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Fed-EC: Bandwidth-Efficient Clustering-Based

Federated Learning for Autonomous
Visual Robot Navigation

Shreya Gummadi
Deepak Vasisht

Abstract—Centralized learning requires data to be aggregated
at a central server, which poses significant challenges in terms
of data privacy and bandwidth consumption. Federated learning
presents a compelling alternative, however, vanilla federated learn-
ing methods deployed in robotics aim to learn a single global model
across robots that works ideally for all. But in practice one model
may not be well suited for robots deployed in various environ-
ments. This letter proposes Federated-EmbedCluster (Fed-EC), a
clustering-based federated learning framework that is deployed
with vision based autonomous robot navigation in diverse outdoor
environments. The framework addresses the key federated learning
challenge of deteriorating model performance of a single global
model due to the presence of non-11D data across real-world robots.
Extensive real-world experiments validate that Fed-EC reduoces
the communication size by 23x for each robot while matching the
performance of centralized learning for goal-oriented navigation
and outperforms local learning. Fed-EC can transfer previously
learnt models to new robots that join the cluster.

Index Terms—Distributed robot systems, robotics in under-
resourced settings, federated learning, vision-based navigation.

. INTRODUCTION

OOR availability of high-speed internet is limiting outdoor
P robots from realizing their full potential. In today’s world,
robots are seamlessly deployed in diverse conditions all over
the world, from bustling urban landscapes to rugged terrains
in the wild. Many of these robots are using visually guided
autonomy architectures powered by machine learning and self-
supervision. Recent works [1], [2], [3]. [4], [5] have shown
that with access to large amounts of data, robots can achieve
state-of-the-art navigation performance and can be deployed in
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various scenarios with minimum human intervention needed.
These and other such methods are driving tremendous progress
in self-driving cars [6], [7], robots navigation in indoor [8], [9]
and outdoor environments [10], [11], [12]. However, in practice,
traditional learning approaches require access to all of the data
in one place, uploaded to a central server for model training
requiring high speed internet. Furthermore, robots operating in
the world experience diverse and varied environments requir-
ing continuous upload of large amounts of data to the central
server. While effective in controlled environments with high
bandwidths, uploading big chunks of data can be a challenge for
robots in environments where high-speed internet is not avail-
able, is intermittent, outright denied or even leads to significant
battery power consumption.

Federated learning (FL) [13] reduces the bandwidth require-
ment while enabling these robots to collectively enhance their
learning by sharing model updates. With recent advancements
in the capabilities of edge devices, federated learning takes
advantage of edge computation to train models locally and
shares model parameters instead of raw data with the server
to learn a shared global model. FL. also allows robots to send
updates at intervals, rather than continuously streaming data
reducing bandwidth usage. Further, through federated learning,
there is hope that robots can gather insights from their respec-
tive environments, while also contributing to a global pool of
knowledge to learn adaptable models for varied environments
on the go. Traditionally, FL. learns a single model that tries
to minimize the average loss across robots. However, local
data on deployed robots is highly non-IID due to different
usage and operating locations. During FL, the divergence of
the local datasets due to their non-1ID nature leads to slower
convergence and worsening learning performance when the
models are ageregated. In such cases, a singular global model
suffers and may perform worse than local models for some
robots. With non-I1D data, it is improbable that there exists a
single global model that fits the needs for all robots. The global
model can be biased and unfair. Current robotic systems that
use federated learning frameworks do so in simulation [14]
or in structured indoor environments [15] and do not account
for heterogeneity that arises in the real-world deployment of
robots.

One way to avoid biased global models is to learn personalized
models by clustering robots with similar local data distributions
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and training one aggregate model for each cluster. As a result,
robots collaborate with only robots with similar experiences
avoiding biases and nepative performance. Previous clustered
FL methods compare local model weights or gradients that rely
on indirect information of the data distribution. [16] and [17]
cluster the clients and learn individual cluster models but incur
a high communication cost in doing so.

