’ frontiers  Frontiers in Agronomy

Q Chwck for updalas

OPEMN ACCESS

EMNTID WY
Framoesc o Morar,
Unhoersity of Padua, Faly

EDi~ED v

Rajan Dhatt,

Moy Agrcullural Linversity, India
Ewant Asenso,

Unhversity of Chana Ghana

O RELERD RDENCE
Adhessh K. Singh
[0 sirvpha kpaas b e fclu

reziwuo OL Apell 2024
accirTin 07 June 2024
PuBLEHED Of August 2024

COTA ThOm

Sngh AK, Balabaygioo B, Bekee B,

Dlair SW, Fey 5. Fotouhi F. Gupta A, Jha A,
e i - Eaiivaead 1, Merke B Brectholl A
Tarwar VE, Tao ¥, Wangala A, Carroll ME,
Dias 5K, DePaula G, Kyveryga P, Sarkar 5,
Segovia M. Silvestri 5 and Valdhda C [2024)
Arrart conmeche (a7 md and nebwonked
farmers Lo |MErove crop producthon,
sustainabiity and profitabllity.

From, Agron. 61410829

dos 10, 3380/ fegro 2024 14106820

GOy T

@ 2024 Singh, Ralsbayoloo, Rekes, Fial, Fey,
Fotowt, Gupla, Jha, bartenes - Peloma e,
Merie, Prestholt Tarwer, Teo, Vngala, Carmail,
Cns, DePala, Hyveryogn, Sariow, Sagowa,
Silwestn and Valdnaas This i an open-scors
artiche distributed under the tenms of the
Cresthoe Commoni Aliribution Lcense ICC DY),
The use, distr|bution or rapeod uciion inother
for s s penmibed, provded [he original
author(s) and the copyright ownee(s] are
credited and thet the originel publication in
this joumal s cited. in saccordance with
accepted academic practice No use,
dhstvibubon or eproduchion s permillbed
which does not comply with these ermi.

Fromthers i Agrsiing

reen Review
FusLrisin 08 August 2024
a0 10 3389 fagro 2024 1410829

Smart connected farms and
networked farmers to improve
crop production, sustainability
and profitability

Asheesh K. Singh™, Behzad J. Balabaygloo®, Barituka Bekee®,
Samuel W. Blair’, Suzanne Fey*, Fateme Fotouhi®,

Ashish Gupta®, Amit Jha® Jorge C. Martinez-Palomares’,
Kevin Menke®, Aaron Prestholt®, Vishesh K. Tanwar® Xu Tao®
Anusha Vangala®, Matthew E. Carroll®, Sajal K. Das®,
Guilherme DePaula’®, Peter Kyveryga', Soumik Sarkar®,
Michelle Segovia®, Simone Silvestri® and Corinne Valdivia’

'Deparmmant of Agronamy. lowa Smoe University. Ames. 1A, Unitec Satex. “Departmen: of Economics.
Idwail SUATE LIARereity, At LA, Linited SEated, " Sydieaid Sedasrch Coanter Linivsatty of Warmont

Auiriragad, VT, Ursled SUaes, Vs Sintedn Al b, Ardusrng, L8, Lneted SEale-t S epuartinent of
Mechamcal Engineering, lowa State Uinversiby, Ames, I8, Unided Sailes, “Departrment of Cormputer
Science. Misscurl Unbversiyy of Sclence anc Technology, Foda, ML Urimd Staws. "Didsion of Agpled

SOntaA | Bohenat = Aqriculural and Apaied F
States, "Uepatmaent of Lomguler 3Cence

conormacs, Linkeerilly of Metour Columbel M Linsted
weruly o Rentuchy, Lemngion KY Linded SGales
elpware, Mewark, DE Unded Sttes

"Department of Appled Econamecs and Statistcs, Ureees aty of

To meet the grand challenges of agricultural production including climate
change impacts on crop production, a tight integration of social science,
technology and agriculture experts including farmers are needed. Rapid
advances in information and communication technology, precision agriculture
and data analytics, are creating a perfect opportunity for the creation of smart
connected farms (SCFs) and networked farmers. A network and coordinated
farmer network provides unigue advantages o farmers w enhance farm
production and profitability, while tackling adverse climate svents. The aim of
this article is to provide a comprehensie overiew of the state of the art in SCF
Including the advances in engineering. computer sciences. data sciences. social
sciences and economics including data privacy, sharing and technology
adoption. More spacifically, we provide a comprehensve review of key
componems of SCFs and crucial elements necessary for its success. It
includes, high-speed connections. sensors for data collection and edge. fog
and cloud computing along with innovative wireless technologies to snable
cyber agricultural systemn. We also cover the topic of adoption of these
technologies that involves important considerations around data analysis.
privacy, and the sharing of data on platforms From a social science and
gconomics perspeclive, we examine the net-benefits and potential bamers to
data-sharing within agricultural communities, and the behavioral factors
influencing the adoption of SCF technologies The focus of this mview is to
cover the state-af-the-art in smart connected farms with sufficient
techneological infrastructure; however. the information included herein can be
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utilized in geographies and farming systems that are witnessing digital
technologies and wanl to develop SCF. Overall taking a holistic view that
spans technical, soclal and economic dimensions is key 10 understanding the
impacts and future trajectory of Smart and Connected Farms

HT O 1

cyber-agricultural syttema, |oT, data analytics. precizion agriculture. edge computing,
sensors, fammer networks, technology adoption

1 Introduction

Agriculture is one of the most important industries that directly
or indirectly supports a large section of society. With continual
challenges in crop produdion due e dunatic vanability, Uwre s a
need to consider integrating technical, economic, and social
dimensions of research to meet the needs of agriculhure. Among
the most pressing constraints und challenges of modern wgnculiure,
climate change-related crop yield decreise is among the mosi
important (Kummno et al, 2021} Por example, Climate change s
projected to reduce agricultural productivity by 3 to 18% by 2080,
with deveoping countries experiencing more significant red uctions
runging from 10 to 25%: furthermore, crop discases and other plant
stresses may become more prevalent as temperatures increase and
rainfall patterns become more variable (Mahato, 2014}, This is
wshering in o new paradigm of climate-smarnt agriculture thay
reqquires advances in information and communication technology
(ICT) in crop pmdtmhn and agricultural research. This review
establishes the concept of span and connected furms and builds
on wairiows technologies and concepts, e.g, the inlernet of things
(16T), eyber-physical systems (CPS), smart and connected
communities, wnd socio-economic factors, all in the context of

empowering furmers,

2 Information and communication
technology in crop production

Some of the technologles that make 1CT inclade ToT (1 aller
el al. 20045 Perkel, 2017). robotics, big date, artificial intdligence,
and cyber-agricultural systems, With the additional support of
choud services, IoT enables the analysis of large historical data,
uluding sod propeties, fertilizer distribution, msect acnval rate,
temperature and humidity trend, and so on. While facililating data
collection at every stage of crop production, [T also paves a path to
datu-driven services for intelbgent anming [oT mainly refers to the
interconnection of sensor-embedded devices/equipment and is
envisioned to improve the quality and experience of homan
living. wduding in smart agriculture. Potential loT and wireless
sensor networks (WSNs) applications have been reportead
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(Satyanarayana and Mararuddin, 20013; Sakthipriya, 2014; Patil
and Kale, 2018; Xue and Huang, 2020; Bhat and Huang, 2021;
Chen &t al, 20213 :I:I:. et al, M021)L

