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Abstract Blind image deblurring (BID) has been ex-

tensively studied in computer vision and adjacent fields.

Modern methods for BID can be grouped into two cat-

egories: single-instance methods that deal with individ-

ual instances using statistical inference and numerical

optimization, and data-driven methods that train deep-

learning models to deblur future instances directly. Data-

driven methods can be free from the difficulty in deriv-

ing accurate blur models, but are fundamentally lim-

ited by the diversity and quality of the training data—

collecting sufficiently expressive and realistic training

data is a standing challenge. In this paper, we focus on

single-instance methods that remain competitive and in-

dispensable. However, most such methods do not pre-

scribe how to deal with unknown kernel size and sub-

stantial noise, precluding practical deployment. Indeed,

we show that several state-of-the-art (SOTA) single-

instance methods are unstable when the kernel size is

overspecified, and/or the noise level is high. On the pos-

itive side, we propose a practical BID method that is

stable against both, the first of its kind. Our method
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builds on the recent ideas of solving inverse problems by

integrating physical models and structured deep neu-

ral networks, without extra training data. We introduce

several crucial modifications to achieve the desired sta-

bility. Extensive empirical tests on standard synthetic

datasets, as well as real-world NTIRE2020 and RealBlur

datasets, show the superior effectiveness and practi-

cality of our BID method compared to SOTA single-

instance as well as data-driven methods. The code of

our method is available at https://github.com/sun-umn/

Blind-Image-Deblurring.

Keywords blind image deblurring, blind deconvo-

lution, unknown kernel size, unknown noise type,

unknown noise level, deep image prior, deep generative

models, untrained neural network priors

1 Introduction

Image blur is mostly caused by the optical nonideality

of the camera (e.g., defocus, lens distortion), i.e., op-

tical blur, and relative motions between the scene and

the camera, i.e., motion blur [80,40,33,46,43,44,36,79].

It is often coupled with noticeable sensory noise, e.g.

when one images fast-moving objects in low-light en-

vironments. Thus, in the simplest form, image blur is

often modeled as

(1) y = k ∗ x+ n,

where y is the observed blurry and noisy image, and

k, x, n are the blur kernel, clean image, and additive

sensory noise, respectively. The notation ∗ here is lin-

ear convolution, which encodes the assumption that the

blur effect is uniform over the spatial domain. When

there are complicated 3D motions (e.g., multiple inde-

pendently moving objects, and 3D in-plane rotations),
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Fig. 1 Given a blurry and potentially also noisy image, how to perform reliable blind image deblurring? The kernel size and
the noise type/level are typically unknown, and the image may contain blur or noise only, or both. Left: A street scene captured
by a camera mounted on a rapidly moving e-scooter (image captured by Le Peng and Wenjie Zhang of the authors’ group;
permission granted); Right: A biological specimen captured by a realistic microscopy system (Image CCDB:3684 from the
Cell Image Library; source url: http://cellimagelibrary.org/images/CCDB_3684; created by Mark Ellisman, Gina Sosinsky,
Ying Jones licensed under CC BY 3.0).

Fig. 2 Deblurring results of several SOTA single-instance and data-driven BID methods on a real-world blurry image taken
from [72]. The 6 single-instance methods are: Sun13 [78], Pan16 [67], Xu13 [95], Dong17 [19], SelfDeblur [71], and our method
proposed in this paper (see Section 3.2); 3 data-driven methods are: SRN [83], DeblurGAN-v2 [42], Zhang20 [99], for which
we directly take their pretrained models.

or substantial depth variations, this model can be up-

graded to account for the non-uniform blur effect [46,

43,44,36]. In this paper, we focus on the uniform setting

and leave the non-uniform setting as future work.

Assume the model in Eq. (1). Given y and k, esti-

mating x is called (non-blind) deconvolution, a linear

inverse problem that is relatively easy to solve. How-

ever, in practice, k—including its size and numerical

value—is often unavailable. For example, neither defo-

cus nor motions can be reliably estimated in wild en-

vironments [40] (see, e.g., Fig. 1). This leads to blind

deconvolution (BD), where k and x are estimated to-

gether from y.
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Over the past decades, a rich set of ideas have been

developed to tackle BID and BD, evolving from single-

instance methods that rely on analytical processing or

statistical inference and numerical optimization to solve

one instance each time, to modern data-driven methods

that aim to train deep learning (DL) models to solve all

future instances. The sequence of landmark review arti-

cles [40,46,43,44,36,100] chronicle these developments;

see also Section 2.1 below. Evaluation has also moved

from synthetic to real-world data, best exemplified by

the recent NTIRE 2020/2021 challenges on real-world

image deblurring [62,61].

In this paper, we focus on single-instance methods

for BID. Although recent data-driven methods have

shown great promise, as statistical learning methods,

they are intrinsically limited by the training data: if

trained with sufficiently diverse and realistic data, these

methods are likely to generalize well. However, the col-

lection of high-quality training sets that meet the de-

mand has been identified as a continuing challenge [36,

100]. Therefore, single-instance methods will likely be

a mainstay alongside data-driven methods for practical

BID, especially for scenarios where relevant data are

rare or expensive to collect.

Prior single-instance methods for BID seem vague

on three critical issues toward practicality: (1) unknown

kernel (k) size: Except for methods that directly es-

timate x only (e.g., the inverse filtering approach to

BD [91,20,6,79]), a nearly-optimal estimate of the ker-

nel size is needed [76]. But it is practically unclear how

such an accurate estimate can be reliably obtained,

and how sensitive the existing methods are to kernel-

size misspecification; (2) substantial noise (n): Sensory

noise after convolution may still be substantial, while

most previous methods assume noise-free or low-noise

settings in their evaluations [81,105,66,19,24,9]; and

(3)model stability : The image may be blurry only, noisy

only, or both. Whatever the case, in practice, an ideal

BID method should work seamlessly across the different

regimes. This has rarely been tested for prior methods.

These three issues are summarized in Fig. 1.

To quickly confirm these practicality issues, we pick

6 state-of-the-art (SOTA) single-instance BID methods

(plus 3 representative data-driven methods by taking

their pretrained models), and test them on a real-world

image taken in a low-light setting, with unknown kernel

size and unknown noise type/level. We specify a ker-

nel size that is half of the image size in each dimen-

sion to provide a loose upper bound. Fig. 2 shows how

miserably these single-instance methods can fail; more

failures can be checked in Section 4.

This paper aims to address these practicality issues.

We follow the major modeling ideas in the statisti-

cal inference and optimization approach to BID, but

parametrize both the kernel and the image using train-

able structured deep neural networks (DNNs). This idea

has recently been independently introduced to BID by

[90], [71] (SelfDeblur), and [85], inspired by the remark-

able success of deep image prior (DIP) [86] and its vari-

ants [26,77] in solving a variety of inverse problems in

computer vision and imaging [17,23,77,82,69] and be-

yond [70,58]. Our key contributions include

– identifying three practicality issues of SOTA

single-instance BID methods, including Self-
Deblur. As far as we are aware, this is the first time

these three practicality issues have been discussed

and addressed together in the BID literature. BID

with these three issues is a more difficult but

practical version than what SelfDeblur and

most classical BID methods target. This is also

the first time both classical and SOTA data-driven

BID methods are systematically evaluated in the

simultaneous presence of the three issues; see Sec-

tion 3.1 and Section 4.2;

– revamping SelfDeblurwith six crucial modi-

fications to address the three issues. In Sec-

tion 3.1, we clearly describe our modifications, as

well as the rationale and intuitions behind them.

Figuring out these modifications and their right com-

bination is a highly nontrivial task, making our algo-

rithm pipeline sufficiently different from SelfDeblur.
– systematic evaluation of our method against

SOTA single-instance BID methods on syn-

thetic SOTA datasets, and against SOTA data-

driven BID methods on real world datasets,

confirming the superior effectiveness and practical-

ity of our method (Section 4; Fig. 2 gives a quick

preview). We also pinpoint the failure modes and

limitations of our method in Section 4.4.

2 Background

2.1 Blind deconvolution (BD)

BD refers to the nonlinear inverse problem of estimat-

ing (k,x) from y according to the model in Eq. (1),

and finds applications in numerous fields such as seis-

mology [91,20], digital communications [88,18], neuro-

science [47,21], microscopy [11], and computer vision.

Due to the bilinear mapping (k,x) �→ k∗x, (δ,k∗x)
is always a trivial solution, where δ is the Dirac delta

function. Therefore, without further restrictions to k

and x, recovery is hopeless. To ensure identifiability, dif-

ferent domain-specific priors have been proposed over

time. A popularly used prior across these domains is
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that x is (approximately) “sparse” in an appropriate

sense [91,20,6,79,88,18,47,21,11]. For BID, x as the

natural image to be recovered is often assumed to be

sparse in the gradient domain. Furthermore, k is of-

ten “short” or “small”, as characteristic patterns are

often narrowly confined in their temporal or spatial ex-

tents [47,21,11]. For BID, the blur kernel, either optical

or motion, tends to be smaller in support, if not much,

than the size of the blurry image itself. Therefore, the

goal of many BD applications is to solve this short-and-

sparse BD (SSBD).

Another notable feature of BD caused by the bilin-

ear mapping (k,x) �→ k ∗x is trivial symmetries. If we

assume k and x are 1-dimensional infinite sequences—

they can still have finite supports, then k∗x = ( 1
αk−τ )∗

(αxτ ) for any α �= 0 and τ ∈ Z, where vτ for any v

means shifting v by τ time step. In other words, we have

scale and shift symmetries. So, recovery is up to these

symmetries, which often suffices for practical purposes.

When we take a finite-window observation of k ∗ x, a

more faithful model is

(2) y = T (k ∗ x) + n,

where T models the truncation effect of the window.

The shift symmetry and the truncation effect together,

if not handled appropriately, can easily lead to algorith-

mic failures, as discussed in Sections 3.1.1 and 3.1.2.

On the theoretical front, [20,79,15,52,53,35] dis-

cuss the identifiability of BD under different priors. For

guaranteed recovery, [1,12,51] assume k and/or x lying

on random subspaces, and [104,103,41] work on SSBD

under certain probabilistic generative models on x. In

addition, [93] derives insights on different priors and

formulations for BD from a Bayesian perspective.

2.2 BD specialized to blind image deblurring (BID)

For BID, SSBD is often solved with additional kernel-

and/or image-specific priors. A subset of early BID meth-

ods write k in parametrized analytical forms, e.g., Gaus-

sian shaped, and solve BID with simple analytical or

computational steps [40]. This has been largely super-

seded by the statistical inference and numerical opti-

mization approach over the past decade, which formu-

lates SSBD as regularized optimization problems, often

interpreted as Maximum A Posterior (MAP) estima-

tion:

(3) min
k,x

�(y,k ∗ x)︸ ︷︷ ︸
data fitting

+ λkRk(k)︸ ︷︷ ︸
regularizing k

+ λxRx(x)︸ ︷︷ ︸
regularizing x

,

where λk, λx are regularization parameters. A canoni-

cal choice is �(y,k ∗ x) = ‖y − k ∗ x‖22, and Rx(x) =

‖∇x‖1 (i.e., total-variation, or TV, norm on x) to en-

code sparsity in the gradient. But since k ∗x =
(
1
αk

)
∗

(αx) and ‖∇(αx)‖1 = |α|‖∇x‖1 for any α �= 0, with-

out any further constraint the global solution is when

x = 0. So a considerable chunk of recent research is

about dealing with the scaling issue together with bet-

ter sparsity encoding:

– k ≥ 0,
∑

i ki = 1, Rx(x) = ‖∇x‖1: This is a clas-

sical remedy [7], but is shown to prefer the triv-

ial solution with k = δ in certain regimes [46]. In

fact, the trivial solution can occur even if one takes

Rx(x) = ‖∇x‖q (q ∈ (0, 1]), considerably tighter

sparsity proxies. Nonetheless, perhaps surprisingly,

carefully chosen algorithms can find nontrivial local

solutions that lead to good recovery [68].

