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Nomenclature 

𝑐 :  number of failed detections in “target vehicle detection” algorithm 

𝐶𝑜𝐺:  center of gravity of vehicle 

𝐷:  feedforward noise matrix  

𝐸: state coefficient matrix 

𝒇(. ):  nonlinear state dynamics  

𝑓𝑥(. ):  vehicle motion model corresponding to x  

𝑓𝑦(. ):  vehicle motion model corresponding to y  

𝒇̂(. ):  estimated nonlinear dynamics  

𝒇̃(. ):  error of estimated nonlinear dynamics  

𝒈(. ):  nonlinear input- state dynamics  

𝐻:  output state matrix  

𝐼 : identity matrix with proper dimension 

𝑘 : coefficient in nonlinear model of system 

𝑙: wheelbase length of vehicle 

𝑙𝑓: vehicle front length 

𝑙𝑟: vehicle rear length 

𝐿: observer gain matrix 

𝑁𝑚𝑖𝑛: minimum number of points within minimum radius in DBSCAN algorithm  

𝑃: positive definite matrix in Lyapunov function 

𝑞:  weight vector used to build 𝑄  

𝑄:  weight matrix in 𝐻∞ constraint  

𝑅: defined variable in LMI problem 

𝒖: input vector of the system 

𝑢𝑘: input for stepper motor control 

𝑈, 𝑉:  lower bound and upper bounds of Jacobian matrix of nonlinear state dynamics  

𝑉:  velocity of vehicle 

𝑉1:   negative semi-definite term used in S- procedure lemma 

𝒘: measurement noise 

𝒙: states of system 

𝒙̂: estimated states of system 

𝒙̃: error of estimated states of system 



𝒙̅: value between the true state value 𝒙 and estimated state value 𝒙̂ 

𝑋, 𝑥: relative longitudinal position of vehicle from e-scooter 

𝒚: output vector of the system 

𝑌, 𝑦: relative lateral position of vehicle from e-scooter 

𝑧𝑘: range measurement from laser sensor 

𝛽: vehicle slip angle 

𝛿𝐹: steering angle of vehicle 

𝛿𝑥: distance margin corresponding to 𝑥 used for 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑓 calculation 

𝛿𝑦: distance margin corresponding to 𝑦 used for 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑓  calculation 

𝜖: positive coefficient used in S- procedure lemma 

𝜇: coefficient in 𝐻∞ constraint 

ρ: minimum radius in DBSCAN algorithm 

𝛷𝑘:  orientation angle laser sensor (stepper motor) 

𝛷𝑚𝑎𝑥:  maximum orientation angle for stepper motor 

𝛷𝑚𝑖𝑛:  minimum orientation angle for stepper motor 

𝜓:  yaw angle of vehicle  

𝛺:  matrix used in negative semi-definite term 𝑉1 

 



Abstract 

This paper develops an active sensing and estimation system for protecting the rider of an e-scooter 

from car-scooter collisions. The objective is to track the trajectories of cars behind the e-scooter and predict 

any real-time danger of car-scooter collision. If the danger of a collision is predicted, then a loud car-horn-

like audio warning is sounded to alert the car driver to the presence of the scooter. A low-cost (~$100) 

single-beam laser sensor is chosen for measuring the positions of cars behind the scooter. The sensor is 

mounted on a stepper motor and the region behind the scooter is scanned to detect vehicles. Once a vehicle 

is detected, its trajectory is tracked in real-time by using feedback control to focus the orientation of the 

laser sensor such as to make measurements of the right front corner of the vehicle. A nonlinear vehicle 

model and a nonlinear observer are used to estimate the trajectory variables of the tracked car. The estimated 

states are used in a receding horizon controller that controls the real-time position of the laser sensor to 

focus on the vehicle. The developed system is implemented on a Ninebot e-scooter platform. Extensive 

experiments conducted with multiple vehicle maneuvers show that the closed-loop system is able to 

accurately track vehicle trajectories and provide audio alerts to prevent collisions. This paper constitutes 

the first-ever development of active rider protection technology for the protection of e-scooters. 

 

1. Introduction   

Over the last seven years, standing electric scooters have proliferated rapidly as an inexpensive and 

easily available mode of transportation. A market research company has predicted e-scooters will grow 

from a US$14 billion global market in 2014 to $37 billion in 2024 [1]. Bird and Lime, the two largest shared 

scooter operators, have placed scooters in a large number of cities across the U.S.. Scooters serve as an 

alternate to ride-sharing and public transit and provide personal pleasure to many commuters. They are 

described as “micro-mobility” which provides the last-mile commute or a full commute option for workers 

who live within a few miles of their workplace. Rules and regulations regarding the use of e-scooters vary 

widely with location and country [2]. In the US, scooters are typically not allowed on high-speed streets (> 

35 mph) [4]. Some states do allow e-scooters to be operated on sidewalks while others specifically ban their 

use on sidewalks [3]. The use of bicycle lanes by e-scooters is explicitly allowed in some states but is not 

a part of explicit rules in others. The maximum allowed speed of operation again varies from state to state 

and can be as low as 15 mph [4]. Outside the US, countries that have regulations regarding the maximum 

speed, rider age and possible e-scooter license requirements include Singapore, Germany, France, UK, 

Australia and New Zealand [2]. 

Scooter riders constitute a vulnerable population on roads and are in significantly more danger of 

suffering from severe injuries and fatalities in any car-scooter collision (compared to the occupants of the 

car). There is limited crash data available on e-scooters, due to their relatively recent appearance as part of 

the commuting vehicle infrastructure. Injuries resulting from e-scooters typically include head injuries or 

injuries to upper or lower extremities and range from minor contusions or lacerations to severe fractures or 

hemorrhages [5]- [7]. While relatively few deaths have occurred on e-scooters (compared to overall traffic 

fatalities), some studies have specifically found car-scooter crashes to be the most significant cause of e-

scooter rider fatalities [8].  There is inadequate statistically meaningful data available in US crash 

databases on e-scooter related crashes.  However, researchers used media and police reports to create a 

crash dataset of rented e-scooter fatalities for the 2018-2019 period and identified 17 corresponding records 

from the National Highway Traffic Safety Administration data [9]. They found that compared to fatalities 

from other modes of transportation, e-scooter fatality victims are younger, with more fatalities occurring at 

night and with the highest proportion of alcohol involvement of any mode [9]. The findings of another study 



from France [10] also suggest that trauma involving e-scooters in France has significantly increased over 

the past 4 years. These patients presented with injury profiles as severe as those of individuals who 

experienced bicycle or motorbike RTCs, with a higher proportion of severe traumatic brain injury. 

