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ARTICLE INFO ABSTRACT
Keywords: Forest productivity and response to silvicultural treatments are dependent on inherent site resource availability
Loblolly pine and limitations. Trees have deeper rooting profiles than agronomic crops, so evaluating the impacts of soils,

Soil classification geology, and physiographic province on forest productivity can help guide silvicultural management decisions in

giologyd ivit southern pine plantations. Here, we describe the Forest Productivity Cooperative’s “Site Productivity Optimi-
1te productivil . N N . . . .
Site fn dex Y zation for Trees” (SPOT) system which includes: texture, depth to increase in clay content, drainage class, soil

modifiers (i.e., surface attributes, mineralogy, and additional limitations such as root restrictions), geologic
formations, and physiographic province. We quantified the total area for each SPOT code in the native range of
loblolly pine (Pinus taeda L.), the region’s most commercially important species, and used a remotely-sensed
layer to quantify SPOT code areas in managed southern pine (approximately 14 million ha). The most com-
mon SPOT code in the native range is also the most planted, a B2WekoGgPD (fine loamy, shallow depth to
increase in clay, well-drained, eroded, kaolinitic, granitic, Piedmont soil), spanning 1.1 million ha total, but only
12% in managed southern pine. However, the SPOT code with the greatest percentage of managed southern pine
(61%; a D4PoioAmAF, spodic, deep to increase in clay, siliceous, middle Atlantic Coastal Plain, Flatwoods soil)
was the 20th most common in the native range with 474,662 ha. We used machine learning and data from
decades of “Regionwide” trials to assess the variable importance of SPOT constituents, climate, planting year,
and N rate on site index (base age 25 years) and found that planting year was the most important variable,
showing an increase of 17 cm site index per year since 1970, followed by maximum vapor pressure deficit, and
precipitation. Geology was the top-ranking SPOT variable to explain site index followed by physiographic
province. The Regionwide trials represent 72 unique SPOT codes (out of over 10,000 possible in the pine
plantations) and approximately one million ha (or about 7% of all soils identified as supporting managed pine).
To extrapolate site index values outside of the unique soil and geologic conditions empirically represented, we
created a predictive model with an R? of 0.79 and an RMSE of 1.38 m from SPOT codes alone. With this
extrapolation, the Regionwide data predicts 10.5 million ha, or 74%, of all soils under loblolly pine management
in its native range. Overall, this system will allow managers to assess their current site productivity, and

Forest fertilization

Abbreviations: FPC, Forest Productivity Cooperative; RW, Regionwide; SPOT, Site Productivity Optimization for Trees.
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recommend silvicultural treatments, thus, providing a framework to optimize forest productivity in pine plan-

tations in the southeastern US.

1. Introduction

Loblolly pine (Pinus taeda L.) is the most economically important and
widely planted tree species in the southeastern US, making up 71% of
planted timberland in the US and producing more timber than any other
country in the world (Johnston et al., 2022; Oswalt et al., 2019; Pre-
stemon and Abt, 2002). Vast improvements in productivity over the
decades have been achieved through silvicultural management such as
fertilization, vegetation control, and site preparation (Carter et al.,
2015; Fox et al., 2007a) in combination with improvements in genetics
(McKeand et al., 2021). However, to continue to increase productivity to
meet increasing global demand, appropriate management practices
must be applied on a site-specific basis.

Forest managers need to know observed and potential productivity,
and likely site resource limitations, in order to evaluate if it is feasible to
increase growth with silvicultural tools. Site index is a useful measure of
productivity because it is generally independent of stand density and
sensitive to inherent site quality and silvicultural management (Roth,
1916; Tesch, 1980). Site index is defined as the dominant height of a
given species at a particular “base” age, usually age 25 years for planted,
managed loblolly pine. Currently, base age 50 site index values are
available from the US Department of Agriculture’s Natural Resource
Conservation Service (USDA NRCS) at a soil series level, but are typi-
cally based on decades-old information from unimproved, unmanaged
stands and do not accurately represent current managed loblolly pine
forests.

Furthermore, the USDA’s soil taxonomic system, while an excep-
tional soil classification system for a broad range of uses, was primarily
developed for agricultural soils. Soil series in NRCS are problematic as
they were not classified to differentiate forest potential productivity.
Long-lived and deeply rooted forest systems are more sensitive to subsoil
properties than agricultural systems and series can be mapped across a
variety of geologic parent material or formations. Parent material
greatly influences soil nutrient availability (Moore et al., 2022), and
while in some ways this is part of the USDA Soil Taxonomy, is not always
directly incorporated. Unfortunately, non-priority landscapes such as
forests, wetlands, and rangelands were typically mapped at a coarser
scale (Order 3 soil survey) than intensively managed agricultural areas
(Order 2 soil survey, Soil Science Division Staff, 2017), resulting in
larger map units that include more dissimilar soil components (com-
plexes, associations, and undifferentiated soil units) which creates
greater uncertainty within forested landscapes of the southeastern US.
Fortunately, variables can be extracted from map units within the NRCS’
Soil Survey Geographic Database (SSURGO; Soil Survey Staff, 2021) that
relate to forest productivity and geology can be extracted from other
sources.

Much of the early work to specifically classify soils for managed
southern pines was performed by Theodore Coile who predicted site
productivity with the “factorial method” using continuous variables and
relied heavily on subsoil texture and drainage class (Coile, 1952). The
limitation of the factorial method lies in the fact that different resources
may be limiting at different sites. This system was modified by Fisher
and Garbett (1980) into the Cooperative Research in Forest Fertilization
(CRIFF) system, specifically targeting soil management in the Atlantic
Flatwoods physiographic region. The Strategically Aligned Integrated
Silvicultural System (SAISS), developed by Jim Gent and others for
Champion and later International Paper, was built on the CRIFF soil
system and became one of the most widely utilized and recognized soil
systems in plantation forestry. SAISS included soil mineralogy, soil
modifiers, and a decision support system relating soils and management
to potential growth response across the 2.8 million ha landbase of

International Paper, but was never published. Many forestry companies
developed soil systems internally to aid in forest management (Morris
and Campbell, 1991), but most were regional efforts specific to a rela-
tively small number of soils.

To address the need for southeast-wide site productivity information,
the Forest Productivity Cooperative (FPC), a university-public-private
partnership that focuses on management of site resources for inten-
sively managed plantation forestry, developed a system that includes
factors known to influence forest productivity and response to man-
agement from decades of empirical research. Codes, similar to the Coile-
CRIFF-SAISS tradition, were developed to capture potential resource
availability and limitations such as texture, depth to an increase in clay
content, drainage class, mineralogy, root restrictions, geology, and
physiographic province across the range of loblolly pine. Now, with
decades of field trials spanning the southeastern US and improved GIS
capabilities, we have the capacity to test predictions of site productivity
and create recommendations for silvicultural management on a site-
specific basis.

The goal of this effort was to create a system specifically designed for
production forestry that can be used to predict site productivity and
inform management decisions. The objectives for this study were spe-
cifically to 1) describe the classification system, 2) evaluate the variable
importance of soils, geology, physiographic province, climate, nutrient
addition, and planting year on site index, 3) evaluate the area of unique
codes in loblolly pine management and coverage of empirical trials with
site index information, and 4) assess the central tendency and variation
of site index values and develop a model to predict site index to
extrapolate outside of the unique empirical observations.

2. System development

The FPC Site Productivity Optimization for Trees (SPOT) system
classifies site codes from soils, geologic information, and physiographic
province (Table 1; Fig. 1). Data sources for SPOT codes included NRCS

Table 1

Example SPOT code categories (e.g., A2WekoGgPD) with descriptions, data
sources, and relative scale of each source. NRCS SSURGO: Natural Resource
Conservation Service Soil Survey Geographic Database: NRCS SSURGO; SGMC:
US Geologic Survey State Geologic Map Compendium; 3DEP DEM: 3 Dimen-
sional Elevation Program Digital Elevation Model; USDA MLRA: US Department
of Agriculture Major Land Resource Areas.

