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A B S T R A C T

Forest productivity is one of the most important aspects of forest management, landscape planning, and climate
change assessment. However, although there are multiple elements known to affect productivity, most of them
rely on the “nature” of the edaphic, climatic, and geographic conditions, and only some speci昀椀c aspects can be
modi昀椀ed through forest management or “nurture”. Through evaluation of site resource availability and an un-
derstanding of the main drivers of productivity, management can present solutions to overcome site resource
limitations to productivity. Therefore, understanding the implications of a speci昀椀c management regime requires
understanding what drives productivity across large spatial extents and among different management regimes. In
this study, we used data from over 1 million hectares of industrial forestland, covering over 6000 different soils
and several management regimes of Pinus taeda L. plantations, as well as plot-based data from the Forest In-
ventory and Analysis (FIA) program, facilitating a comparison of planted and natural Pinus taeda stands. Com-
bined with US Geological Survey LiDAR data, we computed site index and generated wall-to-wall productivity
maps for planted Pinus taeda stands in the southeastern US, as well as point-based site index estimates for the FIA
dataset. We modeled site index using a random forest algorithm considering edaphic, geologic, and physio-
graphic province information based on the Forest Productivity Cooperative “SPOT” system, and also included
climate and management history data. Our model predicted site index with an R2 of 0.701 and RMSE of 1.41m
on the industrial data and R2 of 0.417 and RMSE of 1.84m for the FIA data. We found that year of establishment
of the forest, physiographic province, and geology, were the most important drivers of site index. The soil
classi昀椀cation modi昀椀er indicating root restrictions were the most important soil-speci昀椀c variable. Additionally,
we found an average increase in site index of 3.05m since the 1950s for all FIA data, and an average increase of
4.73m for all industrial data since the 1970s. For the latest period analyzed (2000–2012), average site index in
planted FIA plots was 1.2m higher than naturally regenerated FIA plots, and site index in all industrial forestland
had a site index almost 3 m greater than planted FIA plots. Overall, we believe this work sets the foundation for
better understanding of forest productivity and highlights the importance of intensive silviculture to improve
productivity, and as an additional tool to achieve the economic, environmental, and social objectives.

1. Introduction

Loblolly pine (Pinus taeda L.) is the most planted and intensively

managed species in the southeastern US (Restrepo et al., 2019), occu-
pying over 14 million hectares and making up 71% of planted timber-
land in the US. The southeastern US produces more timber than any
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other country in the world and generates over 26% of wood products
nationally (Johnston et al., 2022; Oswalt et al., 2019). In the south-
eastern US, these forests have multiple levels of management, ranging
from natural regeneration with essentially no management to planta-
tions with high levels of inputs (intensive forest management), such as
chemical vegetation control, fertilization, thinning (Gyawali and Bur-
khart, 2015), and the use of genetically improved seedlings (McKeand,
2015). Speci昀椀cally, loblolly pine forests have a long history of man-
agement improvements (Fox et al., 2007b). At present, the most inten-
sive forest management can be characterized by interventions that
optimize genotypes and silvicultural treatments based on site-speci昀椀c
characteristics to ameliorate resource limitations and to optimize
value (Allen et al., 2005). While some environmental conditions (such as
climate, soil texture, or geology) that affect forest growth cannot be
changed (Clutter et al., 1992; Koirala et al., 2021), there are other
variables that forest managers can address (soil drainage, nutrient
de昀椀ciency) with management regimes (Carter and Foster, 2006; Isabel
et al., 2019).

In plantation forestry, growth or productivity is typically the primary
objective to optimize (Gyawali and Burkhart, 2015). Sites will respond
differently to management in terms of potential productivity due to their
inherent resource limitations and potential productivity (Fox et al.,
2007a). In forest management, both in naturally regenerated stands and
plantations, site productivity is de昀椀ned as the forest production that can
be realized at a certain site with a given management regime and
environmental conditions (Skovsgaard and Vanclay, 2008), and it is
normally described in terms of site index (SI), an expression that relates
the stand’s dominant height at a given stand age. The relative inde-
pendence of SI from stand density (Weiskittel et al., 2011), and the
relative ease of data collection compared to other site productivity in-
dicators (Koirala et al., 2021), have made SI one of the most common
forest productivity indicators. The ability to map current productivity
and estimate potential future productivity is key for forest management
planning (Hennigar et al., 2017). Furthermore, with models of site
productivity, it is possible to predict where additional inputs will pro-
vide a growth response, which forest managers need to inform their
decision-making process (Cook et al., 2024).

A second major consideration is the optimization of carbon man-
agement in forests (Susaeta et al., 2016). Intensively managed loblolly
pine plantations can contribute to timber and biomass supply, but also
play a crucial role in greenhouse gas emission reduction goals (Zhao
et al., 2023). Different forest management techniques in even-aged
loblolly pine plantations can produce differences in productivity over
time for timber purposes (Fox et al., 2007a). These 昀椀ndings are trans-
ferable to carbon sequestration (Aspinwall et al., 2012; Clay et al., 2019;
Zhao et al., 2023; Puls et al., 2024). If management can optimize current
and potential productivity, forest carbon sequestration can also be
optimized.

To this end, it is important to evaluate the drivers or limitations of
tree growth either through empirical 昀椀eld trials or observational study
designs. Normally, loblolly pine productivity models rely on measured
tree data, which is then converted to SI or to another estimator (e.g.,
Hennigar et al., 2017; Koirala et al., 2021). These data can come from
multiple sources (Allen and Burkhart, 2015) such as ground-measured
forest inventory datasets, national forest inventories (for instance in
the US the Forest Inventory and Analysis - FIA), or, most recently, from
Light Detection and Ranging (LiDAR) datasets. The major bene昀椀t of the
remotely sensed methods over ground data is the potential to cover
larger areas at a lower cost than traditional on-the-ground methods
(Lefsky et al., 2005). However, the combination of both approaches can
aid the understanding of the relationships between forest productivity
and its main drivers, as well as strengthen the power and accuracy of
model predictions.

Multiple previous attempts at modeling loblolly pine site produc-
tivity using environmental and management data have focused on spe-
ci昀椀c aspects such as water balance variables (Koirala et al., 2021), soil

and physiographic properties (Sabatia and Burkhart, 2014; Subedi and
Fox, 2016), management (Jokela et al., 2004; Zhao et al., 2016), genetic
improvement (McKeand, 2015), and even CO2 fertilization (Burkhart
et al., 2018). However, these previous studies used plot-based local
productivity measures, either from a speci昀椀c location within the
southeastern US, or based on limited data. We take a more compre-
hensive approach incorporating soils, geology, climate, and manage-
ment in a large-scale, range-wide study that encompasses most
established productivity drivers in a single analysis. We compare data
from natural regeneration to the most intensive industrial management
throughout the southeastern US and combine LiDAR-derived wall-to--
wall productivity information with plot-based data.

