
  

  

Abstract— This paper focuses on the design of a multi-output 

high gain observer for a vehicle trajectory tracking application. 

Tracking the trajectories of other vehicles on the road is needed 

for many applications ranging from collision avoidance to 

autonomous driving. Previously, such trajectory tracking has 

been done using linearized dynamic models, interacting-

multiple-model (IMM) filters, or else by using LMI-based 

nonlinear observers. These estimation techniques suffer from 

some crucial shortcomings. Hence, this paper develops a high 

gain nonlinear observer for this application. The high gain 

observer approach offers the advantages of guaranteed 

feasibility and stability with just one constant observer gain for 

a wide range of motion. The challenges of transforming the 

vehicle dynamic model into the required companion form for 

applying the high gain observer technique are addressed. A 

coordinate transformation that allows for varying velocity and 

varying slip angle is shown to be appropriate. The high gain 

observer methodology for a dynamic system with multiple 

outputs is presented. Finally, simulation and experimental 

results on vehicle tracking are demonstrated. The experimental 

results show that, with a high gain observer, vehicle trajectories 

that span a large range of orientations can be accurately tracked 

using just one constant observer gain. 

Key words – vehicle trajectory estimation; vehicle control; filters; 

estimation algorithms; nonlinear observer; e-scooter. 

I. INTRODUCTION 

A. Vehicle Tracking Problem 

While estimation and control of the ego vehicle’s variables 

are crucial elements in autonomous driving [1], tracking 

surrounding vehicles is also a critical aspect for collision 

avoidance [2]. By tracking the trajectories of other vehicles 

on the road, essential variables in collision prediction (e. g. 

time-to-collision) can be calculated using estimates of the 

vehicles’ position, velocity, and orientation [3]. Hence, 

designing observers to accurately estimate surrounding 

vehicles’ states is valuable [4, 5]. However, vehicle motion 

typically involves nonlinear dynamic models. Some of the 

previous works addressed this problem by turning the original 

nonlinear model into multiple linear models typically 

including a “straight line driving” and a “constant turn rate 

driving” model [6, 7]. Using these linear models, they utilize 

Interacting Multiple Model (IMM) filters (e. g. IMM Kalman 

Filters) for state estimation [6, 7]. These papers based on 

linearization lack a proof of stability and do not cover all 

possible maneuvers. Also, implementing IMM filters is more 
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computationally demanding as they require real-time 

evaluation of each model’s probability. 

Several authors have recently explored new types of filters 

and estimators for vehicle tracking. For example, Kim, et.al., 

proposed a vehicle tracking algorithm based on a L-shaped 

vehicle model with switching for use with a laser scanner [8]. 

Jo, et. al. presented a unified vehicle tracking and behavior 

reasoning algorithm that simultaneously estimated the vehicle 

dynamic state and driver intentions based on a multiple model 

filter [9]. Cao, et. al. proposed a radar-based tracking method 

in which the vehicle’s rectangular area is partitioned into 

multiple regions and an approach is proposed to associate 

measurements with these regions [10]. All these methods 

relied on stochastic estimators or “filters”. Stochastic 

estimators such as the Kalman filter and the extended Kalman 

filter rely on linearization of the nonlinear vehicle motion 

model [9, 10]. When the inherent dynamic system model is 

nonlinear, the global stability of the estimator is not 

guaranteed [11, 12]. Compared to the extended Kalman filter, 

the nonlinear high-gain observer comes with guaranteed 

global stability for the entire operating range of the system. 

In the domain of deterministic model-based estimators or 

“observers”, a few papers have investigated the use of LMI-

based nonlinear observers for vehicle state estimation [2, 13]. 

Such nonlinear observers are obtained based on a single 

nonlinear model and include constant observer gains. Thus, 

they are easy to implement. However, they have some 

shortcomings including limited stability regions and 

simplifying assumptions in the model (e.g., assumption of 

constant velocity). The designed observers are guaranteed to 

be stable only for a small region of steering angle and limited 

range of vehicle direction angle due to the non-monotonic 

nonlinear functions involved in the model. Therefore, 

switched gain observers with different gains in different 

piecewise regions were required to cover the entire operating 

range. Also, these observers assume constant velocity and are 

not able to accurately estimate the states of vehicles with 

variable velocities. Hence, this paper will design high-gain 

observers allowing for variable velocity, guaranteed stability, 

and guaranteed feasibility. 

B. Challenges of High-Gain Observer Design 

LMI (Linear Matrix Inequality) based nonlinear observers 

[13, 14] are powerful tools in state estimation as they have 

proof of stability and are relatively easy to implement in real-
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world cases. The observer gain needs to be found by solving 

a LMI problem. If found, the LMI is feasible and the observer 

dynamics will be stable. However, there is no guarantee that 

a solution can be found for a specific application. Therefore, 

one of the challenges of designing these observers is the 

unknown feasibility of the LMI problem: the existence of 

stable observer gains is not guaranteed. 

A different kind of estimator is the high-gain observer [15]. 

For nonlinear systems in (transpose) companion form, stable 

high-gain observers are guaranteed to exist, if the involved 

nonlinear functions are Lipschitz [15, 16, 17]. Thus, the high-

gain observer always has a feasible solution, while the LMI-

based observers in general do not. With all the benefits of 

using high-gain observers, very few real-world applications 

of these observers can be found in the literature as the 

transformation of the nonlinear systems into the required 

companion form is non-trivial. Also, multi-output 

applications of high-gain observers have been seldom (if at 

all) utilized in the literature. In this paper, we show how to 

design a high gain observer for a vehicle system that is 

originally not in the companion form and has multiple 

outputs. The design process can be inspiring for other systems 

and might help lead to more practical applications of high- 

gain observers in the future. 