– k ≥ 0,
∑

i ki = 1, Rx(x) =
‖∇x‖1

‖∇x‖2
or ‖∇x‖0: The

high-level intuition why the above may prefer the

trivial solution (δ,k ∗ ∇x) (assuming n = 0) is:

when k is non-sparse and satisfies the simplex con-

straint (i.e., k ≥ 0,
∑

i ki = 1), ∇(k ∗ x) = k ∗ ∇x

tends to have higher sparsity level that of ∇x due to

the potential smoothing effect of k, but k ∗ ∇x has

a lower numerical scaling than that of ∇x1. The

latter tends to outweigh the former as k becomes

sufficiently dense [46,4]. So, a possible fix is to use

scale-invariant sparsity measures such as �1/�2 [39,

31]2 or (near) �0 [95,65,93].

– ‖k‖2 = 1, Rx(x) = ‖∇x‖1 or (near) ‖∇x‖0: Re-
cently, it has been shown under different settings [93,

103,104,41,32] that �2 normalization on k can change

the optimization landscape and render true (k,x)

as a global solution, even with the scale-sensitive

‖∇x‖1. This is also related to the popularly used

�2 regularization in k, which can be understood as

the penalty form of such a constraint [95,65,67,96,

8,85].

– Other priors: Other image-specific priors, such as

color prior [34], Markov-random-field prior [37], patch

recurrence prior [57], dark channel prior [67], ex-

treme channel prior [96], local maximum gradient

prior [8], also help encode extra image structures

and break the issue with the trivial solution.

Another line of ideas works with the data-fitting loss

‖∇y − k ∗ ∇x‖22, combined with the different priors and

regularizers discussed above [33,13,94,78,105,22,25,104,

14,55,98]. Most of them employ explicit edge detection

and filtering to improve kernel estimation at initializa-

tion and during iteration, but edge processing can be

sensitive to noise [105,25].

1 Indeed, by Young’s convolution inequality and the fact
‖k‖1 = 1, ‖k ∗ (∇x)‖1 ≤ ‖k‖1‖∇x‖1 ≤ ‖∇x‖1.
2 See also similar ideas for the inverse filtering approach

in [6,79].
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Almost all the existing single-instance methods ac-

cept a user-specified kernel size, hopefully a tight upper

bound of the true size, as a problem hyperparameter.

For synthetic datasets such as those released by [46,

44], the “true” kernel sizes—which are in fact slightly

over-specified kernel sizes, as shown in Fig. 3—are avail-

able. For real-world datasets, such as the real-world

part of [44] and [62], kernel sizes are unknown, and most

prior work is vague about how they choose appropriate

kernel sizes. We suspect that their selections are prob-

ably based on trial-and-error combined with visual in-

spection of the recovery quality. As far as we are aware,

Fig. 3 Kernels from the synthetic datasets in [46] and [44].
Note that the true supports of the kernels are all slightly
smaller than the specified kernel sizes, due to the presence of
the black (zero) boundaries. Convention in the subcaptions:
true size (specified size).

[76] is the first work explicitly addressing the kernel-

size overspecification issue. They propose adding a low-

rankness prior on the kernel: indeed, with increasing

overspecification, the kernel becomes relatively sparse

and low-rank, as is evident from Fig. 3.

While early works test their methods on synthetic

datasets with Gaussian noise (often with σ = 0.01 fol-

lowing [38]), only few papers have explicitly handled

large, realistic noise, such as impulse/shot noise, or pixel

saturation [81,105,66,19,24,9]; see examples in Fig. 4.

In handling practical noise, a common thread is to learn

or design a robust loss term � that is less sensitive

to large/outlying pixel errors, e.g., by learning a pixel

mask together with k and x [105,66,24,9,10], or by

using carefully-defined robust statistical losses [19].

After 2015, data-driven DL-based methods for BID

have emerged, targeting both the uniform and non-

uniform settings. There are primarily two families of

methods, parallel to those for solving linear inverse prob-

lems [63]: 1) end-to-end approach. Deep neural networks

Fig. 4 Examples of blurry images with realistic noise. The
clean image is taken from [44]; the simulation of noise follows
the procedure in [29].

(DNNs) are directly trained to predict the kernel, the

sharp image or both. We refer the reader to the ex-

cellent surveys [36,100], and the Github repository [87]

with an updated list of relevant papers; 2) hybrid ap-

proach. This includes many possibilities: DNNs are pre-

trained to model priors on k and x [64,3,48] or to

replace algorithmic components to solve Eq. (3) (i.e.,

plug-and-play methods, e.g. [101]); DNNs are directly

trained as components of unrolled numerical methods

for solving Eq. (3) [73,2,54]. Again, we recommend the

two surveys and the Github repository for comprehen-

sive coverage. These data-driven methods are appar-

ently powered and meanwhile limited by the capacities

of the training datasets used; the difficulty in construct-

ing expressive and realistic training sets and, hence,

poor generalization remain the key challenges [36].

2.3 Deep image prior (DIP) for BID

Deep image prior (DIP), as its name suggests, hypoth-

esizes that natural images, or, in general, natural visual
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objects, can be parameterized as the output of trainable

DNNs [86]. Specifically, any visual object of interest, O,

is written as O = Gθ(z): Gθ is a structured DNN (of-

ten convolutional DNN to have a bias toward natural

visual structures) that can be thought of as a genera-

tor, and z is the seed (i.e., input) to Gθ. Often, Gθ is

trainable and z is randomly initialized and then fixed.

Visual inverse problems (VIPs) involve estimating a

visual object O from an observation y ≈ f(O), where

f models the observation (i.e., forward) process and

the approximation sign ≈ indicates the potential exis-

tence of observational and modeling noise. Tradition-

ally, VIPs are often posed as regularized data-fitting:

(4) min
O

�(y, f(O))︸ ︷︷ ︸
data fitting

+ λR(O)︸ ︷︷ ︸
regularizer

,

of which problem (3) is a specialization for SSBD. Im-

posing DIP onto O naturally leads to

(5) min
θ

�(y, f ◦Gθ(z)) + λR ◦Gθ(z),

where ◦ denotes function composition, and the regu-

larizer R that encodes other priors is sometimes omit-

ted. This simple idea has fueled surprisingly competi-

tive methods for solving numerous computational vision

and imaging tasks, ranging from basic image process-

ing [86,26,27,90,85], to advanced computational pho-

tography [23,77,82,56,92], and to sophisticated medi-

cal and scientific imaging applications [17,45,5,84,106,

108]; see the recent survey [69].

When applying the DIP idea to BID, due to the

asymmetric roles played by the kernel k and the image

x, it is natural to parameterize them separately follow-

ing the Double-DIP idea [23] to obtain:

(6) min
θk,θx

�(y, Gθk
(zk) ∗Gθx(zx))+

λkRk ◦Gθk
(zk) + λxRx ◦Gθx(zx),

i.e., DIP reformulation of problem (3). This is the ex-

act recipe followed by two previous works [90,71]; they

differ by their choices of Gθk
and Gθx

, as well as the

regularizers Rk and Rx. We focus on reviewing SelfDe-
blur [71] here, as our method mostly builds on top of

it and the evaluation in [90] is very limited.

– [71] (SelfDeblur): � is the MSE. For the generators,

Gθx is convolutional U-Net similar to above, while

Gθk
is a 2-layer fully connected network. The dis-

parate generators are to encode the asymmetry be-

tween the kernel and the image, and reflect the fact

that the kernel tends to be much simpler than the

image itself. Softmax and sigmoid final activations

are then applied toGθk
andGθx , respectively. In ad-

dition, Rx is the classical TV regularizer that helps

the method to work in the presence of low-level noise

also. In summary,

(7)

min
θk,θx

‖y −Gθk
(zk) ∗Gθx(zx)‖22

+ λx‖∇xGθx(zx)‖1,
Gθk

: 2-layer MLP, softmax final activation

Gθx : conv. U-Net, sigmoid final activation

From Fig. 5, it is evident that SelfDeblurworks well
only when y is blurry only and the kernel size is

exactly specified. When there is considerable noise

or the kernel-size is overspecified, SelfDeblur breaks
down abruptly.

To move beyond the uniform blur model in Eq. (1)

and construct a model that hopefully generalizes across

different datasets, Explore [85] proposes learning an ab-

stract blur operator F from a rich set of sharp-blurry

image pairs. Once F is learned, for any given blurry

image y, the clean image x and the abstract kernel k

are estimated via a generalized version of problem (6):

(8) min
θk,θx

�(y,F(Gθx(zx), Gθk
(zk)))+

λk‖Gθk
(zk)‖2 + λx‖∇Gθx(zx)‖2/3,

Although Explore is a powerful and bold idea, but it is

unclear if they really learn generalizable blur models,

as well as if Eq. (8) is a good implementation of the

double DIP idea. Our quick test shows that it does not

work on a simple uniform blur case; see the 4-th column

of Fig. 5, especially when there is noise.

[3] proposes three formulations for BID based on

deep generative models in the same line of Eq. (6),

but with pretrained generator(s). Since this method re-

quires the pretrained kernel generator Gθk
from certain

motion blur datasets, we will not compare with this

method later.

None of the three DIP-for-BID works [90,71,85] dis-

cussed above addresses the practicality issues around

unknown kernel size, substantial noise, and model sta-

bility. Next, we propose several crucial modifications to

SelfDeblur that tackle these issues altogether.

3 Our Method

Our method follows the double-DIP idea as formulated

in Eq. (6), and builds on the two prior works [90] and

[71] (SelfDeblur), especially the latter. In Section 3.1,

we describe six crucial ingredients of our method, and

argue why they are necessary for the success. We then

present our whole algorithm pipeline in Section 3.2.
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Fig. 5 Deblurring performance of SelfDeblur [71] and Explore [85] on blurry only (1st row), blurry and noisy (2nd row), and
noisy only (3rd row) images. The noise, if present, is Gaussian noise with σ = 0.08. The columns are the observed image
(1st column), recovery result of SelfDeblurwith exact specification of the kernel size, recovery result of SelfDeblur with over
specification of the kernel size, and recovery result of Explorewith over specification of the kernel size, respectively. Note that
the pretrained models from Explore allow only a fixed kernel size 64× 64.

3.1 Crucial ingredients

3.1.1 Overspecifying the size of k

As we discussed in Section 2.2, most SOTA single-instance

methods are evaluated on synthetic datasets, such as

[46] and [44], where reasonably tight upper bounds of

kernel sizes are available. However, on more realistic

datasets such as [62,61,72] and particularly in real-

world applications, no such tight bounds are available.

In general, recovering k is not possible when the

kernel size is underspecified. In fact, recovery of x is

also not possible in this situation; consider the following

argument for 1D cases.

Example 1 Assume that k ∈ R
3, x ∈ R

5, and y ∈ R
5

due to truncation. So

(9) y = T (k ∗ x) =

⎡⎢⎢⎢⎢⎣
x2 x1

x3 x2 x1

x4 x3 x2

x5 x4 x3

x5 x4

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Mx

⎡⎣k1k2
k3

⎤⎦ .

Now, suppose that the kernel size is specified as 2 and

also x is correctly recovered with a kernel estimate

k′ ∈ R
2. Then, depending on the convention of the

truncation, one of following products

(10)

⎡⎢⎢⎢⎢⎣
x1

x2 x1

x3 x2

x4 x3

x5 x4

⎤⎥⎥⎥⎥⎦
[
k′1
k′2

]
or

⎡⎢⎢⎢⎢⎣
x2 x1

x3 x2

x4 x3

x5 x4

x5

⎤⎥⎥⎥⎥⎦
[
k′1
k′2

]
.

should reproduce y. But for generic x, the matrixMx is

column full-rank and hence y lies in the 3-dimensional

column space of Mx, i.e., col(Mx). Both products in

Eq. (10) can fail to reproduce y, as they produce points

in 2-dimensional subspaces of col(Mx) only. Due to the

contradiction, recovery of x is generally not possible

with the length-2 kernel specification.

Indeed, as shown in Fig. 6, when the kernel is signifi-

cantly under-specified, the estimated kernel is disparate

from the true kernel. When the under-specification is

slight, we can at best recover part of the true kernel.
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Fig. 6 Illustration of the problem with under-specification
of the kernel size. We take SelfDeblur (top group) and our
method (bottom group; details in Section 3.2) with differ-
ent kernel-size specifications (7× 7, 17× 17, 27× 27, respec-
tively), in contrast to the “true”—we estimate by locating
the nonzero support of the kernel—kernel-size 23× 21.

In both cases, the estimated images are still blurry to

different degrees.