Accordingly, the speci昀椀c objectives of the study are to:

1. Characterize the change in SI over time by management regime
(natural or planted regeneration, low-input silviculture to high-input
silviculture).

2. Model SI using edaphic, geologic, climatic, and management data, to
predict SI across the southeastern US, and speci昀椀cally:

3. Explain which factors drive forest productivity, and how site and
management factors interact.

4. Evaluate how forest management affects SI, and how that effect has
varied over time.

2. Materials and methods

In this study, we used climate, edaphic, geology, and management
data (Table 1) to model and predict SI in two different datasets and
compare the obtained results. SI was obtained from Forest Inventory and
Analysis (FIA) plot-based data and industrial plantation land using
United States Geological Survey (USGS) LiDAR data to obtain SI raster
maps. We then applied a random forest model to (1) predict SI using the
previously mentioned variables, and (2) explain their importance and
interaction level, assessing management intensity over time.

2.1. Climatic, edaphic, geologic, and physiographic province data

The climatic data was obtained from the 30-year normal (daily
values averaged over the 1991–2020 period) baseline datasets from the
PRISM Climate Group (https://www.prism.oregonstate.edu/normals/)
at the Northwest Alliance for Computational Science and Engineering.
We downloaded and used the 800-meter resolution rasters of precipi-
tation (mm), maximum temperature (çC), and maximum and minimum
vapor pressure de昀椀cit (kPa). We used the Forest Productivity Co-
operative’s (FPC’s) Site Productivity Optimization for Trees (SPOT)
classi昀椀cation system (Cook et al., 2024) as the data source for soil, ge-
ology, and physiographic province information. Incorporating these
soils and climate data into both FIA and Industrial datasets resulted in 14
variables, whose names, ranges, and units are provided in Table 1.

2.2. Loblolly pine forest inventory and analysis data

The Forest Inventory and Analysis (FIA) Database includes tree
height, site condition, and species identi昀椀cation in naturally regenerated
and planted loblolly pine and was queried with exact coordinates across
the southeastern US. Plot data in the 昀椀eld were collected following FIA
昀椀eld inventory standards (Reams et al., 2005), and SI was computed as
an average of the per-tree SI values applying the Diéguez-Aranda et al.
(2006) model using a 25-year base age. We intersected plot locations
with the SPOT classi昀椀cation system layer (Cook et al., 2024) to provide
information on soil conditions and underlying geology. We intersected
the climate variables listed in Table 1 and SI with FIA plot locations and
then averaged those variables for all the FIA plots with loblolly pine
trees within the same SPOT code and origin type (planted or natural).
We excluded SPOT codes represented by fewer than three FIA plots.
There was a total of 1220 plots with a mean of 17.6 plots and amedian of
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5 plots per county within the southeastern US (both inside and outside
the native range of loblolly pine) (Fig. 1).

2.3. Loblolly pine industrial data

To get a thorough representation of the plantation industrial-owned
loblolly pine land, eleven timber management companies shared their
planted loblolly pine data, including stand boundaries, year of estab-
lishment, and past silvicultural treatments. We standardized the man-
agement data into an eight-level categorical variable (Table 2) based on
the records of thinning, mid-rotation chemical and/or mid-rotation
fertilization application. It is important to note that the category “un-
known” includes the stands without silvicultural information, yet these
can be either real non-treated stands or stands with missing silvicultural
information (as records may be lost in the transfer of land). We included
the establishment year of the plantation to track the effect of silvicul-
ture, genetics, and environmental changes over time.

To obtain wall-to-wall SI information for the loblolly pine industrial
plantations, we followed the work昀氀ow presented in Ribas-Costa et al.
(2024) and used LiDAR data from the United States Geological Survey
(USGS) nationwide acquisitions. The USGS provides three levels of
LiDAR data qualities (QL) in the 3D Elevation Program (3DEP), ranging
in aggregate nominal pulse density from g0.5 pulses m−2 in QL3 to g8
pulses m−2 in QL1. The most common quality was QL2 with an aggre-
gate nominal pulse density of g2 and f 8 pulses m−2. For this study, we
used LiDAR acquisitions in QL2 or QL1. The speci昀椀c 昀氀ights used for this
study occurred between 2011 and 2022 (Fig. 2). These data were
accessible on the National Map App (https://apps.nationalmap.

gov/lidar-explorer/#/) and can be streamed through the Amazon Web
Services (AWS) Public Dataset project USGS 3DEP LiDAR (https://regist
ry.opendata.aws/usgs-lidar/). Approximately 5 TB of LiDAR were
downloaded from the AWS cloud repository and processed on a local
machine.

Given that the approach presented in Ribas-Costa et al. (2024) for
estimating SI from LiDAR data was built for plantations between 9 and
43 years old, we excluded all the stands that were not in that age range at
the time of USGS 昀氀ight. Ordinary processing steps for the LiDAR data (i.
e., removing the outliers, ground classi昀椀cation, and point cloud
normalization) were applied, followed by the application of the domi-
nant height model (Eq. (1)) to the point cloud at a 20-m pixel basis:
Hdom = 2.186+ 0.8989 7 PCT95 (1)

Where PCT95 represents the 95th percentile of the height above ground
distribution for all returns > 1 m above ground. To calculate the age of
the stand at the time of the 昀氀ight, we used the time of the USGS 昀氀ight
and the year of establishment, and computed age based on a 1st of July
cut-off to account for real growing seasons (Ribas-Costa et al., 2024).
Finally, we applied the Diéguez-Aranda et al. (2006) SI model. Fig. 3
represents a stepwise summary of this process.

