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Introduction: Effective monitoring of insect-pests is vital for safeguarding
agricultural yields and ensuring food security. Recent advances in computer
vision and machine learning have opened up significant possibilities of
automated persistent monitoring of insect-pests through relizble detection and
counting of insects in setups such as yellow sticky traps. However, this task is
fraught with complexities, encompassing challenges such as, laborious dataset
annotation, recognizing smallinsect-pests in low- resolution or distant images, and
the intricate variations across insect-pests life stages and species classes

Methods: To tackle these obstacles, this work investigates combining two solutions,
Hierarchical Transfer Leaming (HTL) and Slicing-Aided Hyper Inference (SAHI), along
with applying a detection model, HTL pioneers a multi-step knowledge transfer
paradigm, harnessing intermediary in-domain datasets to facilitate model
adaptation. Moreover, slicing-aided hyper inference subdivides images into
overlapping patches, conducting independent object detection on each patch
before merging outcomes for precise, comprehensive results.

Results: The outcomes underscore the substantial improvement achievable in
detection results by integrating a diverse and expansive in-domain dataset within
the HTL method, complemented by the utilization of SAHL

Discussion: We also present a hardware and software infrastructure for deploying such
models for real-ife applications. COur results can assist researchers and practitioners
looking for solutions for insect-pest detection and guantification on yellow sticky traps.

HEFWORDS

insect-pest monitoring, yellow sticky traps, deep learning, transfer learning, Edge-
loT cyberinfrastructure
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1 Introduction

Insect-pests can affect plants by disrupting or interfering with
one or more physiological functions that lead to below-normal
performance, such as reduced biomass and grain yield. Insect- pests
can damage plants in several different ways, by killing plants, which
can leave a gap in the crop stand, and the inability of plants to
compensate for the open stand (e.g, some boring insects), general
stunting caused by metabolic disruption through the nutrient drain
or root damage (eg., aphids, grubs). Moreover, they can kill
branches (some species of scale insect can result in branch die-
badk) or eat inflorescence (e.g., beetles) or plant organs (e.g.. boring
insects), at-harvest or post-harvest losses (eg., borers, weevils, etc)
{Singh et al, 2021b; Hllg]{'j.', 1986; I’ﬁiign et al., 2021). Ins.ect-pcsts
also cause damage by spreading diseases (Singh et al, 2021a).

Early detection, counting, and constant monitoring of the
insects are vital to manage insect pressure in agriculture and
reduce the pests’ infestation (Singh and Singh, 2005; Higley, 1986;
Stern et al, 1959), as it helps farmers and agricultural professionals
monitor and assess the population dynamics of various insect
species within their fields. This information is important for
making informed decisions about pest control strategies (Sarkar
et al, 2023). By tracking the abundance of insects, farmers can
identify potential outbreaks early on and take measures to prevent
or mitigate crop damage. Moreover, establishing threshold levels
helps determine when the insect population reaches a point where
action (eg. pest control) is necessary (Lima et al, 2020). For
instance, if insect populations are increasing rapidly or reaching
the action threshold, farmers can implement targeted pest control
measures, such as applying insecticides or deploying predators, to
prevent significant crop losses (Pedigo et al, 2021).

Furthermore, scouting for pests provides valuable data for
integrated pest management (IPM) programs. IPM is a
sustainable approach that aims to minimize the environmental
impact of pest control while maximizing crop yields. Accurate
insect counts help IPM practitioners determine the appropriate
timing and intensity of pest control interventions reducing the
reliance on broad-spectrum insecticides that can harm beneficial
insects and lead to insecticide resistance (Cardim Ferreira Lima
et al., 2020}, Therefore, insect counting is essential in agriculture as
it enables farmers to make data-driven decisions, minimize crop
damage, and adopt environmentally friendly pest management
practices, ultimately contributing to more sustainable and
productive farming systems. Manual methods, such as analyzing
sticky traps in the field to observe and quantify insects, are time-
consuming and labor-intensive tasks and also requires human
expertise in accurate pest identification. Therefore, a more
automated insect detection and quantification method will be
useful for plant researchers and farmers.