SPOT Code Example  Example Data source Scale
Categories description
Major soil group A Clay NRCS 1:12,000 to
(dominant texture) dominant SSURGO 1:63,360
Depth to increase in 2 12.5-25 cm
clay content (5-10 in)
(argillic/kandic)
Drainage class w Well
drained
Nature of surface e Eroded
Nature of subsurface k Kaolinitic
(mineralogy)
Additional o Other
limitations or
resources
Geocode (geology, Gg Granite and Geology: 1:50,000 to
geologic formation, gneiss SGMC 1:1000,000
or coastal plain Coastal plain 30 x 30 m
terrace) terraces:
3DEP DEM
Physiographic PD Piedmont USDA MLRA 1:2000,000
province
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SSURGO (Soil Survey Staff, 2021), the US Geologic Survey State
Geologic Map Compendium (SGMC; Horton et al, 2017),
elevation-derived coastal plain terraces (U.S. Geological Survey, 2020),
and Major Land Resource Areas (MLRA; United States Department of
Agriculture, 2022). There is not a direct translation from NRCS soil se-
ries or phase to SPOT codes for two reasons, 1) some series have enough
variation to code into different groups, and 2) the map units within
NRCS SSURGO data are made up of multiple polygons that often span
multiple geologic and/or physiographic province codes.

This classification system covers the current range of managed lob-
lolly pine plantations across the southeastern US. Soils were classified in
the states of AL, AR, FL, GA, LA, MS, NC, SC, TN, TX, VA, and OK. While
portions of these states are not under loblolly pine production due to
climate or suitability for agricultural crops, we classified the entire area
for regional continuity and future potential increase in planted range.

Each variable within the SPOT system code is detailed below, with
tables providing notes for each based on decades of experience from
researchers, forest managers, and forest soil mappers. It is important to
note that while these general considerations are given for each variable,
combinations of soil modifiers, land-use history, influence of geologic
formations, or other local conditions may override the general notes.
Additionally, soils should be field validated to ensure the given codes are
a valid reflection of what is actually present within a particular forest
stand. Soils are inherently spatially variable and mapping resolution
varies greatly (Table 1).

2.1. Major soil groups

The first letter of the SPOT code primarily corresponds to whole
profile texture to a restrictive layer (Table 2). Soil profile texture is
calculated from a weighted average of all horizons down to a 200 cm (80
in) depth and corresponds to the USDA soil texture codes. Groups A, B,
and C are in order from fine-textured clays to coarse loams. Spodic soils
(group D) tends to be particularly responsive to sufficient fertilization.
The SPOT system also includes silty texture soils (group E), and deep

A-2-W-eko-Gg-PD
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sands either with an increase in clay content below 100 cm (40 in;
groups F) or no clay subsoil (group G). Organic soils, or Histosols, are in
group H.

2.2. Depth code

The depth code (Table 3) is based on where in the profile there is an
increase in clay content according to the USDA Taxonomic definition of
an argillic or kandic diagnostic subsurface (a Bt horizon, Soil Survey
Staff, 2022):

Case 1). a 3% absolute increase if overlying horizons are < 15% clay;.
Case 2). a 20% relative increase if overlying horizons are 15-40%
clay;.
Case 3). an 8% absolute increase if overlying horizons are > 40%
clay;.

For Case 1, a minimum clay percentage threshold of 10% exists to
circumvent scenarios where total clay percent never exceed 10%
throughout the entire profile. In some cases, if there is missing infor-
mation as to where this increase occurs within the top 50 cm (0-20 in.),
then a depth code of “0” is given for “unknown, but within 20 in..”

2.3. Drainage class codes

Drainage class is important for operational management decisions,
such as species selection, bedding, and harvest operability. A shallow
depth to water table can restrict rooting volume due to lack of soil ox-
ygen. Definitions of drainage class (Table 4) can differ somewhat, but
are generally defined by color and volume of redox depletions (>2%),
which can indicate seasonal high water table. However, the water table
will be lower in a mature pine stand than one that has recently been
harvested, create operational challenges for site preparation operations.
Poor drainage is usually indicated by gray soil redox depletions, Munsell
Color book as a value of 4 or more and a chroma of 2 or less (Soil Survey

B-2-P-eio-Am-S

N S 2

Fig. 1. An NRCS Cecil series (left, Fine, kaolinitic, thermic Typic Kanhapludult, granitic and gneiss geology, Piedmont physiographic province) and a Rains series
(right, Fine-loamy, siliceous, semiactive, thermic Typic Paleaquult, middle Atlantic Coastal Plain geology, Southern Coastal Plain physiographic province) can be
coded into multiple SPOT codes depending on dominant profile texture, depth to increase in clay content, and geologic parent material. (Photo credit John Kelley,

USDA NRCS).
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Table 2

Major soil group factor with USDA textures included and general comments
included. Notes regarding observed productivity issues or opportunites for each
group are included for background.

Soil Dominant Textures Included and General comments regarding

Group Profile Special Characteristics relation to loblolly pine

A Clayey Clay, sandy clay, silty May have issues with water

clay infiltration/permeability
unless good structure is
present. Soil strength may be
high when dry.

B Fine loamy Sandy clay loam, clay Few root growth restrictions,

loam and potentially higher
fertility.

C Coarse Loam, sandy loam Sandier texture means more

loamy likely to need fertilization, but
provides better internal
drainage on wetter sites.

D Spodic Spodic or Spodosol, Highly responsive to

usually sandy fertilization.

E Silty Silt, silt loam Higher potential for erosion
and compaction during
harvest.

F Deep Sandy clay loam, clay Deep sands, low potential

subsoil loam, productivity, fertilization
subsoil grossarenic critical to success.
(>100 cm or 40 in)
G Sandy Sand, loamy sand, no Extremely deep sands, low

clay subsoil potential productivity.
Responsive to fertilization,
but best suited for longleaf
pine.

H Organic Organic (>60 cm or High potential productivity

24 in. of organic),histic when drained, and bedded.
or Histosol

Miscellaneous Soil Groups (no soil attribute information)

P Borrow Pit/Mine/Disturbed Area/Industrial Waste Pit
Q Sandy Alluvial land
R Rock Outcrop
S Swamp,/Marsh
0) Gullied Land
\% Dumps/Dams/Quarries/Urban land/Udorthents
w Water
Table 3

Depth groups relate the appearance of an increase in clay content (argillic or
kandic horizon). Definition of an “increase” is based on USDA Soil Taxonomic
definition.

Depth Depth to Clay Increase ~ General comments regarding relation to

Group loblolly pine

1 0-12.5 cm (0-5 in.) Thin topsoil (A horizon); subsoil close to
surface; may be eroded; may need
fertilization; if A horizon is dark and well-
developed, may not have nutrient limitations.

2 12.5-25 cm (5-10 in.) Generally, an ideal depth from surface,
providing ideal growing environment.

3 25-50 ¢cm (10-20 in.) If surface is sandy, may need additional
nutrient additions. If surface is finer textured
and dark, should have relatively high
productivity.

4 50-100 cm (20-40 in.,  If surface is sandy, may have nutrient or

arenic) water limitations.

5 100-200 cm Likely to be very nutrient limited.

(40-80 in.,
grossarenic)
6 None within 200 cm Low productivity potential; may be a
(80 in.) candidate site for longleaf or sand pine.
0 Unknown within Information missing from database, field

0-50 cm (0-20 in.) validation required.