Farmers aperate at varying farm sire scales, which necessitates
conleal-specific managemenl. To compare scales. traditional
firming manages farm operations al the field level, while wman
farming allows decidon-making at a much smaller scale, ie, per
square meter or plants per wut erea. Ths shuft 5 posable dee 1o
Cyber-Agricultural Sysdtems (CAS) that include individualized
sensing, modeing, and acmation using machine learning (ML)
and coordinated teams of drooesrobots thal are enabled by
aitonony (Gao = al | 2018; Serkar et al |, 2023). Asloernation and
control systems provide a higher level of sophistication and
precision that can improve the profitability and sustainability of
modern production systems (Lowenberg-DeBoer et al. 2020)
These wchnologies support software to help reduce inputs by
more accurately targeting within-field areas with varlable rate
application of fertilizer and pesticides (Fabcock and Pautsch,
1998), Consequently, by targeting these field inputs more
accurately, farmers can reduce their chemical footprint on the
fild. The reduction in inputs saves costs by creating a profit
potential for farmers. For example, the use of preciion
agriculiure technologies allows farmers to operate in a more
sustainable manner and increase ther profitability (Bongovanni
and Lowenberg-DeBoer, 2004). While these examples are focused
an the field level, similar approaches and technologies apply 10
livestock management {(Astill et al, 2020) and controlled
environment frms (Guo and Zhong, 2015).

Agricultural equipment manufacturers and service providers
are developing technalogies that implement precision farming using
GI'S location, application rate monitoring, sbcllile mage analysis,
and predictive models for weather and crop health. While
individual farmers with robust economic condition and ability to
move W oew lechmologes are incressingly adopling advanced
sensing and intelligent aquipment (g, sman tracors, wed, and
chemical sprayers, aerial surveillance), there is still a lack of eficient
connecting farmers within a community, therdby preventing them
fram sharing data, analyses, and practices optimally. Overcoming
these challenges will emable better decsion-making at farms and
increased crop prodction while collectively improving the overall
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well-being and quality of farmers’ life, Although farmers and their
technology providers collect farm -level spatial data on planting and
harvest, community-wide data collection and analysis will be
helpful 1o formulate management responses to prosduction threns
that transcend faom boundaries, for example, weed seed dispersal,
pesticide dispemsion in air, insect-pest migration from farm to farm,
discase spore movement through air and waler, and sovbean cyst
nematode (Rovd and White, 2009; Zivan el al., 2017}, With an
netwarking, farm-level information and production threats can be
communicated quickly across o wider agricullucal community,
Farmer communities can oflen formulite more effective responies
to changing climate events with information sharing and decision-
muking, whereas woluted farmers or these who do oot st ther
sources of information often delay taking action against production
threats (Obunyali et al, 2019}, This necessitates a technology-
driven, community-enabled wol for row crop farmiog that
provides community-wide mitigation efforts againsg sich threats.

3 Farmer netwarks, and smart and
connected farms

To inprove community-wide dita sharing between farmers,
novel soclo-technical platforms are needed to create an SCF
network, which also provides the benefit of an eardy warning
syslem for damaging pests and other crop stressors. In Africa and
parts of western Asia, a large network of farmers nses various
sensors and networking tools to help predict and map the spread of

Current State ‘,.,
af Farm
Data Gatharing
&
Connactivity
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locusts that cause major damage to affected countries (Crevsman
213). This network of technology tools and farmer observations
alms to predict when phgue-level loaust populations may anse and
to take preemptive action to stop the locusts before they can cause
damage that could cause problems with food insecurity (O revnan
H13). Networked farms, data aggregation, and sharing data across
frms and fields are suilable for limiting the effect of hamiul pets
in networked farms acrow the world

Although commamity-based SCF are not yet common, farmers
have congomerated together for on-fann testing networks where
eaperiments are done on the lawds of participating frmers for the
mutual benefit of all Armers. The data from these tests are more
relevanl wnd with o higher confidence leve than can be tested by
frmers individmlly. These community basad data collection and
downatream decision-making have been dome through on-farm
neiworks bul without IoT, smart sensors. ML. and other
commimnication technologies. Collecting fickd experiment data from
a network of inferconnected farms can be more beneficial than
collecting high-precsion sensor data from a smgle farm. On-farm
eaperiments allow for establishing cause-and effear relationchips
regarding important crop traits and developing a peneralized
decision-making frumework that can be applied to wider
peographical arsis and varying growing conditions in sbsequent
year, However, it is impamant to enmure that the technological snole
siply fomiing a datedt. This 2 particulady important for doone
hased imagery, which might be of kittle value unlew it enables farmers
to act on the insights derived from image-based phenotyping.

SIRAC Enabled
Farmer Communily
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L"onmcuvlnr
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tackle complex challenges to agricuttural production including dimate change. Such farma have advanced sersorn and cladonm cornectvity and

s analytics utiizing Intermat-of-Things and Cyber-Agricultural Synterms
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Efforts have begun o create SCF, for example, Smart Integrated
Farm Network for Rural Agricultural Communities (SIRAC), that
alms o facilitate more effective datn sharing. knowledge exchange,
and coordinated responses to production threats. Figure | provides
an overview of the STRAC vision of connecting furms and gathering
and sharing information across reglons and sensing capabilities.

Such SCFH will enable real-time monioring of threats to farm
prodction at a landscape level, which is eritical for denling with
pests, discases, weather, and management lssues. SCPs will buld on
currantly sucoesl on-farm rewarch wals Unl ensuse the cescardh
and it outcomes are adapted o local farming eavironments and
cultural practices (Kyverypa, 2019}, Technologies designed to create a
petwork of rns and share wnformaton amoeng facmers offer
potentially numenous solutions 1o productivity and sustainability in
a changing world (Welss et al., 2020}, Parthermone, havinga network
of smart farms that can share data with one another and wtilize
remiote sensing technobogies provides the potential for disoovering
the extent of climate change's effect on a farmer's crop and the
viabality of growing tat crop m areas that have historically supported
thase crope, potentially meaning a change in lavd o (Weiss @1 al,
2020}, Another networked solution farms offer the balance they can
provide between profitabdity. productivity, and sustainability with
aggregatad data 1o betler use crop inpuls,

3.1 High-speed connections for SCFs

‘While different regions in the wordd with loT have varying
circumstances and infrastructure, we will focus on the U.S, farms to
illustrate the role of high-speed connections in the context of SCF,
Only 26% of rural households have broadband connectivity vs.
93.5% overall Americans have high-speed inlernet (Lol'iccale,
20210 Available options for ruml households are often limited or
maore expensive than available in urban areas when considering
Dollars/Megabits per second, although newer satellite-based
internet options are now available. Agriculural fidds have lower
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coverage because fined wireless is unavailable, and mobile wireless
eoverage s available only near highways or populated areas.