A more comprehensive data analysis of hospital data by the US Consumer Product Safety Commission 

found that emergency room visits in the US surged 450% from 7,700 in 2017 to 42,200 in 2021, with these 

estimates likely being an undercount [11]. Similarly, as an international example, a retrospective review 

was performed of the medical records of patients seen from 2015 to 2016 at an emergency department (ED) 

in Singapore [12], to analyze scooter-related injuries. There was found to be a 2.3-fold increase in the 

number of scooter-rider severe injuries from 2015 to 2016. It should be noted that injury rates may differ 

between different generations of scooters. 

Regarding cost estimates for e-scooter injuries, these vary greatly depending on the country [13]. 

However, these cost estimates focus solely on the cost of the hospital treatment [14], [15]. Economic impact 

on society from a broader perspective has not been studied in these references.   

Unlike the inadequate analysis of crash data on e-scooters, there are many studies done to analyze 

crashes of bicycles with motor vehicles. Based on an Insurance Institute for Highway Safety (IIHS) study, 

45% of the fatalities of bicycle crashes are in scenarios in which a vehicle is traveling in the same direction 

as the bicycle [16], suggesting that rear vehicle detection and tracking can be very helpful for the safety of 

bicycles or e-scooters. This also can be implied from another report and the citations in this report [17] 

showing that 40% of the collisions between bicycles and vehicles are rear-end. For this reason, our focus 

in this paper is to investigate a method for rear vehicle tracking to protect the e-scooter rider from vehicles 

that are approaching from behind the e-scooter. 

The objective of the e-scooter protection system in this paper is to continuously track the trajectories 

of rear vehicles both directly behind and also in the adjacent lane next to the e-scooter’s lane. If a danger 

of car-scooter collision is predicted, then a loud audio alert (a honk) is sounded to warn the car driver about 

the presence of the e-scooter.  The tracking system is based on the use of a nonlinear observer and a low-

cost sensor suitable for an e-scooter.  The philosophy behind the approach is that the low-cost system can 

directly be sold to scooter riders and will be useful immediately on today’s roads, since it does not require 

all the cars on the road to be equipped with new technology but relies on just the e-scooter itself for warning 

the car driver. 

It should be noted that ADAS systems are being developed on new cars with various degrees of forward 

collision warning capabilities and utilize cameras, radar and sonar sensors [18], in addition to Lidar sensors 

on autonomous vehicles. While Lidar and radar sensors are significantly more expensive than the laser 

sensor utilized in this paper, sonar sensors have shorter range (of the order of 5 m) and cameras require 

significant computational power while not being robust to weather and lighting conditions.  ADAS 

systems with pedestrian detection systems based on cameras are also becoming available [19]. However, 

the development of systems for bicycle and e-scooter detection are not widespread even on new automobiles 

and it will take many years for such technologies to become ubiquitous on all cars in the road. 

To the best of this research team’s knowledge, automotive companies and researchers have not focused 

on rear-vehicle tracking. There has not been adequate reason for automotive companies to detect the danger 

of collisions from vehicles behind an ego vehicle, such as being done in this paper – The active safety 

systems on vehicles are typically not concerned by vehicles behind the ego-vehicle and are not expected to 

react to them. On the other hand, vulnerable users like bicycles, pedestrians and e-scooters need to track 

vehicles behind them if these could pose a danger to them.  In the case of bicycles, only a few research 

teams and one company have developed sensor systems for bicyclist safety. A magnetometer-based system 



has been developed to identify dangerous locations to bicycles due to heavy automotive traffic [20]. A 

Rutgers University team has explored a rear-approaching vehicle detection system using computer vision 

techniques [21]. An undergraduate Northeastern University team explored a sonar sensor system to monitor 

vehicles at the rear and front of a bicycle [22]. Garmin has developed a rear-collision prevention system 

using radar [23]. Researchers have explored a laser-sensor-based bicycle protection system [24]. The sensor 

systems explored so far for bicycles have not used nonlinear observers for tracking, unlike the system being 

studied here for e-scooters.  

In summary, the major technical contributions of the paper are as follows: 

a) Development and use of a nonlinear observer for estimating the trajectories of rear vehicles. 

b) Use of an active orientation control algorithm to focus a laser sensor on a corner of the rear vehicle, 

with the real-time orientation control of the laser sensor based on estimated states obtained from 

the nonlinear observer. 

c) Presentation of an integrated algorithm to perform initial vehicle detection, followed by state 

estimation for vehicle tracking, and laser sensor orientation control for following the rear vehicle 

based on the estimated states of the nonlinear observer. 

d) Implementation of the entire system on a prototype e-scooter with all of the algorithms 

implemented entirely on a Teensy microprocessor and all of the electronics contained installed 

compactly on the e-scooter. 

e) Extensive experimental results evaluating the performance of the integrated system in tracking rear 

vehicles performing various types of maneuvers. 

There has been significant recent interest in this journal (MSSP) in estimation of vehicle motion related 

variables using Kalman filters and other stochastic estimation algorithms. For instance, the mass of the 

vehicle is estimated based on longitudinal dynamic models and IMU/ GNSS measurements using a Kalman 

filter in [25]. Estimation of tire forces using a Kalman filter and a multi-body vehicle model is presented in 

[26]. The estimation of lateral and longitudinal vehicle velocities using a stochastic estimation algorithm 

and IMU/GNSS measurements is presented in [27]. Finally, road slope estimation based on an interactive 

multiple model algorithm in presented in [28]. The present paper differs from the above in its estimation 

approach by using a nonlinear observer instead of a stochastic estimation filter. One significant advantage 

of a nonlinear observer is its guaranteed global stability in the presence of nonlinear dynamics. 

The outline of the paper is as follows. The rear vehicle detection system is described in section 2. The 

vehicle nonlinear model used for estimation is described in section 3. The nonlinear observer design and 

the associated LMI problem are described in sections 4 and 5. The controller design is described in section 

6 and the simulation and experimental results are shown in section 7. 

 

2. Rear Vehicle Detection  

This section describes the vehicle detection algorithm using a low-cost laser sensor mounted on a 

stepper motor as shown in Fig. 1. Vehicle detection identifies whether or not measurements from an object 

behind the e-scooter are from a car. Vehicle detection is needed before vehicle tracking can be initiated. 