Staff, 2022). Very poorly drained mineral soils may also have a dark
surface or mollic, umbric, or histic epipedons (20-40 cm of organic soil
materials). These sites can be extremely productive where historically

Forest Ecology and Management 556 (2024) 121732

Table 4

Drainage class soil groups are classified by depth of redox depletions (i.e.,
mottles or matrix with gray color of Munsell value of 4 or more and a chroma of
2 or less) with notes regarding restrictions and opportunities for loblolly pine
management or potential alternate conifer species.

Class  Drainage

Definition

General comments
regarding relation to

loblolly pine

E Excessively Tend to be sandy with no Potential for water

drained redox depletions; water is  limitations; may be a
removed very rapidly. candidate site for longleaf
or sand pine.

D Somewhat Tend to be loamy capped Potential for water
excessively over sandy with no redox limitations; may be a
drained depletions; water is candidate site for longleaf

removed rapidly. pine.

w Well drained Redox depletions at 100- No excess water

150 cm (40-60 in); water limitations; wetness does

is removed readily. not inhibit root growth;
generally provides
sufficient soil moisture

M Moderately Redox depletions at 50- No excess water

well drained

100 cm (20-40 in); water
removed somewhat
slowly during brief
periods.

limitations; wetness does
not inhibit root growth;
provides good soil
moisture; wet for short
period during growing
season.

S Somewhat Redox depletions at Single bedding needed;
poorly drained 25-50 cm (10-20 in); wet for significant periods

surface 0-25 cm (0-10 in)  during growing season,
does not have gray colors may inhibit growth in
and < 50% gray matrix young stands; wet upland
anywhere between 25- sites with sufficient slope
50 cm (10-20 in); not would likely not benefit
hydric; water removed from bedding.
slowly.*

P Poorly drained Redox depletions at * *Double bedding, or
0-25 ¢m (0-10 in), Ochric single beds with
epipedons over > 50% equivalent heights
depleted/gleyed matrix needed; wet for long
from 25 cm (10 in) down;  periods during growing
hydric; water removed season; free water at
very slowly. surface.

\4 Very poorly Free water constantly at Double bedding and

drained 0-25 cm (0-10 in); usually ditching and

organic soils or mineral
soils with dark surfaces or
mollic, umbric, or histic
epipedons; > 50%
depleted/gleyed matrix
from 25 cm (10 in) down;
hydric.

draining required for
survival and growth

response; soils almost
always wet, swampy.

*Sandy Spodosols in the coastal plain may not have iron in the parent material
and follow different conventions to determine drainage class. **Double bedding
refers to two passes of a bedding plow to achieve greater bed height. Some
operations can also achieve sufficient bed height with a single pass.

ditched and drained and are bedded to control for excess water. As soil
becomes more poorly drained, bedding height and quality become
increasingly important.

2.4. Soil modifiers

Soil modifiers are meant to capture additional information that may
influence operational decisions, benefits, or risks, and/or potential
productivity. Soil modifiers are organized into three categories: Modifier
1) nature of surface soil (Table 5), Modifier 2) nature of subsoil
(Table 6), and Modifier 3) additional limitations or resources (Table 7).
Each table contains notes regarding why the modifier is informative and
what operations may be affected. The degree of influence in many cases
will depend on the severity of the situation (e.g., severely eroded sites
might have lower productivity than less eroded sites).
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Table 5

Modifier 1: Nature of surface soil (in order of expected importance) describes
characteristics in the soil surface that may impact pine productivity positively or
negatively.
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Table 7

Modifier 3: Additional limitations or resources (in order of expected importance)
describes characteristics in the soil surface that may impact pine productivity

positively or negatively.

Modifier ~ Nature of Surface General comments regarding relation to Modifier =~ Additional Limitations or General comments regarding relation
loblolly pine Resources to loblolly pine
d Dark surface (Mollic, Increases productivity potential; high level c Alkaline, calcareous Must check pH, expect reductions in
Umbric, Organic) of organic matter increases water and productivity if pH greater than 6.
nutrient holding capacity and nutrient f Floods (fluvic) Unsuitable or high risk for intensive
availability. management.
y Silty surface (top 15 cm/  Greater potential for erosion and difficulty 1 Lamella Narrow (6-22 mm) horizontal layers of
6 in.) maintaining beds. Logging on loess silt, clay in sandy soils, commonly found
when wet, can create a slurry that dries with between 72-155 cm depth (28-61 in;
high bulk density and seals soil surface. Bockheim and Hartemink, 2013),
Loess caps in West Gulf region tend to be provides additional productivity.
more productive. n Salt affected (natric, saline, or ~ May have issues with permeability,
e Eroded (moderate- Slight to moderate erosion common in sodic) bedding in poorly drained soils may
severe) Piedmont with low likelihood of negative help; may have some issues with
effects in productivity. Severe erosion can operability when wet.
decrease productivity. s Root limited (densic, lithic, Reduced rooting volume may limit
g Gullied Heavily eroded; lower productivity can be paralithic) productivity.
found where severe erosion occurred; < 25 cm (10 in)
potential problems with machinery t Root limited (densic, lithic, Reduced rooting volume may limit
operations. paralithic) productivity.
r Rocky (skeletal to Negative potential effects in productivity by 20-50 cm (10-20 in)
gravelly, coarse reduction in rooting volume; can increase u Root limited (densic, lithic, Reduced rooting volume may limit
fragments) harvest operability in wet conditions. paralithic) productivity.
o Other or NA No documented features to consider. 50-100 cm (20-40 in)
v Root limited (densic, lithic, Reduced rooting volume may limit
paralithic) productivity.
100-200 cm (40-80 in)
Table 6 q Restrictions within 100 cm Restrictions are less severe than s, t,
Modifier 2: Nature of subsoil (in order of expected importance) describes (40 in) (fragic, cemented, and u, but may still limit productivity.
characteristics in the clay mineralogy that may impact pine productivity posi- plinthic) Roots may be able to bypass
tively or negatively. restrictions in old root channels.
w Ponded Water Unsuitable for intensive management.
Modifier =~ Nature of Subsoil General comments regarding relation to loblolly o Other or NA No additional soil features to include.
pine
a Alfic High base saturation (CEC is > 35% Ca, Mg, K)
reduces potential nutrient limitations. (21.4-30.48 m), Sunderland (30.5-51.8 m), Coharie (51.9-60.9 m), and
m Micaceous Mica supplies potassium, but clayey subsoils Hazelhurst (61-97.5 m) (Cooke, 1931).
nl?ar surface ;ﬂay K):ause operability issues (i.e., Over 200 rock types that occur in the Southeast were assessed based
slippery on slopes). . o . . orests .
N Mixed (2:1 clays) Higher potential productivity, these clays have a on their weatk}erabﬂlty ar.1<.1 1nhe1.rent nutrient avallabllllty. (Colpitts et' al.,
relatively high cation exchange capacity. 1995) and assigned a fertility rating on a scale of 1-9 similar to Hennigar
p Plastic (smectitic/ Sticky clays can create operability issues. et al. (2017) where 1 is low fertility and 9 is high fertility. For example,
shrink-swell) Churning during harvest can create quartzite received a “1”, granite received a “4”, gabbro received a “6”,
impermeable layers. Plastic subsoil near surface and marl received a “9.” We used the “low_lith” column in the SGMC
can be slippery. . . . .
k Kaolinitic (1:1 Relatively less cation exchange capacity, highly which can have up to three lithological units per polygon that get
clays) weathered, and ubiquitous throughout the assigned a fertility ranking code and then averaged. For each geocode,
Southeast. fertility ranks were averaged across all lithologies or terraces per poly-
i Siliceous Formed from parent material with silica (e.g., gon. For coastal plain terraces, we performed a spatial join to the un-
quartz sands, granite, quartz sandstone). Often derlying geologic formation and assigned fertility rank based on the
relatively low in cation exchange capacity and A . ) i .
buffering potential. geologic formations, but appended the coastal plain notes with addi-
o Other or NA No information available or undefined. tional nutrient deficiency information based on experience from field

2.5. Geocodes

The SPOT system “geocode” combines lithology (i.e., rock type),
geologic formations, and coastal plain terraces into a two-letter code
(Table 8). Lithology is applicable in the Piedmont, Mountains, and re-
gions where parent materials influences nutrient availability or soil
formation (residuum). Coastal plain terraces supersede lithology where
marine and fluvial sediment deposition has buried rock and become the
parent material. Formations and terraces are grouped according to
similar site limitations or resource availability and mapped across state
lines based on the US Geologic Survey SGMC (Horton et al., 2017).