The primary contributions of the paper are as follows: 

1) The paper presents the challenges in transforming the 

vehicle tracking system model to the companion form 

needed for high gain observer design. Both failure and 

success in achieving this transformation are discussed. 

2) This paper is possibly one of the first ever utilizations of a 

multi-output high gain observer to a real-world 

application. 

3)  The paper demonstrates a successful solution to the 

vehicle tracking application with significant advantages 

compared to previous attempts in literature: 

a)  Unlike interacting-multiple-model filters which utilize 

multiple linearized models, the developed high gain 

observer provides guaranteed stability, does not use 

linearization and is computationally more efficient. 

b) Unlike LMI-based observers which do not have 

guaranteed feasibility and require switched gains, the 

high gain observer works with a single constant gain 

over a wide range of operating conditions and has 

guaranteed feasibility. 
The outline of the paper is as follows. In section II, it is 

shown how to transform the original vehicle model into the 
companion form. Section III describes the design of a high-
gain observer for the multi-output vehicle model. Section IV 
shows how the high-gain observer outperforms previous 
nonlinear observers for vehicle tracking in simulation. 
Experimental results for the high-gain observer are presented 
in section V. Section VI contains the conclusions. 

II. VEHICLE MODEL TRANSFORMATION 

In this section, we investigate the transformation of a 

vehicle model to the companion form needed for the high-

gain observer design. For each measured output of the system 

(𝑦𝑖), the companion form needs the system to have a specific 

relationship between the states of the following form: 

𝑦𝑖 = 𝑥𝑚 , 𝑥̇𝑚 = 𝑥𝑚+1, … , 𝑥̇𝑚+𝑟−1 = 𝑥𝑚+𝑟 , 𝑥̇𝑚+𝑟 = 𝑓(𝑥) 

Since most systems are not in the companion form to start 

with, one has to find a coordinate transformation to bring the 

system into this form. A standard transformation of the 

original vehicle model comes with significant disadvantages. 

A modified model, on the other hand, is much more effective 

for transformation into the companion form. 

A. Original Vehicle Model 

Fig. 2 shows a vehicle with velocity 𝑉, orientation (yaw) 

angle 𝜓, slip angle 𝛽, and steering angle 𝛿𝑓. In this paper, it 

is assumed that the steering angle changes slowly, i.e., its 

derivative is small. Such an assumption will hold for nominal 

lane change and slow turning maneuvers. The original vehicle 

(bicycle) model considered in this paper is [3]: 

 𝑋̇ = 𝑉 cos(𝜓 + 𝛽) (1) 

  𝑌̇ = 𝑉 sin(𝜓 + 𝛽) (2) 

  𝜓̇ = 𝑉(cos 𝛽) tan 𝛿𝑓 /𝑙 (3) 

 𝛿̇𝑓 = 0 (4) 

where the parameter 𝑙 is the wheelbase length of the vehicle: 

 𝑙 = 𝑙𝑓 + 𝑙𝑟  (5) 

Parameters 𝑙𝑓 and 𝑙𝑟  are shown in Fig. 1. Also, we use the 

following relationship between the slip and steering angles 

[3]: 

 
𝛽 = tan−1 (

ℓ𝑟 tan(𝛿𝑓)

ℓ𝑓 + ℓ𝑟

) (6) 

In this paper, the slip angle of the vehicle 𝛽 is assumed to 

change slowly and hence its rate of change is assumed to be 

negligible or zero. Note that by rewriting (6) as: 

 tan 𝛽

𝑙𝑟
=

tan(𝛿𝑓)

𝑙
 (7) 

and substituting in (3), we get: 

 𝜓̇ = 𝑉 sin 𝛽 /𝑙𝑟  (8) 

 

 
 

Fig. 1. Motion schematic and model variables for a Vehicle 



  

B. Transformation of the Vehicle Model 

We start with the following states and output vectors: 

 𝑥 = [𝑋 𝑌 𝜓 𝛿𝑓]𝑇 , 𝑦 =  [𝑋 𝑌]𝑇  (9) 

Speed (𝑉1) is not included in the state vector (9) but is 

obtained approximately from numerical differentiation of the 

measurements. The assumptions in the simplified model are: 

   𝑉̇ = 0, 𝑉 = 𝑉1, 𝛽̇ = 0 (10) 

leading to the following vehicle model (based on (1)- (10)): 

 

𝑥̇ =

[
 
 
 
𝑋̇
𝑌̇
𝜓̇

𝛽̇]
 
 
 

= [

𝑉1 cos(𝜓)
𝑉1 sin(𝜓)

𝑉1 sin 𝛽 /𝑙𝑟
0

]  (11) 

The companion form requires using the two outputs and 

their derivatives as the states. To transform the model into 

companion form, define: 

 𝑤1 = 𝑦1 = 𝑋, 𝑤2 =  𝑦2 = 𝑌 (12) 

Find the derivative of (12) and use (1) and (2): 

 𝑤̇1 = 𝑤3 = 𝑋̇ = 𝑉1 cos(𝜓) (13) 

 𝑤̇2 = 𝑤4 = 𝑌̇ = 𝑉1 sin(𝜓) (14) 

The dynamic of 𝜓̇ is not captured yet and another 

derivative is required. Use (11), (13), and (14) to obtain: 

 𝑤̈1 = 𝑤̇3 = 𝑤5 = 𝑋̈ = −𝑉1
2 sin 𝛽 sin(𝜓) /𝑙𝑟 (15) 