Earlier, insect detection was based on their differences in shape,
color, pixel intensities, grayscale intensity, and texture analysis
(Bauch and Rath, 2005; Huddar et al, 2012; Ghods and
Shojaeddini, 2016). More efficient methods are needed to enable
accurate and timely monitoring of large crop production areas,
which currently demand significant time and labor. In this regard,
Al systems, enabled by machine learning (ML) hold great promise
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for varied phenotyping, for example in disease phenotyping
(Rairdin et al., 2022), yield estimation (Riera et al, 2021) and root
traits {Jubery et al., 2021; Falk et al., 2020}, Similarly, AI/ML is a
necessary tool for automatic insect recognition from images and it
has led to the development of several automatic monitoring systems
(Barbedo, 2020; Li and Yang, 2020; Li et al., 2021; Rustia et al.,
2021a; Wang et al.. 2020d; Singh et al, 2021a). For instance, a large
deep learning model was developed using dtizen science data to
detect a wide variety of insects (Chiranjeevi et al., 2023) ‘in the wild"
with high robustness Saadati et al. (2023). Apart from such large-
scale models, researchers achieved a mean Average Precision
(mAP) score of 61.54% wusing YOLOv3 Redmon and Farhadi
(2018) to detect and classify pests in their “Pest24” dataset, which
contained 25378 annotated images of 24 pest species collected
using an automatic imaging trap (Wang et al., 2020a, b, d). A multi-
stage deep leaming method that induded object detection, insect vs.
non-insect separation, and multi-class insect classification was
proposed, achieving an impressive average Fl-scores of up to 092
(Rustia et al, 2021b). Moreover, an Al-based pest counting method
for monitoring the black pine bast scale (M. thungergianae) was
developed, which reached a counting accuracy of 95%.

However, there are still challenges to address including data
collection eonditions {(Hong et al, 2021) and hence, there is a lack of
robust and field-ready insect monitoring systems (SmartProtect,
2022). Many existing studies use datasets with close-up, high-
quality images that do not accurately represent the challenging
fild environments (Cheng et al., 2017; Kasimathan et al, 2021;
Nanni et al, 2020; Pattnaik et al., 2020; Wang et al, 2017, 2020b).
Building imaging systems automatically capturing high-quality
snapshots of individual insects is difficult, especially for small or
flying insects (Barbedo, 2020). Therefore, in many instances, a more
practical approach is to capture a surface coversd with multiple
trapped insects using a single image within a sticky trap in the field
(Ding and Taylor, 2016 Hao et al, 2020; Rustia et al,, 2021 Xia
et al, 2015 Zhong et al., 2018). Smaller tiles of individual insect
images can then be extracted from the full image for
further analysis.

Insect monitoring systems often focus on detecting a single pest,
ovedooking the potential presence of other species that could
provide valuable ecosystem information (Ding and Taylor, 2016;
Hong et al., 2021; Nazri et al., 2018; Roosjen et al., 2020). A recent
study has shown that vision-language foundation models can be
leveraged for zero-Shot (without requiring additional model fine-
tuning) insect detection (Feuer et al,, 2023). Additionally, many Al
practitioners fail to apply strict validation procedures, leading to
known methodological pitfalls like “data leakage™ (Kapoor and
Maravanan, 2022). Previous research has demonstrated that
model performance can be overestimated when weak validation
procedures, such as random data splitting, are used (Kalfas e al,
2021, 2022), Researchers applied different object detectors to
localize and classify the insects simultanecusly, such as YOLO, R-
CNN, and Faster R-CNN (Li et al, 2021; Nieuwenhuizen et al,
2014). They also take advantage of transfer leaming and initialize
their model using the COCO dataset (Lin et al., 2014). Leveraging
Transfer learning, it has been shown that YOLOv4 and YOLOvS
have relatively good performance in detecting five insect species
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(Verma et al, 2021). Self-supervised learning can also be effective
for developing insect detection models (Kar et al., 2023). However,
detecting insects on sticky traps using Deep learning (DL} still has
some challenges, such as the lack of training data, the small size of
insects, the similarity between different insect species, and
significant morphological differences among stages in the life
cycle of each species of insect, which makes the detection a
complex task (Akintayo et al, 2018). Furthermore, some studies
focus on datasets with broad insect dasses, making classification
relatively easier but not representative of more challenging
scenarios {(Rustia et al., 2021a; Wang et al, 2020d). To overcome
these limitations, future research should address the practicality of
capturing images in the field, consider the presence of diverse insect
species, and implement rignrous validation procedures to ensure
accurate and reliable insect monitoring systems.