Several programs adminstered by the Federal Communications
Cammission (FCC) trget rural areas lo increase the availability of
fizsed and mobile broadband services for healthcare, schooks, and
farming. Pour such programs to increase the availability of volce,
fized. and mobie broadband services in under-served and rural
areasinclude: Connect America Fund (CAF) for rural areas; Lifeline
for law-income consumers; E-rate for schools and libraries, and; the
Rural Heulth Care Program. The FCC initmtives have identificd
high-speed connections with at least 25 Mbps downlink and 3 Mbps
uplink. According to the PCC, connections with high-speed
throughpul are consideral sdeguate o upload and download data
used in precision farming and fiekd ingpection/monitoring toole
using Unoccupled Aerial Vehides (L/AYs) or drones and remote
sensors (Herr et ol, 2023). The downlink-to-uphnk ratio of 8 to 1
assum et a standand Internet browser information exchange muodel.

The programs for increasing conmectivity with high-speed
connections et famdy homes. offices. scoob. and health conters
bt not agricultursl felds, w0 other approaches are nesded © extend
coverage to these remote areas As of December X020, the FOC has
awurded $92 ballion o Internet Service Providers (15Ps) to deploy hugh-
speed intemet 10 anserved homes and usinesss 0 noral arees, while
S+ bilkon i sill to be swarded for reaching rates of 100Mbps
downbink and 20 Mbps uplink (Shepardson. 2020). Extending the
high-speed conmection 1o all the fields owned or renied by the operation
requires additional nenwnrking. Providing an internet acoese point
connection to each field Fragment provides a considerable networking
challenge. Maory furmers manage fiekds that are variable in size and are
dispersed over large arens. Most farming operations inchade personally
awned fiekds as well as leased fields. Providing ubiquitous coverage of
cuch fidd s yet another challenge once an internet acces point can be
provided o exch geographically disconnectad fiekd

Solutions are available for connecting fields but require
investment to install new internet services or expand existing
anes. Figure 2 shows variows methods that can be wed 1o obtain

Text (Few KBs)
TV Band
Low Bandwidth

High Range

Video (Large MBs)

CBRS Band
High Bandwidth
Low Range

Image (Few MBs)

LTE Band
Medium Bandwidth
Medium Range

i mothoating example of d-DSA paradigm: diflerant bands are preferable Sepencing on the traffic characteristics
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an I5P connection, These indude wired alternatives like a Digiml
Subscriber Line or Fiber to the Home, Wireless alternatives include
mobile wireless provider service over LTE or 5G, Privale fised
wireless provider using unlicensed RF bands, or Satellite service.
The figure also illustrates connecting field sensors using WiF
technology to create a Local Area Network with internel access
thit allows sensor connectivily and supports Mobile phone and PC
inlernel service. One cammon model for accessing precision
farming information from agricultural equipment for fickds with
00 internel requires the user W firt offload the dala fom he
equipment onto a tablet or PC, and then when they can reach a
Incation with broadband connectivity, the PC connects to a cloud
service and uploads the wformation and then processes and
provides analysis and feedback. This model works very well for
each equipment manufacturer but has drawbacks for the farmers.
Different companies” software does nol always integrte well with
each other, requiding farmers to use the same manufacturer for all
aperations or lose the benefits of the data collected with each system
and complete farm data integration.

3.2 Sensors for data collection in SCFs

S(CFs depend on timely and precise sensing (using sensors) of
the crop and environment o make wiormed decisions, for example,
when and where 1o irrigate or gpray pesticides. Broadly, the sensors
fall into two categories: passive and active. Passive sensors acqnire
data through light, radiation, heat, or vibrations. generated by the
physical objeats (e... crops), while nctive sensors sense the objects
bry emitting a signal from their own radiation source and mensuring
the strength of the reflected or refracted signal (armeier and
Schimidhalier, 2017).

These sensors can be deploved on a wide variety of scales, but
are maost commonly used on the ground, typically, this would be
done by a handheld device at the plant level ar field level using a
UAV. Further, at the furm and county level a salellite imaging
syslem is commonly emploved to monitor the erops. Depending on
farmers’ interest in the crop production problem, the resolution,
and type of sensor are decided, and appropriate phenotyping agents
{robots, drones, satellites} are chosen to allow an increase in
throughput as well as area covered (Gue et al, 2021} The most
commonly used remote sensing modality is a red. green, blue (RGB)
digital camera. This is the most easily interpretable data as i1 senses
what the human eye can see. It is also the least expensive sensor
when it is bang mounked on o UAY, The @ise of use both for data
collection and downstream processing has made this type of sensor
'wll:H'r used in plant science, and its uses have ranged from bintic
(Tetila et al, 2017 Ruindin etal., 2022) and abiotic (Maik ¢t al., 2017;
Fhang etal , 200 7; Dobbels and Lorens, 2019} stress detection, wead
detection (| ottes et al., 2017), maturity estimation (Trevisan ef al,
2020), and stand counts (Bacreto ol al., 2021).

The other commonly used sensor & a multispectral camera,
which typically has anywhere from 3-10 bands and usually has
bunds in the RGB spectrum as well as the red-edge and nour-
infrared bands, These additional bands can provide additional
information about crop health and development and have been
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used for many use cases listed above (1 ottes et ol 2017) as well as
yield prediction (Xu et al, 2021). The increased bands do typically
increase the cost of these sensors, but they are still moderatdy
priced and are ensily integrated into & UAY, The additional bands
can add complexity to downstream analysis and increase the data
set size, but many farmers would be accustomed to planting health
miaps, which are casily generated from this data that can abo be
acquired via satellites,

Hyperspectral camera is more sophisticated and typically has 100
or mare bands that range from the RGE spectrum Lo the near
infrared spectrum, but the difference is that there is a much higher
spectral resalution with each hand typically only being a few
panometers wide, These sensors have been usad on UAVS but have
had less use than multispectral caneras due 1o the high oot as well as
the complexity of analyring the data sets. Hyperspectral images have
been used in conunction with machine learnng techniques to detect
pld.l! mul‘tj'h w;f\:.:g wubramandan of al . 2018), as well
as for vegetation mondtoring in harley (Aasen er al, 20151

Finally, thermal imaging is another type of passive sensmg that
uses wavelengthe in the far infrared spectrum, typically in the
7.500-14,000 nm wavelengths. Thermal imaging has been used
on UAVs, and these sensors scovunt for a moderaie cost to
piirchase but are highly afected by environmental varisbles
Thermal cameras have been used for disease detection in soyhean
(Hallon et al., 2018), and have been shown o have correlations wath
binrwies afd setd vield in deybesn (Sankarn o1 ol | 2019), and also
shown for irrigation scheduling in almonds (Garcia-Telero
el al., 2018),

Light Detection and Ranging( LIDAR), an example of the active
senior, emits laser pulses that it then uses o detect its distance from
an object. These pulses generate three-dimensional point douds
that have been used for terrain mapping from satellites that are
wtilized o map soil erosion (Gelder ot ol 2015), and plant biomass
estimation from UAVs (Shendryk & al, 2020). Pmu:u-i.l‘l_.IDAl
data requires different aralysis pipelines than the other sersors
Decause it is no longer working in a 2-dimensional space.