 𝑤̈2 = 𝑤̇4 = 𝑤6 = 𝑌̈ = 𝑉1
2 sin 𝛽 cos(𝜓) /𝑙𝑟 (16) 

Note that 𝑤̈1 and 𝑤̈2 cannot be written in terms of 𝑤1, 𝑤2, 

𝑤3, and 𝑤4. Therefore, based on (10), (11), (15), and (16): 

 𝑤⃛1 = 𝑤̇5 = 𝑋 = −𝑉1
3 sin2 𝛽 cos(𝜓) /𝑙𝑟

2 (17) 

 𝑤⃛2 = 𝑤̇6 = 𝑌 = −𝑉1
3 sin2 𝛽 sin(𝜓) /𝑙𝑟

2 (18) 

Considering (15)- (18), 
𝑉1 sin 𝛽

𝑙𝑟
 is related to the new states: 

 (𝑤6𝑤3 − 𝑤5𝑤4)/𝑉1
2  = 𝑉1 sin 𝛽 /𝑙𝑟 (19) 

Replacing (19), (13), and (14) in (17) and (18): 

 
𝑤̇5 = −𝑤3 (

𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

 (20) 

 
𝑤̇6 = −𝑤4 (

𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

 (21) 

In summary, the transformed model in companion form is: 

 

𝑤̇ =

[
 
 
 
 
 
𝑤1̇

𝑤̇3

𝑤̇5

𝑤̇2

𝑤̇4

𝑤̇6]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

𝑤 +

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

𝑓(𝑤)  (22) 

and 

 

𝑓(𝑤) = [
𝑤̇5

𝑤̇6
] =

[
 
 
 
 −𝑤3 (

𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

−𝑤4 (
𝑤6𝑤3 − 𝑤5𝑤4

𝑉1
2 )

2

]
 
 
 
 

 (23) 

While the model (11) had four states, the transformed 

system (22) has six states. The redundancy of model (22) can 

be explained by two constraints. The first constraint is 𝑉 = 𝑉1 

from (10). Note that we have 𝑤3 = 𝑋̇ and 𝑤4 = 𝑌̇ from (13) 

and (14). The first constraint can be written as: 

 𝑤3
2 + 𝑤4

2 = 𝑉1
2 (24) 

The second constraint comes from the constant velocity or 

𝑉̇ = 𝐴 ≈ 0 based on (10). Note that from (15) and (16) we 

have 𝑤̇3 = 𝑤5 and 𝑤̇4 = 𝑤6. Therefore, taking derivative 

from (24) will give us the second constraint: 

 𝑤3𝑤5 + 𝑤4𝑤6 = 0 (25) 

A fourth order system has been translated to a sixth order 

system plus two constraints. To design a high-gain observer 

only model (20) must be utilized. The constraints (24) and 

(25) must be ignored and cannot be utilized in the estimation, 

since the high gain observer cannot utilize a model involving 

constraint equations. 

C. Transformation of a Modified Vehicle Model 

By removing some of the assumptions in (10), we 

improved the previous model and solved the issue with the 

disadvantages of increase in system order: 

i) Instead of constant velocity, we assume constant 

acceleration so that the observer will have much better 

performance when the velocity is changing.  

ii) Also, the assumption that the velocity 𝑉 = 𝑉1 is known 

is no longer needed. 

The states and output vectors for the improved model are: 

 𝑥 = [𝑋 𝑌 𝑉 𝐴 𝜓 𝛽]𝑇 , 𝑦 =  [𝑋 𝑌]𝑇  (26) 

Thus, two new states 𝑉 and 𝐴 have been added. The new 

assumption is: 

 𝐴̇ ≈ 0 (27) 

Also, from (4) and (6): 

 𝛽̇ ≈ 0 (28) 

The improved vehicle model based on assumptions (27) is: 

 

𝑥̇ =

[
 
 
 
 
 
 
𝑋̇
𝑌̇
𝑉̇
𝐴̇
𝜓̇

𝛽̇]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑉 cos(𝜓 + 𝛽)

𝑉 sin(𝜓 + 𝛽)
𝐴
0

𝑉 sin 𝛽 /𝑙𝑟
0 ]

 
 
 
 
 

  (29) 

Note that the model (29) is written w.r.t. a fixed frame. For 

a moving sensor frame that does not rotate, model (29) will 

represent the relative motion of the target vehicle w.r.t. the 

sensor frame (e.g., 𝜓 will be the relative orientation). If the 

sensor frame rotates, the variables 𝑉, 𝐴, 𝜓, and 𝛽 no longer 

represent the true relative speed, acceleration, orientation, and 

slip angle. But model (29) still will be valid for time-to-

collision estimation. The model (29) is in sixth order form but 

not in the companion form and cannot directly be used for 

high-gain observer design. Consider the following 

transformed states and output vectors: 

 𝑧 = [𝑋 𝑋̇ 𝑋̈ 𝑌 𝑌̇ 𝑌̈]𝑇 , 𝑦 =  [𝑋 𝑌]𝑇  (30) 

The transformed vehicle model can be written as: 



  

 

𝑧̇ =

[
 
 
 
 
 
𝑋̇
𝑋̈
𝑋
𝑌̇
𝑌̈
𝑌]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

𝑧 +

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

𝑓(𝑧)  (31) 

We need to calculate 𝑓(𝑧) in equation (31): 

 
𝑓(𝑧) = [

𝑧̇3

𝑧̇6
] = [𝑋

𝑌
] = [

𝑓1(𝑧)
𝑓2(𝑧)

] (32) 

