y + f) ——— (1,[1 +h)
dv sin ﬁ (43)
-2V — T sm(l,b +ﬁ)
VZsi
I cosy + gy LD
o d(Y) dA
Y = 7 = ESln(lp + ﬁ)d
+Acos(y + ) %
- dVsin 8 (46)
+ FT cos(y + )
VZsi +
TR Gsiny + gy TP
Implementing (27) and (29) in (45) and (46):
Vsin 3 n’ g
X=-34 l sin( + ) —————cos(y + B) (47)
Vsin B V3 si 2[3
=34 cos( + B) —————sin( + B) (48)
Use (37) and (38) in (47) and (48).
. . 2
X = -3z Vsinf +2V (V slm B) cos(Pp +B) (49)
. : 2
Y =3z, Vsinp +2V (V Slmﬁ) sin(p + B)  (50)
Use (42), (43), and (44) on (49) and (50):
X = 3z 2622[;22325 + 22, (@)2 (51
V=32, I g (RREEY ()
From (42) and (43):
V2 =1z%+2z2 (53)
Implement (53) on (51) and (52):
2
v o ZeZa — Z3Zs ZeZy — Z37Zs
vo-a e (M) o
2
_ ZgZy — Z3Zs ZgZy — Z37s
resn e (M) o

Summarizing, the transformed model in companion form
can be described as follows:
z=Fz+Gf(2),

y=Hz (56)

where
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and
2
ZeZy — ZaZ ZeZy — ZaZ
R e A )
@) = z2 + 72 z2 + 22 58)
2 ZgZy — Z3Zg ZgZy — Z3Zg ?
S z2+z2 5 2+ z2

The transformed model in (56) is in companion form and is
used for high-gain observer design in the next section. This is
the companion form for the multi-output case where the upper
diagonal with 1’s occurs in block-diagonal-matrix form.

III. MULTI- OUTPUT HIGH- GAIN OBSERVER DESIGN

While the single output high-gain observer design is well-
developed in the literature, the multi-output version is less
well-known and is not available in a standard system result
format in the literature. In this section, a multi- output high-
gain observer is designed for the transformed model (56).

A. The Observer Design Formulation
The observer dynamics is:
2=F24+Gf(2)+L(y—H2) (59)
Here L is the constant observer gain matrix. The observer
error dynamics Z is derived based on (56) and (59):
i=z2-2

=Fz+Gf(z) — F2—Gf(2)—L(y —HZ2)

=(F-LH)2+Gf(z,2)
where 2 = z — Zand f = f(z) — f(2). Here, we assume that
the nonlinear process equations are Lipschitz. In other words:

”fl”z < nllizll,, ”]Fz”2 < 7.l12ll, (61)
Define the following transformation for the error variables:

(60)

e=T"1(0)z (62)
and
6 0 0 o
TB(9)=[0 6 o], T(e)z[(f | 60>1(63)
3 B
0 0 6

This error conversion definition is the same as that used for
the error analysis in the high gain observer for the single
output case, but with the revised definition of the matrix 7(6)
of equation (63). Finding the transformed error variable
dynamics by implementing (62) on (60):

T(68)é = (F — LH)Te + Gf(z,2) (64)
or
é=(T*FT — KHT)e + T"*Gf(z,2)

K is the transformed observer gain matrix:

(65)

K=T"1L (66)
Note that:
T~FT = 6F (67)
and
HT = 6H (68)
Then, (65) is simplified as:
é=0(F—KH)e+T 'Gf(z2) (69)
Lemma 1. There exists ks > 0 such that:
TG (22|, < kellell (70)
Proof. Replacing matrices G and T from (57) and (63):
L 1 ~ ~1T
T6f@ =50 0 £ 0 0 ] (D
Using the 2 norm and the Lipschitz bounds of (61):
- 1 [. -
IT6f(z 2|, == /ff + f7
L — (72)
< gz 2zl
Implement the transformation (62) in (72):
- 1
IT=6f @D, < 53 v + V2 ITell,
(73)
1 2 2 3
SE vi +v: 6%l
The Cauchy-Schwarz inequality gives:
- 1
IT=16£ (2 2, < 55 [v? + v316° s llell,
(74)
= v +v7llell;
so:
ke = |y +v? (75)

and the proof is complete. m

Theorem 1. If there exists P > 0,1 > 0, Q, and 8 > 1 such
that:

FTP+PF —HTQ —QTH < —Al (76)
and
2k:A P
6> 6, = —L "< ’:‘1“"( ) (77)

in which A,,,,(.) is the maximum eigenvalue, then the
estimation error Z is exponentially stable by taking:

K =P1Q" (78)
Proof. Consider the following Lyapunov function candidate:
V = eTPe, P>0 (79)

and P is symmetric. Taking derivative of this Lyapunov
function:

V =2¢TPe +e"Pé
and replacing (69) in (80):
V =0e"[(F—KH)'P+ P(F — KH)]e
£T Tp—1 T -1 ra (81)
+f'(G'T *P)e+e"(PT T G)f

Exploiting inner product notation, equation (81) can be

(80)



modified as:
V = 6eT[FTP + PF — HTKTP — PKH]e

+2(T1Gf). (Pe) (82)
Using the Cauchy-Schwarz inequality:
V < 6e”[FTP + PF —HTK"P — PKH]e
+2|[ 7267 1Pl lell, (83)
For the positive definite Hermitian matrix P:
IPIlz = 1A(P) lmax = Amax(P) (84)

where 4;(P),i =1,2,...,n are the eigenvalues of P, and
Amax(P) = max A; is the largest eigenvalue. Use (70), (78),
L

and (84) in (83):

V< eT[0(FTP + PF — HTQ — Q"H) + 2k;Amax(P)I]e (85)
Based on (76) and (77):

V < eT[-20] + 2k Apax(P)]e

= (=26 + 2k Apax (P) ) eTe < 0

Since V(x) > 0 and V(x) < 0, by the Lyapunov stability
criteria, the estimation error converges to zero and so the
nonlinear observer is asymptotically stable. m

B. Synthesis of the Observer Gain for Vehicle Model

In summary, the key steps used in this paper to design the
high-gain observer for the vehicle tracking application are:
e Transformation of the system’s model into
companion form.
e Determination of the Lipschitz constants of the
new nonlinear functions in companion form.
¢ Finding the solution of the observer design LMI
to find the observer gain, explained in this section.
In this section, the observer gain L is obtained by solving
LMI (76) for A = 10, using the SEDUMI solver in MATLAB
software. We also added the constraint P < 3014, to limit
the A0, (P) and the resulting 6 from (77). The results are:

(86)

K=[11.73 20.25 -7.3 0 0 0
0

T
] @
0 0 11.73 20.25 -7.3

Amax(P) = 26.5 (88)
Parameter k¢ in (77) depends on the Lipschitz constants of
the complex nonlinear functions for this application that are
explicitly provided in equation (58). Finding these constants
on the R® space is challenging. For simplicity, the constants
are calculated for 1) = ¢ < 1 hyperplanes (constant ). From
(29) and (44):
. ZgZy — Z37g
'Lp - —_———
Therefore (58) can be simplified as:
f(z) =[-3czg + 2c%z, 3czgz + 2¢?z|T (90)
The yaw rate ¢ < 1 is in rad/sec and 3¢ > 2c?. Hence the
Lipschitz constants are 3¢ and
Y1 =Y2 = 3¢ o1

From (75) and (91), k; = \/y? + yZ = 3v2c. By taking

2+ ¢ (89)

ks = 1.25, we are assuming maximum vehicle Yaw angle
rate (Cpnqy) 0f 0.3 rad/s. The observer gain obtained from these
assumptions (with 8 = 6.7205) is:
L= [67620 82?)'1 281(?'5 67020 823(’)1 281(2)3 s]T ©2)
Theoretically, any 8 > 6, from equation (77) results in a
stable observer. Keeping the value of 8 minimal helps the
observer to perform better in the presence of measurement
noise. This is shown in the experimental results, by comparing
observer gain (92) with other observer gains obtained using
higher values of 6 = {8.6,8.7}.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulation Results

In this section, the high-gain observer is compared to a
previously designed nonlinear observer based on [13] using
MATLAB simulations. The high-gain observer is designed
based on a more accurate model compared to the nonlinear
observer in [13] which was based on model equation (11) that
required the constant velocity assumption. Consequently, it
outperforms the other observer (designated as “the LMI
nonlinear observer”) in most cases, as seen in the simulations.