While 2-D and 3-D LIDAR sensors can provide detailed shapes of objects in the environment, their cost/size 

disadvantages make them an inappropriate choice for the e-scooter application. Hence, we are using a 

single-beam laser sensor with specifications mentioned in Table 1. The sensor was mounted at a height of 

66 cm from the ground, nominally above the bumper height of a typical sedan (which is 40 – 50 cm). The 

sensor is low-cost (~$ 100) but has a single thin laser beam with a very narrow field of view, making it 

unable to view the full environment behind the e-scooter at once. Therefore, the laser sensor is mounted on 



a stepper motor and is actively controlled to first scan and detect a vehicle and then subsequently track the 

vehicle continuously by closed-loop control of its orientation. While the range of the sensor is specified as 

40 meters, the sensor was found in experiments to reliably detect all vehicles only at distances below 30 m. 

Table. 1. Garmin LIDAR Sensor Specifications. 

Sensor Price Range Weight Accuracy Size 

Garmin 

LIDAR-Lite v3 
$129.99 5 cm- 40 m 22 g ±2.5 cm 40 × 48 × 20 mm 

 

 

Fig. 1. Laser sensor system, audio system, and the camera on the Ninebot MAX e-Scooter. 

 

Fig. 2. Schematic of measurements from the system (angle and distance to the target are obtained when the laser 

sensor detects the object). 

 

First, the rotational laser sensor scans the area of interest over a sweep angle of 30 degrees behind the 

e-scooter. Range measurements 𝑧𝑘 at 100 Hz are obtained at different orientation angles 𝛷𝑘 as shown in 

Fig. 2, by rotating the sensor in order to detect any rear-approaching vehicles. Measurements by the laser 

sensor need not be just from a car, but might be from objects such as road signs, road traffic barriers, trees, 

and parked cars. A clustering-based target detection algorithm is developed based on the measurement 

density and width for reliable detection of the target vehicle. The density-based spatial clustering of 

application with noise (DBSCAN) [29] algorithm is utilized for this purpose and customized for the E-



scooter application. DBSCAN identifies clusters by examining the local density of data in spatial data sets 

based on two pre-defined parameters: a minimum radius ρ and a minimum number of points within the 

radius 𝑁𝑚𝑖𝑛. The DBSCAN groups data points together as a cluster if, for each point of the cluster, the 

neighborhood of a given radius ρ contains at least minimum number of points 𝑁𝑚𝑖𝑛. The flowchart of the 

algorithm is shown in Fig. 3. The laser sensor system initially keeps scanning over a pre-determined range 

and stores measurements to an array. At each sampling time, DBSCAN is utilized on the stored 

measurement data and examines whether it constitutes a cluster or not. Measurement data from small 

objects or outliers will not contribute to the cluster if proper 𝜌 and 𝑁𝑚𝑖𝑛  values are chosen for the 

algorithm in the flow-chart. After the isolated cluster is found, the cluster is examined for its size and pattern 

of the data. From the cluster size, too large or too small an object, such as a building or a pedestrian, can be 

distinguished and separated from a vehicle. The data pattern of the cluster can also differentiate a rear-

approaching vehicle from non-moving objects. For example, it cannot be an object approaching the e-

scooter if the measurements (distance between the object and scooter) keep increasing. If the cluster is 

confirmed as an approaching vehicle, the sensor system reverses its scan direction to find the initial relative 

position between the scooter and the right-front corner position of the target vehicle. If the reversed scan 

direction is counter-clockwise, the sensor system scans over the target vehicle until the sensor misses and 

obtains no measurement from the target vehicle, in order to find the right front corner. Then, the last 

measurement from the target vehicle is utilized as the initial relative position of the target vehicle. If the 

reversed scan direction is clockwise, the sensor system scans until the sensor obtains the first measurement 

from the target vehicle and this measurement is then used as the initial relative position of the target vehicle. 

Finally, the target detection is completed, and the sensor system initiates its closed-loop tracking. 

 

Fig. 3. Rear target detection based on the DBSCAN algorithm. 

 



3. Vehicle Nonlinear Model 

After detecting the presence of a vehicle behind the e-scooter, the single beam laser sensor should start 

tracking the position and orientation of the vehicle in order to predict any potential danger of collision. 

Thus, it is required that the system continuously estimate the trajectory of the detected vehicle. In this 

section, a nonlinear bicycle model of a vehicle is presented which will be used for the development of the 

nonlinear observer in the next section. Fig. 4 shows a vehicle with the total velocity of 𝑉 (at the Center of 

Gravity or CoG), yaw angle of 𝜓, and steering angle of 𝛿𝐹. 

Assuming that the reference coordinate system is attached to the sensor location of the e-scooter as 

shown in Fig. 2, 𝑋 and 𝑌 represent the relative position of the vehicle from the e-scooter. Assuming 

constant velocity, the state and output vectors are defined as: 

 𝒙 = [𝑋 𝑌 𝜓 𝛿𝐹]
𝑇  and  𝒚 = [𝑋 𝑌]𝑇 (1) 

The nonlinear model of the vehicle can be described as [30]: 

 

𝒙̇ =

[
 
 
 
𝑋̇
𝑌̇
𝜓̇

𝛿𝐹̇]
 
 
 

= [

𝑉 cos(𝜓 + 𝛽)
𝑉 sin(𝜓 + 𝛽)

𝑉cos𝛽 tan 𝛿𝐹 /ℓ
0

]  (2) 

 

 

Fig. 4. Vehicle motion schematic and model variables 

 

The parameter 𝑙 = 𝑙𝑓 + 𝑙𝑟 is the wheelbase length of the vehicle and 𝛽 = 𝑡𝑎𝑛−1 (𝑙𝑟
𝑡𝑎 𝑛(𝛿𝑓 )

𝑙𝑓+𝑙𝑟 
). The 

vehicle model can be represented in the following general form: 

 
𝒙̇ = 𝑘𝒇(𝒙) + 𝒈(𝒚, 𝒖) = {

𝑘𝑓1(𝐸1𝒙)
⋮

𝑘𝑓𝑛(𝐸𝑛𝒙)
} + 𝒈(𝒚, 𝒖) 

𝒚(𝒙) = 𝐻𝒙 + 𝐷𝒘 

(3) 



where 𝒙 ∈ 𝑅𝑛, 𝒚 ∈ 𝑅𝑚, 𝒖 ∈ 𝑅𝑝, 𝑘 = 𝑉 ∈ 𝑅 , 𝐸𝑖
𝑇 ∈ 𝑅𝑛, 𝐻 ∈ 𝑅𝑚×𝑛, 𝐷 ∈ 𝑅𝑚×𝑞 , 𝑓𝑖: 𝑅 → 𝑅 , 𝑖 = 1,2,… , 𝑛 ,  

𝒈(𝒚, 𝒖)  is 𝑅𝑚 x 𝑝 → 𝑅𝑛 , and 𝒘 ∈ 𝑅𝑞  is measurement noise. The variable 𝐸𝑖𝒙  is a linear scalar 

combination of the states.  