On the other hand, Fig. 6 also shows that with slight

kernel-size overspecification, we manage to estimate the

kernel and image with reasonably good quality. In the-

ory, overspecification at least allows the possibility of

the recovering the kernel padded with zeros. However,

shortness of the kernel is also crucial in SSBD. Intu-

itively, when overspecification is substantial, there may

be a fundamental identifiability issue, i.e., it is likely

that y = T (k ∗ x) = T (k′ ∗ x′) for a k′ that is sub-

stantially larger in size than k, where T is the trunca-

tion operator defined in Eq. (2). So the question is what

level of overspecification is safe: small enough to avoid

the potential identifiability issue, while large enough to

allow typical blur kernels.

Regarding the identifiability of SSBD with the model

y = k ∗ z where z is sparse with respect to the canon-

ical basis, [15] presents a strong negative result: for all

nk, nz ≥ 5, there always exist non-identifiable pairs

for any sparsity pattern assumed on z (distilled from

their Section III.B and Theorem 2); [16] provides a

more quantitative version of the result (Theorem 3).

Unfortunately, it remains open up to date if these non-

Fig. 7 Cumulative distribution function (CDF) of pixel-
wise gradient norms over typical natural images. This is esti-
mated from 234 images randomly sampled from the RealBlur
dataset [72]. For each image, we obtain the gradient map by
convolving the image with the standard Sobel filter. After
calculating the pixel-wise �2 norms, we normalize these val-
ues into [0, 1] by dividing using the largest value and then
estimate the CDF. The blue curve is the mean CDF and the
shallow region indicates the standard deviation over the 234
images.

identifiable cases are rare events3. Nonetheless, all exist-

ing identifiability results based on other assumptions on

k and z (particularly subspace-constrained and subspace-

sparse assumptions as in [53,35]) roughly state that

(11) DoF(y) ≥ DoF(k) + DoF(z)

is the identifiability limit, where DoF stands for degrees

of freedom. For SSBD, this can be mapped to4

(12) SIZE(y) ≥ SIZE(k) + NNZ(z),

where NNZ denotes the number of non-zeros. For BID,

∇x is assumed to be sparse, we thus have

(13) SIZE(y) ≥ SIZE(k) + NNZ(|∇x|),

where |∇x| denotes the element-wise gradient magni-

tude for image x. So Eq. (13) tells us that a reasonable

upper bound for kernel size depends on the typical spar-

sity level of gradient norms of natural images that we

deal with in BID.

Fig. 7 provides the mean cumulative distribution

function estimated over a subset of natural images from

the RealBlur dataset [72]. On average, 80% of the gra-

dient norms are below 5% of the largest gradient norm,

and 50% below 1% of the largest gradient norm. So if

3 In particular, if they form a measure-zero set.
4 The result in Eq. (11) assumes a circular convolution

model: y = a� z, but it is well known that the linear convo-
lution can be written as circular convolution by appropriate
zero-padding to the two convolving components.
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we set 1% as the cutoff threshold, the numerical spar-

sity level of |∇x| is below 0.5, i.e., no more than half of

the pixel values are nonzero after the cutoff. Thus, we

over-specify the size of k as half of the size of y in both

directions. This is a safe choice: if we allow extremely

“thin” images and kernels consisting of single columns

only, this still allows recovery. For general rectangular

images and kernels, we could be slightly more aggres-

sive in the over-specification. As far as we are aware,

our setting represents the first time that the kernel size

has been set in this “aggressive” regime.

3.1.2 Overspecifying the size of x

Suppose that k ∈ R
nk×mk and y ∈ R

ny×my . By the

truncated linear convolution model of Eq. (2) (illus-

trated in Fig. 8), the part of x that can contribute to

the values of y has a size of

(14) (nk + ny − 1)× (mk +my − 1),

which is the appropriate size that we should specify

for x. Physically, underspecification, e.g., specifying the

size of x identical to that of y is likely to lead to recov-

ery failures, as illustrated in Figs. 8 and 9. While the

Fig. 8 Illustration of the truncated linear convolution, and
the necessity of appropriately specifying the size of x. The
black dashed box delineates the actual field of view (FOV) of
the camera; the left column is the clean image, and the right
the blurry image due to the horizontal S-shaped blur kernel.
Note that inside the enlarged window of the blurry image,
there are “ghost” branches from outside the FOV. Hence, if
we specify the size of x exactly as the FOV, we are not able
to recovery the clean scene inside the FOV due to the “ghost”
visual components near the four boundaries.

majority of previous works follow Eq. (14) in specifying

the size of x, e.g., [78], [67], [19], and SelfDeblur [71],

a small number of them set the size of x same as that

of y, e.g., [95]) and Explore [85]. We follow Eq. (14) in

our setting.

However, we do not know nk and mk exactly. By

our overspecification strategy for k described in Sec-

tion 3.1.1, the actual size we use, i.e., � 1
2ny
 × � 1

2my
,

Fig. 9 Illustration of the necessity of overspecifying the size
of x. We take SelfDeblur (top group) and our method (bottom
group; details in Section 3.2). The kernel size is specified as
17 × 17, slightly larger than the actual size 15 × 11 for both
methods. In the over-specified cases, the size of x is specified
as (nk + ny − 1) × (mk + my − 1). In the exactly-specified
cases, the size of x is specified as ny × my. Both methods
return reasonable kernel and image estimates when the size
of x is overspecified, and both produce estimates with visible
artifacts when the size of x is exactly-specified—the artifacts
by SelfDeblur are significant.

can be substantially larger than nk × mk. So the size

we specify for x now becomes

(15) (�1
2
ny
+ ny − 1)× (�1

2
my
+my − 1).

The simultaneous overspecification of k and x causes

another problem: the bounded shift effect.

Recall that if k and x are 1-D infinite sequences,

k ∗ x =
(
1
αk−τ

)
∗ (αxτ ) for all α �= 0 and τ ∈ Z. In

other words, there are both scale and shift ambiguities

if we want to recover k and x from y = k ∗ x. There

are similar ambiguities for 2-D k and x for BID. With

the truncated convolution model of Eq. (2) on finite se-

quences, we do not have the shift ambiguity if the size

of either k or x is exactly-specified. But, when both

sizes are over-specified as we propose here, we expect

the bounded shift ambiguity, as shown in Fig. 10: even

if we successfully recover k and x, their contents are
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Fig. 10 Illustration of the bounded shift effect (top group),
and the issue caused by central cropping as implemented
in SelfDeblur (bottom group). Due to the simultaneous over-
specification of the kernel and image sizes, the kernel and the
image contents (i.e., the nonzero parts) can shift in opposite
directions in R

2—so long as they do not shift outside the
boundaries, that leads to equivalent (k,x) pairs to produce
the same blurry image y. Due to the uncertainty of the loca-
tions of kernel and image contents, central cropping (which
is used in SelfDeblur) may include estimation noise from the
background, as indicated by the red cropping boxes.

embedded, not necessarily centered, in the larger back-

ground regions that we overspecify.

So we need a post-processing step to locate the con-

tents of k and x after we obtain the overspecified ver-

sions of both; we propose an effective post-processing

step in Section 3.1.6. We note that SelfDeblur uses the

same (ny + nk − 1) × (my +mk − 1) rule as ours to

overspecify the size of x, but their nk × mk is close

to the true kernel size as they mostly evaluate only on

synthetic data. Thus, the bounded shift ambiguity is

not quite visible, and they simply centrally crop x to

obtain the final estimated image. Once we move to real-

world images where substantial overspecification of the

kernel size is unavoidable, the central cropping strategy

may cut out part of the image content augmented with

non-physical estimation noise, as we show in Fig. 10.

3.1.3 The loss and regularizers

As summarized in Eq. (7), SelfDeblur uses the stan-

dard MSE loss � and TV regularization, i.e., R(x) =

‖∇xGθx(zx)‖1. Here, we propose changing both the

loss and the regularizer to make the method effective

and robust even in the presence of substantial noise that

may be beyond Gaussian.

For the loss, we switch to the famous Huber loss [30]

(16) �Huber,δ(u) =

{
1
2u

2 |u| ≤ δ,

δ
(
|u| − 1

2δ
)

otherwise.

The Huber loss penalizes less of large values compared

to the MSE, and hence in regression problems the over-

all loss becomes less dominated by large errors. This

implies that the regression models estimated from Hu-

ber loss minimization be less sensitive to outlying data

points that tend to cause large regression errors. For

BID, outlying pixels could be caused by, e.g., large noise

(e.g., shot noise) and pixel saturation. This choice en-

ables our method to work beyond the regime of low-

level Gaussian noise that the majority of previous works,

including SelfDeblur, have focused on.

Fig. 11 Landscapes of different surrogates for the �0 func-
tion on R

2. The normalized metrics �p/�2 are uniformly closer
to �0 than their unnormalized counterparts—�p norms where
p ∈ (0, 1]. The approximation of �p/�2 to �0 becomes increas-
ingly sharper as p goes down to 0.

For the regularizer, we choose the �1/�2 version

(17) R(x) =
‖∇xGθx(zx)‖1
‖∇xGθx(zx)‖2

for three reasons/benefits: 1) scaling invariance and

perturbation robustness. To encode the sparsity prior

on ∇x, a natural choice is the �0 function, which is

scale-invariant but sensitive to perturbations. �1 is a

popular surrogate for �0 and robust to perturbations,
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Table 1 Performance of �1/�2 vs �1 as regularization with
the optimal regularization parameter λx’s. We take all test
cases from the Levin dataset, and for each image, we search
for the best λx (in terms of best peak PSNR) over the selec-
tions: 1, 5e−1, 2e−1, 1e−1, 5e−2, 2e−2, 1e−2, 5e−3, 2e−3,
1e−3, 5e−4, 2e−4, 1e−4, 5e−5, 2e−5, 1e−5 for �1/�2 and �1
regularizers, respectively. We report the mean peak PNSRs
and mean λx’s (and the standard deviations inside parenthe-
ses) over the whole dataset for both low-level (σ = 1e−3) and
high-level (σ = 5e−2) Gaussian noise.

Low Level High Level
PSNR λ PSNR λ

�1/�2 32.64 (0.69) 0.0001 (0.018) 27.74 (0.23) 0.0002 (0.0019)

�1 31.12 (0.52) 0.002 (0.07) 24.34 (0.78) 0.02 (0.10)

Fig. 12 Illustration of the benefit of �1/�2 over �1 in avoid-
ing trivial solutions in the high-noise regime (Gaussian noise
with σ = 0.1). Left: blurry and noisy images with their corre-
sponding kernels; Right-Top: recovered images and kernels
with �1 regularization;Right-Bottom: recovered images and
kernels with �1/�2 regularization. The �1 regularization leads
to single-blob kernel estimates that resemble the trivial δ
function, and the estimated images are also similar to the
original blurry and noisy images. In contrast, the recovered
images from the �1/�2 regularization are much sharper.

but is scale equivariant. �1/�2 is scale-invariant and ro-

bust to small perturbations. Fig. 11 visualizes the dif-

ferences between these functions; 2) insensitivity of the

estimation performance to the regularization parameter

λx. Empirically, we find that with �1/�2 regularizer we

can fix the λx level to obtain good performance across

low- and high-level Gaussian noise, whereas the �1 reg-

ularizer requires setting λx to different orders of magni-

tude across different noise levels for good performance.

Moreover, �1/�2 regularization leads to consistently su-

perior performance. Details are included in Table 1; and

3) avoiding trivial solutions. As reviewed in Section 2.2,

the original motivation of replacing the �1 with �1/�2 is

to avoid the trivial solution k = δ when using the sim-

plex normalization on k [39]. Although the simplex nor-

malization is still used in SelfDeblur, the “double-DIP”

parametrization together with gradient descent can po-

tentially impose additional structural biases. So, a pri-

ori, it is unclear if we still need to worry about finding

the trivial solution. Fig. 12 shows this concern remains:

when the blurry images are also substantially noisy, the

�1 regularizer tends to produce single-blob estimates

that resemble finite-supported δ functions coupled with

blurry image estimates. In contrast, the �1/�2 regular-

izer leads to much cleaner images, and also kernels that

at least capture certain aspects of the groundtruth ker-

nels.

3.1.4 The DIP models

As discussed around Eq. (6) and detailed in the DNN

choices in Eqs. (7) and (8), the DIP models to parame-

terize k and x should encode the right structural priors

for them and reflect the asymmetry between k and x.