In this letter, we highlight the first clustering-based system,
Federated-EmbedCluster{Fed-EC) for self-supervised visually
guided autonomous navigation which overcomes the need for
high bandwidth speeds. Fed-EC is deployed on two different
visual navigation models to showcase its modularity. To over-
come the negative affect of non-11D data on model performance,
Fed-EC groups the aggregation of local models by looking at
similarity between the local datasets. Within each cluster group,
the data is similar and mimics an ITD set up ensuring that model
agpregation does not degrade performance. Unlike previous
methods where multiple rounds are needed [16] or multiple
models are communicated [17], in each communication round
the mean embedding vector which does not incur any additional
communication cost is shared along with the local model. Fed-
EC does not know the cluster identities beforehand and hence
simultaneously identifies clusters within participating robots and
learns individual cluster models in the federated setting.

In this letter, we consider robots in the wild that are constantly
deployed with limited hardware on board, limited communica-
tion bandwidth, and battery power. The main contributions of
our papers are as follows:

* We propose a clustering-based personalized FL strategy
Fed-EC, to overcome the problems generated by the het-
erogeneous nature of robotic operations.

* We implement and test the framework of Federated learn-
ing in the robotics settings, in particular on real robots using
two different navigation models to navigate to a given GPS
point.

+ We validate through real-world robot experiments in di-
verse outdoor terrains that Fed-EC can perform as well as
the centralized framework while reducing communication
size and is better than just local training. We also show that
learning a personalized FL. model for each cluster is better
than learning a singular global FL. model over all robots.

* We also show the transferability properties of our system
to new robots that join the network.

II. RELATED WORK

Federated Learning: Federated Learning (FL) [13], [ 18], [19],
[20], [21] as mentioned in Section I is a distributed learning
framework addressing privacy concerns, communication effi-
ciency and enabling collaborative model training. Fed Avg intro-
duced by [13] is the most widely used FL algorithm that learns
one global model for all participating clients by aggrepating
local model updates from them. A key problem in FL is that
individual local data on clients are usually non-IID. Several
research has focused on providing possible solutions for data
heterogeneity in FL [22], [23], [24], [25]. These methods learn
a single global model for non-1ID data. One such algorithm,
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proposed by [25] bounds the differences between the local and
global optimizations by introducing a proximal term to the local
objective function. [26] investigates the effect of non-1ID data
on FL and the degradation of performance.

Clustered Federated Learning: Other research focuses rather
on learning personalized models for each client. Clustered Fed-
erated learning (CFL) instead of optimizing a shared global
model, partitions the clients into clusters and divides the op-
timization goal into several sub-objectives. CFL learns multiple
models for each cluster, which are more specialized and achieve
better accuracy. [ 16] proposed a CFL algorithm that bi-partitions
the clients based on the cosine similarity of their gradients and
checks for congruent partition using the gradient norm. Multiple
rounds are required to cluster incongruent clients which has high
computational and communication costs. [ 17] proposed lterative
Federated Clustering Algorithm IFCA, that initializes k global
models at the server which is sent to each client to compute loss.
Clients are assigned to the cluster that produces the smallest
loss on the local client data. This method incurs a high commu-
nication overhead due to k models being broadcast. [27] uses the
difference between the local and the global model weights to per-
form hierarchical clustering. [28] introduced FedGroup which
uses Euclidean distance of decomposed cosine similarity metric
to cluster the clients. k-FED designed by [29] uses Llyod's
method for K-means clustering to cluster the clients. However,
the method is sensitive to the initialization of the centers and can
take superpolynomial time to converge. In all previous works,
the authors use the local model weights to indirectly approximate
the local datasets. Moreover the previous works are not tested
for robotics applications and suffer from high communication
costs which is of high importance for deploying robots in the
wild.

Federated Learning in Robotics: FL is increasingly used
in numerous robotics applications. However, none of the FL
applications in robotics explicitly account for non-11D data, and
deployment in real-world outdoor environments which leads
to changing datasets and setting up server-robot communica-
tion. [30] uses federated learning to achieve lifelong federated
reinforcement learning to improve the efficiency of robotic
navigation. But the method is limited to testing in simulation
and using the best model learnt in simulation to test naviga-
tion using Turtle-bot in an indoor space. Similarly, [15] also
uses federated learning for reinforcement learning for robotic
swarm navigation and tests in simulation and a turtle-bot in a
limited indoor real-world scenario. The method accounts for
communication in simulation using communication volume but
does not establish a server-robot communication in real time
deployment. [31] and [32] apply vanilla federated learning to
autonomous driving but only test it on simulated scenarios. [32]
uses a server-less federated learning architecture by using peer-
to-peer communication instead. [33] also uses a server-less
federated architecture and instead uses a gossip-based shared
data structure for trajectory forecasting. Previous methods do
not personalize the federated models for heterogeneous data. Our
method takes the problems of real-world federated deployment
into account and learns a personal cluster model to deal with
heterogeneity.
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Fig. 1.