The first step is to calculate the acceleration: 

 
𝑋̈ =

𝑑𝑉

𝑑𝑡
cos(𝜓 + 𝛽) −

𝑑(𝜓 + 𝛽)

𝑑𝑡
𝑉 sin(𝜓 + 𝛽) (33) 

 
𝑌̈ =

𝑑𝑉

𝑑𝑡
sin(𝜓 + 𝛽) +

𝑑(𝜓 + 𝛽)

𝑑𝑡
𝑉 cos(𝜓 + 𝛽) (34) 

Use (29) in (33) and (34): 

 
𝑋̈ = 𝑧3 = 𝐴 cos(𝜓 + 𝛽) −

𝑉2 sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽) (35) 

 
𝑌̈ = 𝑧6 = 𝐴 sin(𝜓 + 𝛽) +

𝑉2 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) (36) 

or 

 
𝐴 cos(𝜓 + 𝛽) = 𝑧3 +

𝑉2 sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽) (37) 

 
𝐴 sin(𝜓 + 𝛽) = 𝑧6 −

𝑉2 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) (38) 

Rewriting equations (35) and (36) in the following forms: 

 
(−

𝑉2 sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽)) sin(𝜓 + 𝛽)

= (𝑧3 − 𝐴 cos(𝜓 + 𝛽)) sin(𝜓 + 𝛽) 

(39) 

 
(
𝑉2 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽)) cos(𝜓 + 𝛽)

= (𝑧6 − 𝐴 sin(𝜓 + 𝛽)) cos(𝜓 + 𝛽) 

(40) 

Subtract (39) from (40): 

 𝑉2 sin 𝛽

𝑙𝑟
= 𝑧6 cos(𝜓 + 𝛽) − 𝑧3 sin(𝜓 + 𝛽) (41) 

Note that from (29) and (30): 

 cos(𝜓 + 𝛽) =
𝑧2

𝑉
 (42) 

 sin(𝜓 + 𝛽) =
𝑧5

𝑉
 (43) 

and velocity is assumed to be non-zero. It is true that vehicles 

with zero velocity, such as parked cars, will be detected by 

the RPLIDAR sensor. However, the tracks for such non-

moving vehicles will get dropped after recognition that these 

are non-moving or static objects and are therefore not targets 

for tracking. This is done in the real-time software which 

controls how many tracks are updated every sampling interval 

and which ones do not need to be updated. Using (42) and 

(43), (41) is written as: 

 𝑉 sin 𝛽

𝑙𝑟
=

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
 (44) 

The second step is to calculate jerk from (35) and (36) by 

considering (28): 

 
𝑋 =

𝑑(𝑋̈)

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
cos(𝜓 + 𝛽) 

−𝐴 sin(𝜓 + 𝛽)
𝑑(𝜓 + 𝛽)

𝑑𝑡
 

−2𝑉
𝑑𝑉

𝑑𝑡

sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽) 

−
𝑉2 sin 𝛽

𝑙𝑟
(cos(𝜓 + 𝛽))

𝑑(𝜓 + 𝛽)

𝑑𝑡
 

(45) 

 

 
𝑌 =

𝑑(𝑌̈)

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
sin(𝜓 + 𝛽) 

+𝐴 cos(𝜓 + 𝛽)
𝑑(𝜓 + 𝛽)

𝑑𝑡
 

+2𝑉
𝑑𝑉

𝑑𝑡

sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) 

−
𝑉2 sin 𝛽

𝑙𝑟
(sin(𝜓 + 𝛽))

𝑑(𝜓 + 𝛽)

𝑑𝑡
 

(46) 

Implementing (27) and (29) in (45) and (46): 

𝑋 = −3𝐴
𝑉 sin 𝛽

𝑙𝑟
sin(𝜓 + 𝛽) −

𝑉3 sin2 𝛽

𝑙𝑟
2

cos(𝜓 + 𝛽) (47) 

 

𝑌 = 3𝐴
𝑉 sin 𝛽

𝑙𝑟
cos(𝜓 + 𝛽) −

𝑉3 sin2 𝛽

𝑙𝑟
2

sin(𝜓 + 𝛽) (48) 

Use (37) and (38) in (47) and (48): 

 
𝑋 = −3𝑧6

𝑉 sin 𝛽

𝑙𝑟
+ 2𝑉 (

𝑉 sin 𝛽

𝑙𝑟
)

2

cos(𝜓 + 𝛽) (49) 

 

 
𝑌 = 3𝑧3

𝑉 sin 𝛽

𝑙𝑟
+ 2𝑉 (

𝑉 sin 𝛽

𝑙𝑟
)

2

sin(𝜓 + 𝛽) (50) 

Use (42), (43), and (44) on (49) and (50): 

 
𝑋 = −3𝑧6

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
+ 2𝑧2 (

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
)

2

 (51) 

 

 
𝑌 = 3𝑧3

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
+ 2𝑧5 (

𝑧6𝑧2 − 𝑧3𝑧5

𝑉2
)

2

 (52) 

From (42) and (43): 

 𝑉2 = 𝑧2
2 + 𝑧5

2 (53) 

Implement (53) on (51) and (52): 

 
𝑋 = −3𝑧6

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧2 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

 (54) 

 

 
𝑌 = 3𝑧3

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧5 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

 (55) 

Summarizing, the transformed model in companion form 

can be described as follows: 

 𝑧̇ = 𝐹𝑧 + 𝐺𝑓(𝑧), 𝑦 = 𝐻𝑧 (56) 

where 



  

 

𝐹 =  

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

, 𝐺 =

[
 
 
 
 
 
0
0
1
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

, 

 

  𝐻 = [
1 0 0 0 0 0
0 0 0 1 0 0

] 

(57) 

and 

 

𝑓(𝑧) =

[
 
 
 
 −3𝑧6

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧2 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

3𝑧3

𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 + 2𝑧5 (
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 )

2

]
 
 
 
 

 (58) 

The transformed model in (56) is in companion form and is 

used for high-gain observer design in the next section. This is 

the companion form for the multi-output case where the upper 

diagonal with 1’s occurs in block-diagonal-matrix form. 