Different types of sersors will have different time sensitivity
Sensor types with very high time sensifivity, such as minutes or
houzs, may need a persistent connection o reach ther full polential.
Sensors with a low time wensitivity, measured in days, may do just
fine with periodic connections. Some sensors, such as molsture
sensors in the soil. may seem to have o fairy high time sensitivity.
However, il the data can be processed locally, instead of in the
dond, this ime sensitivity can be mitigated, with the decisions
being automated and made in the ficld.

3.3 Edge, fog and cloud computing in SCFs

Despite the advantages of 10T, it is hard to communicate a large
wolumne of sensory (lune senes or image) data from the agnoulture
fidd to the operators or back-end servers (on the dowd). Such
communications not only consume considerable energy but also
mour significant commumication delays and genenle substantial
network traffic. A viable solution is edge compuiing, where the local
processing and sorage are avaibhble close to the end devices or users

Ir Gl L O



Singh o 8l

(Sirojan et al, 2018; Li, 2019; Esfandiari et al,, 2021a), Due to the
Iocal processing of the tasks near the devices/users, edige compuling
reduces communication delay and energy consumplion lor
tmnsmiting the collected data. Recent adwances in compression-
decompression techniques using ML and deep learning (DL)
madels in Edge Computing can also help reduce the size of the
Juta ot the edge devices (Jlang ot ol , 2007 Zhvang ot ol , 2007; Wang
al , 2021b}). The edge devices (eg., sensors
deplayed in the farmland) have limited resources and cannot
efficiently execute DL on them. Recently, for lurge-scale mobile
edge computing, an efficient online computation offloading
approach via deep reinforcement learning is proposed in (Hu
et al., 2022).

To address the computing limitation of edge devices, an edge
fogg architecture is introduced to process loT data in an efficient way
while avoiding the communication delay that occurs in cowd
computing (Saha et al, 2020). Interested readers may refer
(Bellavista et al, 2019) for a state-of-the-art survey on fog

et al, 3020 Esfandlari el

computing for loT. Fog devices (e.g.. laptops or low-end
compaiting machies) are isually equipped with more resources
than edge devices and are mastly Incated at a lesser communication
distance than the doud. It means that DL with lght configuration
(few layers and neurons) may be execited efficiently in fog
However, it is not a replacement for the cloud and thus cloud
services are sull preferuble 1o perform heavy computational tasks i
ToT-bated farming, eg. big data (collected from a kirge number of
senanrs deploved in the agricainaral fidd) anakysis and execntion of
resource-intensive DL models (e.g, ResNet (1e et al, 2016)} for
real-time crop monitoring, Therefore, harnessing the compuling

10 1389 legro 2024 1410829

capabilities of edge, fog, and cloud through a combined
architecture, as depicted in !, would be the mindful
solution to SCFs and smart agriculture.

Case example |: Let us consider a scenario with this architecture
where severnl sensors are deployed across many acres of farmland 10
gather real-lime data on soil molsture, aop infection severity,
wemperulure, humidity, dc. Bach sensor is attached o a controller
(e.g. Arduino or Raspberry Pi) w process the data and it acts as an
edge device thal tranamits this data to a nearby station (e.g., low-end
miachine) acting s a fog device wllecting duta from mulliple odge
devices over the wireless medium. Since the fog devices are capable
enaugh ta run light weighted ML and DI. modes, the farmers may
be notified wmediately o take neccsvary actions if any alerling
situation is ocourred or s predicted. However, for better prediction,
historical and genetic information needs to be exploited by the
models (de Azevedo Pemooto et al. 2017; Shook et al.. 20214, Shook
et al, 2021 b)Y, which are usually storad in the clowud. The fog devices
alsn ofload the data to the coud in order to receive highly acourate
and predse results on msect populabion. yiekd prediction. the need
for pesticide spray, and s on. The theee kiyern (adge, fog and
cland) architecture in smart agriculmu reduces energy
consumption. network truffic, and commumotion delay (Alharis
and Aldossary, 2X021).

Case example 2: Anather way o efficiently collecr data from
agriculture fields 15 via participatory sensing or mobile
crowilsenging in which the frmers atl ot human senors and
supply useful information with the help of smarrphones. See | oo
et al. (2009); Roy et al (202]1) for an energy-aware fog-based
framework for data forwarding in mobile crowdsensing and how

igure

FIGLRE 3

dn ovardew of adge. fog and cloud computing for smart connected farme
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to improve ToT data quality in mobile crowdsensing, respeciively,
Researchers have proposed an energy-efficlent dala farwarding
scheme in fog-based systems with deadline constrainls (Saraswat
el al., 2020). Deep neural networks and compression techniques to
the edge devices for plant disease detection have been applied (De
Vita et al, 2020, 2021). A drone-based approach to efficiently
scouling bugs i orchards wsing mult-functional nets has been
pmfmed (Retti Sorbeli et al, 20224, Betti Sorelli et al,, 2032h),

3.4 Innovative wireless technologies
for SCFs

A Few recent studies aim to deliver limited Internel connectiviry
to rural areas. These include DakMet (Fentland et al, 2004) and
JeldiMAC (Ben-Duvid et al, 2010; Heimerl and Brewer, 20105
Mehendale et al, 2011; Saha et al, 2015). These solutions util ke
either short-range technologies (e.p., WiH, Bluetooth, Zighee, and
6LowlAN) or Jong-range solutions (eg. WiMao GSM, 364G,
LTE/LTE- A, wirdess mesh} of a combination thereol. Short-range
technologies are generally not adequate for reliable rural
comnectivity covering wide geographical areas. Conversely,
although cellular technologies provide larger transmission
coverage and offer promising solutions in the rural context,
limited business cases prohibit significant mdustry investments
degprite governnment subsidies (Hasan o al | 2014},

The recently propnsed Long Ranpe Wide Area MNetwork
(Lolaw AN) with its scalable star of stars network architecture
and simple medium access mechanism, fulfills some of the
requirements of providing connectivity in agricultural settings,
i, long-range communication with low energy consumption
(Shunmuga Sundaram et al,, 2020), The LoRaWAN architecture
consists of LoRa Nodes (LNs), LoRa Gateway (LG), and Network
Server (N5). Each LG can be connected with a limited number of
LNs on a given Spreading Factor (SF) through unlicensed channels.
The 5PFs consume unequal energy and support uneven data
transmission rate, and communication range (Kumari el al,
2022), Thus, the selection of appropriate 5F for communicating
the time series date from LN to LG helps reduce encrgy
consumption and delay in smart agriculture applications.
Although LoRaWAN provides promising applications in the
agriculural domain, its very linited data rates make it unfil for
some agricultural applications that require large data volumes. As
an example, transferring large hyperspectral images collected by a
droine would be infensible with o low data rate lechnology such as
LoRaWAN (Shah et al, 2017, 2018),