Workflow of Fed-EC. (a) Participating robots learn and communicates a mean embedding vector and local model weight to the server. The server clusters

the robots using the mean embedding vector and aggregates local models in each cluster to learn a model which is shared with the robots based on their cluster
identity. (b) The robots navigate to the a given GPS goal using the learnt model which takes as input RGB and depth images from the front facing camera. (c) If a
new robot is deployed it computes a mean embedding and shares it with the server. The server assigns a cluster to the robot and sends the respective cluster model

to the robot to use.

IMI. SysTEM DESIGN

Fig. 1, shows an overview of Fed-EC. Data collected on
each robot using an onboard RGBD camera and IMU are
used to calculate the mean embedding as well as train a local
traversability model. Fed-EC communicates the the local model
weights and the mean embedding to the server over WiFi. The
mean embeddings are used to cluster the robots and a global
cluster model is aggregated for each cluster. Fed-EC sends the
respective cluster model to each robot depending on its cluster
identity and training continues until the local models converge
on their test data. Once a good model is learnt, given a GPS goal
point, the robot navigates to the goal by leveraging traversability
predictions from the local models along with the robot’s kinody-
namic model to solve a non-linear model predictive controller.
When a new robot joins the network, Fed-EC calculates a local
mean embedding and communicates it to the server to identify
the robot’s cluster identity and the relevant cluster model is sent
to the robot.

A. Robot Platform

The Terrasentia robot as shown in Fig. 2, is a small lightweight
skid-steer mobile robot developed by EarthSense Inc as an
agricultural robotic platform. We integrated a Jetson AGX Orin
computer to run model training, store data and execute the
navigation module. Terrasentia comes equipped with a 6 DOF
IMU, Global Navigation Satellite System (GNSS) and wheel
encoders. On top of this, we installed a front-facing ZED2
stereo-inertial camera that captures colour and depth images
with a field of view of 120 degrees. The robot is also equipped
with an onboard WiFi router that is used for federated learning.

B. Data Collection

We deploy the method described in [1] to collect data. For
initial training, we manually drive the robots around in different

ZEDZ Carmira

GNSS

Fig. 2. Terrasentia Robot with ZED? camera and GNSS used as a testbed for
our experiments.

Fig. 3.
terrains.

Sample Data and Traversability Labels collected across different

terrains to collect input RGBD images and state estimations.
This dataset includes traversability and collision labels. The
traversability label is created only for the path traversed by the
robot and is set to 1 for traversable and 0 for untraversable areas.
Fig. 3 shows sample data collected in three different terrains
along with their traversability labels. During data collection,
we intentionally drive the robot into untraversable areas and
obstacles as shown in Fig. 4 to produce labels for failure cases.
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Fig. 4 Common obstacles encountered by the robot. Left to right: wall, fire
hydrant.light pole, tree.

C. Federated Learning With Embedding Clustering

In this section, we present our method Fed-EC, a FL. frame-
work that address non-1ID local data by clustering clients into
distinct clusters based on their data distribution distances. We
consider a federated learning system that consists of R robots
deployed in the real world. Each robot r in B has access to local
data D). Unlike vanilla federated learning where a unified global
model is learnt, in Fed-EC the robots are grouped into k clusters
at the server, and individual cluster models are learnt for each
cluster.