III. MULTI- OUTPUT HIGH- GAIN OBSERVER DESIGN 

While the single output high-gain observer design is well-

developed in the literature, the multi-output version is less 

well-known and is not available in a standard system result 

format in the literature. In this section, a multi- output high-

gain observer is designed for the transformed model (56).  

A. The Observer Design Formulation 

The observer dynamics is: 

 𝑧̇̂ = 𝐹𝑧̂ + 𝐺𝑓(𝑧̂) + 𝐿(𝑦 − 𝐻𝑧̂) (59) 

Here 𝐿 is the constant observer gain matrix. The observer 

error dynamics 𝑧̃ is derived based on (56) and (59): 

𝑧̇̃ = 𝑧̇ − 𝑧̇̂ 

 = 𝐹𝑧 + 𝐺𝑓(𝑧) −  𝐹𝑧̂ − 𝐺𝑓(𝑧̂) − 𝐿(𝑦 − 𝐻𝑧̂) (60) 

= (𝐹 − 𝐿𝐻)𝑧̃ + 𝐺𝑓(𝑧, 𝑧̂) 

where 𝑧̃ = 𝑧 − 𝑧̂ and 𝑓 = 𝑓(𝑧) − 𝑓(𝑧̂). Here, we assume that 

the nonlinear process equations are Lipschitz. In other words: 

 ‖𝑓1‖2
≤ 𝛾1‖𝑧̃‖2, ‖𝑓2‖2

≤ 𝛾2‖𝑧̃‖2 (61) 

Define the following transformation for the error variables: 

 𝑒 = 𝑇−1(𝜃)𝑧̃ (62) 

and 

𝑇𝐵(𝜃) = [

𝜃 0 0

0 𝜃2 0

0 0 𝜃3
] , 𝑇(𝜃) = [

𝑇𝐵 0
0 𝑇𝐵

] , 𝜃 > 1 (63) 

This error conversion definition is the same as that used for 

the error analysis in the high gain observer for the single 

output case, but with the revised definition of the matrix T(θ) 

of equation (63). Finding the transformed error variable 

dynamics by implementing (62) on (60): 

 𝑇(𝜃)𝑒̇ = (𝐹 − 𝐿𝐻)𝑇𝑒 + 𝐺𝑓(𝑧, 𝑧̂) (64) 

or 

 𝑒̇ = (𝑇−1𝐹𝑇 − 𝐾𝐻𝑇)𝑒 + 𝑇−1𝐺𝑓(𝑧, 𝑧̂) (65) 

𝐾 is the transformed observer gain matrix: 

 𝐾 = 𝑇−1𝐿 (66) 

Note that: 

 𝑇−1𝐹𝑇 = 𝜃𝐹 (67) 

and 

 𝐻𝑇 = 𝜃𝐻 (68) 

Then, (65) is simplified as: 

 𝑒̇ = 𝜃(𝐹 − 𝐾𝐻)𝑒 + 𝑇−1𝐺𝑓(𝑧, 𝑧̂) (69) 

Lemma 1. There exists 𝑘𝑓 > 0 such that: 

 ‖𝑇−1𝐺𝑓(𝑧, 𝑧̂)‖
2

≤ 𝑘𝑓‖𝑒‖2 (70) 

Proof. Replacing matrices 𝐺 and 𝑇 from (57) and (63): 

 
𝑇−1𝐺𝑓(𝑧) =

1

𝜃3
[0 0 𝑓1 0 0 𝑓2]

𝑇
 (71) 

Using the 2 norm and the Lipschitz bounds of (61): 

 
‖𝑇−1𝐺𝑓(𝑧, 𝑧̂)‖

2
=

1

𝜃3
√𝑓1

2 + 𝑓2
2

≤
1

𝜃3
√𝛾1

2 + 𝛾2
2‖𝑧̃‖2 

(72) 

Implement the transformation (62) in (72): 

 
‖𝑇−1𝐺𝑓(𝑧, 𝑧̂)‖

2
≤

1

𝜃3
√𝛾1

2 + 𝛾2
2‖𝑇𝑒‖2

≤
1

𝜃3
√𝛾1

2 + 𝛾2
2‖𝜃3𝑒‖2 

(73) 

The Cauchy-Schwarz inequality gives: 

 
‖𝑇−1𝐺𝑓(𝑧, 𝑧̂)‖

2
≤

1

𝜃3
√𝛾1

2 + 𝛾2
2‖𝜃3‖2‖𝑒‖2

= √𝛾1
2 + 𝛾2

2‖𝑒‖2 

(74) 

so: 

 
𝑘𝑓 = √𝛾1

2 + 𝛾2
2 (75) 

and the proof is complete. ∎ 

Theorem 1. If there exists 𝑃 > 0, 𝜆 > 0, 𝑄, and 𝜃 > 1 such 

that: 

 𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝑄 − 𝑄𝑇𝐻 < −𝜆𝐼 (76) 

and 

 
𝜃 > 𝜃0 =

2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)