Same as SelfDeblur, we choose a convolutional U-Net

Gθ for x. For k, we choose the sinusoidal representa-

tion networks (SIREN) [77] over the MLP architecture

used in SelfDeblur.
Same as DIP, SIREN also parametrizes visual ob-

jects using DNNs. Unlike DIP where the DNN outputs

the visual object, in SIREN the DNN represents the

visual object itself. For example, SIREN models a con-

tinuous grayscale image as I : [0, 1]2 �→ R, i.e., a real-

valued function on the compact domain [0, 1]2 ⊂ R
2,

and then produces a finite-resolution version of I via

discretization. The DNN in SIREN is a modified MLP

architecture that takes two coordinate inputs and re-

turns a single value (for grayscale image) or three values

(for RGB images).

Practical blur kernels can have substantial high-

frequent components in the Fourier domain, e.g., most

motion blur kernels that consist of convoluted curves

(see Fig. 3), and narrow Gaussian-shaped defocus ker-

nels. The reason for choosing SIREN over DIP to rep-

resent k is that SIREN and similar coordinate encod-

ing networks are empirically observed to learn high-

frequency components of visual objects better than DIP

[77,82]; see also Fig. 13, where we show quantitatively

that on two simplified kernel estimation problems, SIREN

allows recovering all frequency bands, particularly the

high frequency band, of the true kernel much more effi-

ciently and reliably than DIP with the default encoder-

decoder (dubbed as DIP) and with the MLP archi-

6 We note in passing that the reason we do not use FBC
directly is that it may be misleading: the correspondence
ratio as they define it can be larger than 1, so in princi-
ple the average approaching 1 does not imply that recov-
ery is good. When checking their code (https://github.com/
shizenglin/Measure-and-Control-Spectral-Bias), we find
that they actually truncate values greater than 1, which could
make the metric more misleading.
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Fig. 13 Evolution of DIP, DIP-MLP, and SIREN representation of kernels during kernel estimation. Top: simple regression

of a motion blur kernel, i.e., min
̂k ‖k− ̂k‖22 where ̂k is the estimated kernel represented by each of the three models; Bottom:

non-blind kernel estimation, i.e., min
̂k ‖y − ̂k ∗ x‖22 where again ̂k is the estimated kernel represented by each of the three

models, and y and x are known. To evaluate the progress of each setting, we calculate the frequency band error (FBE), inspired
by the frequency band correspondence (FBC) in [75]6: For each setting, we calculate the point-wise relative estimation error

over the Fourier domain |F(k)−F(̂k)| /|F(k)| , and then divide the Fourier frequencies into five bands radially (the same
division used in [75]) and compute the per-band average. We term this metric frequency band error (FBE), and plot the
evolution of the FBEs of all five frequency bands against the optimization iteration. It is evident that in both kernel estimation
settings, SIREN recovers all frequency bands much faster and reliably than DIP and DIP-MLP.

tecture (dubbed as DIP-MLP) for Gθ. When we plug

SIREN into BID, the DIP (for x)+SIREN (for k) model

combination easily outperforms other combinations, i.e.,

DIP+DIP (as in [90]) and DIP+DIP-MLP (as in Self-
Deblur), especially when substantial noise is present, as

shown in Fig. 14. Moreover, we also observe the bene-

fit of SIREN in terms of improving the model stability:

Fig. 15 shows that when the image is only contaminated

by high noise, the DIP+SIREN combination tends to

return a sharper image estimate than that of DIP+DIP-

MLP.

3.1.5 Early stopping (ES)

Besides the three common practicality issues for BID

that we have addressed so far, there is one more spe-

cific to the double-DIP approach: overfitting. As shown

in Fig. 16, the estimation quality (measured by PSNR

with respect to the groundtruth image x) of SelfDeblur
first climbs to a peak and then degrades as the iteration

goes on.

To understand what happens here, we can think

about the double-DIP loss itself:

(18) �(y, Gθk
(zk) ∗Gθx(zx))

from Eq. (6). In practice, the image y is both blurry and

noisy, and the DIP models Gθk
(zk) and Gθx(zx) are

substantially overparametrized. So if we perform global

optimization, y = Gθk
(zk) ∗Gθx(zx) for typical losses,

such as MSE. Thus, the final Gθx(zx) likely accounts

for noise also besides the desired image content, which

leads to the final quality degradation. The bell-shaped

quality curve is explained by the implicit bias of first-

order optimization methods used to perform the loss

minimization: over-parametrized DNN models trained

with first-order methods tend to learn structured visual

contents much faster than learn unstructured noise; see

[28] and [27] for complete theories on simplified mod-

els. The previous double-DIP-based works [90], SelfDe-
blur [71], Explore [85] do not address this issue, as they

work with negligible noise levels that avoid the overfit-

ting. To deal with practical noise that can be substan-

tial, we need to address it in this paper.
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Fig. 14 Performance of different model combinations for
(k,x). Top: with low Gaussian noise (σ = 0.001); Bottom:
with high Gaussian noise (σ = 0.05). Our combination, DIP
(for x) + SIREN (for k), leads to more faithful kernel and
image estimation in both low- and high-noise regimes that
DIP+DIP (as in [90]) and DIP+DIP-MLP (as in SelfDeblur).
For fair comparison, we only change the model combination
and leave all other settings as our default.

Fig. 15 Performance of the DIP+DIP-MLP (as in Self-
Deblur) and DIP+SIREN (ours) model combinations for a
noisy image (Gaussian with σ = 0.1) without blur. The
DIP+SIREN combination leads to sharper estimation of the
image compared to DIP+DIP-MLP. For fair comparison, we
only change the model combination and leave all other set-
tings as our default.

To get a good reconstruction, we can either con-

trol the DNN capacities by proper regularization, or

stop the iteration early around the peak performance—

early stopping (ES); see our prior works [50] and [89]

for summaries of related work. We have shown in the

couple of papers that the regularization strategy suf-

Fig. 16 Illustration of the overfitting issue of SelfDeblurwith
the setting in (7). The estimation quality of x first climbs to
a peak and then plunges due to overfitting to the noise. The
early stopping (ES) method for DIP developed in our prior
paper [89] can successfully detect stopping points that lead
to near-peak performance.

Fig. 17 PSNR curves of our method on (k,x) reconstruc-
tion with different regularization parameters (Gaussian noise
with σ = 0.05). Overfitting is persistent across the different
regularization levels. Moreover, the peak iterations of k and
x curves for each λ are roughly equationed, and so we only
use the x curves for ES detection.

fers from serious practicality issues; Fig. 17 shows that

overfitting is persistent across different levels of regu-

larization (with our choice of �1/�2 regularizer as de-

tailed above). So, we advocate ES-based solution in-

stead, and adopt the windowed-moving-variance-based

ES (WMV-ES) method developed in [89] that proves

effective and lightweight for DIP and its variants on

numerous application scenarios. As the name suggests,

WMV-ES calculates the windowed moving variance curve

of the intermediate reconstructions, and detects the

first major valley of the WMV curve as the recom-

mended ES point. For our purpose, we observe that the

k and x PSNR curves are often automatically “synchro-

nized” and reach the peaks roughly around the same

iteration. Thus, we only keep track of reconstructed im-

ages, not the kernels. Fig. 16 shows this simple method

can effectively detect a near-peak stopping point with

little loss of the reconstruction quality.
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3.1.6 Post-processing to locate x̂

As discussed in Section 3.1.2 and illustrated in Fig. 10,

the simultaneous overspecification of the sizes of k and

x leads to the bounded shift effect on k and x, and

hence the estimated k and x may not be centered. So

we need an algorithm to automatically locate the esti-

mated image x̂, assumed of the same size as y. Once

we can locate x̂ and thereof estimate the shift from the

center, we can use shift-symmetry between k and x to

locate k̂ also if desired.

To locate x̂, we propose a simple sliding-window

strategy: we use the noisy and blurry image y as a tem-

plate, and slide it across the output, overspecified im-

age from Gθx . The similarity of each of windowed patch

from Gθx and y is calculated using structural similar-

ity index measure (SSIM) to emphasize the perceptual

nearness, and the patch with the largest SSIM value is

eventually extracted as x̂.

3.2 Our algorithm pipeline

Algorithm 1 BID with unknown kernel size and sub-

stantial noise (uniform kernel)

Input: blurry and noisy image y, kernel size nk × mk (de-
fault: �ny/2�×�my/2�), random seed zx for x, randomly

initialized network weights θ
(0)
k and θ

(0)
x , optimal image

estimate x∗ = Gθ(0)
x

(zx), regularization parameter λx,

iteration index i = 1, WMV-ES window size W = 100,
WMV-ES patience number P = 200 (high noise) and
P = 500 (low noise), WMV-ES empty queue Q, WMV-
ES VARmin = ∞ (VAR: variance)

Output: estimated image x̂
1: while not stopped do
2: take an ADAM step to optimize Eq. (19) and obtain

θ
(i)
k , θ

(i)
x , and x(i) = Gθ(i)

x
(zx)

3: push x(i) to Q, pop Q if |Q| > W
4: if |Q| = W then
5: compute VAR of elements inside Q
6: if VAR < VARmin then
7: VARmin ← VAR, x∗ ← x(i)

8: end if
9: end if
10: if VARmin does not decrease over P iterations then
11: exit and return x∗

12: end if
13: i = i+ 1
14: end while
15: extract x̂ of size ny × my from x∗ using the sliding-

window method (Section 3.1.6)

In summary, given the blurry and noisy image y ∈
R

ny×my , we specify the kernel size as nk×mk = �ny/2
×
�my/2
 by default when the kernel size is unknown

(Section 3.1.1)—which concerns most practical scenar-

ios, and as given values when an estimate is available.

According to the property of linear convolution, we set

the size of the image x as (ny+nk−1)×(my+mk−1)

(Section 3.1.2). We choose � as the Huber loss (with

δ = 0.05), and the �1/�2 regularizer to promote spar-

sity in the gradient domain of the estimated image (Sec-

tion 3.1.3). Moreover, we choose the DIP model for the

image, and the SIREN model for the kernel. In con-

trast to the key optimization objective of SelfDeblur as

summarized in Eq. (7), our method aims to solve

(19)

min
θk,θx

�Huber(y, (D ◦Kθk
) ∗Gθx(zx))

+ λx
‖∇xGθx(zx)‖1
‖∇xGθx(zx)‖2

,

Kθk
: 2-layer MLP, 2 coordinate inputs,

1 output with sigmoid activation

D: discretization operator

Gθx : conv. U-Net, sigmoid final activation

where for the MLP model Kθk
: R2 �→ R represents the

kernel k as a continuous function, and D denotes the

discretization process that produces a finite-resolution

kernel (Section 3.1.4). The overfitting issue, especially

when there is substantial noise, is handled by theWMV-

ES method described in Section 3.1.5, and bounded

shift effect as described in Section 3.1.2 is handled by

the sliding-window-based detection method detailed in

Section 3.1.6. The complete BID pipeline is summa-

rized in Algorithm 1. Fig. 18 and Fig. 19 visualize the

DIP and SIREN models that we use for our method

throughout the paper.

4 Experiments

In this section, we first compare our method with 5

SOTA single-instance BID methods on synthetic blurry

and noisy images (Section 4.2). We perform quantita-

tive evaluations of all these methods in terms of their

stability to: 1) kernel-size overspecification, 2) substan-

tial noise, and 3) model “overspecification”, i.e., BID

methods applied to image with noise only, correspond-

ing to the three major practicality issues that we pin-

point in Section 1. Once we confirm the superiority of

our method on the synthetic data7, we move to real-

world datasets, and benchmark our method against Self-
Deblur and 3 representative SOTA data-driven BID meth-

ods (Section 4.3).

7 The existing synthetic BID datasets are too small to sup-
port training data-driven methods.
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Fig. 18 The default network architectures of the DIP model
used in our method. Details inside the blocks are as fol-
lows. Downsample Block: convolution → downsample →
batchnorm → leakyReLU → convolution → batchnorm →
leakyReLU; Upsample Block: batchnorm → convolution
→ batchnorm → leakyReLU → convolution → batchnorm →
leakyReLU → upsample; Skip Block: convolution → batch-
norm → leakyReLU.

Fig. 19 The default network architectures of the SIREN
model used in our method.