At round N of Fed-EC, R robots participate in local model
training. At the N*" round, robot r partakes in model training
for E epochs on its local data [, and updates local model Wr.
Simultaneously, given an image I; in D, it is encoded into an
embedding v; = f(I;) where f is a pretrained model. The robot
is equipped with adequate computational power that using a
pretrained model to generate embeddings is reasonable and not
computationally expensive. The embeddings are averaged to get
the mean embedding V. = ELZ;' vy. Using embeddings Fed-EC
directly encodes the visual information of the local datasets.
Similar embeddings represent robots deployed in similar regions
or terrains. The mean embeddings are a single vector with small
data sizes which are easy to upload. Each robot + uploads the
updated local model W, and the mean embedding V. to the
server. The server deploys Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [34] to cluster the em-
beddings. We deploy DBSCAN as it is able to determine the
number of clusters and doesn’t need to be manually defined
beforehand. DBSCAN uses threshold distance between robots r
and j as ||V, — V;|| and minimum points in a cluster to identify
regions of high density in the dataset which are separated from
each other by low density regions. After determining the robot
cluster identities, the local model weights within a cluster are
aggregated to produce the k' cluster model G.. The aggregation
rule is simply averaging as the robots in the cluster have similar
data and mimic an IID setting. The server sends respective
cluster models to the robots. The model embeddings are shared
each round with the server to account for changing environments
and datasets. This allows the robots to be clustered in the best
group for their needs. In case a robot is deployed in a vastly
dissimilar area and is identified as a noise point instead of being
part of a cluster, the robot uses its local model to get the best
performance. Algorithm 1 and Algorithm 2 show the process at
robot and the server.
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Algorithm 1: Robot.

for each epoch  in E do
Train model over D
Update local model W,

end for

Initialize v, = 0

for each image I, in D do
v =v + f(1i)

end for

Vo= TBf[

Upload W, and V. to server

Algorithm 2: Server.
forn=1to N do

for each robot r in R in parallel do
Download W, and Vi

end for
k = DBSCAN(V;. ...l
for each robot r in cluster k do

Gy = Avg(We)¥r ek
Send G to robot r in cluster &
end for
end for

IV. IMPLEMENTATION

We implemented Fed-EC on a real world robot deployed in
semi-urban, forest like and urban environments. The robot as
mentioned in Section III-A is used to collect data in different
environments. The test bed consists of 1 real world robot and the
collected data shuffled and then divided into 9 partitions to mimic
9 robots in different environments to study non IID behavior.
The local model is trained on the edge and communicated with
the server using WiFi module installed on the robot. The edge
device has NVIDIA Jetson AGX Orin equipped with 12-core
Arm CPU, 204 8-core NVIDIA GPU and 64GB memory. It runs
Ubuntu 18.04 and uses Python 3 and Pytorch for mode! training
and inference. The server is equipped with a Intel Core i7-11800
CPU, NVIDIA GeForce RTX 3060 GPU and runs Ubuntu 18.04.

Local Models: We deploy Fed-EC with two different vision
navigation models: 1. WayFAST [1], is a convolutional neural
network that takes as input RGB and depth images and outputs
a traversability prediction map. The traversability prediction
represents a map in the same space as the input image, that
quantifies how well the robot can navigate in a given scenario.
2. BADGR [4]. is an image based, action-conditioned predictive
deep neural network which uses RGB images and sequence of
linear and angular velocity commands to predict future collision
events.

During deployment, a model predictive controller queries
the traversability values or collision values depending on the
underlying navigation model and uses them to minimize a
cost function that drives the robot toward a goal point while
jointly maximizing traversability. As a result, areas with low
traversability or collision such as trees and buildings are avoided.
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TABLE 1 TABLE Il
VavLmoarosn Loss anp IPR oF DisFERENT MODELS FOR TRAVERSABILITY TimE TAKEN TO CoMMUNICATE DATA FROM THE ROBOT TO THE SERVER FOR
PREDICTION CENTRALIZED V5 FEDERATED LEARNING
Model Training Mode  Avg. Loss  IPR (%)  Local Epochs Learning Type Data Type Data Size  Upload Time
Local 0.006853 - 30 Cemntral Roshag 1.8GB (o3 2008
Central 0004021 - 30 .
Mindel Weights
WayFAST FedAvg 0007871 &l 5 Federated . T8MB (0042
Fed-EC (Ours) 0004621 100 5 Mean Embedding Vector
Local 0934291 . 30
Central 0226426 - 30
BADGR FedAvg 1.877938 i) 5
Fed-EC {Ours)  0.530927 0 5 s
ﬁ 0.006
. =
Baselines: We compare our Federated Learning framework .2 0.005
against three baseline frameworks: 1. Central Learning, all of ﬁ :
the data collected at the edge on individual robots is sent to 2
the central server for model training, 2. Local training, model 0.004

trained on the edge on local data without collaboration between
robots. 3. Fed Avg [13], the server aggregates all local models to
learn one global model.