It should be noted that slip angle at the CoG of the vehicle is utilized but the use of tire forces in which 

the tire force varies as a function of the slip angle is avoided.  This is because such a model becomes a 

function of a large number of tire and vehicle parameters. Since the vehicle that is encountered is unknown, 

the values of these parameters cannot be known. Hence, the above model that includes vehicle slip angle is 

more appropriate, in spite of not involving slip angles at the tires. 

For the vehicle model (2), the general system (3) will be simplified as: 

𝒈(𝒚, 𝒖) = 0 

𝑓1 = cos𝜓 , 𝑓2 = sin𝜓 , 𝑓3 = tan𝛿𝐹 /𝑙 , 𝑓4 = 0 

𝐻 = [
1 0 0 0
0 1 0 0

 ] 

𝐸1 = 𝐸2 = [0 0 1 0], 𝐸3 = [0 0 0 1], 𝐸4 = [0 0 0 0] 

(4) 

The arguments of the nonlinear functions 𝑓𝑖 (𝐸𝑖𝑥) in the general formulation (3) are a linear scalar 

combination of the states. Let 𝒇̃ = 𝒇 − 𝒇̂ where 𝒇̂ = 𝒇(𝒙̂). Then from the differential mean value theorem 

(DMVT): 

𝑓𝑖 = 𝑓𝑖 − 𝑓𝑖 =
𝜕𝑓𝑖

𝜕(𝐸𝑖𝑥)
⌉
𝑥=𝑥̅

𝐸𝑖𝑥̃ 

Hence 

 

𝒇̃ = 𝒇 − 𝒇̂ =

[
 
 
 
 
 
𝜕𝑓1

𝜕(𝐸1𝒙)
|
𝒙 = 𝒙̅

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜕𝑓𝑛

𝜕(𝐸𝑛𝒙)
|
𝒙 = 𝒙̅]

 
 
 
 
 

𝐸𝒙̃ 

(5) 

where 𝒙̅ is a value between the true state value 𝒙 and estimated state value 𝒙̂. Note that equation (5) is 

based on the DMVT, is exact for some 𝒙̅ and is not an approximation. Assume that the functions 𝑓𝑖 have 

bounded Jacobians, namely let: 

 𝑈𝑖 ≤
𝜕𝑓𝑖

𝜕(𝐸𝑖𝒙)
|
𝒙 = 𝒙̅

≤ 𝑉𝑖,      for     𝑖 = 1,2,… . , 𝑛 (6) 

 𝐸 = [𝐸1 … 𝐸𝑛]
𝑇 (7) 

 

𝑈 = [

𝑈1 0
0 𝑈2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ 0
0 𝑈𝑛

] , 𝑉 = [

𝑉1 0
0 𝑉2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ 0
0 𝑉𝑛

] (8) 

Hence 



 

𝑈 ≤

[
 
 
 
 
 
𝜕𝑓1

𝜕(𝐸1𝒙)
|
𝒙 = 𝒙̅𝟏

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜕𝑓𝑛

𝜕(𝐸𝑛𝒙)
|
𝒙 = 𝒙̅𝒏]

 
 
 
 
 

≤ 𝑉 (9) 

 

The nonlinear observer in section 4 is designed based on the general form of the vehicle model (3) and 

the Jacobian bounds (9). 

 

4. Nonlinear Observer Design 

It is necessary to estimate the position and orientation of the rear vehicle so as to estimate its real-time 

trajectory. The estimated state values can then be used to control the stepper motor to point the laser beam 

at the right corner of the vehicle. The steps of the nonlinear observer design for this estimation task are 

described in this section. The active control of the laser beam orientation angle based on the estimated states 

is presented subsequently in section 5. 

4.1. The Observer Design Formulation 

The nonlinear observer for the system (3) is defined as in equation (10). 

 𝒙̇̂ = 𝑘𝒇(𝒙̂) + 𝒈(𝒚, 𝒖) + 𝐿[𝒚 − 𝐻𝒙̂] (10) 

Let the estimated error be given by: 

 𝒙̃ = 𝒙 − 𝒙̂ (11) 

Then taking the derivative of equation (11): 

 𝒙̇̃ = (𝑘𝒇(𝒙) + 𝒈(𝒚, 𝒖)) − (𝑘𝒇(𝒙̂) + 𝐿[𝒚 − 𝐻𝒙̂] + 𝒈(𝒚, 𝒖))

= 𝑘𝒇̃(𝒙, 𝒙̂) − 𝐿[𝐻𝒙 + 𝐷𝒘−𝐻𝒙̂] = 𝑘𝒇̃(𝒙, 𝒙̂) − 𝐿𝐻𝒙̃ − 𝐿𝐷𝒘 
(12) 

The estimated error 𝒙̃ should converge to zero in the absence of sensor noise. It is also desired to have 

a 𝐻∞ constraint on the estimation errors for sensor noise rejection: 

 
∫ 𝒙̃(𝒕)𝑻𝑄𝒙̃(𝒕)𝑑𝑡
∞

0

≤  𝜇∫ 𝒘(𝑡)𝑇𝒘(𝑡)𝑑𝑡
∞

0

 (13) 

Define the following matrix to be used in Lemma 1: 

 

Ω =

[
 
 
 
 
𝐸𝑇𝑈𝑇𝑉𝐸 + 𝐸𝑇𝑉𝑇𝑈𝐸

2
−
𝐸𝑇𝑈𝑇 + 𝐸𝑇𝑉𝑇

2
0

−
𝑉𝐸 + 𝑈𝐸

2
𝐼 0

0 0 0]
 
 
 
 

  (14) 

 

Lemma 1: The difference function 𝒇̃ satisfies the following quadratic inequality based on the Jacobian 

bounds of 𝑓: 



 
𝑉1 = [𝒙̃

𝑻 𝒇̃𝑻 𝒘𝑇] Ω [
𝒙̃
𝒇̃
𝒘
] ≤ 0 (15) 

Note that Ω < 0 is a sufficient but not a necessary condition for (15). This is because 𝒇̃ is itself a function 

of 𝒙̃. 