4.1 Experiment setup

Training details for our method We use PyTorch to

implement our method. We optimize the objective in

Eq. (19) using the ADAM optimizer, with initial learn-

ing rates (LRs) 1e−2 for θx and 1e−4 for θk on syn-

thetic data and 1e−3 for θx and 1e−5 for θk on real-

world data. The disparate LRs allow the image esti-

mate to update relatively more rapidly that the ker-

nel estimate. All other parameters are as defaulted in

torch.optim.Adam. We use a predefined LR schedule

(using MultiStepLR in pytorch): both LRs decay by a

factor of γ = 0.5 once the iteration reaches any of the

[2000, 3000, 5000, 8000] milestones. The maximum num-

ber of iterations is set as 10, 000. By default, we use our

WMV-ES to select the final estimates of k and x. For

all other settings, we strictly follow what are stated in

Algorithm 1 unless otherwise declared.

Synthetic and real-world datasets For synthetic datasets,

we choose the popular datasets released by [46] (dubbed

as LEVIN118) and [44] (dubbed as LAI169), respectively.

Blurry images are directly synthesized following Eq. (2)

(without noise). Since groundtruth images and kernels

are known in both datasets, we can explicitly control

the level of kernel over-specification and the type and

level of the noise. Moreover, we can also synthesize

noise-only images to test the model stability. So LEVIN11

and LAI16 are ideal for us to evaluate and compare

BID methods on all three kinds of stability that we

care about. LEVIN11 contains 4 grayscale images of size

256×256 and 8 different kernels with size ranging from

13× 13 to 27× 27, leading to 32 blurry images. LAI16

has 25 RGB natural images of size around 1000 × 700

and 4 kernels with larger sizes than LEVIN11: 31 × 31,

51 × 51, 53 × 53, 75 × 75, respectively, leading to 100

blurry images.10 For both datasets, we use all the im-

ages in our subsequent experiments.

For real-world datasets, we take the NTIRE2020 [62]11

and the RealBlur [72]12 dataset. The blurry images

in NTIRE2020 are temporal averaging of consecutive

frames from video sequences captured by high-speed

cameras, totaling 24000 and 3000 blurry images in the

training and validation sets, respectively13. Both cam-

era shakes and object motions are involved, and tem-

poral averaging emulates the blurring process due to

temporal integration during exposure [59]. Since the

exposure time is very short to ensure the high frame

rate, NTIRE2020 only covers well-lit scenes. In contrast,

RealBlur emphasizes low-light environments that of-

ten involve a long exposure time and hence substan-

8 Available at https://webee.technion.ac.il/people/

anat.levin/papers/LevinEtalCVPR09Data.rar
9 Available at http://vllab.ucmerced.edu/wlai24/

cvpr16_deblur_study/
10 LAI16 has 4 trajectories to synthesize non-uniform mo-
tion blur also, which we do not consider in this paper. More-
over, it also includes 100 real-world blurry images without
groundtruth kernels.
11 Available at (registration needed to download
the dataset): https://competitions.codalab.org/

competitions/22233#learn_the_details. We sus-
pect that this is a superset of the REDS (RE-
alistic and Dynamic Scenes) dataset (available at
https://seungjunnah.github.io/Datasets/reds.html),
at least with the same generation procedure as that of
REDS.
12 Available at: http://cg.postech.ac.kr/research/

realblur/
13 NTIRE2020 is developed for data-driven approaches that
require an extensive training set.
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tial blur. It captures sharp-blurry image pairs of static

scenes with a customized dual-camera system, and only

involves camera shakes as the source of relative motions.

In total, RealBlur contains 4556 pairs of sharp-blurry

image pairs, covering 232 low-light static scenes. For

our experiments, we do not use the entire datasets but

instead focus on 125 selected cases that reflect the diffi-

culty and diversity of real-world BID; see Section 4.3.1

for details.

Evaluation metrics Since we have the groundtruth clean

images for both the synthetic and real-world data, we

quantify and compare the performance of all selected

BID methods using reference-based image quality as-

sessment metrics. Besides the standard PSNR (peak

signal-to-noise ratio) and SSIM (similarity structural

index metric) metrics, we also take the information-

theoretic VIF (visual information fidelity [74]) and DL-

based metric LPIPS (learned perceptual image patch

similarity, [102]) that have shown good correlation with

human perception of image quality. We report all four

metrics in all our quantitative results below.

Model size and speed For our method, the total num-

ber of parameters is about 2.3 million, and on average,

it takes about 10 minutes (on an Nvidia V100 GPU) to

reconstruct a sharp image of size 1000 × 1000. SelfDe-
blur gets a similar number of parameters and is slightly

faster (∼ 8 minutes). In this paper, we prioritize quality

over speed, and hence we do not perform a systematic

benchmark of speed, especially with respect to data-

driven methods, for which inference only takes a single

forward pass. Our recent work [49] addresses the speed

issue of DIP; we leave the potential integration as future

work.

4.2 Results on synthetic datasets

Among single-instance methods, we pick [78] (SUN1314)

that is among the top performing methods according

to the 2016 survey paper [44], and [67] (PAN1615) that

introduces the dark channel prior to BID and has been

popular since 2016. We also select [19] (DONG1716) which

is a SOTA method that handles pixel corruptions, and

[76] (SY1917) among the first single-instance BID works

14 Code available at: http://cs.brown.edu/~lbsun/

deblur2013/deblur2013iccp.html
15 Code available at: https://jspan.github.io/projects/
dark-channel-deblur/index.html
16 Code available at: https://www.dropbox.com/s/

qmxkkwgnmuwrfoj/code_iccv2017_outlier.zip?dl=0
17 Code available at: https://github.com/lisiyaoATbnu/

low_rank_kernel

Fig. 20 Comparison of the performance of the 6 selected
single-instance BID methods on LEVIN11 with various levels
of kernel-size overspecification. For PSNR, SSIM, and VIF,
higher the better. For LPIPS, lower the better. The dashed
lines indicate the performance baselines where the blurry im-
age y and the groundtruth image x are directly compared.

Fig. 21 Comparison of the performance of the 6 selected
single-instance BID methods on LAI16 with various levels
of kernel-size overspecification. For PSNR, SSIM, and VIF,
higher the better. For LPIPS, lower the better. The dashed
lines indicate the performance baselines where the blurry im-
age y and the groundtruth image x are directly compared.

addressing unknown kernel sizes. SelfDeblur 18 [71] in-

spires our method and hence is the main competitor.

Together with our methods, all of the 6 methods target

the uniform setting in Eq. (1).

18 Code available at: https://github.com/csdwren/

SelfDeblur
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We strive to make the comparison fair while high-

lighting methods that require no heavy hyperparameter

tuning—in practice, we never know the exact level of

overspecification or type/level of noise. So we always

use the same set of hyperparameters for each method.

SUN13 and PAN16 are not designed to handle kernel-

size overspecification and substantial noise; we directly

use their default hyperparameters as it is unclear how

to finetune them to optimize the performance in these

novel scenarios. SY19 allows kernel-size overspecifica-

tion and provides a set of hyperparameters for twice

kernel-size overspecification. We follow their recommen-

dation for twice overspecification, and search and select

an optimal set of hyperparameters over a grid beyond

twice overspecification. For DONG17 that handles sub-

stantial noise and pixel outliers, we use their default

hyperparameter setting that is claimed to be general

over different datasets. For SelfDeblur, we use their de-

fault setting, except that λx set as λx = 1e−5 instead

of their default λx = 1e−6. This is because we observe

that larger λx is needed to optimize the performance of

SelfDeblur as the noise level grows. For our method, we

set λx = 1e−5. All numbers that we report below are

averages over images of the respective datasets.

4.2.1 Kernel-size overspecification

We first evaluate the stability of the selected methods

under kernel-size overspecification. Since we know the

true kernel size for each instance, we divide the over-

specification into 5 levels: level 1 corresponds to the

true kernel size, level 5 corresponds to half of the im-

age size in both width and height directions—which is

the default over-specification level for our method, and

levels 2–4 are evenly distributed in between.

Figs. 20 and 21 summarize the results on LEVIN11

and LAI16, respectively. We observe that:

– When there is no kernel-size overspecification (i.e.,

level 1), SelfDeblur PAN16, and our method are among

the top three performing methods (sometimes tied

with other methods) by all metrics. This confirms

the effectiveness of double-DIP ideas for BID;

– As the overspecification level grows, the performance

of all methods degrades, but our method is sub-

stantially more stable to such overspecification than

other methods. In particular, for level-5 overspeci-

fication, while all of the other five methods become

close or even worse than the baseline performance—

where the blurry image y is directly taken to calcu-

late the metrics, our method still performs strongly

and shows considerable positive performance mar-

gins over the baseline;

– The performance of all methods becomes uniformly

lower moving from LEVIN11 to LAI16. This is es-

pecially obviously on the pixel-based metrics PSNR

and SSIM. We suspect there is mostly due to the

larger kernel sizes in LAI16 (27×27 largest in LEVIN11

vs 31×31 smallest in LEVIN11), which mess up large

areas of pixels in each location;

– SY19, the only previous single-instance method that

explicitly handles kernel-size overspecification, does

not perform well—despite our best effort to search

for an optimal set of hyperparameters. In their pa-

per [76], they have reported promising results with

twice overspecification on LEVIN11, much less ag-

gressive than our evaluation: for example, for 13×13

kernels, they have tried 26×26 overspecification, but

here we experiment with 13× 13, 42× 42, 71× 71,

100× 100, and 128× 128. We suspect that the dis-

appointing performance is due to the sensitivity of

their method to hyperparameters across different

overspecification levels.

Fig. 22 Comparison of the performance of the 6 selected
single-instance BID methods on LAI16 with low-level ad-
ditive noise: Gaussian (σ = 0.001), shot (η = 80), and im-
pulse (p = 0.01). For PSNR, SSIM, and VIF, higher the bet-
ter. For LPIPS, lower the better. The dashes lines indicate
the baseline performance where the blurry image y and the
groundtruth image x are directly compared.

4.2.2 Substantial noise

To evaluate the noise stability, we fix the kernel-size

overspecification as half of the image size in both direc-

tions (i.e., the default for our method) for all methods,

and focus on LAI16. We consider 4 types of noise that

have been considered in prior works:
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Fig. 23 Comparison of the performance of the 6 selected
single-instance BID methods on LAI16 with high-level ad-
ditive noise: Gaussian (σ = 0.05), shot (η = 40), and im-
pulse (p = 0.05). For PSNR, SSIM, and VIF, higher the bet-
ter. For LPIPS, lower the better. The dashes lines indicate
the baseline performance where the blurry image y and the
groundtruth image x are directly compared.

Fig. 24 Comparison of the performance of the 6 selected
single-instance BID methods on LAI16 with pixel saturation.
For any fixed operation point of the evaluation metric (i.e.,
the horizontal axis), the success rate is defined as the frac-
tion of images recovered at that quality or higher. For PSNR,
SSIM, and VIF, higher the better. For LPIPS, lower the bet-
ter.

– Gaussian noise: zero-mean additive Gaussian noise

with standard deviation σ = 0.001 and σ = 0.05 for

low and high noise levels, respectively;

– Impulse noise (i.e., salt-and-pepper noise): replac-

ing each pixel with probability p ∈ [0, 1] into white

(1) or black (0) pixel with half chance each. Low

and high noise levels correspond to p = 0.005 and

p = 0.08, respectively;

– Shot noise (i.e., pixel-wise independent Poisson

noise): for each pixel x ∈ [0, 1], the noisy pixel is

Poisson distributed with rate ηx, where η = 90, 25

for low and high noise levels, respectively;

– Pixel saturation: each blurry RGB image y in

LAI16 is first converted into HSV (i.e., hue-saturation-

lightness) representation yHSV with values in [0, 1],

and then the saturation channel is rescaled by a fac-

tor of 2, shifted by a factor 0.1, and then cropped

into [0, 1]. The resulting HSV representation is then

converted back to RBG representation, with all val-

ues cropped back into [0, 1]. We further add pixel-

wise zero-mean Gaussian noise with standard devi-

ation σ = 0.0001.

Figs. 22 and 23 present the results on the first three

types of noise, for the low- and high-level, respectively.