To avercome the limitations of existing wirdess technologies
and better utidize the under-utilised Eeensed specinun resources,
Dynawntic Spectram Aceess (DSA) [Akyildie et al, 2006; Song et al.,
2012) has emerged as an enabling technology. DSA networking is
allowed (or in memoranda) by the United States Federl
Communications Commission (RCC) in Heensed channels sudh as
TV hand (Bahl e al., 2000; Khalil er al., 2007), GSM band (Hasan
el al, 2014), LTE band (Tehrum et al. 2014). and CBRS Band
Similar policies are being adopted in other countries, such as
Canada (Anpnymons, 2024h) and South Africa (Anonymous,
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Ma). DSA technologies have been investigated for rural
connectivity, and most are based on TV whitespaces (TVWS)
(Liang el al. 2008; Bahl et al. 2009 Kumar o al, 2018 Khali
e al, 2017), GS5M whitespaces (Haman et al, 2014) and LTE
whitespaces (Surampudi and Mohanty, 2011). Although existing
D5A architectures allow secondary devices to opportunistically
access an unoccupied dhannel they are pestrcted o an individual
primary band only, Recent studies have shown that this is neither
efficient nor effective under heterogeneous trafic demands and
suffer from under- or over-provisioning of spectrum (Shal ot ol
2017, X14),

Consider an example in Figire 2. If the objective is to provide
low end-lo-end delay, for tamsmilling a certain lext (a fow
Kilobyies) at large distances (several KMs), a TV band is possibly
aptimal because it offers high transmission coverage (several KMs)
and adequate bandwidth (6 MHz). Wheress. for transmitting a
karge -sized video at very short distances (a few hundred meters), it
may be mare effident to communicate over the CBRS hand, which
affers very lugh channel bandwidth (40 MHz) and low (yet
siifficiently large) transmissdon coverage Similarly, owing 0 a
decent coverage and channel bandwidth, an LTE hand is more
promusing for transmutting @ medivm-sized uage ot relatively soall
distances (4 few Khiz)

To address the heterogeneous traffic needs, we consider
applying D5A on both unbcensed dmonel wed m LoraWAN
and ligensed primsiry channds commonly uied n the indutry a2
shown in Fpore 4. This appmach can improve the efficency and
flexibility of channd selection acconting to generated data volume,
transmission time requirements. and svailable bands. If the volume
of generaled data by LNs is umall, offioading data to the network
server can be performed with unlicensed channels through
LoraWAN, lostead, large volume data such as images and videos
will be transferred through the free licensed channds 1o the network
server directly,

3.5 Data analysis and privacy

Data analytics s crilical in precision agriculture. allowing
farmers 1o adopl data-driven solutions. With numerous benefits,
including better yield, reduced waste, and a greater yet precise
understanding of environmental factors. data amalytics reveals
limitless Fulure opportunities in agriculture. Profitable decisions
in agriculture could be made when appropriate data are collected
and analyeed Limdy, key stroses are identified. and prescriptive
management actions are eliciently executed (aik e ol 2017, 2017,
Akintayn e al.. 2018; Ghosal e al, 2018; Nagasubramantan et al.,
2019; Chioza o al. 2021; Chiranjeevi et al. 20225 Kar o ol 2021;
Singh et al, 2021; Krause et al, 2022 Rairdin et al, 2022). These
days data has become one af the key elements of smart farms and
hdps farmers in decisionmakiog and mavimzng productty.
Farms can create a lot of data dreams, creating a “big data”
situation. Big data has 10 dimensions (V's): wolume, wdodity,
variety, veracity. value, varmbibity, vagueness, valudity. venue. and
mhﬁq Iiﬁ.ul_rih.l e al. 201 Iy Kundsch, 2006; Kamilaris o1 al
2017; Bhat and Huang, 2021) Wallert et al. (2017) and Bhat and
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Huang (2021} in their studies comprehensively reviewed the
application of big data in agriculture. Public and privale
companies are building solitions on this plathorm intending to
solve crop production challenges faster, more accurately, and at a
larger scale (Ghosal et al.. 2019 Parmley et al.. 201%, Parmley et al.,
M1 %h). Recent advances in data analvsis methods such as computer
vision, M1, and DI have empowered both researchers and farmers
(Singh et al., 2016, 2018; Mahmuod et al.. 2021; Riera o al, 20211
There are comtinual improvements in ML methods and their
applications, for example, sell-supervised learning has shown
improvement in the classification of agriculturally importani
insect pests in plants (Kar et al, 2022), For yield prediction,
genotypic-topological graph neural network frmework built on
GraphSAGE has shown promise (Gupta and Singh, 2027), We have
two broad categories of SCF-generaied date: Raw sensor data and
processed/refined data. The first pass of data analysis will turn the
riw data into processed data and will be unique for each type of
sensor, This is most likely 1o use some kind of ML approach. If the
row data is preserved, alternative data analysis methods can be used
later, and results can be compared. For the refined data, data
analysis will vary by the type of datn and could be a simple
statistical analysis that could use more complex ML methods for
predictions or even a combination of the two,

Dwata privacy is an snportant consideration, particulacly n the
context of SCF, which heavily depends on analysing and extracting
higher-walue information from users’ raw data, It will be very
important to research all lncal legal obligations about managing
wsers’ private datn and maintain a privacy agreement with all wers
to dearly show how all dara is used and/or shared, However, the main
focus s o invest in techniques that entirely diminate sharing raw data
containing the eact value of data, statistical features, membership, and
cetain Pmpﬁﬂiﬁ (Lin et al, 2021) M‘H‘I“‘y. distributed Machine
leaming ([3ML), in particular, has had paradigm-shifting Impacts on
preserving data privacy. In DML different parties have thar private
waw data and twin o global modd by transierving and aggregating the
metadata (model parameters or gradients). Therefore, DML can be
considered a privacy preserving lechnique when anly metadatn &
dhanedble (Antwi-Boasiako & al, 2021). Twe gﬂ'ﬂﬁﬂ ﬁktl:l'ii are
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defined for [IMI. based on the architectune of M. systems; cantralined
distributed leaming and decentrulized distribuied learning.
Transferring the higher-value information (metadata) in Faleratad
Leaming (FL) (Konecri o al. 2016 Bonawitz et al. 201% Npmyen
el al, 2021). the most famows method m eotreel dstnbuted
karning happens between the parties and a parameter server
(doud). Then, the wrver aggregates the metadata to update the
global model (L1 et ol 2021). There are two diferent setiings for
federited lear ning; cross-device, which inwolves a large number of ToT
devices, and cross-silo containing a small mamber of reliable clients
(Katrouz et al, 2021). Due to the inherent feature of agriculture data
such as wenther data, soil data. and crop management data, which are
scatierad and siloed in different servers, Manoj et ol [(2022) applied a
federated averaging technique to train a M1 made for soybean yiekd
prediction. Sindudy, using the fodemiled learning-based method,
resenrchens could detect the intnusion wecurely in smart agriculure
{Friba et al, 2022).