Coastal plain terraces were created from 30 x 30 m digital elevation
map. Some Atlantic Coastal Plain terrace names change across state
lines, so we assigned consistent names at the following breaks in
elevation: Silver Bluff/Princess Anne (up to 3 m), Pamlico (3.1-10.7 m),
Talbot (10.8-13.7 m), Penholoway (13.8-21.3m), Wicomico

trials, such as K deficiency in the Pliocene-Pleistocene terraces (Carlson
et al., 2014).

2.6. Physiographic Province

Physiographic provinces can be useful for grouping soils for general
management guidelines as they have some predominant soil and climate
factors at a regional scale (Morris and Campbell, 1991). Major Land
Resource Areas have historically been designated by the USDA for
agricultural planning. These geographically associated areas are thou-
sands of hectares in extent and are characterized by a particular pattern
of soils, climate, water resources, land uses, and agricultural practices.
The MLRA codes are grouped here according to similarities for man-
agement considerations for loblolly pine (Table 9). As these areas are
geographically large (Fig. 2), guidelines for management should
consider more specific soils information for a given site.
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Table 8

Geocodes include geology, geologic formations, parent material, and coastal
plain terraces. Fertility ratings range from 1 (low fertility) to 9 (high fertility).
For example, the “grand” average fertility rating per geocode combines all rock
types to a group. However, fertility ratings are assigned at a polygon level in GIS
(not the grand average). Fertility ratings and groupings may be updated in future

versions with more training data.

Geocode  Formation/Rock type Average General comments
Fertility regarding relation to
Rating loblolly pine

Av Alluvium / Deposits - 2.3 Variable, moderately P

floodplain, levee, terrace deficient; potentially
high productivity;
productivity may vary
depending on source of
alluvium.

Pa Pamlico Terrace (Pamlico, 2.7 Severely P-deficient;
Princess Anne, Silver Bluff) typically wet and needs

bedding.

Al Atlantic Lower Coastal 3.3 P, K, B deficient; typically
Plain Terraces (Wicomico/ wet and needs bedding.
Windsor/Waccamaw,

Penholoway, Talbot)

Am Atlantic Middle Coastal 2.9 P, K deficient.

Plain Terraces (Argyle,
Claxton, Pearson,
Sunderland, Coharie,
Okefenokee, Waycross)

Au Atlantic Upper Coastal 4.1 Moderate fertility.
Plain Terrace (Hazelhurst,

Yorktown, Brandywine,
Neogene)

Cb Claibourne Group (Queen 3 Can have glauconitic
City, Carrizo Sands, rock or marl (rich in K);
Weches, Cockfield, Cook moderate to good
Mt, Sparta, Cane River, fertility.

Gosport, Lisbon, Tallahatta,
McBean)

Cs Coarse-textured Sediments 2.3 Beach sands, dune sands,
(Sandy to Loamy) sand; low fertility.

Ms Medium-textured 2.9 Loess or silt; low to
Sediments (Silty) moderate fertility.

Fs Fine-textured Sediments 3.4 Alluvium, clay or mud,
(Clayey) delta, peat.

Lo Loess derived parent 2.5 Potentially higher
material productivity, but silty

soils may not hold beds
and operability is
constrained when wet; if
sandier, will be more
operable.

Ct Citronelle Formation 1.9 Severely P deficient,
often massive to weak Bt
structure; well-drained to
xeric.

Le Lumbee Group 2.8 K, B deficient, potentially

(Middendorf, Black Creek, low productivity but

Pee Dee) some areas have
phosphatic parent
material.

Ba Blackland Group (acid, 3.2 More acidic soils of
Porters Creek, Naheola, Blackland.

Clayton, Tuscaloosa)

Bb Blackland Group (basic, 4.2 More basic soils of
Navarro, Taylor, Austin, Blackland; micronutrient
Eagle Ford, Prairie Bluff, deficient; Bluffton often
Providence, Ripley, good for wet weather
Demopolis, Cussetta, logging (ancient sand
Mooreville, Eutaw, dunes)

Bluffton, Kemp, Corsicana,
Nacatoch)
Dw Deweyville Formation 2.1 Moderately P-deficient,

Texas only; separated
from Beaumont because
alluvial in nature
(3.5-5 m better SI than
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Table 8 (continued)

Geocode  Formation/Rock type Average General comments
Fertility regarding relation to
Rating loblolly pine
Beaumont and not as P
deficient).

Ch Catahoula Group (Paynes 2.4 Severe to Moderately P-
Hammock, Oligocene deficient, extremely
undifferentiated) variable; in TX has

numerous problems
(shallow, rocky, etc.);
summits may be
productive with a Willis
cap.

Fl Fleming Group 2.6 Moderately P-deficient.
(Pascagoula, Hattiesburg,

Logarto, Oakville)

Jk Jackson Group (Caddell, 3.8 Variable fertility.
Manning,Yazoo, Moody
Branch, Wellborn)

Lb Lissie-Bentley Formation 3 Severely P-deficient;
(Montgomery, Bentley, Beaumont and Prairie
Prairie, Beaumont) commonly poorly

drained

Vk Vicksburg Group 5.8 Moderate to high
(Chickassawhay, Nash fertility.

Creek, Byram, Mint Spring,

Forest Hill, Red Bluff,

Whitsett)

Ws Willis Formation 2.4 Moderately-to-Severely P

deficient; Willis caps on
Catahoula formation in
LA can be very
productive.

Wx Wilcox Group (Carrizon, 2.7 Can have glauconitic
Sabinetown, Pendleton, rock (rich in K), may have
Hatchetigbee, Tuscahoma, sticky clays, poor
Nanafalia) structure, ironstone.

Yg Yegua 2.5 Higher productivity than
Jackson group, best soils
in East Texas

Md Midway Group (Naheola, 4.3 Moderate to good
Clayton, Wills Point, nutritional properties.
Kincaid)

Gg Granite and Gneiss 4.8 High K availability,
(Felsic-light colored & low potential Ca availability.
mafic, coarse-grained
igneous and metamorphic
rocks dominated by
feldspar and quartz)

Sc Schist and Phyllite (fine- 5 Ca, Fe, K, Mg availability.
grained metamorphic rocks
dominated by mica)

Sd Sandstone 2.9 Nutrient availability
depends on cementing
agent.

Sh Shale/Siltstone (quartz/ 4.2 K availability with

feldspar/mica) presence of mica.

Mr Metamorphic Rock with 4.4 K availability with
extremely variable parent presence of mica.
rock

Sr Sedimentary Rock with 4.2 K availability with
extremely variable clasts presence of mica.
and cement mineralogy

St Slate (mica) 4.8 K availability with
presence of mica.

Bg Basalt, Gabbro, Greenstone 6.3 Ca, Fe, K, Mg availability.

(Moderate to high
mafic-dark colored, fine-
and-coarse-grained igneous
rocks dominated by olivine,
pyroxene, biotite,
hornblende)

Lm Limestone (calcite) and 8.1 Ca, Mg availability.
Marl

Um Ultramafic (Igneous and 6.4 High or excess Mg

meta-igneous rocks with a
very low silica and

availability; may affect
Ca and K availability.