I this paper, to address some of these challenges, especially the
lack of data, we propose a machine learning framework to identify
and localize pests on yellow sticky traps using a state-of-the-art
object detector in the YOLO series called YOLOwS. On top of using
YOLOVS, we leverage two techniques, namely Hierarchical
Transfer Learning (HTL) and Slicing-Aided Hyper Inference
(SAHI), to alleviate the issues due to smaller training data and
small size of the objects of interest. HTL i an advanced version of
traditional transfer learning, which leverages knowledge from a
larger dataset to improve accuracy when training on a smaller
dataset. Tt involves multiple steps of transfer learning, using
intermediate datasets closely related to the target domain, known
as in-domain datasets, to enhance the model’s learning process.
This iterative approach allows the model to gain insights from
datasets that share similarities with the target dataset, leading to
significant improvements in performance. To further enhance the
accuracy of detecting smaller-sized pests (eg. an adult Western
Com Rootworm (WCR) Beetle is typically § inch long) in images,
we implemented the Slicing Aided Hyper Inference (SAHI) { Akyon
et al,, 2022) method. Tt enhances the detection of tiny pests in
images by dividing the original image into ovedapping patches and
independently subjecting each patch to object detection, improving
overall performance. It also performs a full-inference step to detect
larger objects, and then combines the results from both patch-wise
and full inference using Non-Maximum Suppression (NMS5) to
ensure comprehensive and accurate object detection outputs. We
report that wsing HTL instead of vanilla transfer learning, as in
previous works, can improve detection accuracy significantly. The
further addition of SAHI into our inference framework proves to be
a useful strategy for detection of small insects-pests on yellow sticky
traps. In addition, our choice of YOLOVSE lets us scale the YOLOvE
up and down to small and large networks and, at the same time,
maintain the inference time and accuracy. Additionally, we report
that using HTL instead of vanilla transfer learning, as in previous
works, can improve detection accuracy significantly, HTL is an
advanced version of traditional transfer learning, which leverages
knowledge from a larger dataset to improve accuracy when training
on a smaller dataset. It involves multiple steps of transfer learning,
using intermediate datasets closely related to the target domain,
known as in-domain datasets, to enhance the model's learning
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process. This iterative approach allows the model to gain insights
from datasets that share similarities with the target dataset, leading
to significant improvements in performance. To further enhance
the accuracy of detecting tiny pests in images, we implemented the
Slicing Aided Hyper Inference (SAHI) Akyon et al (2022) method
to enhance the detection of tiny pests in images by dividing the
original image into overlapping patches and independently
subjecting each patch to object detection, improving overall
performance, It also performs a full-inference step to detect larger
objects, and then combines the results from both patch-wise and
full inference using Non-Maximum Suppression (NMS) to ensure
comprehensive and accurate object detection outputs. SAHI proves
to be a valuable technique for object detection during inference.

2 Materials and methods

2.1 Dataset collection, labeling,
and preprocessing

We used Unbaited AM yellow sticky traps (hereon referred as
Y5T; Manufacturer: Pherocon) to examine the utility and success of
success of our proposed ML approaches to identify and quantify
multiple insects. Throughout the growing seasons of 2021 and 2022,
we systematically acquired visual data, primarily focusing on
beetles, particulardy the Western Com Rootworm (WCR) Beetle
(Diabrotica virgifera virgifera LeConte), during their adult (winged)
life cycle phase. Additionally, we extended our scope to encompass
the identification of flies. This comprehensive data compilation was
achieved through the strategic deployment of numerous YS5Ts
across agricultural fields used in our research. Yellow sticky traps
are routinely used by entomologists and scouts to monitor the
presence of insects in greenhouse and field, deployed as a means of
attraction and surveillance of pests. The placement of YST in our
experiments was conducted approximately 10-12 days before the
anticipated emergence of the insects.

The positioning of these Y5Ts was tailored to the specific target
insect. These traps were evenly spaced at intervals of 50 feet,
extending from the field's outer edge to its central region. To
ensure their preservation during farming activities such as
cultivation and spraying, the traps positioned at the field's
midpoint were distinctly marked. Regular monitoring and
inspection of each trap were performed, followed by the capture
of trap images using an #-megapixel camera. These images were
subsequently uploaded to a cloud-based server for storage and
analysis. Multiple preprocessing and augmentation methods were
applied to the data before training the deep learning (DL) model,
One notable technique used was mosaic augmentation, which
involves creating a single mosaic image by combining slices from
four random images in the dataset. This mosaic image is then
utilized as a training sample for the model Figure 1 illustrates the
mosaic augmentation method and showcases the resulting batch of
training data after applying all augmentation techniques. We will
further explain other preprocessing methods applied in this work in
the result section.
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Data augmentation: (A) Masalc avgmentation, [B) A batch of augmented training data

2.2 In-domain datasets

In addition to our data set described above, we also leverage a
few more publicly available insect-pest data sets for training and
fine-tuning our model, We refer to them as in-domain datasets and
are briefly described below.

2.2.1 Kaggle-Yellow Sticky Traps

The first dataset we consider is The “Yellow Sticky Traps™ dataset
(Miewwenhuizen et al, 201%) hosted in Kaggle (hence, referred to as
the Kaggle dataset in the Results section). This dataset is centered
around addressing the challenges posed by two prominent pests,
greenhouse whitefly (Trialeurodes vaporariorum) and silverleaf
whitefly (Bemisia tabaci), which significantly impact greenhouse
tomato cultivation in Europe. These insects are among the top 10
most problematic pests in greenhouse vegetable crops, Manually
counting and categorizing these insects is time-intensive and prone
to errors. Although some automation is introduced through dassical
thresholding and blob counting algorithms, much of the counting
and classification relies on manual effort, sometimes even involving
hand counting, This inefficiency hampers effective pest management
practices, The dataset’s primary objective is to address this challenge
by providing a collection of images captured using yellow sticky traps.
This dataset contains 284 images of size 3456 x 5184 and 5184 x 3456,
For our use case, we further sliced each image into three pieces to
increase the number of images for the fine-tuning task. These images
are annotated using the Labelimg tool (Labellmg, 2015}, facilitating
the identification of distinet classes of insects. Within the dataset,
there are three significant classes:

Macrolophus MR: There are 1312 annotations related to
Macrolophus pygmaeus (MR), a predatory bug commonly
employed in biological pest control.