On the other hand, in decentralived distributed learning. parties
have peer-to-peer communication to exchange metadata; each pany
aggregates the received model parameters and updates the model.
Decentralized lewrning architectures recently attracted attention
and addresied the challenges in conventional centralized
techniques, such as server lalency, single point on failure, and
teaceability (Jiang ot al, 2017; Nadirwdie et al. 2021; Esfandiari
et al, 20210). To visually present how DML can greatly reduce the
privacy risk, Figure 54 thows an instance of applying decentralized
ML in agriculture in which each party has its private data collected
from o specific loT device and truins the mode through
colliborative communication of metadata based on the defined
network topology (in this case a fully connected network).
Esfundmn ot ol (2021a) used decentralized distributed learning to
train an autoencoder o find anomalies in maire data. This study
showed finding anomalies in private DML settings helps defect
plants with uregular growth and realize probable msues during the
dam collection (e g, tilled camera, min on the lens)

Besides IXM1, which naturally gives a certain leve of data
privacy, encryplion and obfuscation are also well-known ML
whemes for privacy preservation. Encryption (cryptography-
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hased method) and abfuscation can be applied to training data and/
ar ML model (Gai et al.. 2016; Juvekar o ol, 20018 Mshr et .,
W) (in some cises, nether the data owner nor the ML modd
provider does not wish to share their private pammeters). In the
literature, the cryplographic and cbfuscation protocels include
homomorphic encryption. additive secret sharing. differential
privacy, and garbled circults (hwork, 2008; Phong et al, 2017
Hussabn et al, 20008 Duan et al, 2022), However, all of these
methods are computationally heavy, making the traningfinference
process several orders of magnitude slower, In agriculture, Cho ot al.
(2021b) applied encryption by proposing novel deep neural
network architectures for plant stress phenotyping that were
geared towards preserving the privacy of both the user and
service provider, In this method, some neural network
architectures were redesigned by minimizing the number of
nonlinenr operations (Relu function) to increase the inference
time of encrypting model (Cho et al, 2021a). Their approach alsa
addresses data trustworthiness, empowering farmers for 5CFs,
Figure 5B represents the encryption scheme where privacy
preserves for bath the user and service provider,

Moreover, DML and eneryption techniques together were
widely studied for privacy-preserving purposes (3dcahan et al.,
2017 Hao et al., 2019 Mandal and Gong, 2019; Zhao et al,, 201%
Yha et al, 2021). In this regard, homomarphic eneryption and/or
differential privacy are commonly combined with FL. In the
agriculwire setting, Durmnt @ al. (2022) show that the privcy
concern in the agri-foad sector can be avercome by using federated
und model- sharing machioe learning as well s applying differental
privacy methods, The intrusion could also be deteciad through an
Fl-based pated recurrent unit neural network algorithm (FedGRLU)
using the encoded dat (Kumar ot al., 2021). Overull, combining
DML and encryption methods would be a very interssting Riture
tapic, especially in SCFs,
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4 The human dimensions (social
sCiences, economics)

During the hst two decades, oo-farm research becume popular
due 1o growing and intersecting inlerests among farmers,
agronomists, and the research community. Numerous farmer
networks were organized across the country for community-based
on-farm ewalunlions of new and existing agronomic practices
(Chapman et al, 2016), Organized groups of local farmers who
use GiPS-enabled equipment and treatment protocols developed by
reseurchers W conduct on-farm trialv'experiments on their farms,
apply treatments within their fields, and collect data (Kyveryga
e al, 214). New analytical approaches were also developed o
enhance analyses and interpretations of on-farm research data and
develop dynamic decision aid tools (Kyveryvga, 200% Lawrent et al
X19). In addition, new community-based engagement and
eviluation methods were adopled by public wmversily extansion
personnel and private industry agronomists (Thompson
o al., 2019),

4.1 Net-benefits of data-sharing platforms

Increused profitability and risk reduction are some of the
benefite of digital agricultural nnovations 1o farmers. However,
there are also costs associated with adopting such new technologies.
These may include the cost of investing in the required
technological infrastrimtire; the codt associated with data
collection and management; the cost of analyzing the datx; and
the cost of sharing the data output (W ysel o ol. 2021). These are
non-trivial considerations for small scale and less technologically
developed Eirming enterprises, a8 the wariationg in risk benefit are
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large. It is important to assess the overall cost of participating in a
soclo-technical platform and compare it with the potential
coonmnic galns,

4.2 Social barriers to data-sharing

The adaption of technologies is also impacied by varous social
and ethical harriers. Despite the promise of digital agricnltural
wchoologies and data-sharing platforms, farmers are often
reluctant 10 engage with these technologies due 10 issues
sumounding data ownemhip, control, and wsage (Wiseman o al,
2009), Aumwong other concerns, some farmers may be worried that
technology providers could make profits off their daw or ehare their
data with third parties; and in some cases, there may be a lack of
trust in the moovation itsell in the context of change, such as
chmate L‘Imlge (lakkow et al . 2009 Wiseman et al_ 2009 Also, there
is a general lack of trust in data operators due to unequal power.
Fotential couses for furmers” uncertainty about their righls Lo duta
ownership and usage is the lack of clarity in the terimg and
conditions of the agreements with service providers—not to
mention the risk of potentiol data breaches (Le. the risk that
confidential, protected of sensitive information could be stalen o
shared with third parties). Hence, there is a need for agricnltural
inmovations that are trusted. salient and sctionable for farmers w be
willing to adopst them (Valdivia = al | 2018),

4.3 Agricultural community and the
practice of farming

The concept of the practice of furming encompasses Jdeurly
defined values, institutions, and policies (V aldivia et al.. 2012). This
concept has been used to understand farmers” behavior and actions
in farming during times of policy changes to learn about how
(mnmers transition to o new context (Shucksmuth, 1993 Shudksmith
and Herrmanan, 2002), It has also informed the introducdion of new
practices, like the case of agroforestry in the context of traditional
commaodity furming (Racdeke ot al , 20033 Vakdivia et al, 2012), the
development of genetically modified crops (Oresecayn et al, 2010
Valdivia et al, 2014}, and the creation of new technologies such as
remote sensing with drones for agricultwre (Valdivia o al., 2015),

Values and motivations differ in the practice of farming
according to the types of crops, the nature of the market farmers
engge o, and the institutions in place that support the praciice
(Valdivia et al, 2002) In commodities like com and soybeans, the
field of farming has an established network of organizations and
institutions that support the practice, Within il "habitus" consists
of the shared values in the practice (Rasdeke et al., 2007 Glover,
2000 Valdivia et al, 2021) The development of new tools can
benefit from the understandiog of these values, the role of existing
institutions that are part of the practice, and the adaptive capacity of
the declsion-makers. It requires an nnderstanding of the level at
which these happen and what we need to learn aboul the
characteristics of the decision makers (Osirom, 2008} 1o inform
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how new wals can provide information in dhanging contexis that
can be trusted and acted upon (Duarte Alonso et al., 2018; Valdivia
o al.. 2018),