Proof: The following equations are obtained from equation (5) and inequality (9): 

 
𝒇̃ − 𝑈𝐸𝒙̃ = 𝑑𝑖𝑎𝑔 {

𝜕𝑓1
𝜕(𝐸1𝒙)

|
𝑥=𝑥̅1

− 𝑈1, …… ,
𝜕𝑓𝑛

𝜕(𝐸𝑛𝒙)
|
𝑥=𝑥̅𝑛

− 𝑈𝑛} 

𝒇̃ − 𝑉𝐸𝒙̃ = 𝑑𝑖𝑎𝑔 {
𝜕𝑓1

𝜕(𝐸1𝒙)
|
𝑥=𝑥̅1

− 𝑉1, …… ,
𝜕𝑓𝑛

𝜕(𝐸𝑛𝒙)
|
𝑥=𝑥̅𝑛

− 𝑉𝑛} 

(16) 

It follows that: 

 
{
(𝒇̃ − 𝑈𝐸𝒙̃)

𝑇
( 𝒇̃ − 𝑉𝐸𝒙̃) ≤ 0

( 𝒇̃ − 𝑉𝐸𝒙̃)
𝑇
(𝒇̃ − 𝑈𝐸𝒙̃) ≤ 0

 (17) 

⇒ {
𝒇̃𝑇  𝒇̃ − 𝒙̃𝑇𝐸𝑇𝑈𝑇𝒇̃ − 𝒇̃𝑉𝐸𝒙̃  + 𝒙̃𝑇𝐸𝑇𝑈𝑇𝑉𝐸𝒙̃ ≤ 0

𝒇̃𝑇  𝒇̃ − 𝒙̃𝑇𝐸𝑇𝑉𝑇𝒇̃ − 𝒇̃𝑈𝐸𝒙̃ + 𝒙̃𝑇𝐸𝑇𝑉𝑇𝑈𝐸𝒙̃ ≤ 0
 (18) 

 

⇒ 𝒇̃𝑇 𝒇̃ −
𝒙̃𝑇𝐸𝑇𝑈𝑇𝒇̃ + 𝒙̃𝑇𝐸𝑇𝑉𝑇𝒇̃

2
−
𝒇̃𝑉𝐸𝒙̃ + 𝒇̃𝑈𝐸𝒙̃

2
 +
𝒙̃𝑇𝐸𝑇𝑈𝑇𝑉𝐸𝒙̃ + 𝒙̃𝑇𝐸𝑇𝑉𝑇𝑈𝐸𝒙̃

2
≤ 0 

(19) 

Writing the equation (19) in quadratic form: 

𝑉1 = [
𝒙̃𝑻

𝒇̃𝑻

𝒘𝑇
]

𝑇

[
 
 
 
 
𝐸𝑇𝑈𝑇𝑉𝐸 + 𝐸𝑇𝑉𝑇𝑈𝐸

2
−
𝐸𝑇𝑈𝑇 + 𝐸𝑇𝑉𝑇

2
0

−
𝑉𝐸 + 𝑈𝐸

2
𝐼 0

0 0 0]
 
 
 
 

[
𝒙̃
𝒇̃
𝒘
] ≤ 0 (20) 

Thus, 𝑉1 is negative semi-definite [34].       

∎ 

 

Theorem 1: If there exists a feasible solution consisting of observer gain 𝐿 and 𝑃 > 0 for the LMI (21), 

that gain 𝐿  will make the observer (10) globally exponentially stable, while satisfying disturbance 

rejection constraint (13). 

[
 
 
 
 𝐺 𝑃𝑘 + 𝜖

𝐸𝑇𝑈𝑇 + 𝐸𝑇𝑉𝑇

2
−𝑃𝐿𝐷

𝑘𝑃 + 𝜖
𝑉𝐸 + 𝑈𝐸

2
−𝜖𝐼 0

−𝐷𝑇𝐿𝑇𝑃 0 −𝜇 ]
 
 
 
 

≤ 0 

 

where: 

(21) 



𝐺 = −𝐻𝑇𝐿𝑇𝑃 − 𝑃𝐿𝐻 − 𝜖
𝐸𝑇𝑈𝑇𝑉𝐸 + 𝐸𝑇𝑉𝑇𝑈𝐸

2
+ 𝑄 

Proof: Consider the following Lyapunov function candidate: 

 𝑉 = 𝒙̃𝑇𝑃𝒙̃ , 𝑃 > 0  (22) 

In the presence of the disturbance 𝒘: 

 𝑉̇ = 𝒙̇̃𝑇𝑃𝒙̃ + 𝒙̃𝑇𝑃𝒙̇̃ = (𝑘𝒇̃(𝒙, 𝒙̂) − 𝐿𝐻𝒙̃ − 𝐿𝐷𝒘)
𝑇
𝑃𝒙̃ + 𝒙̃𝑇𝑃(𝑘𝒇̃(𝒙, 𝒙̂) − 𝐿𝐻𝒙̃ − 𝐿𝐷𝒘)  

= 𝑘𝒇̃𝑇𝑃𝒙̃ + 𝒙̃𝑇𝑃𝑘𝒇̃ − 𝒙̃𝑻𝐻𝑇𝐿𝑇𝑃𝒙̃ − 𝒙̃𝑇𝑃𝐿𝐻𝒙̃ − 𝒘𝑇𝐷𝑇𝐿𝑇𝑃𝒙̃
− 𝒙̃𝑇𝑃𝐿𝐷𝒘 

(23) 

In matrix form 

𝑉̇ = [
𝒙̃ 

𝒇̃ 

𝒘 
]

𝑇

[
−𝐻𝑇𝐿𝑇𝑃 − 𝑃𝐿𝐻 𝑃𝑘 −𝑃𝐿𝐷

𝑘𝑃 0 0
−𝐷𝑇𝐿𝑇𝑃 0 0

] [
𝒙̃
𝒇̃
𝒘
] (24) 

For disturbance rejection constraint (13): 

 𝑉̇ + 𝒙̃𝑻𝑄𝒙̃ − 𝜇𝒘𝑇𝒘 < 0 (25) 

Hence in quadratic form 

 