Nesidiocoris NC: This class contains 510 annotations associated
with Nesidiocoris fenuds (NC), a predatory bug used in integrated
pest management strategies.

Fronters in Plant Scdence

Whiteflies WF: The largest class, with 5591 annotations,
corresponds to whiteflies (WF), a significant pest requiring
meticulous management. While there is a fourth class (TR)
cotresponding to Thysanoptera, it has limited annotations and
was disregarded.

2.2.21P102

The IP102 dataset (Wu et al, 2019) is a meticulously curated
collection designed to facilitate insect-pests classification. It
undergoes a comprehensive four-stage process, including
taxonomic system establishment, image collection, preliminary
data filtering, and professional data annotation,

The dataset’s foundation is creating a hierarchical taxonomic
system formulated collaboratively with agricultural experts. This
system organizes 102 distinct insect-pests classes mto a hierarchical
structure, wherein each pest is associated with a “super-dass™ based
on the affected crop. The dataset draws from internet resources and
employs common search engines and professional websites to
gather images and video clips containing insect pests. Extracted
snapshots from videos contribute to the comprehensive candidate
image collection.

Volunteers trained in insect-pests identification and dataset
taxonomy manually review images and eliminate those with
irrelevant or multiple pest categories. The selected images are
processed, and duplicates or damaged files are removed. Experts
are assigned specific crops corrssponding to their expertise to
accurately categorize the images within the dataset.

In addition to its meticulous creation process, the 1P102
dataset boasts significant features. It encompasses over 75,000
images distributed across 102 categories, capturing a diverse and
natural long-tailed distribution of insect-pests. This unique
characteristic ensures that the dataset accurately reflects real-
world occurrences and challenges, making it a valuable resource
for advancing research in insect-pests classification and
agricultural pest management
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2.2.3 Pest24

The Pest24 dataset (Wang et al, 2020c) is a meticulously
curated collecion of images capturing various agricultural crop
pests to facilitate pest monitoring and detection. For this dataset,
28,958 raw images were taken in 2017 and 2018. These images
encompass a diverse array of 38 distinct categories of crop pests
from five insect orders: Coleoptera, Homoptera, Hemiptera,
Orthoptera, and Lepidoptera. Additionally, they belong to 13
insect families. It is noteworthy that among the mentioned insect
orders, the Lepidoptera category stands out, constituting a majority
of the 38 field crop pests. Half of these Lepidoptera insects originate
from the MNoctuidae subfamily. To focus on more prevalent
instances, the dataset considers 24 out of the 38 categories as
targets for detection, excluding 14 categories with limited
instances (ranging from 1 to 11) present in the images.

The dataset refinement process involves the removal of low-
quality images. Images exhibiting excessive non-target
backgrounds, shadows, ocdusions, or inflection spots are filtered
out, After this curation, the resulting Pest24 dataset comprises
25,378 annotated images featuring 24 distinct pest categories.

A statistical analysis of the dataset reveals a wide variation in
image and object distributions. The most frequently encountered
pest in the Pest24 dataset is Anomala corpulenta, represented by a
substantial 53,347 instances. In contrast, the least frequently present
pest is Holotrichia oblita, with only 108 instances captured in
the images.

2.3 Deep learning model

YOLOvS, developed by Ultralytics, represents a recent real-time
object detection and image segmentation model that was built upon
state-of-the-art advancements in DL and computer vision, delivering
excellent speed and accuracy. With its streamlined design, YOLOvE is
incredibly versatile, suitable for various applications, and effortlessly
adaptable across various hardware platforms, from edge devices to
cloud APIs, One notable aspect of YOLOVA is its parameter count,
which lies between its predecessors YOLOwS and YOLOv6, It boasts
more parameters than YOLOVS but fewer than YOLOvS Despite
this, YOLOvS offers approximately 33% higher mAP (mean Average
Precision) for various model sizes, consistently outperforming
previous versions. The model excels, improving accuracy for
different abject sizes and types. Furthermore, the inference time
with YOLOwvE is significantly faster than any other YOLO model
This efficiency makes it an eegant choice for real-time applications,
ensuring that detections can be made swiftly and effectively.
Moreover, to cater to different use cases and hardware capabilities,
YOLOvE is available in various model sizes

2.4 Hierarchical transfer learning

Transfer Learning (TL) is a widely recognized approach in ML/
DL for harnessing acquired knowledge from one task to improve
the perfformance of a distinet vet related task.
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This practice expedites convergence with reduced training data
requirement, potentially leading to enhanced generalization
capabilities. Recently, the emergence of deep neural networks and
the accessibility of extensive pre-trained modds have elevated
transfer learning to a fundamental instrument across
diverse domains.