𝜆
 (77) 

in which 𝜆𝑚𝑎𝑥(. ) is the maximum eigenvalue, then the 

estimation error 𝒛̃ is exponentially stable by taking: 

 𝐾 = 𝑃−1𝑄𝑇 (78) 

Proof. Consider the following Lyapunov function candidate: 

 𝑉 = 𝑒𝑇𝑃𝑒, 𝑃 > 0 (79) 

and 𝑃 is symmetric. Taking derivative of this Lyapunov 

function: 

 𝑉̇ = 𝑒̇𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑒̇ (80) 

and replacing (69) in (80): 

 𝑉̇ = 𝜃𝑒𝑇[(𝐹 − 𝐾𝐻)𝑇𝑃 + 𝑃(𝐹 − 𝐾𝐻)]𝑒 

+𝑓𝑇(𝐺𝑇𝑇−1𝑃)𝑒 + 𝑒𝑇(𝑃𝑇−1𝐺)𝑓 
(81) 

Exploiting inner product notation, equation (81) can be 



  

modified as:  

 𝑉̇ = 𝜃𝑒𝑇[𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝐾𝑇𝑃 − 𝑃𝐾𝐻]𝑒 

+2(𝑇−1𝐺𝑓). (𝑃𝑒) 
(82) 

Using the Cauchy-Schwarz inequality: 

 𝑉̇ ≤ 𝜃𝑒𝑇[𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝐾𝑇𝑃 − 𝑃𝐾𝐻]𝑒 

+2‖𝑇−1𝐺𝑓‖
2
‖𝑃‖2‖𝑒‖2 

(83) 

For the positive definite Hermitian matrix 𝑃: 

 ‖𝑃‖2 = |𝜆(𝑃)|𝑚𝑎𝑥 = 𝜆𝑚𝑎𝑥(𝑃) (84) 

where 𝜆𝑖(𝑃), 𝑖 = 1,2, . . . , 𝑛 are the eigenvalues of 𝑃, and 

𝜆𝑚𝑎𝑥(𝑃) = max
𝑖

𝜆𝑖 is the largest eigenvalue. Use (70), (78), 

and (84) in (83): 

 𝑉̇ ≤ 𝑒𝑇[𝜃(𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝑄 − 𝑄𝑇𝐻) + 2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)𝐼]𝑒 (85) 

Based on (76) and (77): 

 𝑉̇ ≤ 𝑒𝑇[−𝜆𝜃𝐼 + 2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)𝐼]𝑒

= (−𝜆𝜃 + 2𝑘𝑓𝜆𝑚𝑎𝑥(𝑃)) 𝑒𝑇𝑒 < 0 
(86) 

Since 𝑉(𝑥) > 0 and 𝑉̇(𝑥) < 0, by the Lyapunov stability 

criteria, the estimation error converges to zero and so the 

nonlinear observer is asymptotically stable.  ∎ 

B. Synthesis of the Observer Gain for Vehicle Model 

In summary, the key steps used in this paper to design the 

high-gain observer for the vehicle tracking application are: 

• Transformation of the system’s model into 

companion form. 

• Determination of the Lipschitz constants of the 

new nonlinear functions in companion form. 

• Finding the solution of the observer design LMI 

to find the observer gain, explained in this section. 

In this section, the observer gain 𝐿 is obtained by solving 

LMI (76) for 𝜆 = 10, using the SEDUMI solver in MATLAB 

software. We also added the constraint 𝑃 < 30𝐼6×6 to limit 

the 𝜆𝑚𝑎𝑥(𝑃) and the resulting 𝜃 from (77). The results are: 

 

𝐾 = [
11.73

0
20.25

0
−7.3

0
0

11.73
0

20.25
0

−7.3
]
𝑇

 (87) 

 𝜆𝑚𝑎𝑥(𝑃) = 26.5 (88) 

Parameter 𝑘𝑓 in (77) depends on the Lipschitz constants of 

the complex nonlinear functions for this application that are 

explicitly provided in equation (58). Finding these constants 

on the ℝ6 space is challenging. For simplicity, the constants 

are calculated for 𝜓̇ = 𝑐 < 1 hyperplanes (constant 𝜓̇). From 

(29) and (44): 

 𝜓̇ =
𝑧6𝑧2 − 𝑧3𝑧5

𝑧2
2 + 𝑧5

2 = 𝑐 (89) 

Therefore (58) can be simplified as: 

 𝑓(𝑧) = [−3𝑐𝑧6 + 2𝑐2𝑧2 3𝑐𝑧3 + 2𝑐2𝑧5]
𝑇 (90) 

The yaw rate 𝑐 < 1 is in 𝑟𝑎𝑑/𝑠𝑒𝑐 and 3𝑐 > 2𝑐2. Hence the 

Lipschitz constants are 3c and  

 𝛾1 = 𝛾2 ≈ 3𝑐 (91) 

From (75) and (91), 𝑘𝑓 = √𝛾1
2 + 𝛾2

2 = 3√2𝑐. By taking 

𝑘𝑓 = 1.25, we are assuming maximum vehicle Yaw angle 

rate (𝑐𝑚𝑎𝑥) of 0.3 rad/s. The observer gain obtained from these 

assumptions (with 𝜃 = 6.7205) is: 

𝐿 = [
67.20 823.1 2818.5 0          0           0

0          0           0 67.20 823.1 2818.5
]
𝑇

 (92) 

Theoretically, any 𝜃 > 𝜃0  from equation (77) results in a 

stable observer. Keeping the value of 𝜃 minimal helps the 

observer to perform better in the presence of measurement 

noise. This is shown in the experimental results, by comparing 

observer gain (92) with other observer gains obtained using 

higher values of 𝜃 = {8.6, 8.7}. 