Once the SI raster was completed, we intersected the stand bound-
aries with the SPOT soils classi昀椀cation map, similar to the FIA analysis.
We computed zonal statistics for each SPOT code within each stand by
applying the ArcGIS Pro 3.10 function Zonal Statistics as Table to add to
the previous intersected layer the values of raster-based SI within the
target zones (SPOT codes within stand IDs). Climate variables were also
added to the dataset via zonal statistics by SPOT code polygon within

Table 1
Variables used to model of site index based on management regime, soils, geology, and climate. For more details about edaphic and geologic data, refer to Cook et al.,
(2024). IND, Industrial dataset; FIA, Forest Inventory and Analysis dataset.
Variable name Variable

code
Variable
type

Number of
levels

Variable
group

Unit Range (max-
min)

Variable description

Establishment year /
Average establishment year

EstbYr /
AvgEstbYr

Continuous ​ Manage-ment
regime

Year IND.:
2012–1973
FIA:
2006–1917

Year the plantation was established for Industrial dataset
and the average establishment year among plots for FIA
dataset.

Management Mgmt Categorical IND.: 8
FIA: 2

Manage-ment
regime

​ ​ Management regime (Table 1 for Industrial dataset or
origin planted/natural for FIA dataset)

Maximum temperature TMax Continuous ​ Climate çC IND.:
27.5–19.6
FIA:
26.8–19.4

30-year normal maximum temperature average

Precipitation Ppt Continuous ​ Climate mm IND:
1756–1086
FIA:
1682–1126

30-year normal total precipitation average

Minimum vapor pressure
de昀椀cit

VPDMin Continuous ​ Climate hPa IND:
1.5–0.07
FIA: 1.2–0.4

30-year normal minimum vapor pressure de昀椀cit

Maximum vapor pressure
de昀椀cit

VPDMax Continuous ​ Climate hPa IND:
20.1–12.6
FIA:
19.7–11.5

30-year normal maximum vapor pressure de昀椀cit

Major soil group MajorSoil Categorical IND.: 7
FIA: 7

Soil ​ ​ Primarily soil texture

Depth to clay DepthClay Categorical IND.: 7
FIA: 7

Soil ​ ​ Soil depth to increase in clay horizon

Drainage Drainage Categorical IND.: 7
FIA: 7

Soil ​ ​ Based on rate of water removal

Nature of surface NatSurface Categorical IND.: 6
FIA: 5

Soil ​ ​ Soil surface modi昀椀ers

Nature of subsoil NatSubsoil Categorical IND.: 7
FIA: 5

Soil ​ ​ Nature of soil subsurface modi昀椀ers, describes
minerology

Additional Limitation or
Resources

AddLimRes Categorical IND.: 9
FIA: 6

Soil ​ ​ E.g., root restrictions, ponding, alkaline, salt affected

Geocode Geocode Categorical IND.: 33
FIA: 27

Geophys ​ ​ Geology, geologic formations, and coastal plain terraces

Physiographic Province PhysioPro Categorical IND.: 10
FIA: 10

Geophys ​ ​ Grouped Major Land Resource Area
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Fig. 1. Datasets used for this study. (1) represents a per-county number of FIA plots used in the analysis, and (2) represents the area of industrial land utilized in our
study (IND_AREA_HA), against the remotely-sensed area of loblolly pine (RS_AREA_HA)) from Thomas et al. (2021). The dark black line represents the native range of
loblolly pine (Little, 1971). (3) represents the histograms of the ages of the plantations used in the study from each dataset (industrial and FIA).
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stand ID. Finally, management information at a stand level was added to
the dataset. Prior to modeling steps, we excluded all observations with
fewer than 10 pixels of SI values (in other words, we did not use any
combination of SPOT code within stand ID that represented less than
4000 m2). At this stage, the dataset had a total of N = 107,844

observations and corresponded to a total of approximately 1 million
hectares of land located in the same general region as the remotely
sensed distribution of managed loblolly pine plantations across the
southeastern US (Thomas et al., 2021; Fig. 1).

2.4. Statistical methods

2.4.1. SPOT code presence and site index evolution over time
To characterize the evolution of SI over time, speci昀椀cally with regard

to management regime, we 昀椀rst needed to limit our analysis to SPOT
codes shared in both datasets (1194 total), given that the number unique
SPOT codes represented in each data type varied (Industrial unique
codes = 6275; FIA unique codes = 1542). By analyzing sites in only
shared SPOT codes, we compared the observed SI values across the two
data sets and avoided the potential biases associated with some soils
(either more or less productive) only being represented in one dataset.
We then organized this subset of the data in the following manner:

A. “IND high”: Industrial dataset with documentation of receiving at
least one chemical application in mid-rotation, one fertilization
treatment, and one thinning.

B. “IND low”: Industrial dataset with at least one documented man-
agement procedure (chemical application, fertilization, or thinning).

C. “IND unknown”: Industrial where management is unknown.
D. “FIA planted”: FIA dataset where origin is planted.
E. “FIA natural”: FIA dataset where origin is natural regeneration.

Table 2
Management intensity categorical variable based on the known silvicultural
treatments per stand.
Number of
treatments

Number of
combinations

Possible variables Variable description

3 1 “chem+fert+thin” Stands with at least one
mid-rotation chemical
release, one thinning,
and one fertilization
treatment.

2 3 “chem+fert”,
“chem+thin”,
“fert+thin”

Stands with at least two
treatments, any
combination, among
mid-rotation chemical
release, thinning, and/
or fertilization.

1 3 “chem”, “fert”, “thin” Stands with at least one
treatment, such as mid-
rotation chemical
release, thinning, or
fertilization.

0 1 “unknown” Stands with no
treatment records.

Fig. 2. USGS acquisitions used for this study. The color represents acquisition date and the texture represents acquisition quality (QL1, QL2).
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After that, we evaluated the effect of establishment year on SI for
each of the groups by applying linear regressions and evaluating model
昀椀t and comparing slope coef昀椀cients.

2.4.2. Site index random forest modeling
After analyzing the general trends over time, we employed a non-

parametric random forest (Breiman et al., 2001; RF) model to (1)
assess the relative importance of each variable and (2) create a predic-
tive model for SI in each data set following a similar approach to other
studies (e.g., Hennigar et al., 2016; Pahlavan-Rad et al., 2020; Cook
et al., 2024). Due to the nature of the algorithm, RF cannot extrapolate
beyond the underlying data (Hennigar et al., 2016; Jeong et al., 2016).
However, despite the inherent limitations of categorical data (i.e., any
new level of any of the variables blocks the performance of the model) it
had valuable bene昀椀ts and abilities: RF was able to tolerate autocorre-
lation and high dimensional data, handle interactions between vari-
ables, identify informative inputs using a permutation-based RF variable
importance index, and capture complex phenomena while revealing
non-linear relationships (Antoniadis et al., 2021; Cheng et al., 2020).