HTL extends the foundational concept of transfer learning by
incorporating hierarchical frameworks into the process. Instead of
directly transplanting knowledge from a pre-trained model to the
target task, HTL embraces a multi-step approach where knowledge
is gradually transmitted from a source domain to an intermediary
domain and subsequently to the target domain. This methodology
capitalizes on the notion that certain intermediary domains may
share more prevalent features with the target domain, thus
facilitating more effective knowledge transfer. Figure 2 represents
the differences between traditional learning, TL, and HTL.

A pivotal advantage of HTL is its capacity to alleviate the
negative ramifications of limited data and low resolution. In cases
where the available dataset is small, conventional transfer learning
methods can still lead to overfitting, as the model heavily relies on
the scant available data. HTL mitigates this concern by permitting
the model to glean representations from a source domain enriched
with more extensive data. Subsequently, the model adapts and fine-
tunes these representations to the target domain, which possesses
smaller data.

Furthermore, in scenarios featuring diminutive or low-
resolution objects of interest, HTL offers notable benefits. Such
objects or low-tesolution images often lack the intricate details
necessary for a direct feature transfer using traditional means. The
incremental feature extraction strategy of HTL empowers the model
to acquire meaningful higher-level concepts that can be customized
to encapsulate crucial attributes of small objects or low-resolution
images in the target domain. Due to these reasons, we were
motivated to examine the usefulness and applicability of HTL for
small object, i.e. insect pests, detection.

2.5 Slicing aided hyper inference

To address the challenge of detecting small objects, we employ a
versatile framework centered around the concept of slicing during
the inference stage. Slicing Aided Hyper Inference (SAHIL) is a
technique employed during the inference step, and involves the
utilization of a “sliding” method to enhance the efficiency of object
detection in computer vision tasks. In this method, at first, the
original query image, denoted as “I" is divided into a number of
overlapping patches, represented as *P,", “P;", and 50 on up to “F",
These patches are formed by segmenting the original image into a
grid of smaller sections, each of size “M x N". Then each individual
patch is then resized while maintaining its original aspect ratio.
This resizing step ensures that the patches are suitable for further
processing and analysis. Subsequently, object detection is
performed independently on each of these overlapping patches.
The object detection forward pass involves applying a trained
detection model to identify objects of interest within each patch.
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Additionally, there is an optional step called “full-inference™
(FI). If opted for, the original, unsliced image can undergo a
complete inference process to detect larger objects that may span
multiple patches. After the individual patch-based predictions are
generated, the results from these overlapping patches, as well as any
outcomes from the optional FI step, are combined. This merging
process aims to consolidate the detected objects into a coherent
output. To avoid redundant and overlapping detections, non-
maximum suppression (NMS5) is employed. During NMS,
detection boxes with higher Intersection over Union (loU) ratios

than a specified matching threshold (T,) are matched and
compared. For each matched pair, detections with a detection
probability lower than a specified threshold (T)) are filtered out
and discarded Figure 3 shows the schematic of how SAHT was
applied for the inference.

2.5.1 Evaluation metrics

Two well-known metrics were used, Intersection over Union
(10U} and Mean Average Precision (mAP) to evaluate our results.
IOU can be determined by Equation | by considering the ground

FIGURE 3

Utilizing slicing-aided hyper inferance, the image is divided into overlapping patches (P, Pa, .

1 for individual analysis, alongside Full Inference (Fl) for

the entire image. The outcomes of patch-wise and Fl approaches are merged to produce the ultimate result.
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truth and model-predicted bounding boxes. This metric is used for
computing True Positive (TF), False Positive (FP), and False
MNegative {FN) bounding boxes by considering a special threshold
(in this work 0.5).

_ Areaof Overlap of Predicted and Labeled Bounding Boxes

lall =
" Area of Union of Predicted and Labeled Bounding Boxes

(1)

For calculating m AP, we use the recall and precision metrics as
defined in Equation 2.

i Recall = LLs
TP+ FP’ TP+ FN

Considering the definitions of Precision and Recall, Equation 3
defines Average Precision (AP) which is the area under the
precision-recall plot for each class.

Precision =

(2)

AP = f1 plride {3)
o

The mean average precision (Equation 4} is the mean of APs
over a set of queries (M is the total number of queries).