𝑉̇ + 𝒙̃𝑻𝑄𝒙̃ − 𝜇𝒘𝑇𝒘 = [
𝒙̃ 

𝒇̃ 

𝒘 
]

𝑇

[
−𝐻𝑇𝐿𝑇𝑃 − 𝑃𝐿𝐻 + 𝑄 𝑃𝑘 −𝑃𝐿𝐷

𝑘𝑃 0 0
−𝐷𝑇𝐿𝑇𝑃 0 −𝜇𝐼

] [
𝒙̃
𝒇̃
𝒘
] < 0 (26) 

Using the S- procedure lemma [31], the LMI is obtained from 𝑉̇ + 𝒙̃𝑻𝑄𝒙̃ − 𝜇𝒘𝑇𝒘 ≤ 𝜖𝑉1 using (20) and 

(26): 

 

[
−𝐻𝑇𝐿𝑇𝑃 − 𝑃𝐿𝐻 + 𝑄 𝑃𝑘 −𝑃𝐿𝐷

𝑘𝑃 0 0
−𝐷𝑇𝐿𝑇𝑃 0 −𝜇𝐼

] − 𝜖

[
 
 
 
 
𝐸𝑇𝑈𝑇𝑉𝐸 + 𝐸𝑇𝑉𝑇𝑈𝐸

2
−
𝐸𝑇𝑈𝑇 + 𝐸𝑇𝑉𝑇

2
0

−
𝑉𝐸 + 𝑈𝐸

2
𝐼 0

0 0 0]
 
 
 
 

< 0 (27) 

which is the LMI design problem (21) specified in the theorem.                                 ∎ 

It should be noted that the inequality (21) involves the product term 𝑃𝐿 in which both 𝑃 and 𝐿 are 

solution variables. However, it is well known in the literature that (21) can be converted into an LMI by 

defining a new variable 𝑅 = 𝑃𝐿, solving for 𝑃 and 𝑅, and then obtaining 𝐿 using 𝐿 = 𝑃−1𝑅. Since 𝑃 

is positive definite and invertible, 𝐿 is guaranteed to exist once 𝑃 and 𝑅 are obtained. 

 

4.2. Solving the LMI Problem for the Vehicle Model 

In this section, the nonlinear observer gain 𝐿 is obtained by solving LMI (21) for the vehicle nonlinear 

equations using the SEDUMI solver in MATLAB software. To have a feasible solution for the LMI problem, 

the following reasonable upper and lower bounds are used with the nominal vehicle velocity of 7.5 m/s: 

 −15° ≤ 𝜓 ≤ 15°,−10° ≤ 𝛿𝐹 ≤ 10° (28) 



The disturbance rejection factor is assumed to be 𝜇 = 0.15. For disturbance rejection, the vector 𝑞 

is defined to calculate the weight matrix 𝑄: 

 𝑞 = [1 1 0.1 0], 𝑄 = 𝑞𝑇𝑞 (29) 

To maintain feasibility for the LMI problem, the vector q is chosen to have some zero elements as 

shown in equation (29). This structure ensures that noise reduction has high priority for the location states 

and is less important for the angle states. The resulting observer gain for these values is: 

 
𝐿 = [

8.4358 −0.8236 −0.8797 −0.6744
1.1103 15.7523 19.0477 13.2052

]
𝑇

 (30) 

The nonlinear observer (10) with the gain (30) is used for real-time vehicle trajectory estimation. 

5. Tracking and Active Control 

This section deals with the active control of the laser sensor system for continuous tracking of the rear 

vehicle. We aim to track the right front corner of the target vehicle by measuring alternately distances to 

the front and side of the vehicle at points close to the right front corner, since tracking this corner provides 

both lateral and longitudinal distance information. Therefore, the reference point for orientation control is 

changed alternately depending on the corresponding selection of which information (longitudinal or lateral) 

is needed. The receding horizon controller is used to determine the optimal control input to track the desired 

reference based on the predicted future vehicle motion under control input constraints considered in the 

receding horizon controller. The following optimization problem is therefore constructed for the sensor 

orientation control: 

 
arg  min

𝑢𝑘

‖𝑟𝑎𝑡𝑖𝑜 𝑟𝑒𝑓 − tan(𝛷𝑘 + 𝑢𝑘)‖
2
 

𝑟𝑎𝑡𝑖𝑜 𝑟𝑒𝑓 =

{
 
 

 
 𝑦̂𝑘+1 + 𝛿𝑦

𝑥𝑘+1
: 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑦̂𝑘+1
𝑥𝑘+1 + 𝛿𝑥

: 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 

subject to 𝑥𝑘+1 = 𝑓𝑥(𝑋𝑘),   𝑦̂𝑘+1 = 𝑓𝑦(𝑋𝑘),

 𝑦̂𝑘+1 > 0,
 𝑢𝑘 ∈ 𝑈,   𝛷𝑚𝑖𝑛 ≤ 𝛷𝑘 + 𝑢𝑘 ≤ 𝛷𝑚𝑎𝑥

 

𝑢𝑘  𝜖 𝑈: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑝𝑢𝑡𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟𝑠 

(31) 

where 𝑓𝑥(∙) and 𝑓𝑦(∙) are the vehicle motion model corresponding to 𝑥 and 𝑦, respectively, 𝛿𝑥  and 

𝛿𝑦 are distance margins which are used to construct reference points on the target vehicle (assumed to be 

10 cm), 𝑈 is a finite set of feasible control inputs (steps are {1°,1.5°,2°}), and 𝜙𝑘 is the sensor orientation 

at time 𝑘 . The margins need to be small enough for fast measurement updates and large enough for 

robustness to deal with vehicle maneuver changes. Using (31), we track the right front corner (𝑥, 𝑦) of the 

target vehicle by measuring alternately distances to the front and side of the vehicle at points close to the 

right front corner. The predicted vehicle motion (𝑥𝑘+1, 𝑦̂𝑘+1) is calculated based on the nonlinear model 

(2). From (31), a desired orientation for the laser sensor system is determined at every sampling time instead 

of waiting for the end of an open-loop scan range. Once the vehicle moves out of the area of interest or 

passes the e-scooter (i.e., 𝜙𝑘 + 𝑢𝑘 < 𝜙𝑚𝑖𝑛 or 𝜙𝑘 + 𝑢𝑘 > 𝜙𝑚𝑎𝑥), the sensor system stops tracking and 

starts to search for a new target vehicle. 