Prior to modeling, we excluded the levels of any categorical variable
that had less than 15 observations, as well as observations with unrep-
resentative conditions, such as plantations in soils labeled as dumps or

water layers. The ready-to-use Industrial dataset had 107,331 observa-
tions (industrial stand IDs with one SPOT code), whereas the FIA dataset
had 1985 observations (FIA plots with one SPOT code). We then
implemented the random forest algorithm via the “ranger” R package
(Wright and Ziegler, 2017), performing a hyperparameter tuning opti-
mization via the “tuneRanger” R package (Probst et al., 2019). To pre-
vent the bias associated with categorical variables with many levels or in
favor of high-frequency levels within categorical variables, we built
trees without resampling, utilizing the permutation option for the var-
iable importance assessment and the mean response encoding option as
in Hastie et al. (2009) (Loecher, 2022; Probst et al., 2019; Nembrini
et al., 2018; Altmann et al., 2010). The out-of-bag (OOB) coef昀椀cient of
determination, root mean square error, and relative root mean square
error (RMSE and RRMSE, Eqs. (2) and (3), respectively) were then used
to assess the predictive performance of the model.

RMSE =

������������������������������3n
i=1(yi − �yi)

2

n

:

(2)

RRMSE =
RMSE

y (3)

Fig. 3. Stepwise summary of the process performed in the Industrial dataset to obtain SI average measures for each SPOT code within each stand ID from USGS
LiDAR data, showing all the necessary steps prior statistical modeling using soils, geology, climate, and silvicultural information. AWS stands for Amazon
Web Services.
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Where yi is the observed SI, �yi is the predicted SI i, and y is the mean of
the observed SI. The 昀椀nal proposed model integrated management
regime, soil information, geocode, physiographic province, and climatic
information (Eq. (4), in simpli昀椀ed notation for RF modeling).

The parameter YEAR re昀氀ects either EstbYr in the Industrial dataset or
AvgEstbYr in the FIA dataset. Additionally, the parameterMgmt indicates
the management level for Industrial dataset or origin for FIA dataset.
Then, TMax represents the maximum temperature; Ppt the average total
yearly precipitation; VPDMin the minimum vapor pressure de昀椀cit;
VPDMax the maximum vapor pressure de昀椀cit; MajorSoil the major soil
group (texture) from the SPOT code; DepthClay the soil depth to increase
in clay horizon, Drainage the drainage level; NatSurface the soil surface
modi昀椀ers, NatSubsoil the soil subsurface modi昀椀ers, AddLimRes any
additional limitations or resources, Geocode the geology, geologic for-
mations, and coastal plain terraces; and PhysioPro the grouped major
land resource area. Furthermore, to prevent over昀椀tting, we limited the
hyperparameters, 昀椀xing the number of features per tree to four and the
minimum node size to 昀椀ve (Mentch and Zhou, 2020). To validate the
model’s performance and stability, we ran a 5-fold cross-validation
procedure and analyzed the stability of the OOB R2 and RMSE across
folds.

2.4.3. Evaluation of the effect of covariates in site index modeling
To assess the importance of the variables, we trained a random forest

model using soils, geology, climate, management, and year of estab-
lishment (Eq. (4)), ranking the variables’ importance after ten subse-
quent runs, presenting a position and dispersion measure of those
repetitions. Furthermore, to visualize the relation between the different
features and the SI, we produced partial dependence plots (PDP)
(Friedman, 2001), individual conditional expectation (ICE) curves
(Goldstein et al., 2015), and accumulated local effects (ALE) plots (Apley
and Zhu, 2020). PDPs assess the mean predicted value response variable
on the y-axis against the marginal distribution of the studied feature in
the x-axis, while ICE plots represent the individual effect for each
observation, typically used in conjunction with PDPs. ALE plots assess
the local effect of a feature, considering only a subpopulation within a
speci昀椀c range of the studied feature (Molnar et al., 2018). As such, ALE
plots avoid extrapolation and are more computationally ef昀椀cient (Apley
and Zhu, 2020); however, the local effects displayed are only applicable
to the speci昀椀c subpopulation for which they were calculated (Loef et al.,
2022), making them challenging to interpret.

In this work, we used PDPs, ICE curves, and ALE plot to examine the
main effects of a subset of features. Following the methodology of pre-
vious studies (e.g., Loef et al., 2022) we employed PDPs to gain a general
understanding of the effect size attributed to each feature. Concurrently,
ALE plots were utilized to determine whether the behaviors observed in
PDPs could be attributed to incorrect extrapolation. importance of var-
iables and their interactions were evaluated using “iml” (Molnar et al.,
2018) R package. To explore variable interactions, we applied Fired-
man’s H-statistic (Friedman and Popescu, 2008), which measures the
intensity of an interaction based on the combined variation of two input
features. The H-statistic for a feature assess the strength of interaction
with other features and then computes an average, yielding a value that
indicates the interaction strength of each feature. This metric is derived
from the proportion of the variance of the two-dimensional partial
dependence function that cannot be explained by the sum of the two

one-dimensional partial dependence functions (Friedman and Popescu,
2008).

3. Results

3.1. Site index evolution over time for the common soils

For the unique SPOT codes that were common in the industrial and
the FIA datasets (n = 1194), we found a statistically signi昀椀cant linear
increase in SI over time for all sub-datasets (in all cases, p-value <

0.0001; Fig. 4). Interestingly, the slope coef昀椀cient was very similar for
the naturally regenerated (0.07 m year−1) and planted (0.09 m year−1)
stands in the FIA dataset but was signi昀椀cantly higher in the Industrial
dataset at any silvicultural level (0.26 – 0.32 m year−1), indicating that
the average rate of SI increase per year was higher in the Industrial
dataset. The lowest slope for SI over time was found in the naturally
regenerated FIA plots, while the highest was found in the Industrial
dataset with high silvicultural management (chemical application,
fertilization, and thinning). In the FIA dataset, the higher increase per
year of establishment was found in planted origin stands. In the Indus-
trial dataset, high silviculture management stands had the highest in-
crease per year. However, in all cases, the low R2 suggested that there
were other factors in昀氀uencing productivity besides establishment year.