1 &
mAP = E”%A.Pliq} (4)

2.5.2 Hyperparameters and evaluation setup

When training an object detection model, a carefully selected set of
hyperparameters is crucial for achieving accurate and efficient
detection performance. Since our model is used on edge devices the
“small” version of the YOLOvE mode architecture was used for this
task of insect detection. For tmining, the initial learning rate is set to
0.01, which will guide the optimization process, while the final leaming
rate is adjusted to 0.01 times the initial learning rate to determine the
rate at which the learning rate will decrease during training. The batch
size was set to 16 and “SGD" optimizer were used for training, The
choice of momentum at 0.937 and weight decay at 0.0005 helps in
stabilizing the tmining process and preventing overfitting. A warmup
period of three epochs is employed at the start of training, with an
initial momentum of 0.8 and an initial bias learning rate of 0.1 to
gradually transition the model into optimization. Data augmentation
is employed to improve the model’s generalization, including HSV-
Hue, HSV-Saturation, and HSV-Value adjustments, image rotation,
translation, scaling, flipping probabilities (both vertical and
horizontal), and mosaic augmentation with a probability of 1.0. To
further prevent overfitting, the dropout value was considered as 0.5,
The image size for training where considered as 640, and each
experiment was trained for 500 epochs. Moreover, The modd was
trained using a NVIDIA Tesla T4 GPU. These hyperparameters
collectively contribute to the training of a YOLOVE model optimized
for accurate and robust abject detection.

To evaluate the efficacy of employing HTL, distinct scenarios
involving various in-domain datasets were systematically examined.
The initial experiment served as a baseline, employing solely pre-
trained weights from the COCO dataset. Subsequently, the
evaluation extended to encompass the incorporation of specdific
in-domain datasets - Kaggle (Yellow Sticky Traps), IP102, and
Pest24 - in the role of intermediary datasets within the HTL

Frontiers in Plant Scoencs

10.3389/fpls.2024.1484587

paradigm. This design entailed the successive training of each
model on the intermediary dataset, utilizing the trained weights
based on COCO dataset. The trained model was subsequently fine-
tunied on the distingt Sticky Trap dataset, contributing to a multi-
stagehierarchical training process

3 Resulis

Before wsing DL, data preprocessing and augmentation
techniques were applied to increase the number of data samples
and improve the model’s robustness. In our experimental setup, we
employed a rigorous data splitting strategy to ensure the validity
and robustness of our results. The dataset was divided into three
distinct sets: training, validation, and test. Specifically, we allocated
80% of the data for training, 10% for validation, and 10% for the test
set. This test set was kept completely separate and unseen by the
model throughout the entire training and fine-tuning process. For
training set, each image was tiled to 4 images; therefore, we could
increase the data to 628 images. Moreover, before training,
techniques such as rotating, zooming, flipping, changing
ilumination, and mosaic augmentation were applied to the images.

In our experimental framework, we orchestrated HTL trials,
which comprised a two-step fine-tuning process. Initially, the
COCO pre-trained model underwent fine-tuning on in-domain
datasets, followed by a subsequent fine-tuning phase on our specific
dataset, This design yielded three distinct experiment categories: (1)
HTL: COCO-Kaggle, (2) HTL: COCO-IP102, and (3) COCO-
Pest24, with the Kaggle (Yellow Sticky Traps), IP102, and Pest24
datasets respectively. The results, graphically illustrated in Figure 4,
unveil compelling insights through mAP and mAP50-95 plots,
Notably, the COCO-1P102 experiment emerged as the most
successful, excelling in both mAPS0 and mAP50-95. This
accomplishment can be attributed to the expansive diversity of
insect species encapsulated within the IP102 dataset {contains
75,000 images belongs to 102 different insects), encompassing
pivotal categories including beetles that align with our focus. While
the Kaggle dataset’s limited size hindered it from surpassing Pest24
and IP102, its performance, as depicted in Figure 4B, showcased
improvements over the basdine in terms of mAP50-95. We posit
that a larger Kaggle dataset, given its close resemblance to our data,
could potentially yield enhanced results. Despite Pest24’s abundant
data, its divergent background and data characteristics pose
challenges, thereby compromising insect details, particularly in
comparison to the more distinct IP102 dataset. Furthermore,
Figure 5 underscores precision and recall values. These results
corroborate the important role played by [P102 as an in-domain
dataset, wielding a marked influence in elevating precision and
recall metrics. The discernible impact of in-domain datasets on
precision is evidenced, reaffirming their role in augmenting
overall performance.

The practical implications of our model's performance are
shown in Figure 6, where the insect detection results are visually
presented for two sample images. The result shows the model’s
capability to detect small insects through the comprehensive
synergy of HTL and the SAHI framework as shown in Table 1.
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(A} mAPS0 and (B) mAPS0-95 plots for Transfer Learning with COCO weights (TL: COCO), and Hierarchical Transfer Learning (HTL) soenarios having

Kagole, IP10Z2 and Pest24 datasets &S in-domain datasets

These outcomes were obtained from the HTL: COCO-IP102
experiment, which showcases the performance of the approach in
the realm of HTL. Figure 7 illustrates the procedural enhancements
fadlitated by our method, which incorporates HTL and SAHI,
aiming to enhance the detection of small insects.