4.4 Translational research and
communities of practice

According to VW oolf (2005, a translational research process is one
that applics 1o advances in scence towand the devdopment of pow
technologies and processes, as well as guarantees that the products of
rescarch reach ther intended population. By engaging the various
stakcholdens in purticpetory activities and scssons, the transkional
research prowest promotes leaming, responds to challenges, and
identifies opportunitics. There are advantages to engaging the
dedsion-makers from the onset of the innovation. This is critical in
contexts of change. For example, simulations of pests in the context of
dimate change have shown that trusted and timely decisions increase
the probability of success in reducing the impact of dimate dhange. In
the case of Brming, the scale of the farm and that of the communiry
and landscape as the scale of analysis, are the framework for the stdy
of networks (Garrel et ol 2011, 2013). Partidpatory processes are
means o Rcilitate leaming and the development of trust (Pan 0 al
205; CGilles and Valkdivia, 2009 Valdivia et al, 2009), as well a5 the co-
producton of knowledge (¥ ager et al. 2019).

Tt i% argued thal learmng occurs at a resall of social processss,
and not merely throngh internalized cognitive processes; iz,
learning is the product of interactions between people, which lead
o sharing of experiences and the creation of new knowledge
(Oreszcym et al, 2010). Therefore, communities of practice
(CoPs), defined as groups of people who share a common
aclivity, punuil, or concem, are important in driving processes of
change (Oresecoyn et al., 20108 Valdivia et al.. 2014). The Etemture
suggests that farmers’ own experience with innovation, as well as
the experience of their neighbors, help in decreasing the
unfamiliarity with that innovation—which often acts as a
significant barrier lo adoption (Foster and Rosenrweig, 1995).

In essence, the gains of learning by doing and knowledge
spillovers are harnessed to & grealer exient in an environment of
information sharing. A CoP can help maximize farmers’
understanding of the bencfits, their trust in the information
source, and their evenlual acceptance of the technology.
Furthermore, a CoP encompasses the innovation pathway
enpaging all stakeholden—including feedback processes between
scientists and farmers, and 0 other stakcholders in the practice of
farming from both the public and private sectors (Garren o ol
2013; Valdivia et al,, 2014, 2018).

Moreover. there is a need 1o understand the types of incentves
that Birmers will respond 10, There is evidence that farmers who
state that privacy is important to them could still be incentivized to
participate in dula-shanng platforms (urland and Slade. 2000), As
a result, it is important W investigate various factors that could
potentially boost participation rates in sodo-technial platforms, as
well us better wnderstund the msues that influence the adoption and
averall utilization of digital agriculural technologies.
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4.5 Behavioral factors influencing
agricultural technology adoption

Traditionally, agricultural adoption research has sought to
capluin adoption behavior in relation to extrinsic faciors such as
economic, institutional, and household-specific facwors (Muwangl
and Kariukd, 2015}, A more recent strand of Kterature has included
social networks, leming, and other behaviorl forces (eg. bebefs,
rigk, and trust) as determinants of adoption (Marra et ol 2003
Chavas and Nanges, 2020), Por example, farmers hdunglnl; to a
social group or orgunizetion are more likdy lo share information
and engage in social learning about the wechnology (Katung and
Akankwasa, 200), hence increasing their Hkelihood to adopt the
technology. However. social learning may also impact techoology
adoption negutivdy by increasing the likelibood of freeriding
behavior among farming neighbors (Randiera and Rasal, 2006),

In the context of agriculural technology adoption, different
types of learning can occur sumultaneously as the technology s
Hl‘lx dﬁ'thﬂ)ﬁd and dephytd [Rn-u_-uh--; and Wathan, '.rm.!}_
Figure & shows the technology adoption loop. Pirst, the
developers can learn how to improve their techoology through
feedback from potential end-users {ie, farmers). Second, the end-
users (farmers) can improve their mastery of the adapted
techoology over tume through personal user experience and
through information acquired from vacious sources, indiding
established social networks, extension specialists, and other
farmers with previous experience using the lechoology. This
creabes o feedback loop process encompassing all acloss in the
agriculture ecosystem, from sclentists and developers to polential
end-users,

While social lewrniog has received some attention in the
agriculural adoption llerature, the social preferences discussed
extensively in other behavioral fields, including behavioral
economics, have received little attention. In this regard,
behavioral evidence demonstrates that other-regarding
preferences, such as altruism and soclal norms about fairness,
umpact decision-making regurding technology adeption
(Chouinard et al, 2008; Sheeder and Lynmne, 201 1), Hl:dl‘.'"lli the
influence of social networks on agricultural adoption decisions,
beyond sumple information difusion, holds significant potentinl to
improve the effectiveness of the deployment and adoption of
agricubural innovations (Streletskaya et al, 2020}, For instance, it
can help technology developers understand to what extent farmers
would conform to social norms s they see other funners adopt new
technology, and which are characteristics of the social networks
they are more likely to join,

Cooperative behavior s another fuctor that impacts wedinology
adoption, especially in settings that require collective action. In this
regard, the hehavioral literature has smdied how beliefs, trust, and
risk preferanwes shape cooperulive behavior, The motvation to
study the relationship between cooperation and truet is that, for a
conditional cooperator, the decision to contribute to the formation
of a public good (a technological platform in our context) requires
gofe taisl i the cooperativenss of others (Andecon e al , 2004;
Ghcheer et al., 20043 Leomard et al., 2010) Such trust & obaiously
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related to the individual belief held about others’ cooperativeness. [n
the context of agricultural technology adoption, for a farmer whao is
not a free rider, contributing to the creation of the technological
platform (by sharing farm data) without knowing how many other
farmers are going 1o contribute can be viewed as a dedision under
risk. Thus, each farmer’s expectations sbout the behavior of others
is o crudal determinant of contribution outcomes (Cardenas o ol

}117). Farmers who are more risk averse may choose to contribute
less to compensate for the risk of athers, not contributing (( harness
and Villeval, 2009 Teyssier, 2012; Dannenberg ot al. 2015) For
example, Liu (2013 elicits risk preferences from Chinese cotion
farmers and finds that risk-averse and loss-averse farmers tend o be
lale adopters of Bl-colon. Modding woperative bdavior in the
context of technology adoption is important as farmers are
heterogeneous in terms of their risk aversion and trustworthiness
and are more likely 1o join trust-supporting socal networks
{Alanasio et al, 2012). This is more so when the resolution of
the product depends on how many contribute to the platform.