(continued on next page)
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Table 8 (continued)

General comments
regarding relation to
loblolly pine

Geocode  Formation/Rock type Average
Fertility

Rating

potassium content, ex:
peridotite, komatite,
serpentinite)
Ui Unimportant or non- 3.3 Other
applicable (water, ice,
landslide, indeterminate,
etc.)

3. Methods
3.1. Field site selection and site productivity

We selected 64 study sites contributing a total of 927 field plots from
several series of “Regionwide” (RW) studies implemented by the Forest
Productivity Cooperative which tested response to nutrient additions
across the geographic range in which loblolly pine is managed (Fig. 3;
Carter et al., 2021). All included study sites had control (non-fertilized)
and fertilized treatment plots with the addition of elemental nitrogen
(N) rates ranging from 112 kg ha™! to 538 kg ha™. All N applications
rates had at least 10% accompanying elemental P (Table 10). Control
and treatment plots received other silvicultural treatments such as
bedding or vegetation control. In the RW18, frequency had no effect on
growth response as long as the cumulative dose applied was the same, so
treatments were grouped by cumulative rate. Study sites were selected
that had at least eight years of consecutive field measurements though
fertilization response can last longer (Albaugh et al., 2021).

To calculate site index, each observation in the dataset consisted of
one field plot where dominant height was defined as the average height
of the biggest 100 trees per ha by stem volume. Site index was calculated
using the (Diéguez-Aranda et al., 2006) model:

26.14 + X,

_ 1
St 1+ (1455/X0) x (ba) "' W

Where X is given by:

1
Xo = 3(dh—26.14 + \/(dh —26.14)% + 4 x 1455 x dh x age~"197) )

Where dh is the dominant height in meters, age is the forest stand age in
years, and ba is the base age (25 years). This site index model is
commonly used in the southeastern US (Allen and Burkhart, 2015) but
was parameterized with unthinned, extensively managed stands, so
there may be some underestimation of site index in intensively managed
stands (Trim et al., 2020). However, as some of the studies represented
here were planted in the 1970 s, the earlier Regionwide trials would be
more representative of stands used to parameterize the model.

3.2. Variable importance selection with random forest

We used random forest using the randomForest package in R (Liaw
and Wiener, 2002; R Core Team 2023), to rank the relative importance
of variables for climate, SPOT codes (soils, geocode, physiographic
province), fertility rating from geology (see Table 1 for spatial resolu-
tion), nitrogen rate, and planting year. Climate variables were calcu-
lated as 30-year averages from 1991-2020 on an 800 m grid (PRISM,
2014) and assigned to each Regionwide study. Precipitation was
calculated as average annual rainfall in mm. Mean, minimum, and
maximum temperature were calculated from daily averages in °C.
Maximum and minimum vapor pressure deficit (kPa) and mean dew
point temperature (°C) were also daily annual averages. SPOT soils
variables included: Major code, depth to clay, drainage, soil modifiers
(nature of surface, nature of subsurface, and additional limitations &

Forest Ecology and Management 556 (2024) 121732

Table 9
Physiographic provinces derived from Major Land Resources Areas (MLRA).
Geocodes shared refer to areas designated as under loblolly pine management.

Code  Physiographic MLRA
Province Code

Geocodes Geocodes  Loblolly Pine
unique to Shared Management
Phys. across Notes
Prov. Phys.

Prov.

AA Alluvium 150, 151, Av Depending on
152, source,

133 A, material
133B, deposited by
134, rivers and
135 A, streams often
135B, have a higher
136, 116, productivity
117,118, than soils
119, 122, formed in
123, 124, place.

125, 128, Drainage
129, 130, class
131ABCD influences
suitability for
pine.

Many low-
lying areas
that will
require
bedding and
are often P-
deficient.
Waxy-leaf
competing
vegetation
common.
Divided into
acid and basic
Blackland
Prairie in
geocodes.
Basic can
have high
alkalinity
resulting in
poor growth
Many low-
lying areas
that will
require
bedding and
are often P-

AF Atlantic 138, 153,
Coastal Plain 154, 155,
Flatwoods 156

Pa, Al, Am Cs, Ms, Fs

BP Blackland 135 A,
Prairie 135B

Ba, Bb

GF Gulf Coastal 150, 151,
Plain 152
Flatwoods

Dw, Lb Cs, Ms, Fs

deficient.
Waxy-leaf
competing
vegetation
common.
LP Mississippi 134 Lo Loess caps can
Valley Loess add
Plain additional
productivity
but can be
inoperable
when wet.
Slope and
soils need to
be considered
for harvest
operability.
Generally
avoid slopes
> 30%,
otherwise

MT Mountains
(Blue Ridge,
Ridge and
Valley, 124, 125,
Appalachian 128, 129,
Plateau, 130
Highland Rim,

Arkansas Ridge

and Valley,

Ouachita manage based

Mountains, on soil codes.

Sand Coarse

Mountain) fragments
may reduce

116, 117,
118, 119,
122, 123,

Bg, Gg,
Lm, Mr,
Sc, Sh, Sr,
St, Um

(continued on next page)
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Table 9 (continued)

Code  Physiographic MLRA
Province Code

Geocodes Geocodes  Loblolly Pine
unique to Shared Management
Phys. across Notes
Prov. Phys.

Prov.

rooting
volume.
Typically
well-drained,
except for
lower and toe
slope
positions.
Rolling
landscape.
Generally,
needs N + P
additions.
Coarse sandy
soils will
require
substantial
nutrient
additions to
increase
productivity.
Refer to
Coastal Plain
Terraces in
Vk, Ws, geocode for
Wx, Yg, nutrient

Md status

PD Piedmont 136

SH Sandhills 137 Le

SC Southern 133A Au
Coastal Plain

WG Western Gulf 133B
Coastal Plain

Cb, Cs, Ct

Ch, Fl, Jk,

resources).

Three different combinations of covariates were tested: (i) each
group within the SPOT code (soil groups, geocodes, and physiographic
province), (ii) SPOT plus climatic variables, and (iii) SPOT, climatic
variables, and nitrogen rate. For some variables, we performed a simple
linear regression to explore the relationship with site index.

Categorical data, in general, have inherent limitations in that any
new level not previously seen by a model cannot be estimated. Similarly,
random forest cannot extrapolate beyond the underlying data (Hennigar
etal., 2017; Jeong et al., 2016), however it still has benefits: to implicitly
deal with auto-correlation and highly dimensional data, to handle
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interactions between variables, to identify informative inputs using a
permutation-based variable importance index, and to capture compli-
cated phenomena and reveal non-linear relationships (Antoniadis et al.,
2021; Cheng et al., 2020).

Random forest generally does not overfit data due to its algorithm
design (Loecher, 2022) but we still prepared the dataset to optimize the
random forest procedure and protect from overfitting. Categorical var-
iables needed to be represented in at least 10 field plots to be included in
the analysis (which excluded 135 observations). In addition, 19 SPOT
variables, which exist in loblolly pine soils had zero observations in the
Regionwide dataset (Table 11). Consequently, for modeling purposes,
we had 792 observations and 57 unique SPOT codes. Miscellaneous
major group codes (P, Q, R, S, U, V, and W) were not included in the
Regionwide data as they do not include sufficient SSURGO information
and represent a very small proportion of area.

We followed a sequential model-based optimization directly imple-
mented via the tuneRanger R package (Probst et al., 2019). However, as
we also wanted to consistently control overfitting, we manually estab-
lished certain thresholds based on our research interests and knowledge
of the dataset. We used 2000 trees, two drawn candidate variables in
each split, 0.6565809 sample fraction, no replacement when resam-
pling, minimum splitting node size and minimum terminal node size of
five, tree depth of 14, splitting rule set to variance, and variable
importance criteria set to permutation. The final random forest model
was built and implemented via the ranger R package (Wright and Ziegler,
2017). The final model was evaluated following a 10-fold
cross-validation procedure.