Additionally, in Table 1, the inference time for the model on the
system with an Intel Core i7 processor and an NVIDIA T4 GPU
averages around 0.06 seconds per image (640x640 resolution), with
fluctuations ranging from (.04 to (.1 seconds. When incorporating
the SAHI post-processing method, the inference time increases to
an average of 0.7 seconds per image, ranging from 0.3 to 1.2 seconds
depending on object density. On a Raspberry Pi 4B, equipped with a
1.8 GHz quad-core Cortex-A72 CPU and up to 8GB of RAM, the
inference time, including post-processing, ranges from 8 to 15
seconds per image.

Recognizing the critical importance of insect pressure, we have
conducted a comprehensive analysis to determine the insect
populations in both predicted and pround truth scenarios. Our
findings indicate that, when evaluated against the defined threshold
for insect pressure, the predicted results dosely align with the
ground truth data. This alignment suggests that our predictive
model can effectively identify the severity of insect presence,
mirroring the accuracy of the ground truth measurements. This
threshold serves as a valuable indicator for farmers, enabling them
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to make informed decisions about the application of insecticides
when insect pressure surpasses the established threshold limit. Tt is
worth noting sticky traps were put in the fields with the growing
plants; we noted that other than insect-pests, plant parts were also
stuck in the sticky traps (see Figure 7). Irrespective of this problem,
the model could detect the majority of insects compared to the
ground truth, thereby demonstrating its usefulness to plant
scientists and farmer communities.

3.1 Deployment

Ouwr methods provide opportunities for small insect detection;
however, this work used digital images from proximity. With
advances in ground robots for scouting (Gao et al, 2018) and
drone for phenotyping (Guo et al, 2021; Herr et al., 2023), there are
significant possibilities for future applications. For example, drones
equipped with high-resolution cameras can capture aerial imagery,
allowing for early detection of pest hotspots. Meanwhile, ground-
based robots can traverse fields using GPS guidance, collecting data
on insect presence, activity, and crop health. In addition to advances
in phenotyping platforms, there is substantial progress in sensing
tools (Sarkar et al, 2023). By deploying these automated scouts,
farmers can make data-driven decisions, implement targeted
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(A} Precision and (B) Recall plots for Transfer Laaming with COCO welghts (TL: COCO), and Hierarcehical Trarsfer Lesrning (HTL) scenarios having

Kaggle, IP102 and Pest24 datasets as in-domain datasets.

interventions, and minimize the use of insecticides, thereby
promoting sustainable and environmentally friendly farming
practices in the quest for increased crop yields and food security.
We show the combination of ML (HTL) and Vision library (SAHT)
can solve small insect detection problems. These innovative
technologies provide farmers with a swift and efficient means of
surveying vast fields and identifying potential infestations. We
provide a description of our hardware and cyberinfrastructure
setup below for effident deployment of the proposed system.

3.1.1 Hardware setup

Following the completion of our training phase and in readiness to
implement our insect detection model in real-world scenarios, we
created eight distinct prototypes of the stidey trap setup. Each
prototype has been meticulously equipped with various necessary
components, ensuring seamless functionality and performance. These
components include a Raspberry Pi 4B with a robust 8GB RAM
capacity,an advanced 8MP camera (Arducam IMX219), ample storage
capability of 64GB, a carefully crafted wooden sticky trap holder, an
integrated GPS module, and a cutting-edge LoRa communication
moddule. The hardware setup is shown in Fgure & In our initial
implementation phase, these prototypes are effectively interconnected
with a personal computer, which functions as a computing unit within
the Smart Connected Farm (Singh et al, 2023), This connection is
established via a local area network, enabling seamless communication
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and data exchange. For real-time inference validation, we have
integrated a pre-trained model. Furthermore, we have established a
dedicated web portal designed to facilitate convenient access to the
prototypes and to facilitate on-demand image capture from any remote
location via the Internet. Presently, access to this portal is facilitated
through a virtual private network (VPN). However, we plan to
transition the portal to the public domain, ensuring wider
accessibility in the near future. This user-friendly interface is an
integral part of our proof-of-concept, enhancing the owerall
functionality and usability of the sticky trap system,

3.1.2 Cyberinfrastructure

In order to deploy a sustainable persistent sticky trap
monitoring system, we have developed EDDIE (Event-Driven
Detector for IOT and Edge, see Figure 9), an integrated edge
management platform that connects the MLOps tasks along with
data management components, EDDIE aims to address the research
challenges of securely deploying models to the edge or IoT devices
and managing the ingest of IoT data where there may be limited or
intermittent connectivity, It also provides system alerts and triggers
for downstream events based on user-defined conditions.
Configurable workflows, which may include ETL operations and
one or more models, are executed using Argo Workflows (argo,
2024) on a Kubernetes service designed for resource-
constrained environments.
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Comparison of detection model outcomes within our framework against ground truth for sticky trap data. (A) Example result indicating the need for
beetle controd products. (B) Example result indicating the need for fly control products,

TABLE 1 The performance of the best-trained model after applying the SAHI method.