4.6 The economics of learning with SCFs

The foundation for the econamics of SCFs are models of
kewning (Lucas, 198% Foster and Rosenoweig. 1995 Acemoglu
2009 Conley and rdl"r H010). Farmers B risks and tﬂ'h:l':r‘ﬁl'ﬂ)"
attached to new farming practices or technologies because the
suitahility of the new farming methods depends on the farmer’s
experience, knowledge, skill, and arca-specific climate and
agranomic conditions. The lack of reliable and persuasive sources
af information about new technologies, ther expected benefit, and
how 10 apply them efficiently impedes changes in farming behavior
(Moore, 2008). As a result, frmens’ adoption dedision requires
learning, and unfortunately. learning can be costly. Acquiring,
vilidating, analyzing, and applying new information roquires Lime
and expertise not always available 1o farmers. SCFs can accelerate
technaological adoption by reducing lkarning costs (Foster and
Kosenaweig. 1995; Conley and Udry, 2010; Carvalho and
Voigdinder, 2014; Krishnan and Painam, 2014) FOI'W. in
a recent prominent social learning analysis, economists show that
network - based technology diffusion is cheaper than extension
programs (BenYishay and Mobarak, 2019). SCFs can outperform
traditional agricubural extension programs if the information
disseminating nodes are incentivized lo transfer information
about the new technology. When leading fammers were given a
small incentive to distribute information to others through the
netwark, farmer-to-farmer learning programs outperformed the
government exlension progrum o incresng farmer knowledge
af new technologies. The advantage of SCFs can be significantly
large if the traditional extension program requires the agents to
regulardy viit rural eress, especally when the extension posiion
is retruole,

HMguore 7 illustrates the basic structure of 2 learning model for
assessing the benefits of SCFs for adopting novel pest management
chnologies, We compare Iwo setlings with diflerent learning
mechanisms. On the left side, Figure 7A shows the setting for the
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tmditional pest management teclmigue where there 5 no farmer
network. Pest management involves uncerainty aboul the amount
of pesticide and the timing of the application, and farmers manage
uncertuinty bused on ther prior beliefs and their limiled knowledge
ahout the new technology. This lack of expertise lends w high
uncertainty and high variability in yields and profits. The different
sizes of circular shapes in the figure represent this heterogeneiry in
agricultural productvity.

The second setting illustrated in Figure 78 has o network of
farmers with three clusters represented by different colors, In this
senting, farmers use a new pest detection technology, digiial cameras
that continuously monitor sdected farms for the degree of pest
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nfestation. Thee dgilal cameres replace traditional  soouting.
Farmers can then leam from their peers through communication
signals sent throngh the network. The critical parameters in this
model are the precision or learning value of the signak. represented
in pane b by the thickness of the connecting lines. For example,
thicker lines, such as in the green cluster, mean that the signals
amang this homogeneous group of neighboring farmers are very
mformative. Usng the dislance between farmers o messure
homogeneity and signal precision is common. For example, a
receiving farmer may not trust the informational signal received
from a distant farmer. The value of the SCF in the laming model
llustrated in Figure 7 is meassured by the reduction in uncertainty
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and the increase in farm profitability resulting from the higher
frequency of precise network signals,

Finally, lewrning models can also capture the fow of unrdiable
information. For example, in the absence of network-based lenrning
and expert advice, lirmers may obtain information on the Bwming
practices through word of mouth, generic broadcast programming,
or agricultural input dealers, who may be poordy informed or have
incentives to provide misleading information on the product, me
af application, and efficlency. Fxternal agents such as pesticide
retailers and commerdal compania can shape the hones’ pest
managenent dedsions (Moore, 2008), Moore (2008) shows that the
flow of information from the retall network often plays the
domisant role in pest maoagement decisions and may negatively
impact the farmers' awareness of and willingness to adjust the input
use or to adopt the new farming technology. Digital monitaring and
S5CF networking technology have the potentml to enhance the
accuracy of the information.

o Conclusion - transferability,
scalability, and adoptability of SCFS

T this review, we provided a comprehensive Bsting of
technology tools and networking and communication
infrastructure that enables the creation of 5CFs. Corrently, these
conditions are not wiversally present in all countries. However. a
SCF setwork hae a high poteatiol for tanciecabilivy and ecalubsliny
to reghons where fuomers have access to sensors, platforms for dala
collection, and internet connectivity at a minimum. In more
industrialized economies, SCFs can be more easily creawd. SCFs
can be established amongst farmers who are gengraphically
neighbors. However, the network can have the flexibiliy to
expand 1o dissimilar cropping systems, management practices,
soil and climate conditions, and community members.
Communities can become involved through loeal cooperatives
andfor farmer organizetions within and scross states. This will
lend to data sharing across farms, improving their ability 10 engnge
in farm management strategles to improve productivity and
broader adoption. Scalability can be fcilitated with better cellular
connectivity or mral broadband access 1o cover more significant,
not necessarily contiguous, areas. The sustained usage of the SCF
aetwork will depend oo buy-un from its panticipants and centralized
community resources 1o support such networks’ implementation
and extended life cycle. There will be a need for continued
education and swareness progrums to ensure that the enlire
community is well-versed in the network's capabilities and
appreciates such a network's benefits. SCFs offer varying benefits
w larmers, for eg. n cacly and effective pest management wnd
mitigation of crop loss disasters. Networks are particularly helpful
for vulnerable farmers with limited resources and experience. SCPs
provide valuable expertise to funmers with limiled scoess w other
sources, Network design should congider farmer characteristics to
aptimize information sharing using M1 and stmulations, ensuring
henefits for all farmers. SCPs have significant policy implications,
such as complementing agriculiural msurance policies and reducng
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losses and premiums. Since network participation benefits vary
among farmes, differentiated pricing strategies and subsidies may
be necessary, Policymaken can use network simulations Lo optimize
panticipation costs and extend network benefits 10 a wide range
af farmers,

There Is a need for research in the area of new/improved
echnologies for rural connectivity and community decision-making,
integrated with tansltional social rescarch 0 address issues of
adaplability, trust, and risk preferences, and economics research to
justify the benefits o Rurmen. The mescandh focusing o assesing social
and exonomic incentives for fmerns and other stakeholders will
facilitate participation in the network, possibly through new
partnerships with cooperalives. while ensuring frmer data prvacy
and the development of data use agreements. These SCF networks
enabling rural communication technologies, induding privacy-
apply o a brosd range of cyber-physical systems applications, such as
InT's, transpartation networks, and smart grids. In alignment with these
technalogies, the inlegration of Cyber-agricultural systems (CAS) offers
a vision of altra-precision agriculture, integrating improved
sustainability, profitability, and technology by employing efficient
sensing, AL and robotics 1o addres aop ssues at the mdrvadual
plant leve (Sarkar & al. 2007) These research topics will require a
trane-disdplinary team of researchers from multiple domains,
wiende, ecpnamics, senging and mechine leaming, and preceion
agricninure, along with imtegral participarion of farmers to define and
conduct these research, so the benefits of SCF network is immediate
and useful. The usefulness of cilizen science data sets (0 aturba, 2007)
for deep lenmning powered real-time identification of insects is an
example of bridging the gap in the development of SCF (( hiranjeey)

ot al, 2023% Saadati et al, 2023),
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