The three scenarios considered for the simulations are:

i) the case that the vehicle moves with constant velocity

and zero steering angle (4 = 0,67 = 0),

il) the vehicle moves with constant velocity but with non-

zero steering angle (A = 0, 8¢ = const), and

iii) the vehicle moves with constant acceleration and non-

zero steering angle (A = const, §f = const).

For scenario 1), both the high-gain and the LMI nonlinear
observers have good performances in tracking the states as
acceleration and steering angles are both zero.

Fig. 2 shows the simulation results for scenario ii). Here it
can be seen that while the velocities components can still be
well estimated, the estimated vehicle orientation angle of the
LMI nonlinear observer has a drift compared to the actual
vehicle orientation and this drift grows with time.

Fig. 3 shows the simulation results for scenario iii). Here
the longitudinal velocity component and the vehicle
orientation angle estimated by the LMI nonlinear observer
both have significant drift compared to the actual variable
values. On the other hand, the high gain observer is able to
estimate both variables accurately with no drift.

TABLEI
OBSERVERS’ RMSE VALUES IN SIMULATIONS
w /4 v 7

Case # Observer Type @) | @) | @is) | @ad)
Simulation 1: Nonlinear 0.01 | 0.07 | 038 | 0.04
A=0
S§=0 High-Gain 0.00 | 0.05 | 029 | 0.04
jimu(l)ation 2: Nonlinear 0.01 | 0.07 04 | 0.10
§ _ 10°/s High-Gain 0.00 | 0.06 03 | 0.05
Simulation 3: Nonlinear 027 | 4.09 | 0.68 | 0.25
A=—-1m/s?
§=—5°/s High-Gain 0.00 | 048 | 0.55 | 0.04
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The root-mean-square errors of the observers for the
simulation results are presented in Table 1. The results show
that the high-gain observer has the best performance in
simulations. The nonlinear observer performs poorly in cases
where the speed is variable.

The advantage of the high-gain observer over the LMI-based

nonlinear observer is that the latter assumes a constant
velocity, while the former does not make this simplifying
assumption and therefore works better in practice. The model
theoretically derived for the use of the high gain observer did
not involve assumptions on velocity being constant.

B. EKF vs. High-Gain Observer in Simulation

To illustrate the advantages of the high-gain observer over
a standard estimation filter, namely the EKF, we have
compared the performance of these estimators for a special
scenario shown in Fig. 4. The EKF is designed based on
model (29), that includes the acceleration as part of the state
vector.
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Fig. 4. Simulation Results of Scenario iii: 4 = 10522, & =10°

For both observers, the same initial conditions are used.
The initial conditions, however, are taken to be inaccurate and
far from the correct state values on purpose, to better compare
the convergence properties of the observers. Fig. 4 shows that
the high-gain observer works significantly better than the
EKF in this case. In the EKF approach, the observer gain
varies in each time step, and depends on the state estimate
values. Therefore, a wrong initial condition that is far from
the true state value might result in a wrong observer gain. The
wrong observer gain could cause a low- convergence rate as
shown in Fig. 4.