Training Parameters: In all experiments, the baselines and
Fed-EC use the same model architecture. The local and central
baselines are trained for 30 epochs with a baich size of 16.
FedAvg and Fed-EC are trained locally for 5 epochs with batch
size 16. The size of the local training dataset varies between
450-1000 samples from robot to robot. The minimum distance
threshold for DBSCAN is manually tuned and the minimum
points in each cluster is set to 2. A pretrained ResNet-18 is used
to generate the data embeddings.

V. EVALUATION
A. Model Performance

To evaluate the model performance of our method against the
baselines we use validation loss averaged over all the robots and
incentivized participation rate (IPR) [35] which is defined as

R
IPR= = S A(fF () > foi(w)) ()

r=1

where fF%(w) is the model performance on robot R using an
FL strategy i.e. FedAvg or Fed-EC, f:°°* (w) is the local model
performance on robot R and 1 is the indicator function. IPR
indicates how many robots are incentivized to participate in
federated learning.

Table I shows the validation loss on the test data across all
configurations. We perform as many epochs for local and central
models as communication rounds for FedAvg and Fed-EC. The
central model is trained at the server whereas all the other models
are trained on the edge of the robot. The simple local baseline
performs poorly and does not leamn even after several epochs due
to its limited data. The central baseline has access to all of the
data from all the robots in one place and hence gives the ideal
performance. The FedAvg model learns a single global model
collaboratively, however the average loss over all the robots is
higher than the local model. This is because FedAvg performs
worse than the local model for robots with smaller amounts of

0 5 10 15 20 25

Communication Rounds

Fig. 5. Efect of increasing computation per robot.

data. Fed-EC on the other hand, clusters the robots based on
their mean data embedding and learns individual personalized
models for each cluster. In doing so, it reduces the loss over
FedAvg and local models. Further, using Fed-EC increases the
incentive for robots to choose federated learning and improves
the performance by diminishing the negative transfer due to
heterogeneity in data across robots. In addition, Fed-EC takes
9mins 18 sec for local training and computing mean embedding
vector as the data is distributed across robots which is faster than
centralized method which takes 1hr12min32 sec and is slightly
slower than FedAvg's Bmin38 sec because of the embedding
vector computation.

B. Communication Cost

The implementation of the Federated framework requires
robots to communicate their model updates to the server every
few rounnds. Communication efficiency is essential for training.
However, communicating over the internet can cause hold-ups
and delays due to the asymmetric nature of internet speeds. In
zeneral, the upload speeds are much lower than the download
speeds. As seen in Table II outdoors with limited bandwidth of
12 Mbps uploading raw data to the server per robot is 23x bigger
than uploading model weights. This leads to centralized learning
suffering delays and bottlenecks as all robots try to upload raw
data. On the other hand, model weights are uploaded in 42
seconds and due to the nature of FL can be done asynchronously
while still reducing the time and need for higher bandwidth.
Further, as shown in Fig. 5 using more computation on the
edge decreases the number of communication rounds needed
to reach a target loss. We increase computation on the robot
by increasing the number of epochs(E) while keeping the batch
size(B) constant.
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TABLE Il
SuMMARY 0F NAVIGATION BUns (SUCCESSFUL RUNS/TOTAL Runs) 18 THREE
DiFFERENT ENVIRONMENTS. TRIAL 1: FOREST LIKE AND TRIAL 2: PARKING

Lot
Trial Training Mode  WayFAST BADGR

Local 5 25

Central 55 45

Trial 1 FedAvg s 5
Fed-EC (Ours) 55 415

Local 35 5

Central 4f5 415

Trial 2 FedAvg o5 115
Fed-EC (Ours) 35 35

C. Navigation

Table IT and Fig. 6 show results in a forest and urban envi-
ronment using two models WayFAST [1] and BADGR [4].