3.2. Site index modeling and variable effect evaluation

For the Industrial dataset, the predictive performance of the RF
model was high: when running a 5-fold cross-validation, R2 and RMSE
outcomes were stable, with average and standard deviation values of
0.701 ± 0.003 for R2 and 1.41 m ± 0.004 m for RMSE. In relative terms,
the industrial model exhibited an RRMSE of 5.98 %. When performing
the 5-fold cross-validation on the FIA dataset, the results indicated both
a lower goodness 昀椀t compared to the Industrial dataset, and a lower
stability across the folds. The reported average and standard deviation
values were 0.417 ± 0.030 for R2 and 1.84 m ±0.047 m for RMSE,
which translated into a 9.21 % RRMSE. Both the Industrial and FIA data
showed the general trend of underestimation of higher SI values and
overestimation of low SI values (Fig. 5).

When constructing the 1-way PDPs for the variables in the Industrial
dataset (see Fig. 6 and Supplementary 1), it became evident which
variables exert a stronger in昀氀uence on the model. Speci昀椀cally, estab-
lishment year, physiographic province, geocode, maximum tempera-
ture, and precipitation had stronger effects on the predictions than other
variables. These variables showed a similar in昀氀uence in the FIA dataset
(Fig. 6 and Supplementary 2), except that management level (planted or
natural origin) had a much stronger effect on the predictions than the
management level in the Industrial dataset. Additionally, the ALE plots
for all variables (see Supplementary 2 and 4) followed a similar trend to
the PDPs, providing further evidence that no problematic bias was
present.

As an example of speci昀椀c levels of the most in昀氀uential variables in
the Industrial dataset, the most bene昀椀cial physiographic province for
site productivity was found to be the Mississippi Valley Loess Plain (LP),
which added up to 1.2 m of additional site index (Fig. 6, Supplementary
2). The second most bene昀椀cial physiographic province was the Atlantic
Coastal Plain Flatwoods (AF), with a boost in 0.8 m of additional site
index (Fig. 6, Supplementary 2). The Atlantic Coastal Plain Flatwoods
are generally poorly drained but very responsive to nutrient inputs.

Site Index > YEAR+Mgmt+TMax+Ppt+VPDMin+VPDMax+MajorSoil+DepthClay+Drainage+NatSurface+NatSubsoil+AddLimRes
+Geocode+PhyisioPro (4)

V.A. Ribas-Costa et al. Forest Ecology and Management 572 (2024) 122334 

7 



When looking at soil depth to argillic layer, we found deeper increases in
clay content indicated lower productivity potential. This result is to be
expected as clay content provides a reservoir of nutrient and water
holding capacity. Deep sands are well known to have lower productivity
potential. The FIA dataset followed the same patterns, but with a smaller
productivity increase.

The two most in昀氀uential climatic variables, annual precipitation and
maximum temperature, showed average values of approximately
1400 mm of rainfall and maximum temperature of about 24 çC repre-
sented the central conditions where neither a boost nor a decrease in
productivity was expected (Fig. 6, Supplementary 2 and Supplementary
4), both for Industrial and FIA datasets and across all the climatical
range that exists in the study region. Higher maximum temperature or
higher precipitation seemed to boost forest production about 0.5 m in SI,
regardless of the dataset. However, it also appeared that when annual
precipitation exceeded 1600 mm or the maximum annual temperature

rose above 26çC, productivity tended to decline.
In terms of feature importance, establishment year clearly outranked

all the other variables in both datasets, generating an increase of RMSE
of about 1.8 m for both datasets. The next most important features in the
Industrial dataset were physiographic province, maximum temperature,
geology, and precipitation (Figure 7.1), whereas in the FIA dataset
management, physiographic province, precipitation, and geology were
the most important ones (Figure 7.2). Across both datasets, the most
important feature within the group of soil variables was additional
limitations or resources, and the least important was nature of surface,
also in both datasets. Finally, in terms of overall interaction strength
physiographic province, precipitation, and year of establishment
showed the greatest degree of interaction with other features (Fig. 8),
both for the Industrial and FIA datasets.

Fig. 4. Evolution of SI over time for SPOT codes common in both the Industrial and FIA datasets. Regression parameters were generated with all the observations
within each data subset, for (1) Industrial with at least one chemical application, fertilization, and thinning, (2) Industrial with at least one treatment, but not all
three, (3) industrial with unknown management level, (4) FIA planted, and (5) FIA natural. The shade in the linear regression lines represents the 95 % con昀椀dence
intervals, yet in the Industrial dataset, it is so close to the regression line that it cannot be seen at the presented scale. IND, Industrial dataset; FIA, Forest Inventory
and Analysis dataset.
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3.3. Effect of management on site index over time

From the early 1980s until the 2000s, management regime had a
more pronounced effect than in the subsequent years. This trend is
evident in the 2-way partial dependence plot (see Fig. 9), where the
management effect gradually diminished in its in昀氀uence on the average
SI prediction over time. When analyzing the FIA dataset, we notice a
similar trend. However, the difference between natural and planted site
indices remains relatively constant across time compared to the Indus-
trial dataset (see Table 3). Also, the predicted SI values in the FIA dataset
are notably lower than those in the Industrial dataset. Interestingly, both
datasets showed a plateau in SI growth in the latest data. Around the
year 2000, the response curve began to level off in the FIA data, while in

the Industrial dataset, this effect becomes noticeable around 2008
(Fig. 9).

When looking at the differences across management levels (sum-
marized in FIA planted, FIA natural, Industrial high silviculture, In-
dustrial low silviculture, and industrial unknown silviculture) for each
of the decades (Table 3), the largest difference in consecutive manage-
ment levels was achieved in 2000–2012 between FIA planted and in-
dustrial unknown silviculture, with almost 3 m of difference in the SI
predictions. The greatest absolute difference occurred also in the same
decade between FIA natural and industrial high silviculture, with
greater than 4 m of predicted SI difference. Since the 1950s, there has
been an average increase of 3.05 m for FIA plots (for both natural and
planted origin), and an increase of 4.73 m for industrial stands (for all

Fig. 5. Scatterplot of observed vs. predicted SI values for the random forest model for Industrial dataset (1) and for the FIA dataset (2). In both cases, R2 and root
mean square error (RMSE) are the outcomes of a 5-fold cross-validation procedure. The red line (linear model) demonstrates the deviation of the predictions is
greater at the extreme high and low values. The gray line is the 1:1 line.

Fig. 6. 1-way partial dependence plots and individual conditional expectation curves for establishment year, maximum temperature, annual precipitation, geocode,
physiographic province, and management, for industrial and FIA datasets. In the box and whisker plots of the predicted SI values, the box represents the interquartile
range (IQR), this is the 25–75 % interval of the predictions, the line represents the median, and the whiskers represent the median ± 1.5 IQR. Observations above that
limit are marked as outliers. A higher oscillation of the box plots can be understood as a higher in昀氀uence of that variable on the overall SI model.