C. Experimental Results

In addition to simulations, we performed experiments on
tracking vehicle trajectories on a real road traffic intersection
using a low-cost (~$500) RPLIDAR MAPPER sensor
mounted on a Ninebot MAX e-scooter. The specifications of
this sensor are provided in Table 2. Fig. 5 shows photo of the
prototype scooter instrumented with front sensors for tracking
vehicles and objects ahead of the scooter. A mounting pole
was fabricated and fixed to the scooter so that it is vertical,
and sensors mounted on it are aligned with the longitudinal
axis of travel. The two sensors mounted on the pole are a
monocular camera and the Lidar sensor. The camera is used
to record videos for reference. The e-scooter is kept stationary
for the experiments. The experimental results presented in this
paper consist of real driving scenarios taken from regular
vehicles operating on regular roads. Since e-scooters only
operate on local low-speed roads and not on highways, the
assumptions of low rate of change of acceleration and slip
angles for target vehicles are reasonable.

The goal in developing a system on the e-scooter to track
vehicle trajectories is to develop a system that can prevent car-
scooter collisions. By tracking the trajectories of vehicles in
the neighborhood of the e-scooter, it is possible to predict
whether a particular vehicle poses a danger to the scooter, in
which case a loud horn like audio is sounded by the e-scooter
to make the car driver aware of the presence of the scooter.

A few samples of the raw readings from the RPLIDAR
sensor are shown in Fig. 6. Since the RPLIDAR is a 2D Lidar
which continuously rotates 360 degrees while gathering
reflected distance data, it only gathers measurements with a
frequency of 10 Hz. The raw data of the type shown in Fig. 6
was used for all the estimation results presented in the paper.
The data in Fig. 6 shows samples of raw measurements for the
case where the target vehicle is moving straight perpendicular
to the e-scooter’s direction of travel. The right front corner of
this vehicle is chosen to be tracked. The estimated trajectory
of this vehicle is shown in Fig. 7. Note that the vehicle moves
straight from left to right as can be seen in Fig. 6. The
orientation estimation in Fig. 7 remains approximately at zero
throughout, which agrees with the straight motion along the x
axis. Furthermore, the estimate of longitudinal velocity (V)
of the vehicle increases over time, suggesting that the vehicle
is accelerating. While the raw data in Fig. 6 does not provide
a good idea of the vehicle’s trajectory, the estimates from the
observer in Fig. 7 clearly provide the lateral and longitudinal
positions, velocities and vehicle orientation of the tracked
vehicle. We use a forward and backward digital filter (filtfilt)
to obtain the reference signals (ground truth) for the states in
Fig. 7 and Fig. 8. Note that while future measurements are
used to find the reference signals, the high-gain observer only
uses the current measurement.

A different experiment is shown in Fig. 8, involving
tracking of a vehicle that initially travels on a road
perpendicular to the e-scooter’s direction and then turns left
in front of the e-scooter. The high gain observer provides
vehicle trajectory estimates that look very appropriate. The

estimate of the orientation angle for the vehicle goes from 180
degrees to 230 degrees as can be seen in Fig. 8. This result
agrees with the left-turning trajectory of the vehicle.

Fig. 5. RPLIDAR sensor and the camera on the Ninebot MAX e-Scooter.

o

6
s |
2
0

-20 -15 -10 -5 0
X(m)
Fig. 6. Samples of the raw data saved in an intersection using the RPLIDAR
sensor.

TABLEII
RPLIDAR MAPPER SENSOR SPECIFICATIONS
Frequency of Angular
Rt Data Refresh Range Resolution Accuracy
RPLIDAR °
MAPPER 10 Hz 0.1-40 m 0.75 +2 cm

Figs. 9 and 10, compare the experimental results for
different values of 8. The threshold value of 6 = 6.7205
chosen in section III shows the smoothest performance in the
experiments. Higher values lead to significantly more noise
in the estimates.