As expected, all methods perform worse when moving

from low- to high-level noise. DONG17, SelfDeblur, and
our method are the top three performing methods by all

metrics, for both low- and high-level noise. While Self-
Deblur is even worse than the trivial baseline (i.e., when

no BID method is applied) by LPIPS, both DONG17 and

ours always outperform the baseline—both use robust

losses19 that are less sensitive to large errors compared

to the standard MSE loss. Our method is the top per-

former and always win the second best, i.e., DONG17, by

large margins by all metrics.

We observe similar performance trends of these meth-

ods in terms of handling pixel saturation, from Fig. 24:

SelfDeblur, DONG17, and ours are the top three methods,

with our method outperforming the other two by con-

siderable margins. Based on these results, we conclude

that using robust losses for BID is crucial to achieving

robustness to practical noise.

4.2.3 Model stability

To evaluate model stability, we simulate noise-only im-

ages without blurs. For each image, we randomly pick

one of the three types of high-level noise: Gaussian

(σ = 0.1), shot (η = 40), and impulse (p = 0.08), and

apply it to produce the simulated noisy image. Note

that the individual noise levels are considerably higher

than those used in Fig. 23. The reason is that we hope

to stretch the difficulty level of the test: intuitively, an

ideal BID method should tolerate more noise on a noise-

only input than on a blurry-and-noisy input. As far as

19 In DONG17, the loss consists in applying h(z) = z2/2 −
log (a+ ebz

2

)/(2b) element-wise to y − k ∗ x, where a, b > 0
and so that h(z) ≤ 0. Note that h(z) ∼ O(z2) as z → 0, and
h(z) approaches the constant 0 when z is large.
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Fig. 25 Comparison of the performance of the 6 selected
single-instance BID methods on LAI16 with high-level noise
only (no blur). DIP denotes a single-DIP model that does not
account for blur at all, i.e., knowing the image is noise-only.
The noise is randomly selected from Gaussian (σ = 0.1), shot
(η = 40), and impulse (p = 0.08) per image. For any fixed
operation point of the evaluation metric (i.e., the horizontal
axis), the success rate is defined as the fraction of images
recovered at that quality or higher. For PSNR, SSIM, and
VIF, higher the better. For LPIPS, lower the better.

we are aware, this is the first evaluation of SOTA BID

methods in terms of model stability.

The results are presented in Fig. 25. There, DIP de-

notes the single-DIP method that directly models the

noise only, i.e., by considering

min
θx

�Huber(y, Gθx(zx)) + λx
‖∇xGθx(zx)‖1
‖∇xGθx(zx)‖2

.

We use exactly the same architecture for Gθx and the

same λx as used in our method. Since this method in-

corporates the knowledge that the image has no blur, it

is not surprising it performs the best. Immediately af-

ter, it is evident that SelfDeblur and ours are the clear

winners by all metrics, and ours leads SelfDeblur by vis-

ible margins. Moreover, the performance of our method

approaches that of DIP, suggesting strong model stabil-

ity of our method. Unfortunately, although DONG17 can

tolerate substantial noise together with blur, it does

not work well when there is no blur. In fact, the es-

timated kernels of the four non-Double-DIP methods

(i.e., SUN13, SY19, PAN16, DONG17) are far from the delta

function—which is the true kernel in this case, as shown

in Fig. 26. In contrast, SelfDeblur and our method re-

cover kernels that resemble the delta function. Besides

the common sparse gradient prior on the image used by

all methods, SelfDeblur and our method also enforce the

DIP on the image. We suspect that their superior model

Fig. 26 Examples of estimated kernels of the 6 selected
single-instance BID methods on LAI16 with high-level noise
only (no blur, same setting as in Fig. 25).

stability can be attributed to the simultaneous use of

the two priors instead of only one. We reiterate that

we do not finetune the hyperparameters of any method

moving from the previous blurry-and-noisy test to the

current noise-only test: finetuning may improve certain

methods, but is deemed impractical as we often do not

have such model knowledge about real data.

4.2.4 Early stopping

As we discussed in Section 3.1.5, ES is necessary and

practical for preventing overfitting when there is sub-

stantial noise. Here, we test the WMV-ES method [89]

that we use by default, on LAI16 with low- and high-

level Gaussian noise (as defined in Section 4.2.2). Fig. 27

presents the histograms of ES gap (between the peak

performance and the detected performance by the ES

method) and the Base gap (between the peak perfor-

mance and the final performance with overfitting), us-

ing all of the four metrics. It is clear that ES is crucial to

saving the performance: without ES, the eventual over-

fitting of double-DIP to noise ruins the recovery, e.g., re-

ducing the PSNR by 3 points or more for a large portion
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Fig. 27 Detection performance of WMV-ES on LAI16. Each
plot corresponds to one metric we use, and collects the his-
togram of the ES-Gap (gap between the true peak perfor-
mance and the detected performance) and the Base-Gap (gap
between the true peak performance and the performance at
the last iteration).

of the images; with the automatic ES method WMV-

ES, we are only slightly off the peak performance—just

to be sure, without knowing the groundtruth in prac-

tice, we cannot directly stop the algorithm right at the

peak performance point. The success of WMV-ES is

evident from the clear separation of the histograms be-

tween ES Gap and Base Gap, by all of the metrics.

4.3 Results on real-world datasets

4.3.1 Competing methods and data preparation

It is clear by far that the 5 competing methods that we

worked with above are not good choices for real-world

BID, due to their sensitivity to kernel-size overspecifi-

cation and substantial noise. On the other hand, most

of the recent SOTA BID methods are data-driven in na-

ture: although they may not be generalizable as limited

by the training data, they are attractive as most recent

variants directly predict sharp images from blurry im-

ages and hence bypass the problems caused by unknown

kernel size and even inaccurate blur modeling [36]. Hence,

in this section, we stretch our method, as well as Self-
Deblur, by comparing them with 3 SOTA data-driven

methods on the SOTA NTIRE2020 and RealBlur BID

datasets.

Scale-recurrent network (SRN) [83] and GAN-based

DeblurGAN-v2 [42] are BID models trained on paired

blurry-sharp image pairs. The prediction models for

both take inspiration from the coarse-to-fine multiscale

ideas in traditional BID. In addition, DeblurGAN-v2

employs GAN-based discriminators as regularizers to

improve the deblurring quality. ZHANG20 [99] stresses

the practical difficulty in obtaining blurry-sharp train-

ing pairs (echoing the discussion of similar difficulty

in [36,100]), and derives a pipeline to learn the blur-

ring and deblurring processes from unpaired blurry and

sharp images. For the comparison below, we directly

take the pretrained models of the 3 methods 20. We

note that both SRN and DeblurGAN-v2 use the GoPro

dataset [60] as part of their training sets, and ZHANG20

builds their own blurry training set RWBI [99]. To the

best of our knowledge, NTIRE2020 and RealBlur have

no overlap with GoPro and RWBI. So we believe our eval-

uation set makes a good test for real-world generaliz-

ability of the 3 selected methods.

As alluded to above, both NTIRE2020 and RealBlur

have their own strengths and limitations: images in

NTIRE2020 may contain multiple motions, but are cap-

tured in well-lit environments; RealBlur covers many

dark scenes, but the scenes are static and relative mo-

tions are caused by camera shakes only. In preliminary

tests, we find the 3 selected data-driven methods per-

form vastly differently across images, even within the

same dataset. The dictating factors seem to include

contrast of scene depth, contrast of brightness, and the

combination thereof: different scene depths likely cor-

respond to different relative motions, especially in the

data of NTIRE2020, as well as different levels of defo-

cus blur, while relative to the bright areas, dark areas

tend to be less attended to by typical losses. Hence, we

choose both NTIRE2020 and RealBlur: the former con-

tains a good portion of images with good depth contrast

and multiple moving objects, and the latter provides

samples with good brightness and depth contrast.

We select 125 representative, visually challenging

images from the two datasets: for NTIRE 2020, we pick

the most blurry frame from each folder that contains a

sequence of consecutive frames; similarly, for RealBlur,

we pick the most blurry one from images about the

same scene. Fig. 28 gives a couple of examples to illus-

trate our selection. The 125 images are classified into

5 scenarios—25 images each: (S1) bright scene with

high depth contrast (see an example in Fig. 29); (S2)

20 SRN is available at: https://github.com/

jiangsutx/SRN-Deblur; DeblurGAN-v2 is available
at: https://github.com/VITA-Group/DeblurGANv2;
ZHANG20 is available at: https://github.com/HDCVLab/

Deblurring-by-Realistic-Blurring.
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Table 2 Quantitative comparison of deblurring results on the 125 selected real-world images. For PSNR, SSIM, and VIF,
higher the better. For LPIPS, lower the better. S1–S5 represent the 5 scenarios described in Section 4.3.1. We report in the
form of “mean (standard deviation)” (over the 125 images) for each method/metric combination. For each line, the first and
second best numbers (according to the means) are marked in RED and GREEN, respectively.

SRN DeblurGAN-v2 ZHANG20 SelfDeblur Ours

S1
PSNR 30.1 (1.159) 31.0 (1.149) 25.2 (1.188) 28.2 (1.198) 30.8 (1.168)
SSIM 0.871 (0.0679) 0.883 (0.0609) 0.793 (0.0724) 0.832 (0.0734) 0.873(0.0618)
VIF 0.784 (0.0686) 0.801 (0.0647) 0.705 (0.0705) 0.725 (0.0727) 0.796 (0.0651)

LPIPS 0.972 (0.0966) 0.827 (0.08869) 1.025 (0.104) 0.987 (0.101) 0.821 (0.0879)

S2
PSNR 27.1 (1.256) 27.4 (1.352) 23.4 (1.449) 25.9 (1.471) 28.7 (1.236)
SSIM 0.851 (0.0744) 0.859 (0.0695) 0.789 (0.0753) 0.821 (0.0758) 0.870 (0.0681)
VIF 0.772 (0.0778) 0.783 (0.0758) 0.699 (0.0787) 0.713 (0.0777) 0.781 (0.0767)

LPIPS 1.021 (0.116) 0.901 (0.0985) 1.076 (0.108) 1.001 (0.111) 0.811 (0.0947)

S3
PSNR 28.3 (1.197) 28.7 (1.139) 25.2 (1.236) 26.2 (1.227) 29.4 (1.144)
SSIM 0.866 (0.0647) 0.867 (0.0608) 0.803 (0.0658) 0.827 (0.0637) 0.872 (0.0589)
VIF 0.761 (0.0772) 0.787 (0.0727) 0.701 (0.0766) 0.731 (0.0776) 0.780 (0.0679)

LPIPS 1.008 (0.0985) 0.869 (0.0936) 1.076 (0.107) 0.985 (0.110) 0.839 (0.0911)

S4
PSNR 26.7 (1.014) 27.1 (0.985) 23.3 (1.043) 25.8 (1.055) 28.5 (0.947)
SSIM 0.849 (0.0542) 0.851 (0.0498) 0.780 (0.0567) 0.812 (0.0578) 0.861 (0.0481)
VIF 0.756 (0.0621) 0.767 (0.0592) 0.687 (0.0663) 0.721 (0.0674) 0.776 (0.0574)

LPIPS 1.015 (0.0941) 0.925 (0.0862) 1.050 (0.0927) 0.996 (0.0674) 0.893 (0.0848)

S5
PSNR 28.6 (1.352) 28.7 (1.314) 24.7 (1.410) 26.4 (1.400) 29.2 (1.284)
SSIM 0.846 (0.0754) 0.855 (0.0694) 0.781 (0.0762) 0.818 (0.0771) 0.867 (0.0674)
VIF 0.756 (0.0756) 0.771 (0.0754) 0.692 (0.0784) 0.710 (0.0793) 0.776 (0.0761)

LPIPS 1.012 (0.1093) 0.874 (0.1085) 1.065 (0.1141) 0.992 (0.1149) 0.856 (0.0945)

dark scene with high depth contrast (see an example

in Fig. 30); (S3) bright scene with low depth contrast

(see an example in Fig. 31); (S4) dark scene with low

depth contrast (see an example in Fig. 32); (S5) scene

with high depth contrast and high brightness contrast

(see an example in Fig. 33). NTIRE2020 only includes

bright scenes, and we pick 35 images from it: 25 for

S1, and 10 for S3. Then, from RealBlur, we choose 15

images to complete S3, and 25 images for each of S2,

S4, and S5, respectively. For reproducibility of our re-

sults, the IDs of the selected images can be found in

our Github repository: https://github.com/sun-umn/
Blind-Image-Deblurring.