IV. SIMULATIONS AND EXPERIMENTS 

A. Simulation Results  

In this section, the high-gain observer is compared to a 

previously designed nonlinear observer based on [13] using 

MATLAB simulations. The high-gain observer is designed 

based on a more accurate model compared to the nonlinear 

observer in [13] which was based on model equation (11) that 

required the constant velocity assumption.  Consequently, it 

outperforms the other observer (designated as “the LMI 

nonlinear observer”) in most cases, as seen in the simulations.  

The three scenarios considered for the simulations are:  

i) the case that the vehicle moves with constant velocity 

and zero steering angle (𝐴 = 0, 𝛿𝑓 = 0),  

ii) the vehicle moves with constant velocity but with non-

zero steering angle (𝐴 = 0, 𝛿𝑓 = 𝑐𝑜𝑛𝑠𝑡), and 

iii) the vehicle moves with constant acceleration and non-

zero steering angle (𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝛿𝑓 = 𝑐𝑜𝑛𝑠𝑡).  

For scenario i), both the high-gain and the LMI nonlinear 

observers have good performances in tracking the states as 

acceleration and steering angles are both zero.  

Fig. 2 shows the simulation results for scenario ii). Here it 

can be seen that while the velocities components can still be 

well estimated, the estimated vehicle orientation angle of the 

LMI nonlinear observer has a drift compared to the actual 

vehicle orientation and this drift grows with time. 

Fig. 3 shows the simulation results for scenario iii). Here 

the longitudinal velocity component and the vehicle 

orientation angle estimated by the LMI nonlinear observer 

both have significant drift compared to the actual variable 

values. On the other hand, the high gain observer is able to 

estimate both variables accurately with no drift. 
TABLE I 

OBSERVERS’ RMSE VALUES IN SIMULATIONS 

Case # Observer Type 
𝑤̃ 

(m) 
𝑉𝑥̃  

(m/s) 
𝑉𝑦̃  

(m/s) 
𝜓̃ 

(rad) 

Simulation 1: 

𝐴 = 0 

𝛿̇ = 0 

Nonlinear 0.01 0.07 0.38 0.04 

High-Gain 0.00 0.05 0.29 0.04 

Simulation 2:  

𝐴 = 0 

𝛿̇ = 10 °/𝑠 

Nonlinear 0.01 0.07 0.4 0.10 

High-Gain 0.00 0.06 0.3 0.05 

Simulation 3:  

𝐴 = −1 𝑚/𝑠2 

𝛿̇ = −5 °/𝑠 

Nonlinear 0.27 4.09 0.68 0.25 

High-Gain 0.00 0.48 0.55 0.04 



  

 

 

 

 
Fig. 2. Simulation Results of Scenario ii: 𝐴 = 0, 𝛿𝑓 = 10° 

 

 

 

 
Fig. 3. Simulation Results of Scenario iii: 𝐴 = −1

𝑚

𝑠2
, 𝛿𝑓 = 10° 

The root-mean-square errors of the observers for the 

simulation results are presented in Table 1. The results show 

that the high-gain observer has the best performance in 

simulations. The nonlinear observer performs poorly in cases 

where the speed is variable.  

The advantage of the high-gain observer over the LMI-based 

nonlinear observer is that the latter assumes a constant 

velocity, while the former does not make this simplifying 

assumption and therefore works better in practice. The model 

theoretically derived for the use of the high gain observer did 

not involve assumptions on velocity being constant. 

B. EKF vs. High-Gain Observer in Simulation 

To illustrate the advantages of the high-gain observer over 

a standard estimation filter, namely the EKF, we have 

compared the performance of these estimators for a special 

scenario shown in Fig. 4. The EKF is designed based on 

model (29), that includes the acceleration as part of the state 

vector.  

 

 

 

 

Fig. 4. Simulation Results of Scenario iii: 𝐴 = 10
𝑚

𝑠2
, 𝛿𝑓 = 10° 

For both observers, the same initial conditions are used. 

The initial conditions, however, are taken to be inaccurate and 

far from the correct state values on purpose, to better compare 

the convergence properties of the observers. Fig. 4 shows that 

the high-gain observer works significantly better than the 

EKF in this case. In the EKF approach, the observer gain 

varies in each time step, and depends on the state estimate 

values. Therefore, a wrong initial condition that is far from 

the true state value might result in a wrong observer gain. The 

wrong observer gain could cause a low- convergence rate as 

shown in Fig. 4.   

 



  

C. Experimental Results  

In addition to simulations, we performed experiments on 

tracking vehicle trajectories on a real road traffic intersection 

using a low-cost (~$500) RPLIDAR MAPPER sensor 

mounted on a Ninebot MAX e-scooter. The specifications of 

this sensor are provided in Table 2. Fig. 5 shows photo of the 

prototype scooter instrumented with front sensors for tracking 

vehicles and objects ahead of the scooter. A mounting pole 

was fabricated and fixed to the scooter so that it is vertical, 

and sensors mounted on it are aligned with the longitudinal 

axis of travel. The two sensors mounted on the pole are a 

monocular camera and the Lidar sensor. The camera is used 

to record videos for reference. The e-scooter is kept stationary 

for the experiments. The experimental results presented in this 

paper consist of real driving scenarios taken from regular 

vehicles operating on regular roads. Since e-scooters only 

operate on local low-speed roads and not on highways, the 

assumptions of low rate of change of acceleration and slip 

angles for target vehicles are reasonable.  