Whether a received reflection is from the front or side of a vehicle is determined by computing the 

slope of the line joining consecutive measurement points. If the slope of this line is small, it implies that 

the new reading has not switched from the front of the car to the side of the car, or vice versa.  On the 

other hand, if the slope of this line is sufficiently big, then it implies that the new reading has switched from 

the front of the car to the side of the car (or vice versa).  If no readings from the side of a vehicle are 

received, then the slope always indicates that the front of a vehicle is being measured, and the reading 

becomes zero when the laser sensor moves beyond the corner of the car without receiving any side readings. 

This is incorporated in our algorithm, since tracking a car right behind the e-scooter (where the side is not 

visible and no side reflections are received) is a very common scenario.  

Measuring lateral and longitudinal distances alternately enables the closed-loop system to track the 

corner of the vehicle using the receding horizon controller and the nonlinear observer (10), in spite of using 

just a single beam laser sensor. 

 

6. Simulations and Experiments 

6.1. Simulation Results 

To evaluate the tracking and estimation algorithms, we simulated the e-scooter and a vehicle in 

MATLAB with several different trajectories representing the four scenarios in Fig. 5, namely  

a) vehicle travels right behind the e-scooter  

b) vehicle travels adjacent to the e-scooter and then changes lanes to come behind the e-scooter 

c) vehicle travels adjacent to the e-scooter 

d) vehicle travels behind the e-scooter and changes lanes to come adjacent to the e-scooter.  

Results of the MATLAB simulations are presented in Fig. 6. As shown in Fig. 6, the algorithm can 

track the vehicle and accurately estimate the states in the simulation for all 4 scenarios. The curve plotted 

with black circles shows the raw measurements from the laser sensor. The curve plotted with blue *’s shows 

the estimates from the nonlinear observer. In each of the 4 scenarios, the sensor initially scans the road for 

finding (detecting) a rear vehicle. This can be seen from the initial back and forth angular motion of the 

laser sensor shown on the right side of the figure for each scenario. Once the vehicle is detected, the angular 

motion of the laser sensor varies more gradually as it tracks the motion of the vehicle. The estimated 

longitudinal and lateral distances 𝑋 and 𝑌 track the actual distances accurately throughout the vehicle 

motion in each scenario. 

Note that good estimation leads to good prediction of the vehicle movement, and consequently good 

orientation control of the laser sensor. Achieving good orientation control of the laser sensor enables 

continuous future measurements from the corner of the vehicle. 

 



 

Fig. 5. Rear vehicle approaching scenarios considered in this paper. Four distinct scenarios are considered. 

 

 
(i) 

 
(ii) 

Scenario a: vehicle travels right behind scooter 

 

 
(i) 

 
(ii) 

Scenario b: vehicle moves from adjacent lane to behind scooter 

 



 
(i) 

 
(ii) 

Scenario c: vehicle travels in adjacent lane 

 

 
(i) 

 
(ii) 

Scenario d: vehicle initially behind scooter changes lane to adjacent lane 

Fig. 6. Simulation Results in MATLAB for 4 different scenarios. The vehicle maneuvers for the 4 scenarios are 

shown in Fig. 5. In each scenario, the lateral and longitudinal distances are shown in the left figure and the angular 

position of the laser sensor is shown in the right figure. 

 

6.2. Experimental Results 

First real-world experiments were conducted by riding the scooter on roads with regular traffic, 

primarily in the bicycle lane.  More than two hours of real-time data with real-world traffic have been 

obtained and show the capability of the e-scooter system to perform reliably, track vehicles both behind 

and adjacent to the scooter, and provide minimal false alarms. Fig. 7 shows example results from riding in 

real-world traffic. In this data set, 3 consecutive vehicles pass by the scooter, one behind the other in rapid 

succession. 

    

        (i)                                         (ii) 



    

        (iii)                                       (iv) 

 

Fig. 7. Experimental performance in real-world traffic: Tracking of 3 consecutive vehicles as they pass by e-

scooter traveling in bicycle lane: (i) Scneraio c: Beam angle results from the active control system (ii) Vehicle #1: 

Lateral and longitudinal positions (iii) Vehicle #2: Lateral and longitudinal positions (iv) Vehicle #3: Lateral and 

longitudinal positions  

Fig. 7 (i) shows the rotation angle of the laser sensor and how the active rotation control system is able 

to track all 3 vehicles, following them as they come closer and right next to the scooter, and then 

subsequently initiate detection and tracking of the next following vehicle. Figures 7 (ii), 7 (iii) and 7 (iv) 

show the individual estimated trajectories in terms of lateral and longitudinal positions of the three 

individual vehicles. When the sensor stops tracking each vehicle, the maximum angle of the laser sensor is 

around 1 radian and the longitudinal distance is typically less than 1 meter. 

Since riding in regular real-world traffic for a couple of hours does not necessarily put the scooter in 

danger, we conducted special experiments using our own cars which operate with controlled maneuvers 

that pose potential danger to the rider, triggering an audio alarm from the e-scooter. These experiments are 

for scenario a and scenario b, which are scenarios that could potentially result in a situation involving the 

possibility of a car-scooter collision.  In order to perform these experiments safely, a stand was designed 

to position the scooter by itself without requiring the rider to be present, as shown in Fig. 8. In scenario a, 

the vehicle drives behind the e-scooter and stops in a dangerous manner just behind the e-scooter. As shown 

in Fig. 9 (Scenario a), the system can track the vehicle correctly from 25 meters away. Scenario d on the 

other hand is the more complicated case in which the vehicle initially drives behind the e-scooter, and then 

changes lanes to pass by in a safely manner. As shown in Fig. 9 (Scenario d), the system has been able to 

track two different vehicles and track them accurately. 

While scenarios a-d are the most likely maneuvers to be encountered in regular e-scooter riding on 

local roads, we also tested the ability of the active tracking system to track vehicles during some unusual 

vehicle maneuvers involving multiple lane changes. Performances during these complicated vehicle 

trajectories are shown in Fig. 10. The first and second scenarios include weaving behind the e-scooter 

involving two lane changes by the rear vehicle. In Fig. 10 (i) the vehicle changes to come behind the e-

scooter and then changes lanes again after receiving an audio honk from the e-scooter. In Fig. 10 (ii) the 

vehicle changes lanes multiple times and ends up stopping just behind the e-scooter. In the third scenario 

in Fig. 10 (iii), the vehicle makes a sudden lane change from a large lateral distance and suddenly moves 

directly towards the e-scooter. All three unusual scenarios could result in a situation involving the 

possibility of a car-scooter collision depending on the relative trajectories of the car and e-scooter. 