The experiment in Fig. 9 shows the tracking of a vehicle that
is travelling in a direction opposite to that of the e-scooter’s
travel. The vehicle travels straight, coming from a large
distance and eventually passing right next to the scooter. This
trajectory is nicely estimated, as seen in the y versus x plot at
the top of Fig. 9. Further, the estimated velocity components
and the vehicle orientation angle are appropriate. The lateral
velocity is fairly close to zero while the longitudinal velocity
has some variations. The vehicle orientation remains fairly
constant at an angle of -90 degrees which agrees with the
negative y direction motion of the vehicle. The experiment in
Fig. 10 shows a vehicle being tracked which is initially
travelling in a direction opposite to that of the e-scooter and
then turns left at the intersection just in front of the scooter.
Again, the trajectory of the vehicle is well estimated, as seen
in the top the y versus x plot of Fig. 10. The orientation of the
vehicle changes from roughly -90 degrees to approximately 0
degrees. This agrees with the fact that the vehicle towards the
end is travelling in the positive x direction.
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The results of both the simulations and the experiments
suggest that the high-gain observer can handle a large range
of vehicle orientation angles and can provide stable

scooter.

estimation results with just one constant gain.
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V. CONCLUSION

In this paper, a multi-output high-gain nonlinear observer
was designed for a vehicle trajectory tracking application. The
high gain observer approach has the advantages of guaranteed
feasibility and stability with one constant observer gain for a
wide range of motion. The challenges of transforming the
vehicle dynamic model into the companion form needed for



applying the high gain observer technique were addressed. A
coordinate transformation that allows for varying velocity and
varying slip angle was shown to be appropriate. The high gain
observer methodology for a dynamic system with multiple
outputs was presented. Finally, simulation and experimental
results on vehicle tracking were demonstrated. The
experimental results show that, with a high gain observer,
vehicle trajectories that span a large range of orientations can
be accurately tracked using just one constant observer gain.

REFERENCES

[1] T. Griber, S. Lupberger, M. Unterreiner and D. Schramm, "A Hybrid
Approach to Side-Slip Angle Estimation with Recurrent Neural
Networks and Kinematic Vehicle Models," IEEE Transactions on
Intelligent Transportation Systems, Vol. 4, No. 1, pp. 39-47, 2019.

[2] W. Jeon, A. Zemouche, et al, “Tracking of Vehicle Motion on
Highways and Urban Roads Using a Nonlinear Observer,” [EEE/ASME
Transactions on Mechatronics, Vol. 24, No. 2, April 2019.

[3] R. Rajamani, 2011. “Vehicle dynamics and control.” Springer Science
& Business Media.

[4] A. Petrovskaya and S. Thrun, “Model Based Vehicle Detection and
Tracking for Autonomous Urban Driving,” Auton. Robots, vol. 26, no.
2-3, pp. 123-139, Apr. 2009.

[5] W. Jeon, et al. "A Smart Bicycle That Protects Itself: Active Sensing
and Estimation for Car-Bicycle Collision Prevention." IEEE Control
Systems Magazine 41.3 (2021): 28-57.

[6] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation: Theory Algorithms and
Software. Hoboken, NJ, USA: Wiley, 2004.

[7] Xu, P., Xiong, L., Zeng, D., Deng, Z. et al., "IMM-KF Algorithm for
Multitarget Tracking of On-Road Vehicle," SAE Technical Paper 2020-
01-0117, 2020, https://doi.org/10.4271/2020-01-0117.

[8] D.Kim, K. Jo, M. Lee and M. Sunwoo, “L-Shaped Model Switching
Based Precise Motion Tracking of Moving Vehicles Using Laser
Scanners,” [EEE Transactions on Intelligent Transportation Systems,
Vol. 19, No. 2, Feb 2018.

[9] K. Jo, M. Lee, J. Kim and M. Sunwoo, “Tracking and Behavior
Reasoning of Moving Vehicles Based on Roadway Geometry
Constraints,” IEEE Transactions on Intelligent Transportation Systems,
Vol. 18, No. 2, Feb 2017.

[10] X. Cao,J. Lan, X.R. Li and Y. Liu, “Automotive Radar-Based Vehicle
Tracking Using Data-Region Association”, [EEE Transactions on
Intelligent Transportation Systems, Vol. 23, No. 7, July 2022.

[11] H. Movahedi, A. Zemouche, et al, "Comparative analysis of a nonlinear
observer and nonlinear Kalman filters for magnetic position
estimation." In 2023 American Control Conference (ACC), pp. 1030-
1035. IEEE, 2023.