V.A. Ribas-Costa et al. Forest Ecology and Management 572 (2024) 122334 

9 



management levels) since the 1970s. When looking at the latest data
(2000–2012), we observed predicted SI in FIA planted stands was 1.2 m
higher than naturally regenerated FIA stands, although planted FIA
stands were still 2.9 m lower than predicted SI in industrial stands,
averaged across management levels.

4. Discussion

4.1. Site index evolution over time and management in昀氀uence

The year of establishment was the most important variable when
modeling SI. This 昀椀nding is consistent with previous studies, which have
demonstrated that various factors have contributed to increased pro-
ductivity in loblolly pine plantations over time. These factors include
improved andmore ef昀椀cient management (Jokela et al., 2004; Fox et al.,

2007b; Zhao et al., 2016), carryover effects of fertilization (Everett and
Palm-Leis, 2009), atmospheric nitrogen deposition, enhanced chemical
weed control (Subedi et al., 2019), changes in climate, and ambient CO2
concentration (Burkhart et al., 2018; Aguilos et al., 2021), as well as
enhanced productivity genetics resulting from traditional tree breeding
efforts (McKeand, 2015; McKeand et al., 2020). Interestingly, even
naturally regenerated stands present in the FIA dataset, exhibited a
similar trend of higher SI values for more recent stands. This trend
suggests that environmental factors such as CO2 fertilization (when ni-
trogen is not limiting) (Huang et al., 2007), nitrogen deposition, tem-
perature increases, and perhaps even genetically-improved pollen from
planted loblolly pines and/or the slow recovery of soils from past agri-
cultural use have contributed to increased productivity over time,
independently of management practices (Van Lear et al., 2004; Davis
et al., 2022).

Fig. 7. Feature importance ranking for a 10-run RF model for both industrial (1) and FIA (2) datasets. The features are colorized by type (climate, geology and
physiographic province, management, or soil). The dot represents the mean value, and the interval represents the 5th and 95th con昀椀dence interval (alpha = 0.05).
The RMSE increase is reported in absolute difference between the original model and the model with the shuf昀氀ed feature.

Fig. 8. Variable overall interaction strength, based on Friedman’s H-statistic, for both industrial (1) and FIA (2) datasets. The H-statistic varies between 0 (no
interaction) to 1 (full interaction).
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Establishment origin (natural or planted) in the FIA dataset and
silvicultural intensity in the Industrial dataset were also found to have a
signi昀椀cant effect on SI over time. Speci昀椀cally, management had a
greater effect on SI in the early decades (1980 – 1995), compared to
1995 onwards. This observation may be linked to the critical role of
management practices in an earlier era of plantation forestry, when
genetic improvements were still in early development (McKeand et al.,
2020), and other environmental factors were not as pronounced as they
appear to be now (Burkhart et al., 2018). Before 1980, the lower man-
agement level in industrial plantations more closely resembled natural
forests, while the current “baseline” silviculture in the southeastern US
represents a higher level of management than the best silvicultural
practices of the 1980s (Fox et al., 2007a, 2007b). Additionally, at pre-
sent at least half of the loblolly pine forestland in the southeastern US is
under some kind of silvicultural management (Oswalt et al., 2019;
Thomas et al., 2021), while simultaneously, timber industries are stra-
tegically pursuing the acquisition of land with a high return on invest-
ment, potentially resulting in a higher concentration of more productive
sites within the Industrial dataset. However, when comparing the same
soils in both datasets, SI values for FIA stands remain stagnant, high-
lighting a missed opportunity for enhancement. These differences could
potentially be attributed to the inherent differences in management

practices between the two types of land rather than the differences in the
sites themselves. By isolating the effects of management improvement
over time, the remaining contribution of management practices became
minimal. In other words, when the slope of the SI curve (see Fig. 9) was
higher, the different management level curves converge. This trend is
also slightly visible in the FIA data, where the productivity curves for
FIA-planted and naturally regenerated forests brie昀氀y converge in the
1990s, likely due to genetic advancements enhancing both forest types.

It is also worth noting that SI gain plateaued in recent establishment
years beginning around 2008 for the Industrial dataset. We believe that
three simultaneous components would in昀氀uence this phenomenon:
economic restrictions, limitation in development and deployment of
new methods, and environmental changes. Regarding the 昀椀rst two, and
while SI has not yet reached the empirical, physiological limit of 32 m at
25 years (Zhao et al., 2016), it may have reached a point of diminishing
return on investment for additional inputs. At the same time, there was a
signi昀椀cant spike in fertilizer prices and the crash of the housing market
in 2008 dramatically reducing stumpage prices, particularly for
sawtimber, which subsequently reduced fertilizer application (Albaugh
et al., 2019). Two key processes happening at that time could be driving
the observed behavior: (1) intensive management practices became less
common, as they were seen as a "luxury" treatment, leading to a clearer

Fig. 9. Evolution of the effect of management level on the predicted site index (SI) depending on the establishment year. Values extracted from the 2-way partial
dependence of establishment year and management type, for both the industrial (IND) and FIA datasets.

Table 3
Differences in the predictions for Forest Inventory and Analysis (FIA) natural and planted, and Industrial (IND). Only combination of consecutive levels of management
are shown. IND high includes the treatments with at least one chemical mid-rotation release, fertilization application, and thinning; IND low includes the treatments
with at least one silvicultural treatment, and IND unknown includes all the observations with no records of treatments. Data was obtained from the partial dependence
plots of management and establishment year and averaged by management levels and decades.
Decade / Mgmt. Number of observations in each dataset Differences in the average predictions for consecutive management levels and

extreme range (m)
N FIA
planted

N FIA
natural

N IND high
silviculture

N IND low
silviculture

N IND
unknown
silviculture

FIA planted -
FIA natural

IND unknown
- FIA planted

IND low -
IND
unknown

IND high
- IND
low

IND high –

FIA natural

1950–1960 13 160 - - - 0.98 - - - -
1960–1970 51 438 - - - 0.81 - - - -
1970–1980 156 792 3 71 165 0.85 −0.07 0.41 0.29 1.48
1980–1990 640 667 188 2362 2791 0.87 −0.46 0.36 0.24 1.00
1990–2000 847 211 10,769 21,572 6173 1.00 0.64 0.14 0.12 1.90
2000–2012 114 15 19,801 39,192 13,645 1.21 2.85 0.08 0.08 4.23
Accumulated
difference