To assess the relative stability of variables in the model, the random
forest modelling procedure was performed ten separate times. From
those ten runs, we calculated the 95% confidence interval for both
variable importance and rank order of each variable and tested for dif-
ferences among variable importance using Tukey’s honest significant
difference with an alpha value of 0.05.

3.3. Managed southern pine distribution

To assess the relative extent of SPOT codes mapped under managed
southern pine, we first determined the total area of each unique SPOT
code within the traditional loblolly pine native range area (Little, 1971).
We then used a raster layer that identifies intensively managed ever-
green stands for the states of AL, AR, FL, GA, LA, MS, NC, SC, TN, TX, VA,

Kilometers
0 75 150 300 450 600

| Physiographic
Province
AA - Alluvium

AF - Atlantic
Flatwoods

BP - Blackland
Prairie

- GF - Gulf Flatwoods

LP - Loess Plain

- MT - Mountains
[ PD piedmont

SC - Southern
Coastal Plain

SH - Sandhills
- WG - Western Gulf
Coastal Plain

NA

Fig. 2. Physiographic provinces derived from Major Land Resource Areas for loblolly pine plantation management.
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Managed Southern Pine
(hectares)
less than 15,000
[ 15,000 - 30,000
[ 31,000 - 45,000
B 46,000 - 60,000
I 51,000 - 120,000

Kilometers ) )
D Native range of loblolly pine

0 75 150 300 450 600

Fig. 3. All 64 study sites are located within or near the natural range of loblolly pine (Pinus taeda L.; Little, 1971) in the southeastern United States. Data for model
development were collected from field plots measured 8 years after treatment. Shading for each county represents the area considered managed southern pine
generated through remotely-sensed data (Thomas et al., 2021).

Table 10

Details of five Regionwide (RW) studies spanning the southeastern US included in the analysis of modeling Pinus taeda (L.) site index (base age 25). Tree ages eight
years since treatment were the ages used to calculate site index. Nutrient application rates are cumulative rates for the RW18 which were applied at different fre-
quencies and rates.

Study name Years of Tree ages at 8 years since Elemental N Elemental P No. Study No. Reference
planting treatment (years) application rates application Sites Plots
(kg ha') rates (kg ha)
RW13: Midrotation fertilization with 1970-1977 18-24 112, 224, 336 28, 56 16 296 Fox et al.
rates of N and P (2007b)
RW15: Additions of N + P, K, and 1970-1985 17-33 224 56 15 219 Carlson et al.
micronutrients (2014)
RW17: Fertilization x vegetation 1975-1988 17-30 224 56 8 116 Albaugh et al.
control at Midrotation (2012)
RW18: Rate x frequencies of N + P at 1993-2000 10-14 269, 538 27, 54 20 210 Albaugh et al.
juvenile application (2015)
RW19: Thinning x fertilization 1992-2000 20-24 224 28 5 71 Albaugh et al.
response (2017)
Table 11

Categorical variables that were not included in the random forest model, therefore could not be included in assessing variable importance or in predictive modeling.
Obs. = Observations in the Regionwide trial dataset; Var.= Variable within a SPOT code group.

SPOT Groups Var. Name Obs. SPOT Code Level Var. Name Obs.
Major H Organic soil 0 Geocode Ch Catahoula Group 0
Depth 6 No argillic/kandic within 200 cm 0 Dw Deweyville Formation 0
Drainage E Excessively drained 8 Fs Fine-textured Sediments (Clayey) 0
Nature of Surface g Gullied 0 Lm Limestone (calcite) and Marl 0
Nature of Subsoil m Micaceous 6 Md Midway Group 0
Additional Limitations or Resources c Alkaline, calcareous 0 Ms Medium-textured Sediments (Silty) 0
f Floods (fluvic) 0 Pa Pamlico Terrace 0
1 Lamella 0 Sd Sandstone 0
n Salt affected (natric) 0 Sc Schist and Phyllite 1
s Root limitation < 25 cm 0 St Slate (mica) 0
w Ponded Water 0 Ui Unimportant or non-applicable 0
Physiographic Province LP Mississippi Valley Loess Plain 0 Vk Vicksburg Group 0
Yg Yegua 0
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and OK (Thomas et al., 2021). We refer throughout the manuscript to
these remotely-sensed areas as “managed southern pine” as it could
include a small amount of other southern pines on short rotations that
received a thinning. We know that the native range of loblolly pine is a
conservative estimate of planted loblolly pine area, whereas observa-
tions outside of the native range, but within the southeastern states, may
contain false positives (e.g., misidentification of thinned, evergreen
stands as loblolly pine). We excluded 112,205 ha with 12,840 unique
codes under managed pine with less than 40 ha (100 ac). We also
excluded a total of 1113 ha and 105 unique SPOT codes identified with
miscellaneous major codes P, R, U, and V. Each of these miscellaneous
codes had less than 40 ha per unique code.

3.4. Predictive modeling with ordinary least squares

We first examined the site index values for all observed RW-trial
SPOT codes with at least 10 observations to assess the central ten-
dency, 95% confidence intervals, and range of values. We then tested
how accurately we could predict site index in meters (SIy,) by using only
the “SPOT model” with an ordinary least squares linear regression
(Equation 3).

Equation 3:

S1,, ~ Major Soil Group + Drainage + Depth + Nature of Surface
+ Nature of Subsoil + Additional Resources or Limitations + Geocode
+ Physiographic Province

This method can extrapolate SI in SPOT codes not empirically
observed in the Regionwide data. We then tested several iterations of
ordinary least squares models to assess the relative additional
improvement by adding planting year, climate, and N rate to the “SPOT
model,” as well as climate and N rate alone, since the random forest
model indicated their importance.

We assessed the sample size and the corresponding risk of overfitting
based on the following criteria (Riley et al., 2019): 1) Small optimism in
predictor effect estimates as defined by a global shrinkage factor of
> 0.9, 2) small absolute difference of < 0.05 in the apparent and
adjusted R2, 3) precise estimation (a margin of error < 10% of the true
value) of the model’s residual standard deviation, and 4) precise esti-
mation of the mean predicted outcome value (model intercept).

To validate all ordinary least squares linear regressions, we per-
formed a 10-fold cross validation approach using the RMS R package
(Harrell, 2023), following a similar approach to other similar studies (i.
e., Hennigar et al., 2017; Pahlavan-Rad et al., 2020). We also performed
a penalization analysis of the ordinary least squares linear regression
model via the RMS R Package. We used the penalized maximum likeli-
hood estimation, checked the optimal value yielded by the pentrace
function and applied it to our final ordinary least squares linear
regression model. We assessed the results using a 5-fold cross validation
procedure as well, which uses more data for each fold but found similar
performance to the 10-fold cross validation approach.

For the final prediction model, we assessed standard error in the
ordinary least squares model indicating multi-collinearity for some co-
efficients with small sample size. Therefore, we removed the following
levels from the model to prevent multi-collinearity: major group: F and
G; depth: 5; drainage: D; geocode: Sh; and physiographic province: MT
and SH. These removals reduced the total number of observations to 759
for the model. We used an alpha value of 0.05 for the significance of
model and calculated the relative root mean square error (RRMSE).