 



 

Fig. 8. Scenario d experiments with the e-scooter setup on a stand in order to avoid danger to a human subject 

in these risky experiments. In these specific experiments, the vehicle is initially behind the e-scooter and then 

changes lane in response to an audio warning by the scooter.  



           

        (i)                                                   (ii) 

           

        (iii)                                                   (iv) 

 

Fig. 9. Experimental results for typical vehicle maneuvers encountered. (i) Scenario a: Vehicle right behind 

scooter (ii) Scenario c: Vehicle travelling in adjacent lane (iii) Scenario d: Vehicle initially behind scooter changes 

lane (iv) Scenario d: Vehicle behind scooter suddenly changes lane 

 

It should be noted here that a car horn audio might not be the optimal audio for this warning situation 

– A better auditory warning signal that is effective at alerting other cars could be determined through a 

human factors study for this e-scooter application.   

We also compared the performance of the new nonlinear observer with the performance of an 

interacting multiple-model (IMM) algorithm previously used in vehicle tracking [32]. The IMM algorithm 

utilizes two models for the vehicle – straight driving and constant rate turning – processing them 

simultaneously but switching between the two models according to their updated weights [32], [33]. The 

IMM algorithm has been used significantly for vehicle tracking in both aerospace and ground vehicle 

applications. The experimental results in Fig. 11 show data for a vehicle with varying velocity that travels 

right behind the e-scooter and then changes lanes after getting close. The results in Fig. 11 suggest that the 

IMM EKF algorithm with time-varying observer gain and the new nonlinear observer have almost the same 

performance, except towards the final time portion of the data shown where the nonlinear observer seems 

to work better. The IMM filter requires significantly more computation, since it must process two models 

simultaneously and calculate the filter gains and model weights in real-time. Also, the IMM filter is based 

on linearization and has no rigorous proof of stability for nonlinear models. The nonlinear observer has the 

advantages of global stability, easy implementation, and can estimate the states directly using a single 

constant observer gain. 



           

        (i)                                                   (ii) 

 

(iii) 

Fig. 10. Estimation results of the observer in scenarios with unusual vehicle trajectories involving lane 

changes. (i) Extra scenario involving multiple lane changes (ii) Extra weaving scenario with multiple lane changes 

(iii) Extra scenario involving sudden lane change from large lateral distance  

 

           

Fig. 11. Comparing the IMM EKF and the new nonlinear observer in an experiment with variable velocity 

For further analysis, the time-to-collision (TTC) for a vehicle approaching the e-scooter with various 

initial speeds from the rear is shown in Fig. 12. In this example, it is assumed that the vehicle is only 

detected by the system when it is 30 meters away from the e-scooter. The convergence time of the observer 

is 0.45 seconds (based on simulations and experiments), and the driver’s reaction time is assumed to be 0.9 

seconds. The collision warning system will be effective in cases in which the vehicle has a speed of less 

than 50 mph, making it suitable for local roads. For speeds above 20 mph, the vehicle driver will be able to 



avoid the accident only by steering, while the driver can also avoid the accident purely by braking and 

slowing down for speeds below 20 mph. To increase the safety of the collision warning system for higher 

speed values (e.g., on high-speed roads) the laser sensor should have a higher range and the stepper motor 

should have a better resolution, such that the initial detection range increases. 

Recognizing that the actual corner of a vehicle is rounded, accurately tracking the corner-most point of 

the vehicle is challenging.  Errors in tracking the corner-most point in the presence of a curvature on the 

corner will result in errors in longitudinal and lateral position estimation. The maximum error can occur in 

either longitudinal or lateral distance and will depend both on the magnitude of error in tracking the corner-

most point and the angle of the line connecting the measurement point to the corner-most point.  The 

position error is analyzed in Figure 13 and shows that the error remains small (of the order of centimeters) 

for even large angle deviations due to rounding of the corner. 

 

 

Fig. 12. Time-to-collision for a vehicle detected 30 meters away and approaching right behind the e-scooter with a 

constant speed. The vehicle driver can avoid the accident purely by braking only if the initial speed is approximately 

below 20 mph. The vehicle driver can avoid the accident by steering away from behind the e-scooter if the initial 

speed is approximately below 50 mph. The results suggest that the proposed system will be effective on local roads. 

 



 

Fig. 13. The effect of the corner angle deviation from 90 degrees on the maximum longitudinal or lateral position 

error.  

 

7. Conclusion 

An active sensing system for protection of an e-scooter from car-scooter collisions is developed in this 

paper. The performance of this system is evaluated both in simulations and experiments. A low-cost single-

beam laser sensor is chosen for measuring the positions of cars behind the scooter. The sensor is mounted 

on a stepper motor and the region behind the scooter is scanned to detect vehicles. Once a vehicle is detected, 

its trajectory is tracked in real-time by using feedback control to focus the orientation of the laser sensor 

such as to make measurements of the right front corner of the vehicle. A nonlinear vehicle model and a 

nonlinear observer are used to estimate the trajectory variables of the tracked car. The estimated states are 

used in a receding horizon controller that controls the real-time position of the laser sensor to focus on the 

vehicle. The active sensing system tracks the trajectories of cars in order to predict any real-time danger of 

collision. Extensive experimental results both in regular real world traffic and in special experiments 

conducted by the research team to put the e-scooter in a dangerous near-collision scenario were presented. 

The experimental results verify that the developed system works reliably and can accurately track 

trajectories of rear vehicles in all the scenarios considered. A limitation of the developed system is that it 

tracks only one rear vehicle at a time. Tracking multiple vehicles requires both fast measurement frequency 

and large measurement range and was not considered in this paper. 

Future work in the domain of e-scooter rider protection can include consideration of other types of 

crashes besides rear vehicle crashes, for example vehicles at an upcoming traffic intersection which might 

potentially pose a frontal/side collision danger to the e-scooter. Another aspect of improving safety for other 

road users could include monitoring of any danger posed to pedestrians by the e-scooter and corresponding 

warnings to the e-scooter rider. 

From a policy recommendations perspective, preventing scooters from riding on sidewalks (to protect 

pedestrians) and allowing e-scooters to use bicycle lanes could be mandated by cities and states. Large-

scale field tests of safety systems for preventing vehicle-scooter collisions need to be conducted. This could 

be followed by mandating the type of vehicle-scooter collision warning system developed in this paper to 

be used on all e-scooters.  
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