[12] Movahedi, Hamidreza, et al. "Hybrid nonlinear observer for battery s
tate-of-charge estimation using nonmonotonic force measurements."
Advanced Control for Applications: Engineering and Industrial
Systems 2.3 (2020): e38.

[13] R. Rajamani, W. Jeon, H. Movahedi, and A. Zemouche, 2020. “On the
need for switched-gain observers for non-monotonic nonlinear
systems.” in Automatica, 114, p.108814.

[14] A. Zemouche, R. Rajamani, G. Phanomchoeng, B. Boulkroune, H.
Rafaralahy, and M. Zasadzinski, 2017. “Circle criterion-based %o
observer design for Lipschitz and monotonic nonlinear systems—
Enhanced LMI conditions and constructive discussions.” in
Automatica, 85, pp.412-425.

[15] H. K. Khalil, 2015. “Nonlinear control” (Vol. 406). New York: Pearson.

[16] N. Boizot, E. Busvelle, and J. P. Gauthier, 2010. “An adaptive high-
gain observer for nonlinear systems.” in Automatica, 46(9), pp.1483-
1488.

[17] A. Zemouche, F. Zhang, F. Mazenc, R. Rajamani, “High-gain nonlinear
observer with lower tuning parameter, /EEE Transactions on Automatic
Control, Vol. 64, No. 8, pp.3194-3209, Nov 20, 20138.

Hamidreza Alai obtained his B.Sc. and
M.Sc. degrees in mechanical engineering
from the Sharif University of Technology
and the University of Tehran, Tehran,
Iran in 2016 and 2019, respectively. He is
currently pursuing his Ph.D. degree at the

/ University of Minnesota, Twin Cities,
i i MN, USA. His research interests are in
state estimation, control, and mechanism design, including
applications in intelligent transportation and robotic systems.

Ali Zemouche received his Ph.D. degree
in automatic control in 2007, from the
University Louis Pasteur, Strasbourg,
France, where he also held a post-
doctorate position from October 2007 to
August 2008. Dr. Zemouche has been an
Associate Professor at the Centre de
Recherche en Automatique de Nancy
(CRAN UMR CNRS 7039) at the Université de Lorraine,
since September 2008. His research activities include
nonlinear systems, state observers, observer-based control,
time-delay systems, robust control, learning-based methods,
and application to real-world models. Dr. Zemouche is
currently associate editor in international journals: SIAM
Journal of Control and Optimization, Automatica, IEEE
Transactions on Automatic Control, European Journal of
Control, and IEEE Systems Journal. He is also a member of
the Conference Editorial Board of IEEE Control Systems
Society and IFAC TC2.3 (Non-Linear Control Systems).

Rajesh Rajamani (Fellow, I[EEE)
obtained his M.S. and Ph.D. degrees
from the University of California at
Berkeley in 1991 and 1993 respectively
and his B.Tech degree from the Indian
Institute of Technology at Madras in
1989. Dr. Rajamani is currently the
Benjamin Y.H. Liu-TSI Endowed
Professor of Mechanical Engineering at the University of
Minnesota. His active research interests include sensing and
estimation for smart mechanical systems.

Dr. Rajamani has co-authored over 185 journal papers and
is a co-inventor on 20 patent applications. He is the author of
the popular book “Vehicle Dynamics and Control” published
by Springer. Dr. Rajamani has served as Chair of the IEEE
Technical Committee on Automotive Control and is currently
Senior Editor of the [EEE Transactions on Intelligent
Transportation Systems. He is a Fellow of IEEE and ASME
and has been a recipient of the CAREER award from the
National Science Foundation, the Ralph Teetor Award from
SAE, the Charles Stark Draper Award from ASME, the O.
Hugo Schuck Award from the American Automatic Control
Council, and a number of best paper awards from conferences
and journals. Several inventions from his laboratory have
been commercialized through start-up ventures co-founded
by industry executives. One of these companies, Innotronics,
was recently recognized among the 35 Best University Start-
Ups of 2016 by the US National Council of Entrepreneurial
Tech Transfer.


https://doi.org/10.4271/2020-01-0117