It should be noted that the Random Forest approach and the Ordi-
nary Least Squares approach may not select the same variables. Addi-
tionally, the variables selected may not behave in the same way in each
approach. We chose to proceed with using the Ordinary Least Squares
approach for predictive modeling because it is a simpler and more
interpretable method given our somewhat constrained dataset.
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4. Results
4.1. Variable importance for site index

Planting year was the most important variable for predicting site
index (Fig. 4), showing a linear increase of 17 cm of site index per year
since 1970 (p < 0.01). After planting year, maximum vapor pressure
deficit was second most important. Both of these variables, in 10 model
runs, always remained in first and second rank of importance. Geocode
ranked in position 3 or 4 in all model runs and was consistently the
highest ranking variable out of any of the SPOT variables. Almost all of
the climate variables, except minimum vapor pressure deficit (VPD), fell
between geocode and physiographic province. Physiographic province
was the second most important SPOT variable and had an average rank
of 7.9. Nitrogen rate tended to fall in the central ranks (average rank
11.6) and was of higher importance than all other soil variables. Major
code always ranked higher than the other soil codes. Nature of subsoil
and drainage ranks overlapped, but depth to increase in clay, nature of
surface, and additional limitations and resources were always in the last
three ranks, respectively.

4.2. Loblolly pine and regionwide study distribution

Remotely-sensed, managed southern pine made up approximately
17% of total area within the native range of loblolly pine (Table 12).
Only about 1% of the total area in the southeastern US that is outside the
native range of loblolly was classified as managed southern pine. A large
part of the area outside the native range was made up by west Texas,
which does not support loblolly pine growth due to climate. SPOT
coverage totals are slightly less than total area per state as areas such as
water, roads, or urban land, were excluded from the total area.

We identified 10,461 unique SPOT codes with at least 40 ha (100 ac)
of managed pine within the native range. Regionwide studies are found
on 73 unique SPOT codes but there were only 57 unique SPOT codes in
the Regionwide database with at least 10 observations. SPOT codes
represented by Regionwide trials covered 1,097,556 ha, or 7% of all
area in planted pine in the native range.

The SPOT code most commonly planted in pine is also the most
common SPOT codes within the native range. The top five most preva-
lent soils in the native range of loblolly (light yellow bars, Fig. 5) were
fine-textured, well-drained, eroded, kaolinitic soils in granitic geology
(B2WekoGgPD, B1WekoGgPD, A2WekoGgPD; 346,859 ha) or in the
upper Atlantic Coastal Plain (B3WekoAuSC, B2WekoAuPD;
169,449 ha). However, the largest percentage of loblolly area (dark
green bars) for a given SPOT code was made up by poorly drained, sandy
Spodosols in the middle Atlantic Coastal Plain (D4PoioAmAF) at 61%.
This SPOT code ranks 20th in total soil area for the native range.

4.3. Predictive modeling with ordinary least squares

Site index values for soils that had at least 10 observations ranged
between 11.6 and 31.2 m with an average of 21.6 m in total height and a
95% CI of [21.4, 21.9] (Fig. 6). The lowest site index was observed in a
D4SoioAmAF, a nutrient deficient Spodosol, planted in 1975.

Since the random forest variable importance analysis showed that
geocode was more important than fertility rating, we continued
modeling geocode instead of fertility rating for the ordinary least
squares predictive modeling. The predictive ordinary least squares
model with the highest R? and lowest RMSE was SPOT + Planting Year
+ N rate + Climate (Table 13). The addition of Planting Year + N rate
+ Climate to the SPOT-only model (soils + geocode + physiographic
province) increased the R? by 0.08 and decreased RMSE by 0.28 m.

The predicted versus the observed analysis for the SPOT-only model
of Regionwide data showed a reasonably good fit around the one-to-one
line with some over predictions at lower values and under predictions at
higher values (Fig. 7). For the SPOT-only model, the R? and RMSE for
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Table 12
Summary of loblolly pine area inside and outside of native range in the south-
eastern US (SEUS).

Managed Southern Pine Total SPOT Coverage

Hectares
Inside Native Range 14,270,533 82,177,815
Outside Native Range 1,377,299 121,084,015
SEUS Total 15,647,832 203,261,830

original were 0.79 and 1.91 m, for the training data 0.79 and 1.90 m,
and for the test data 0.76 and 2.16 m. The 10-fold cross-validation re-
sults were very stable across all 10 runs with an average and standard
deviation in R? of 0.79 (+0.0056) and an average and standard

® Managed Southern Pine

deviation for RMSE of 1.38 m (£ 0.0159). When computing the
maximum likelihood estimation penalization, we obtained an optimal
penalty value of 0.00013, showing a low need for penalization. Addi-
tionally, all the recommendations about sample size (Riley et al., 2019)
were satisfied: global shrinkage factor of 0.9803; absolute difference
between R? and R?-adjusted of 0.014, the model residual standard de-
viation of 6.24%, and mean predicted outcome (model intercept) of
1.05%. Additionally, the RRMSE of the model was 6.81%. We used
B2WekoGgPD as the “base” level and found the following spot variables
significantly different: Major codes A, C, D, E; Drainage S and V; Depth
to increase in clay 1, 4, and 0; Nature of surface r; Nature of subsoil a, I,
p, and x; Additional limitations and resources q, u, and v; Geocodes Al,
Am, Au, Av, Bb, Cs, Fl, Lb, Le, Lo, Um, Wx; and Physiographic province
AF, BP, GF, SC, and WG.

Total Area within Native Range
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Fig. 5. Summary of ten most representative soils in managed southern pine (green bars) and total area (yellow bars). Numbers within green bars indicate the area in
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SPOT codes indicate number of Regionwide trial observations per code.
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Table 13

Summary of candidate models from an ordinary least squares regression 10-fold
cross-validation outcomes predicting site index with penalization when needed.
SPOT factors include: major group, depth, and drainage, nature of surface, na-
ture of subsurface, and additional resource and limitations, geocode, and
physiographic province. Climate includes: precipitation (mm), minimum,
maximum, and mean temperature (°C), minimum and maximum vapor pressure
deficit (kPa), and mean dew point temperature (°C). N rate indicates nitrogen
rate (kg ha™).

Ordinary Least Squares Model R? RMSE (m)
N Rate 0.11 2.84
Climate 0.12 2.84
SPOT 0.79 1.38
SPOT + Planting year 0.81 1.30
SPOT + Climate 0.79 1.40
SPOT + Planting year + N rate 0.82 1.25
SPOT + Planting year + N rate + Climate 0.87 1.10

5. Discussion

In this study, we were able to identify and summarize the relative
importance of soils (by SPOT code) under pine plantation management
in the southeastern region. It is the first time that such a comprehensive
analysis has been conducted within the native range of loblolly pine but
also throughout all southeastern states. We found that most of the area
identified as managed pine plantation (91%) was located within the
native range of loblolly pine.

The Forest Productivity Cooperative SPOT system grew out of de-
cades of research and experience by soil mappers, academic researchers,
and forest managers and expanded previously developed soil classifi-
cation systems. It will continue to evolve as new information becomes
available. It is important to emphasize that because the SPOT system
uses underlying soil boundaries and information from NRCS SSURGO at
a map unit level, and intersects polygons with USGS geology, coastal
plain terraces, and physiographic provinces, many soil series are divided
and some soil series are functionally grouped. These differences become
useful for understanding variation in site productivity that soil series do
not capture.
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Fig. 7. Predicted vs. observed site index (m) base age 25 yr values for the SPOT
code predictive model. The black line is the one-to-one line and the red dotted
line is the model. Dark red shading represents 95% confidence interval. Light
red shading represents the prediction interval.