4.3.2 Qualitative and quantitative results

Figs. 29 to 33 present 5 blurry images (Fig. 30 and

Fig. 32 are too dark to reveal enough details; we apply

histogram equalization to enhance the contrast and in-

clude them in Section 6.2), each representing one of the

5 scenarios, and the recovery results from SRN, ZHANG20,

DeblurGAN-v2, SelfDeblur, and our method. Table 2

summarizes the quantitative results over the 125 se-

lected images using the metrics: PSNR, SSIM, VIF, and

LPIPS.

Our method wins in most cases, followed by GAN-

based DeblurGAN-v2. In fact, they are the top two in

all cases. DeblurGAN-v2 leads our method on S1 by all

metrics except for LPIPS, and on S2 and S3 only by

VIF. This is likely because S1 is sampled entirely from

NTIRE2020 that consists of bright scenes only, similar

to the GoPro dataset that DeblurGAN-v2 is trained on;

only 10 out of 25 images from S3 are from NTIRE2020.

On S2, S4, and S5 where each image consists of part

of dark scenes, our method is a clear winner. This can

be explained by the emphasis of the RealBlur dataset

on dark scenes that have different distributions than

GoPro that only includes bright scenes. It is remark-

able that our method, a non-data-driven method, can

performs on par with SOTA data-driven methods on

similar data the latter are trained on, and can perform

consistently better on novel data. The performance dis-

crepancy of DeblurGAN-v2 on different scenarios again

underscores how data-driven methods can be limited

by the training data, although overall DeblurGAN-v2

indeed shows reasonable generalizability to the novel

dataset RealDeblur.

ZHANG20, the worst performer in our evaluation, is

trained on the Real-World Blurry Image (RWBI) dataset 21

collected by the same group of authors [99]. Visual in-

spection into RWBI suggests the blurry scenes are mostly

similar to those of GoPro: bright scenes, none or few

moving objects, substantial camera motions. So it is no

surprise that the original paper [99] reports encouraging

generalization performance of their pretrained model

on GoPro. By contrast, NTIRE2020 images are mostly

taken about much more complex scenes with multi-

ple moving objects plus synthetic camera motions, and

RealBlur emphasizes dark scenes. The significant dis-

21 Available at: https://drive.google.com/file/d/
1fHkPiZOvLQSc4HhT8-wA6dh0M4skpTMi/view
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Fig. 28 Illustration of image selection from NTIRE2020 (top)
and RealBlur (bottom), respectively. For images from the
same dynamic/static scene, we always select visually the most
blurry image (highlighted by red bounding boxes).

Fig. 29 Comparison of deblurring results on a bright scene
with high depth contrast

Fig. 30 Comparison of deblurring results on a dark scene
with high depth contrast
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Fig. 31 Comparison of deblurring results on a bright scene
with low depth contrast

tribution shift explains the relatively poor performance

of their pretrained model in our evaluation, as seen from

Table 2 and the visual results in Figs. 29 to 33, and un-

derscores again the generalizability issue around data-

driven methods. Note that SRN is originally trained and

tested on GoPro, and hence is subject to similar distri-

bution shift and performance drop. But, SRN is trained

on sharp-blurry image pairs, whereas ZHANG20 on un-

paired sharp and blurry images and so the input knowl-

edge is much weaker and the learning task is more chal-

lenging, explaining why SRN is stronger in performance

and comes close to DeblurGAN-v2. SelfDeblur that our

method builds on obviously lags behind. From Figs. 30

to 33, we can see obvious texture artifacts in the image

contents that SelfDeblur recovers, as well as boundary

noise (especially in Figs. 30 and 32) due to the improper

cropping used by SelfDeblur (discussed in Section 3.1.2).

Fig. 32 Comparison of deblurring results on a dark scene
with low depth contrast

4.4 Failure cases and limitations

We highlight three major factors that can cause failures:

1) substantial depth contrast that makes the uniform

model less accurate; 2) kernel size overspecification that

makes kernel estimation challenging; 3) inaccurate lo-

calization of the estimated x̂ that induces boundary

noise. Below, we include a couple of failure examples

and brief explanations resorting to these factors.

In Fig. 31, we can see strip artifacts in the win-

dow region from both SelfDeblur and our method. We

suspect that the strips are due to combined effects of

1) and 2) above. This is experimentally confirmed in

Fig. 35 below: as we reduce the kernel-size overspecifi-

cation, the strips are gone, but the recovered foreground

floor region also becomes over-smooth and misses de-

tails.

Fig. 34 shows a difficult case that fails all meth-

ods, including ours. The failure is likely due to: 1) huge

depth contrast that violates the uniform model leading

to both varying defocus and motion blurs. As is evi-
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Fig. 33 Comparison of deblurring results on a scene with
high depth contrast and high brightness contrast

dent, DeblurGAN-v2, SelfDeblur, and ours are among

the best performers, but they can only recover rea-

sonable details in the foreground and not the far-away

lights; 2) localization of the estimated x̂ specific to Self-
Deblurand ours. We can see clear spurious light spots

near the top-right corners of the reconstructions by

both methods.

4.5 Ablation study

Learning rates (for θk and θx, respectively) and the

regularization parameter λx are the two crucial groups

of hyperparameters for our method. Hence, in this ab-

lation study, we focus on these two factors, and per-

form experiments on the real-world images used in Sec-

tion 4.3. We lock all other hyperparameters to our de-

fault setting.

We lock the LR ratio for θx and θk to be 100 : 1,

and hence only specify the LR for θx when presenting

the results. Table 3 (top) includes the 6 groups of LRs

Fig. 34 Failure case: Comparison of deblurring results on a
scene with high depth contrast and high brightness contrast

Table 3 Sensitivity analysis of our method with respect to
key hyperparameters. LR: learning rate; λx: regularization
parameter for the �1/�2 regularizer. For PSNR, SSIM, and
VIF, higher the better. For LPIPS, lower the better. Default
parameters and their results are highlighted in boldface.

LR 5e−3 1e−3 5e−4 1e−4 5e−4 1e−5
PSNR 26.9 29.3 28.7 27.9 27.8 27.8
SSIM 0.774 0.869 0.828 0.813 0.793 0.790
VIF 0.691 0.781 0.735 0.725 0.716 0.709

LPIPS 0.972 0.844 0.875 0.901 0.921 0.927

λx 5e−4 1e−4 1e−5 5e−5 5e−6 1e−6
PSNR 26.3 27.7 29.3 28.3 27.7 27.2
SSIM 0.763 0.813 0.869 0.822 0.803 0.793
VIF 0.681 0.725 0.781 0.745 0.716 0.703

LPIPS 1.021 0.902 0.844 0.887 0.925 0.931
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Fig. 35 Effect of reducing the kernel-size overspecification
in our method for Fig. 31

we have tried, and the resulting performance. When

the LR is higher than 1e−2, the training fails to con-

verge properly. When we decrease the LR below 1e−2,

the perform degrades gradually. This is due to that the

small LRs entail more iterations to converge, whereas

we cap the maximum number of iterations for efficiency.

The regularization parameter λx controls the trade-

off between the data fitting and the enforcement of the

sparse gradient prior (see Eq. (19)). We also vary λx

across 6 levels, covering the 1e−4 ∼ 1e−6 range, and

summarize the results in Table 3 (bottom). We note

that we take the mean of Huber loss over all pixels for

the data fitting term, but the �1/�2 regularizer scales

roughly as O(
√
#pixels) which is around 1e3 for real-

world color images. So the base λx should be 1e−3 to

cancel out the dimension factor. Our optimal regular-

ization level 1e−5 is hence 1e−2 in the effective level.

Our method is stable when λx is on the 1e−5 level, and

degrades considerably for levels above or below 1e−5.

5 Discussion

In this paper, we have proposed crucial modifications

to the recent SelfDeblurmethod [71] for BID, and these

modifications help successfully tackle the pressing prac-

ticality issues around BID: unknown kernel size, sub-

stantial noise, and model stability. Systematic evalua-

tion of our method on both synthetic and real-world

data confirms the effectiveness of our method. Remark-

ably, although our method only assumes the simple uni-

form blur model (i.e., Eq. (1)), it performs comparably

or superior to SOTA data-driven methods on real-world

blurry images—these data-driven methods do not as-

sume explicit forward models and hence are presum-

ably much less constrained, but are limited by the ex-

pressiveness of their respective training data that are

tricky to collect.

There are multiple directions to extend and gener-

alize the current work. First, the performance of our

method on real-world data likely can be further im-

proved if we model non-uniform blur; our forthcoming

work [107] does exactly this. Second, similar to tra-

ditional BID methods that are based on iterative opti-

mization, our method is slow compared to the emerging

data-driven methods. One can possibly address this by

designing compact DIP models that allow efficient opti-

mization (see, e.g., [49]), and also by initializing the cur-

rent DIP-based method using SOTA data-driven meth-

ods. Third, in principle our method can be readily ex-

tended to blind video deblurring, although it seems that

one needs to address the increased modeling gap and

computational cost. Fourth, the principle of modeling

the object of interest by multiple DIP models or vari-

ants seems general for solving other inverse problems

(see, e.g., our recent application of this to obtain break-

through results in Fourier phase retrieval [97,108]).
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Gabrié, M.: Phase retrieval with holography and un-
trained priors: Tackling the challenges of low-photon
nanoscale imaging. arXiv preprint arXiv:2012.07386
(2020) 6

46. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.:
Understanding blind deconvolution algorithms. IEEE
Transactionson Pattern Analysis and Machine Intelli-
gence 33(12), 2354–2367 (2011). DOI 10.1109/tpami.
2011.148 1, 2, 3, 4, 5, 7, 15

47. Lewicki, M.S.: A review of methods for spike sorting: the
detection and classification of neural action potentials.
Network: Computation in Neural Systems 9(4), R53–
R78 (1998). DOI 10.1088/0954-898x 9 4 001 3, 4

48. Li, L., Pan, J., Lai, W.S., Gao, C., Sang, N., Yang, M.H.:
Learning a discriminative prior for blind image deblur-
ring. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. IEEE (2018). DOI
10.1109/cvpr.2018.00692 5

49. Li, T., Wang, H., Zhuang, Z., Sun, J.: Deep random
projector: Accelerated deep image prior. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 18176–18185 (2023)
16, 25

50. Li, T., Zhuang, Z., Liang, H., Peng, L., Wang, H., Sun,
J.: Self-validation: Early stopping for single-instance
deep generative priors. In: British Machine Vision Con-
ference (BMVC) (2021) 13

51. Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust,
and reliable blind deconvolution via nonconvex opti-
mization. Applied and Computational Harmonic Anal-
ysis 47(3), 893–934 (2019). DOI 10.1016/j.acha.2018.
01.001 4

52. Li, Y., Lee, K., Bresler, Y.: A unified framework
for identifiability analysis in bilinear inverse problems
with applications to subspace and sparsity models.
arXiv:1501.06120 (2015) 4

53. Li, Y., Lee, K., Bresler, Y.: Identifiability and stabil-
ity in blind deconvolution under minimal assumptions.
IEEE Transactions on Information Theory 63(7), 4619–
4633 (2017). DOI 10.1109/tit.2017.2689779 4, 8

54. Li, Y., Tofighi, M., Geng, J., Monga, V., Eldar, Y.C.:
Deep algorithm unrolling for blind image deblurring.
arXiv:1902.03493 (2019) 5

55. Liu, Y., Dong, W., Gong, D., Zhang, L., Shi, Q.: De-
blurring natural image using super-gaussian fields. In:
European Conference on Computer Vision (ECCV), pp.
467–484. Springer International Publishing (2018). DOI
10.1007/978-3-030-01246-5 28 4

56. Ma, X., Hill, P., Achim, A.: Unsupervised image fusion
using deep image priors. arXiv:2110.09490 (2021) 6

57. Michaeli, T., Irani, M.: Blind deblurring using in-
ternal patch recurrence. In: European Confer-
ence on Computer Vision (ECCV), pp. 783–798.
Springer International Publishing (2014). DOI 10.1007/
978-3-319-10578-9 51 4

58. Michelashvili, M., Wolf, L.: Speech denoising by
accumulating per-frequency modeling fluctuations.
arXiv:1904.07612 (2019) 3

59. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte,
R., Lee, K.M.: NTIRE 2019 challenge on video deblur-
ring and super-resolution: Dataset and study. In: 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW). IEEE (2019).
DOI 10.1109/cvprw.2019.00251 15

60. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale con-
volutional neural network for dynamic scene deblur-
ring. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE (2017). DOI
10.1109/cvpr.2017.35 20

61. Nah, S., Son, S., Lee, S., Timofte, R., Lee, K.M.: Ntire
2021 challenge on image deblurring. arXiv:2104.14854
(2021) 3, 7

62. Nah, S., Son, S., Timofte, R., Lee, K.M.: NTIRE
2020 challenge on image and video deblurring.
arXiv:2005.01244 (2020) 3, 5, 7, 15



28 Zhong Zhuang et al.

63. Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Di-
makis, A.G., Willett, R.: Deep learning techniques for
inverse problems in imaging. IEEE Journal on Selected
Areas in Information Theory 1(1), 39–56 (2020). DOI
10.1109/jsait.2020.2991563 5

64. Pan, J., Dong, J., Liu, Y., Zhang, J., Ren, J., Tang, J.,
Tai, Y.W., Yang, M.H.: Physics-based generative adver-
sarial models for image restoration and beyond. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence 43(7), 2449–2462 (2021). DOI 10.1109/tpami.
2020.2969348 5

65. Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring text
images via l0-regularized intensity and gradient prior.
In: IEEE Conference on computer vision and pattern
recognition (CVPR). IEEE (2014). DOI 10.1109/cvpr.
2014.371 4

66. Pan, J., Lin, Z., Su, Z., Yang, M.H.: Robust kernel esti-
mation with outliers handling for image deblurring. In:
IEEE Conference on computer vision and pattern recog-
nition (CVPR). IEEE (2016). DOI 10.1109/cvpr.2016.
306 3, 5

67. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind im-
age deblurring using dark channel prior. In: IEEE
Conference on computer vision and pattern recognition
(CVPR). IEEE (2016). DOI 10.1109/cvpr.2016.180 2,
4, 9, 16

68. Perrone, D., Favaro, P.: Total variation blind deconvo-
lution: The devil is in the details. In: IEEE Conference
on computer vision and pattern recognition (CVPR).
IEEE (2014). DOI 10.1109/cvpr.2014.372 4

69. Qayyum, A., Ilahi, I., Shamshad, F., Boussaid, F., Ben-
namoun, M., Qadir, J.: Untrained neural network pri-
ors for inverse imaging problems: A survey. TechRxiv
(2021). DOI 10.36227/techrxiv.14208215 3, 6

70. Ravula, S., Dimakis, A.G.: One-dimensional deep image
prior for time series inverse problems. arXiv:1904.08594
(2019) 3

71. Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.: Neu-
ral blind deconvolution using deep priors. In: IEEE
Conference on computer vision and pattern recognition
(CVPR). IEEE (2020). DOI 10.1109/cvpr42600.2020.
00340 2, 3, 6, 7, 9, 12, 16, 25

72. Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur
dataset for learning and benchmarking deblurring algo-
rithms. In: European Conference on Computer Vision
(ECCV), pp. 184–201. Springer International Publish-
ing (2020). DOI 10.1007/978-3-030-58595-2 12 2, 7, 8,
15

73. Schuler, C.J., Hirsch, M., Harmeling, S., Scholkopf, B.:
Learning to deblur. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 38(7), 1439–1451 (2016).
DOI 10.1109/tpami.2015.2481418 5

74. Sheikh, H., Bovik, A.: Image information and visual
quality. IEEE Transactions on Image Processing 15(2),
430–444 (2006). DOI 10.1109/tip.2005.859378 16

75. Shi, Z., Mettes, P., Maji, S., Snoek, C.G.M.: On measur-
ing and controlling the spectral bias of the deep image
prior. International Journal of Computer Vision 130(4),
885–908 (2022). DOI 10.1007/s11263-021-01572-7 12

76. Si-Yao, L., Ren, D., Yin, Q.: Understanding kernel size
in blind deconvolution. In: IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE
(2019). DOI 10.1109/wacv.2019.00224 3, 5, 16, 17

77. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wet-
zstein, G.: Implicit neural representations with periodic
activation functions. Advances in Neural Information
Processing Systems 33 (2020) 3, 6, 11

78. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur
kernel estimation using patch priors. In: IEEE In-
ternational Conference on Computational Photogra-
phy (ICCP). IEEE (2013). DOI 10.1109/iccphot.2013.
6528301 2, 4, 9, 16

79. Sun, Q., Donoho, D.: Convex sparse blind deconvolu-
tion. arXiv:2106.07053 (2021) 1, 3, 4

80. Szeliski, R.: Computer Vision: Algorithms and Applica-
tions, 2nd edn. Springer London (2021) 1

81. Tai, Y.W., Lin, S.: Motion-aware noise filtering for de-
blurring of noisy and blurry images. In: IEEE Con-
ference on computer vision and pattern recognition
(CVPR). IEEE (2012). DOI 10.1109/cvpr.2012.6247653
3, 5

82. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-
Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R.,
Barron, J., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains.
In: Advances in Neural Information Processing Systems
(2020) 3, 6, 11

83. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-
recurrent network for deep image deblurring. In: Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8174–8182 (2018) 2, 20

84. Tayal, K., Manekar, R., Zhuang, Z., Yang, D., Kumar,
V., Hofmann, F., Sun, J.: Phase retrieval using single-
instance deep generative prior. In: OSA Optical Sen-
sors and Sensing Congress 2021 (AIS, FTS, HISE, SEN-
SORS, ES). OSA (2021). DOI 10.1364/ais.2021.jw2a.37
6

85. Tran, P., Tran, A., Phung, Q., Hoai, M.: Explore im-
age deblurring via encoded blur kernel space. In: Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2021). DOI
10.1109/CVPR46437.2021.01178 3, 4, 6, 7, 9, 12

86. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image
prior. International Journal of Computer Vision 128(7),
1867–1888 (2020). DOI 10.1007/s11263-020-01303-4 3,
6

87. Vasu, S.: Image and video deblurring: A curated list of
resources for image and video deblurring. https://github.
com/subeeshvasu/Awesome-Deblurring (2021). URL
https://github.com/subeeshvasu/Awesome-Deblurring.
Accessed: Dec 12 2021 5

88. Vembu, S., Verdu, S., Kennedy, R., Sethares, W.: Con-
vex cost functions in blind equalization. IEEE Trans-
actions on Signal Processing 42(8), 1952–1960 (1994).
DOI 10.1109/78.301833 3, 4

89. Wang, H., Li, T., Zhuang, Z., Chen, T., Liang,
H., Sun, J.: Early stopping for deep image prior.
arXiv:2112.06074 (2021) 13, 19

90. Wang, Z., Wang, Z., Li, Q., Bilen, H.: Image decon-
volution with deep image and kernel priors. In: 2019
IEEE/CVF International Conference on Computer Vi-
sion Workshop (ICCVW). IEEE (2019). DOI 10.1109/
iccvw.2019.00127 3, 6, 12, 13

91. Wiggins, R.A.: Minimum entropy deconvolution. Geo-
exploration 16(1-2), 21–35 (1978). DOI 10.1016/
0016-7142(78)90005-4 3, 4

92. Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna,
J., Panozzo, D.: Deep geometric prior for surface recon-
struction. arXiv:1811.10943 (2019) 6

93. Wipf, D., Zhang, H.: Revisiting bayesian blind deconvo-
lution. Journal of Machine Learning Research 15(111),
3775–3814 (2014) 4



Blind Image Deblurring with Unknown Kernel Size and Substantial Noise 29

94. Xu, L., Jia, J.: Two-phase kernel estimation for robust
motion deblurring. In: European Conference on Com-
puter Vision, pp. 157–170. Springer Berlin Heidelberg
(2010). DOI 10.1007/978-3-642-15549-9 12 4

95. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse rep-
resentation for natural image deblurring. In: IEEE
Conference on computer vision and pattern recognition
(CVPR). IEEE (2013). DOI 10.1109/cvpr.2013.147 2,
4, 9

96. Yan, Y., Ren, W., Guo, Y., Wang, R., Cao, X.: Im-
age deblurring via extreme channels prior. In: IEEE
Conference on computer vision and pattern recognition
(CVPR). IEEE (2017). DOI 10.1109/cvpr.2017.738 4

97. Yang, D., Zhuang, Z., Phillips, N.W., KaySong, Zdora,
M.C., Harder, R., Cha, W., Liu, W., Barmherzig,
D.A., Sun, J., Hofmann, F.: Application of single-
instance deep generative priors for reconstruction of
highly strained gold microcrystals in bragg coherent x-
ray diffraction. In preparation (2022) 25

98. Yang, L., Ji, H.: A variational EM framework with adap-
tive edge selection for blind motion deblurring. In: IEEE
Conference on computer vision and pattern recognition
(CVPR). IEEE (2019). DOI 10.1109/cvpr.2019.01041 4

99. Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B.,
Liu, W., Li, H.: Deblurring by realistic blurring. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2737–2746 (2020)
2, 20, 21

100. Zhang, K., Ren, W., Luo, W., Lai, W.S., Stenger, B.,
Yang, M.H., Li, H.: Deep image deblurring: A survey.
International Journal of Computer Vision 130(9), 2103–
2130 (2022). DOI 10.1007/s11263-022-01633-5 3, 5, 20

101. Zhang, K., Zuo, W., Zhang, L.: Deep plug-and-play
super-resolution for arbitrary blur kernels. In: 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE (2019). DOI 10.1109/
cvpr.2019.00177 5

102. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang,
O.: The unreasonable effectiveness of deep features as a
perceptual metric (2018) 16

103. Zhang, Y., Kuo, H.W., Wright, J.: Structured local op-
tima in sparse blind deconvolution. IEEE Transactions
on Information Theory 66(1), 419–452 (2020). DOI
10.1109/tit.2019.2940657 4

104. Zhang, Y., Lau, Y., Kuo, H.W., Cheung, S., Pasupa-
thy, A., Wright, J.: On the global geometry of sphere-
constrained sparse blind deconvolution. In: IEEE Con-
ference on computer vision and pattern recognition
(CVPR). IEEE (2017). DOI 10.1109/cvpr.2017.466 4

105. Zhong, L., Cho, S., Metaxas, D., Paris, S., Wang, J.:
Handling noise in single image deblurring using direc-
tional filters. In: IEEE Conference on computer vision
and pattern recognition (CVPR). IEEE (2013). DOI
10.1109/cvpr.2013.85 3, 4, 5

106. Zhou, K.C., Horstmeyer, R.: Diffraction tomography
with a deep image prior. Optics Express 28(9), 12872
(2020). DOI 10.1364/oe.379200 6

107. Zhuang, Z., Li, T., Wang, H., Zhang, W., Sun, J.: Prac-
tical blind image deblurring with non-uniform blurs. In
preparation (2023) 25

108. Zhuang, Z., Yang, D., Hofmann, F., Barmherzig, D.,
Sun, J.: Practical phase retrieval using double deep im-
age priors. arXiv preprint arXiv:2211.00799 (2022) 6,
25

6 Appendix

6.1 List of common acronyms

Table 4 List of acronyms (in alphabetic order)

BID blind image deblurring
BD blind deconvolution
DIP deep image prior
DL deep learning
DNN deep neural network
ES early stopping
LPIPS learned perceptual image patch similarity
LR learning rate
MAP maximum a posterior
MLP multi-layer perceptron
MSE mean squared error
PSNR peak signal-to-noise ratio
SIREN sinusoidal representation networks
SOTA state-of-the-art
SSBD short-and-sparse blind deconvolution
SSIM structural similarity index measure
TV total-variation
VAR variance
VIF visual information fidelity
VIP visual inverse problem
WMV-ES windowed-moving-variance-based ES

6.2 Contrast-enhanced version of Figs. 30 and 32

To reveal more details for images in Figs. 30 and 32 that

are about extremely dark scenes, we perform histogram

equalization to enhance the contrast and display the

results as follows.
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Fig. 36 Contrast-enhanced version of Fig. 30 after histogram
equalization.

Fig. 37 Contrast-enhanced version of Fig. 32 after histogram
equalization.