Experiments mAP5S0 mAP50-95 Precision
HTL: COCO-IP 102 .82 048 LI 078 {h6s
HTL: COCO-IP102 + SAHI 0.8 051 084 083 0.7

EDDIE is designed with security in mind, encrypting
communication from the edge to one or more clouds. In its initial
deployment, we used the CyVerse Data Store for its ability to upload
data in a high throughput fashion, strong metadata features, and

Ground Truth

FIGURE 7

TL

HTL

Enhancing small insect detection through HTL and 5AHI integration [missed nsects are circled).

encryption capabilities, When an edge gateway or IoT device is
initially configured, models are initially pushed to the edge or can be
deployed manually on devices. As researchers update the models on
the central doud, EDDIE components on the edge will discover

HTL + SAHI
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We have developed a prototype that captures images and utilizes a trained model on a Raspberry Pi for insect detection, and obtaining the results in
real-time. These results are then transferred to another farm or edge device using a LoRa madule (REF]

these changes and pull the updated models and configuration
utilizing the DVC framework (Kupriciev, 2024). EDDIE provides
the ability to send selected images and metadata from edge devices
to storage end points for further examination.

In our current application, the captured image data (of yellow
sticky traps) was uploaded to the CyVerse Data Store on successful
detection, and the counts and insect types, along with the processor
system’s load and performance of ML methods, were recorded in
the ToT metrics component of EDDIE, If the threshold of harmful
insect count exceeded the allowable level, alerts were posted to
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multiple external systems (Slack and webhooks of the loT metrics
server). The full platform was deployed and managed through
CyVerse CACAQ (Cloud Automation and Continuous Analysis
Orchestration) (Skidmore et al, 2023).

4 Conclusion

In this study, we extensively explored the efficacy of
Hierarchical Transfer Learning (HTL) for the detection of insects

Push
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—
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Communication woarkflow for EDDIE: 1 CyVerse CACAQ retrieves configuration information, ncluding madels. 2 Models and configurations are

deployved to the adge. 3 Images and metadata are streamed 1o the edge

Images are processed at the edge. S5 Raw and processed data are sent

to the central clowd (Cy'Verse Data Store). 6. User-defined alerts trigger notifications. 7. Metrics are transmitted to metrcs senvers
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on sticky traps under the constraint of limited training data. We
demonstrate efficacy of HTL using three publicly available in-
domain datasets. The HTL experiments underscore the
importance of selecting effective in-domain datasets to optimize
model performance. The two-step fine-tuning process revealed that
the COCO-IP102 dataset, with its extensive diversity and volume
significantly outperformed other datasets. This highlights the
necessity of choosing datasets that not only align closely with the
target application but also encompass a wide variety of dasses and
scenarios. Although the Kaggle-Yellow Sticky Traps dataset showed
promise, its limited size restricted its performance relative to IP102.
Conversely, while larger datasets like Pest24 offered abundant data,
their less relevant characteristics hindered effective feature
extraction. In conclusion, Prioritizing in-domain datasets that
reflect the specific conditions and target species of the application,
while also ensuring sufficient diversity and volume, is essential for
enhancing performance in hierarchical transfer learning. This
strategic approach can lead to more robust models capable of
achieving superior performance in real-world applications.

To further improve the performance of detecting small sized
insects, we consider the Slicing Aided Hyper Inference {(SAHI)
method; a strategic approach that capitalizes on image resolution
that improved the insect detection capabilities. Finally, We present
the design of a hardware setup and an efficient cyberinfrastructure
for deploying the persistent insect monitoring framework in real
life. While our study demonstrates the effectiveness of YOLOvE
combined with HTL and SAHI for insect detection on sticky traps,
we acknowledge certain limitations in our approach. Due to the
constraints of edge device deployment, which requires careful
consideration of memeory and computational resources, we were
unable to explore more resource-intensive state-of-the-art methods
such as transformer-based models. These advanced techmiques,
while potentially more powerful, are often impractical for
deployment on resource-constrained devices. Future research
could focus on adapting these models to enhance detection
accuracy, should improve performance be a priority.

Sticky trap-based accurate eady detection and counting allow
for early mitigation of insect pests. This will allow stakeholders to
precise contrel once they know which insect is trapped in a sticky
trap and the level of insects based on the counting, allowing better
management, The dedsion to spray insect pests before the pest
population reaches economic injury level (EIL) will allow farmers to
apply pesticides when the insect population has reached the action
threshold. This will prevent using broad-spectrum insecticides
indiscriminately, which helps to avoid pest resistance problems as
well as leads to sustainable agriculture
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