882 1076 28,141 58,204 20,986 5.72 2.95 1.00 0.74 8.61
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differentiation between managed and unmanaged sites; and (2) forest
owners extended their rotation periods, reducing the introduction of
newer genetic material, which had previously driven productivity im-
provements. This caused the curve to 昀氀atten and therefore highlighted
management’s residual effects again. Another possible reason for this
reduction in productivity could be the shift in focus within tree breeding.
Initially centered on productivity, tree breeding efforts later shifted to-
ward optimizing tree straightness for higher quality sawtimber
(Aspinwall et al., 2013; McKeand, 2019; McKeand et al., 2020). It is also
likely that the physiological limit in SI for loblolly pine can only be
achieved on a fraction of sites in the southeastern US. In terms of FIA
data, this plateauing starts about 10 years before that of the industrial
data, which may be an indicator of the potential change that will be
observed for industrial land (although given that the management ap-
proaches are different among FIA and Industrial datasets, FIA stands are
not useful for making predictions on industrial land).

Other limiting factors of loblolly pine productivity are the pests or
diseases, such as the Nantucket pine tip moth (Rhyacionia frustrana
Comstock) or the southern pine beetle (Dendroctonus frontalis Zimmer-
mann). While these factors have been shown to cause decreases in
productivity, it has also been demonstrated that active management can
mitigate these negative effects (Nowak and Berisford, 2000; Carter and
Foster, 2006; Asaro et al., 2017). Returning to the third component
previously mentioned, the changing environment in temperature, rain-
fall, CO2 concentration, and nitrogen deposition, potentially contrib-
utesd to the limitation in productivity. For instance, a 1çC drop in U.S.
temperatures in 2008 likely contributed to the plateau in productivity,
yet while temperatures rose by nearly 2çC a decade later (Climate
Change Knowledge Portal, 2024), more data is needed to assess how
recent environmental changes will in昀氀uence future trends.

Finally, another data-related restriction must be noted. Until the
1990s, the structure of forest industry companies shifted from a verti-
cally integrated ownership (i.e., the companies owned and managed
their own lands and processed their timber in their mills) to the alternate
Real Estate Investment Trust (REITs) and Timber Investment Manage-
ment Organization (TIMOs) models. Vertically integrated companies
owned land for a long time and would have had relatively good (accu-
rate) long-term records of what was done on a given area. The change in
ownership structure created an increased churn where land would be
bought and sold regularly resulting in a problematic transfer of the in-
formation about what had been done on a given piece of land. The result
is that all the land would end up looking the same in the sense of
recorded management inputs because the record keeping has become
more haphazard over time.

4.2. Site index modeling and variable effect evaluation

The predictive performance achieved in this work was in line with
previous studies (e.g., Cook et al., 2024), where approximately 70 % of
the variability in the Industrial dataset and 40 % in the FIA dataset were
explained. The underperformance of the FIA model when compared to
the Industrial one can potentially be attributed to higher data variability
and smaller sample size. While “planted”management in the FIA dataset
may indicate an intention to participate in timber markets, the Industrial
data was expected to represent a narrow, highly productive, subset of
planted forests (i.e., a more “controlled” and consistent management
environment). Additionally, the different nature of the type of obser-
vation between the FIA and Industrial datasets might be causing some of
these differences too. For example, an observation in the Industrial
dataset represents one single age, yet an observation within the FIA
dataset corresponds to the average SI and age of all the FIA plots that fell
within the same soil type. Therefore, because of the nature of the data
collection and collation, there is more inherent variability in the FIA
dataset, and the predictive performance cannot be directly compared
among the models.

However, these models outperformed other models built with similar

edaphic and climatic data: Sabatia and Burkhart (2014) reported a
predictive ability (R2) between 0.3 and 0.6 using annual precipitation,
soil depth, water availability, a growing season dryness index, and
elevation. When modeling height growth, Cohrs (2022) reported cor-
relations between 0.3 and 0.4 using only soil information. Other studies
that include much more detail of edaphic properties (e.g., nitrogen,
phosphorus or potassium concentrations, pH or percentage of clay),
have reported correlations up to 0.7 using parametric modeling tech-
niques for SI (Subedi and Fox, 2016). Other research utilized water
de昀椀cit, excess water, and available water to model dominant height,
reporting prediction errors of< 1 m, which then was used to model SI in
the Western Gulf of the US (Koirala et al., 2021). Jiang et al. (2015)
reported an adjusted R2 of 0.6 and a RMSE of 4.5 m when modeling
conifer SI using climate and soils. It needs to be mentioned that, except
Cook et al. (2024), previous models did not include establishment year
as a covariate, and therefore the strong effect of steadily improving SI
that we found was potentially missed. On the other hand, the sample size
of the underlying data in all studies was smaller than the one presented
in this study, potentially masking the strength of this effect.

Regarding variable importance, we observed a trend: the larger the
area represented by a variable, the greater its impact on the model.
Physiographic province, representing the broadest areas, emerged as a
signi昀椀cant driver, followed by geology, which represents edaphic and
climatic properties within each geological region. The observed bene昀椀ts
or restrictions different physiographic provinces or geologies provide
was consistent with the reported Cook et al. (2024) when referring to
management implications of each variable, at least in the southeastern
US context. Other studies have found geology and physiographic prov-
ince to be important drivers when modeling forest productivity in lob-
lolly pine (Amateis et al., 2006; Everett and Thorp, 2008) and other
forest environments (Hennigar et al., 2017; Moore et al., 2022). Parent
material (signi昀椀ed by Geocode) is one of the soil formation factors that
in昀氀uences the inherent soil nutrient status and physical properties.
Precipitation andmaximum temperature were other important variables
in our model and similar to Sabatia and Burkhart (2014), VanderSchaaf
and Prisley (2006), and Jiang et al. (2015). However, our use of 30-year
averages for climatic variables could be affecting the correlation be-
tween observed productivity and the climate variables because the data
did not correspond to that exact period of growth (Bryars et al., 2013).
Research with more detailed climatic data suggests that monthly aver-
ages of precipitation and temperature do affect loblolly pine produc-
tivity (VanderSchaaf and Prisley, 2006; Davis et al., 2022). Furthermore,
vapor pressure de昀椀cit, another climatic variable ranked highly, has
increased over the past decades and could negatively impact future
productivity (Ficklin and Novick, 2017). Other studies indicate that
limitations related to water availability (atmospheric or in the soil) or
water excess can impact forest productivity (Koirala et al., 2021).