The goal in developing a system on the e-scooter to track 

vehicle trajectories is to develop a system that can prevent car-

scooter collisions. By tracking the trajectories of vehicles in 

the neighborhood of the e-scooter, it is possible to predict 

whether a particular vehicle poses a danger to the scooter, in 

which case a loud horn like audio is sounded by the e-scooter 

to make the car driver aware of the presence of the scooter.  

A few samples of the raw readings from the RPLIDAR 

sensor are shown in Fig. 6. Since the RPLIDAR is a 2D Lidar 

which continuously rotates 360 degrees while gathering 

reflected distance data, it only gathers measurements with a 

frequency of 10 Hz. The raw data of the type shown in Fig. 6 

was used for all the estimation results presented in the paper. 

The data in Fig. 6 shows samples of raw measurements for the 

case where the target vehicle is moving straight perpendicular 

to the e-scooter’s direction of travel. The right front corner of 

this vehicle is chosen to be tracked. The estimated trajectory 

of this vehicle is shown in Fig. 7. Note that the vehicle moves 

straight from left to right as can be seen in Fig. 6. The 

orientation estimation in Fig. 7 remains approximately at zero 

throughout, which agrees with the straight motion along the 𝑥 

axis. Furthermore, the estimate of longitudinal velocity (𝑉𝑥) 

of the vehicle increases over time, suggesting that the vehicle 

is accelerating. While the raw data in Fig. 6 does not provide 

a good idea of the vehicle’s trajectory, the estimates from the 

observer in Fig. 7 clearly provide the lateral and longitudinal 

positions, velocities and vehicle orientation of the tracked 

vehicle. We use a forward and backward digital filter (filtfilt) 

to obtain the reference signals (ground truth) for the states in 

Fig. 7 and Fig. 8. Note that while future measurements are 

used to find the reference signals, the high-gain observer only 

uses the current measurement. 

A different experiment is shown in Fig. 8, involving 

tracking of a vehicle that initially travels on a road 

perpendicular to the e-scooter’s direction and then turns left 

in front of the e-scooter. The high gain observer provides 

vehicle trajectory estimates that look very appropriate. The 

estimate of the orientation angle for the vehicle goes from 180 

degrees to 230 degrees as can be seen in Fig. 8. This result 

agrees with the left-turning trajectory of the vehicle.  
 

 
 

Fig. 5. RPLIDAR sensor and the camera on the Ninebot MAX e-Scooter. 

 

 
Fig. 6. Samples of the raw data saved in an intersection using the RPLIDAR 

sensor. 

TABLE II 

RPLIDAR MAPPER SENSOR SPECIFICATIONS 

Sensor 
Frequency of 

Data Refresh 
Range 

Angular 

Resolution 
Accuracy 

RPLIDAR 

MAPPER 
10 Hz  0.1-40 m  0.75° ±2 cm 

 

Figs. 9 and 10, compare the experimental results for 

different values of 𝜃. The threshold value of 𝜃 = 6.7205 

chosen in section III shows the smoothest performance in the 

experiments. Higher values lead to significantly more noise 

in the estimates. 

The experiment in Fig. 9 shows the tracking of a vehicle that 

is travelling in a direction opposite to that of the e-scooter’s 

travel. The vehicle travels straight, coming from a large 

distance and eventually passing right next to the scooter. This 

trajectory is nicely estimated, as seen in the 𝑦 versus 𝑥 plot at 

the top of Fig. 9. Further, the estimated velocity components 

and the vehicle orientation angle are appropriate. The lateral 

velocity is fairly close to zero while the longitudinal velocity 

has some variations. The vehicle orientation remains fairly 

constant at an angle of -90 degrees which agrees with the 

negative 𝑦 direction motion of the vehicle. The experiment in 

Fig. 10 shows a vehicle being tracked which is initially 

travelling in a direction opposite to that of the e-scooter and 

then turns left at the intersection just in front of the scooter.  

Again, the trajectory of the vehicle is well estimated, as seen 

in the top the 𝑦 versus 𝑥 plot of Fig. 10. The orientation of the 

vehicle changes from roughly -90 degrees to approximately 0 

degrees. This agrees with the fact that the vehicle towards the 

end is travelling in the positive 𝑥 direction.  



  

 

 

 

 
Fig. 7. Estimation results of vehicle 1 which moves straight forward from 

left to right. 

 

 

 

 
Fig. 8. Estimation results of vehicle 2 which turns left in front of the e-

scooter. 

 

The results of both the simulations and the experiments 

suggest that the high-gain observer can handle a large range 

of vehicle orientation angles and can provide stable 

estimation results with just one constant gain. 

 

 

 

 
Fig. 9. Estimation results of vehicle 3 which moves in opposite direction to 

the e-scooter. 

 

 

 

 
Fig. 10. Estimation results of vehicle 4 which moves in opposite direction 

and then turns left in front of the e-scooter. 

V. CONCLUSION 

In this paper, a multi-output high-gain nonlinear observer 

was designed for a vehicle trajectory tracking application. The 

high gain observer approach has the advantages of guaranteed 

feasibility and stability with one constant observer gain for a 

wide range of motion. The challenges of transforming the 

vehicle dynamic model into the companion form needed for 



  

applying the high gain observer technique were addressed. A 

coordinate transformation that allows for varying velocity and 

varying slip angle was shown to be appropriate. The high gain 

observer methodology for a dynamic system with multiple 

outputs was presented. Finally, simulation and experimental 

results on vehicle tracking were demonstrated. The 

experimental results show that, with a high gain observer, 

vehicle trajectories that span a large range of orientations can 

be accurately tracked using just one constant observer gain. 
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