The most important variable in the random forest model was
planting year. Site index has increased since the 1970 s due to a variety
of management factors, such as genetic improvement (McKeand et al.,
2021), improved site preparation (both mechanical and chemical),
fertilization (Fox et al., 2007b), and environmental factors, such as
temperature, deposition of nitrogen, and improvements in soil physical
properties after reforestation of eroded agricultural lands (Albaugh
et al., 2022; Davis et al., 2022). Atmospheric CO5 has increased by
75 ppm from 1970 to 2015 and may be responsible for a 27% increase in
wood volume in planted loblolly/shortleaf pine at age 25 in the South-
east (Davis et al., 2022). An important question for the future will be:
how long can this continued improvement of site productivity be ex-
pected to last? Results from a regional modeling effort suggested
increasing temperature and CO5 may improve pine productivity in the
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future, unless rainfall decreases or nutrient limitations are not addressed
(Thomas et al., 2017). Fortunately, silvicultural practices, such as
fertilization, can override the negative effects of moderate drought
conditions (Bracho et al., 2018). Vapor pressure deficit, our second most
important model variable, has increased over the decades with
increasing air temperature and decreasing relative humidity and is ex-
pected to continue increasing, which may negatively affect potential
future productivity by reducing stomatal conductance (Ficklin and
Novick, 2017). Overall, it is currently difficult to predict to what extent
site index will continue to increase in the future due to environment
and/or management, but there is still substantial room for improvement
as the expected physiological maximum (32 m) is still far from the
current average productivity. For this reason it is critical to understand
the soil-site characteristics that limit growth.

Parent material (geocode) is the most important soil-site factor to
influence forest productivity as it drives many soil physical and chemical
characteristics (e.g., Littke et al., 2011; Moore et al., 2022). Hennigar
et al. (2017) found in the Northeast that geology and temperature
explained 65% of total biomass growth variation. Lower coastal plain
terraces, which have younger marine deposits are typically more pro-
ductive than older more highly weathered terraces (Everett and Thorp,
2008). Deficiencies in K manifest in the Pleistocene-Pliocene terraces
(Carlson et al., 2014). However, there may be some differences in the
relative fertility of rock types across regions, particularly due to age and
weathering. For example, in the Northeast, granite is associated with the
lowest site productivity, because it weathers slower, is low in base cat-
ions, occurs at higher elevations, and tends to be sandy and rocky
(Hennigar et al., 2017). Whereas, in the southeast region, granitic soils
provide K, are more highly weathered, and have large soil volumes that
can be important for site productivity.

Physiographic province ranked highly, before soil characteristics,
likely because each province is grouped by similar soils, elevation,
topography, climate, and land use. Therefore, much of the commonal-
ities within regions are captured by this variable. This grouping likely
explains the overlap of physiographic province with several climate
variables.

Interestingly, N rate was of greater importance than soil variables
derived from NRCS (major group, depth, drainage, and modifiers). In
preliminary analyses, we found that when only lower N rates were
included, the N rate variable became less important than soil variables.
When higher N rates were included it moved up in the variable impor-
tance ranks. These results suggest that inherent site productivity due to
soil characteristics can be superseded with sufficient nutrient inputs.
Nitrogen rate has been found in many studies to be an important vari-
able in site productivity (e.g., Albaugh et al., 2021) and there are in-
teractions such that some soils respond more than others (Albaugh et al.,
2015).

Major group, which is defined primarily by profile texture, was the
most important of all the soil factors. Soil texture is important because it
relates to a variety of attributes critical to productivity such as nutrient
and water holding capacity. Many studies have found texture to be a
critical soil variable in forest productivity (e.g., Fisher and Garbett,
1980; Hacker and Bilan, 1992; Subedi and Fox, 2016). While the order of
variable importance from the random forest model may well describe
our particular Regionwide dataset, we expect that the relative impor-
tance of each variable will likely change with expanded observations.
For example, our trial location selection, very purposely, avoided soils
with shallow restrictive layers, as the objectives were generally to
evaluate fertilizer response. Hence we have no soils with root limitations
at < 25 cm (Additional limitations group “s™). Therefore, while our trial
network is extensive, a wider dataset would capture more operational
variability across the landscape.

The prediction models we tested, though limited by linear relation-
ships and lack of interactions, provides the advantage to estimate site
productivity of soils where we do not have empirical data. The SPOT-
based model provided a reasonably parsimonious and satisfactory
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explanatory model that can be extended across the southeastern US,
either with or without climate data. With the mean and range in vari-
ation for mapped soils, forest managers can make better-informed de-
cisions regarding silvicultural management. The SPOT codes can help
indicate the limitations or opportunities for a given site.

Whether for mitigating climate change through improved carbon
sequestration and storage, or for economic incentives, understanding
the drivers of site productivity is critically important to optimize forest
management. Increasing site productivity across the region means tar-
geting sites that have the capacity to improve and, of course, knowing
how to improve them. This system allows us to provide observed and
attainable site productivity values, and to understand what soil re-
sources may be limiting to help guide management decisions. Granted,
past land use practices can either improve site productivity above and
beyond expectations (e.g., from legacy fertilizer, Everett and Palm-Leis,
2009) or decrease potential such as from soil compaction (Aust and
Blinn, 2004) or poor competition control (Albaugh et al., 2012). Silvi-
cultural inputs are generally limited by costs and financial returns.
Therefore, understanding which inputs can be optimized on a
site-specific basis is critical to achieve landowner objectives. To our
knowledge, this study is the most comprehensive effort to map managed
loblolly pine site index across the entire native range.

5.1. Limitations and future directions

Forest soils were often mapped by NRCS to a much lower resolution
than agricultural soils, often representing forest soils in complexes, as-
sociations, or undifferentiated map units which can add greater uncer-
tainty when predicting site productivity or growth responses to
particular management practices. Future work could take advantage of
LiDAR digital elevation models to extract minor changes in landforms
within map units to identify inclusions, such as depressions, that should
managed differently. Additionally, repeat LiDAR flights in the future
could provide for observed site productivity data at much greater res-
olution. The relative differences in the scale of maps certainly has led to
some level of inaccuracy and caution should be taken when applying
information at a small scale. Future iterations should also investigate the
addition of landforms, such as water shedding vs water collecting fea-
tures. Additionally, geologic maps often list three rock types but without
percent contribution or information regarding depth, leaving some un-
certainty as to the relative importance of each lithological unit.

Managed pine is grown across an incredible diversity of soils and
geologies in the southeastern US. While our Regionwide trial network is
likely one of the most extensive of its kind in the nation, it covered only
72 out of thousands of unique SPOT codes. It would be impossible to
have field trials to assess fertilization and/or other management re-
sponses on every unique soil code, therefore we must extrapolate from
our observations. Future steps will be to acquire site productivity
datasets across a broader gradient of soils under intensively managed
loblolly pine.

While this study focused primarily on managed loblolly pine pro-
ductivity, the system can be used also for identification of slash, long-
leaf, or sand pine appropriate sites. While outside of the scope of this
study, there may be future opportunities to use SPOT codes for other
forest systems. Additionally, while SPOT was developed on the south-
eastern US, there may be opportunities to expand the system to other
regions that also grow pine plantations, such as Brazil, or to other re-
gions of the US. In these cases, the system would need to be adapted to
recognize soil characteristics important for productivity and manage-
ment that do not occur in the southeastern US.

Finally, previous land-use practices, particularly P fertilizer appli-
cations, can affect available P, even across rotations (Everett and
Palm-Leis, 2009). Soil chemical properties, particularly soil extractable
P, should be assessed at planting to properly guide establishment P
decisions.
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6. Conclusion

The SPOT system provides a comprehensive framework for
improving pine management. While previous soil systems focused on
specific regions in the southeastern US, this is the first system to span the
entire range of loblolly pine and include soils, geology, and physio-
graphic province. The explanatory and predictive capabilities for site
productivity will provide critical information for sustainable manage-
ment of site resources, whether for timber, carbon, or other objectives.
Additionally, these data provide a baseline to observe sustained pro-
ductivity and sustainable site resource management. Modifications or
evolutions may occur as new information and future studies continue to
inform the SPOT system.
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