Once the variability from the large-scale factors is accounted for,
then soils play a larger role in explaining variability of productivity
(Jiang et al., 2015; Hennigar et al., 2017). We found the additional
limitations or resources modi昀椀er was the most important soil variable,
followed by drainage class. Additional limitations and resources pri-
marily include variables for root restrictions which determine soil vol-
ume. We believe our large sample size in昀氀uenced our identi昀椀cation of
this variable as an important one because our soils were not biased to-
ward those selected for fertilization 昀椀eld trials. Soil properties were
ranked last in the model variable importance, which was also found by
Cook et al. (2024) using the same SPOT code system to evaluate SI in a
network of experimental stands in southeastern US loblolly pine. How-
ever, they found that major soil group (primarily texture), nature of
subsoil, and drainage class were the most in昀氀uential soil properties. In
another study, Sabatia and Burkhart (2014) found that soil depth was
in昀氀uential when predicting SI from biophysical parameters. The differ-
ences in productivity due to soils is potentially more complex as soil
factors may depend on and interact with management and landform. For
example, Everett and Thorp (2008) found drainage class to be in昀氀uential

V.A. Ribas-Costa et al. Forest Ecology and Management 572 (2024) 122334 

12 



when assessing site quality in the lower coastal plain, yet this effect can
be partially overcome with modern site preparation techniques such as
bedding (Fox et al., 2005). Different soil factors can be limiting in
different contexts. The effect of soils is potentially more important at a
smaller scale when assessing potential responses to silvicultural treat-
ments than within broader physiographic or geological regions.

Regarding variable interactions, we found that year of establishment,
geology, physiographic province, and some of the climatic variables
(mainly, maximum temperature and precipitation), as well as origin of
the plantation for FIA dataset, were the most strongly interacting of the
variables of the model. However, we did not analyze which of the other
variables they interacted the most with, as other studies did. For
instance, Cohrs (2022) also found that physiographic province was one
of the most interactive variables when modelling growth following
random forest techniques, which especially interacted with runoff po-
tential. Hennigar et al. (2017), when modeling a biomass-based site
productivity estimate, found that interactions among terrain properties
(e.g., slope and depth to water table) were important to distinguish
productive and unproductive soils, something that could align with
what in our study could be inferred to the additional limitations and
resources variable – drainage pair of variables. Regarding climatic var-
iables, Jiang et al. (2015), when modeling SI for different species in the
eastern US, found that the interaction between precipitation and tem-
perature was signi昀椀cant, something that aligns with our results.

4.3. Limitations and further directions

For the Industrial dataset, the results obtained in this work rely on
the methodology proposed by Ribas-Costa et al. (2024), and therefore
some of the limitations presented in that study apply to this work too.
These include (1) the restrictions based on the availability of updated
age records, which can have errors (le Maire et al., 2011); (2) differences
due to variable USGS LiDAR acquisition quality, and (3) the increase in
uncertainty when translating modeled dominant height to modeled SI.
Related to the 昀椀rst of these conditions, this study is based on observa-
tional data, so all conclusions derived from it should be supported by
past or future research. Furthermore, unlike other studies (e.g., Davis
et al., 2022), where they were able to attribute to CO2 increase and other
climate change-derived variables a speci昀椀c percentage of effect on the
productivity increase, our study encapsulates all those effects in the
establishment year variable. It is also worth noting the way climate data
is accounted for in each dataset (FIA vs. Industrial): whereas in the latter
dataset, climate data was added at a soil-within-stand level, in the
former dataset climate data had to be averaged by SPOT code.

We saw a general trend in the underestimation of high SI values and
overestimation of the low SI values, a phenomenon known as regression
to the mean. This effect is a very common outcome when modeling
ecological processes (Mazalla and Diekmann, 2022), and was also found
in other studies modeling SI in loblolly pine (Sabatia and Burkhart,
2014). Another potential source of error is the fact that the method for
estimating SI from dominant height used in this work, the
Diéguez-Aranda et al. (2006) model, was developed based on older
stands. Potentially, the use of a more recent SI model, that includes more
recent data and data from more intensively managed pine plantations,
could help reduce the uncertainty in both the models and their outcomes
for more recent stands. It is also worth noting that the year of estab-
lishment in the industrial data comes from plantation records that start
counting from age 0. However, in FIA data, the year of establishment is
computed as a function of the age at measurement, obtained from bole
cores at taken at breast height, and is therefore an estimate subject to
measurement error. There is also an intrinsic difference between the two
estimates, as FIA age estimates do not consider the time that the tree
required to reach the breast height, which will be several years.

A better understanding of current forest productivity opens several
opportunities for land managers, foresters, or other stakeholders to
improve their estimations and models of both timber volume and carbon

stock. The proposed model will allow for (1) a spatially continuous map
of SI based on average management (i.e., year of establishment and
silvicultural practices) and (2) a spatially explicit SI calculator so that
each forest owner can correct the previous estimation with their own
management data. Our models could be used to assess potential pro-
ductivity, by comparing the observed productivity with the modeled one
given speci昀椀c condition. Furthermore, given the variables included in
our models, especially maximum temperature and average precipita-
tion, future research can examine climate change scenarios, addressing
how changes in current temperature, precipitation, and water avail-
ability affect the expected productivity of the forests. Although we can
project future productivity trends with increasing temperatures and
changes in rainfall, its combined effect in current forests will be less
predictable when past thresholds are surpassed (although that entangles
the risks related to temporal extrapolation). Other stochastic events may
interfere with predictions such as heat waves, droughts, excess rainfall,
or hurricanes.

5. Conclusion

In this study, we explored the key drivers of the evolution of site
index across different forest management levels. Our 昀椀nding consis-
tently highlights the year of establishment as a major factor in昀氀uencing
forest productivity. Speci昀椀cally, it has been responsible for an increase
in SI of more than 5 m in industrial plantations since the 1970s andmore
than 3 m in the FIA dataset since the 1950s. Moreover, both datasets
reveal that broad factors, such as physiographic provinces or geologic
regions, which share similar edaphic and climatic conditions, signi昀椀-
cantly impact forest productivity at the landscape scale. Climate vari-
ables, particularly precipitation and maximum temperature, emerge as
strong drivers of forest productivity. Within soil properties, soil volume
was the most in昀氀uential factor. Improving genetic material via tradi-
tional tree breeding techniques and implementing better silvicultural
practices is a crucial solution when addressing climate change and
carbon sequestration and meeting global wood 昀椀ber demands.
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