In the initial runs federated learning uses data previously
collected through manual driving. In subsequent runs including

Paths taken by Fed-EC and the baselines (Local, Central, FedAvg) to reach the goal in two different environments: {a) Forest-like and (b) Parking Lot.

in trial 2 the training incorporates data collected during previ-
ous runs. During each run, the robot uses the newly collected
data to perform training and communicates with the server to
update cluster models. As the training and communication take
time, the updated cluster models are not used in the same run
but in subsequent runs of the trials. This ensures continuous,
incremental improvement with each successive trial.

The local baseline performs poorly in both trials because of the
limited training data on the robot. The central baseline is able
to reach the goal most cases for both models as it has access
to all of the data. FedAvg is able to reach the goal in trial 1,
however, it fails and performs worse than the local baseline in
the parking lot. This is due to the degraded performance of the
FedAve model in this environment due to the availability of
limited data in this environment. Fed-EC performs similarly to
the central model and is able to reach the goal in most runs
without any intervention. It outperforms the local model and the
FedAve model. All the models suffer in the parking lot due to
limited training data in that environment. Due to the nature of
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Before Adapiatien

After Adapintion

Fig. 7. Robot adapts and navigates around untraversable arcas.

federated learning the data collected during these runs can be
further used to update the cluster models (Fed-EC) and global
model (FedAvg) to improve performance subsequently.

D. Adaptation

Due to the nature of federated learning, Fed-EC is continually
updating and updating the cluster model when new data is
available. The learning is shared across robots in the cluster
ensuring that other robots do not fail in the same scenario.
Fig. 7 shows an example scenario where Fed-EC can overcome
obstacles by using updated models to adapt. In this case, the
robot initially runs into a low-hanging tree branch, assuming it
can pass below it. The robot fails, however, it records this data
while navigating which is then used to train the local model and
in turn update the cluster model at the server. In a subsequent
run. the robot receives the new cluster model from the server
and is able to recognize the branch as untraversable and moves
away from it to take a different path.

E. Transferability to New Robot

In the real world, new robots can be acquired at any point and
deployed in different locations. Usually, this requires training
a new model for the robot data or sending the data to a server
to finetune a base model. Models like FedAvg can provide an
initial mode] that can be finetuned on the local data. However, if
the initial mode! is bad it will not offer significant benefit to just
local training. When a new robot joins, Fed-EC can easily use
the mean embedding vector of the new robot to identify which
cluster it belongs to and share the respective cluster model. Fed-
EC can transfer a model which can be readily used without the
need for retraining. The new robot can participate in federated
learning as well and better the cluster model with its new data.
Fig. & shows a new robot navigating using model WayFAST [1]
to a goal without any intervention using the cluster model sent
by the server.

Fig. 9 shows the clusters identified by Fed-EC to group the
robots. We observe that robots deployed in similar terrains are
grouped together as the mean embedding vectors of the local data
are closer to each other while different terrains occupy separate
regions on the plot. The newly deployed robot is clustered in
cluster 2 in the figure and is allocated the cluster model of this
group to perform navigation.
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Fig. B
madel.

Mew robot navigates to goal using previously leamnt global cluster

Fig. 9. Vizsupalization of 11 robots and their corresponding cluster identitics
using DBSCAN based on distance proximity of mean embedding vectors.

VL CoONCLUSION

To conclude, we presented a federated learning framework
that can be deployed with various navigation models on real-
world robots to navigate to a given GPS point under limited
communication constraints. We demonstrate that our method
performs comparatively to centralized learning without the need
for data to be uploaded to a server and reducing the communica-
tion size. Fed-EC also performs better than local models which
are limited by no collaboration. Our framework also tackles
data imbalance and outperforms FedAvg by clustering robots
based on similar data distributions and learning individual per-
sonalized cluster models resulting in an unbiased global model.
Further, Fed-EC continually collects data and updates the cluster
models which makes it capable of adapting. Finally, when a new
robot joins the network, Fed-EC clusters the robot and assigns
it an initial model to use without the need for retraining.
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