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The multiple immunity responses exhibited in the population and co-
circulating variants documented during pandemics show a high potential
to generate diverse long-term epidemiological scenarios. Transmission
variability, immune uncertainties and human behaviour are crucial features
for the predictability and implementation of effective mitigation strategies.
Nonetheless, the effects of individual health incentives on disease dynamics
are not well understood. We use a behavioural-immuno-epidemiological
model to study the joint evolution of human behaviour and epidemic
dynamics for different immunity scenarios. Our results reveal a trade-off
between the individuals’ immunity levels and the behavioural responses
produced. We find that adaptive human behaviour can avoid dynamical
resonance by avoiding large outbreaks, producing subsequent uniform
outbreaks. Our forward-looking behaviour model shows an optimal
planning horizon that minimizes the epidemic burden by balancing the
individual risk–benefit trade-off. We find that adaptive human behaviour
can compensate for differential immunity levels, equalizing the epidemic
dynamics for scenarios with diverse underlying immunity landscapes. Our
model can adequately capture complex empirical behavioural dynamics
observed during pandemics. We tested our model for different US states
during the COVID-19 pandemic. Finally, we explored extensions of our
modelling framework that incorporate the effects of lockdowns, the
emergence of a novel variant, prosocial attitudes and pandemic fatigue.

1. Introduction
Transmission, immune uncertainties and human behaviour are three key
features of infectious diseases that are crucial for the predictability and
implementation of effective mitigation strategies [1]. Recent work has
underlined the importance of transmission and immune uncertainties for
future pandemic dynamics. In particular, simple immuno-epidemiological
models revealed that the strength and duration of natural and vaccinal
immunity have the potential to produce a large range of medium- and
long-term epidemiological scenarios [2,3]. Subsequently, model extensions
were used to study potential epidemiological and evolutionary dynamics
with different vaccine dosing regimes [4], in addition to the potential
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implications of vaccine nationalism [5], and the impacts of accumulating immunity [6].
Together, immuno-epidemiological dynamics and pathogen evolution generate a number of complexities that impact

infectious disease dynamics (e.g. see [7,8]). Additionally, as seen throughout the 2009 influenza A (H1N1) pandemic, the
2014 West African Ebola virus disease (EVD) epidemic and the ongoing COVID-19 pandemic, a crucial factor that contributes
to epidemic complexity is human behaviour [9,10]. The interplay between human behaviour and epidemics, mediated by
endogenous feedback processes, is well recognized. Understanding these feedback processes and elucidating their outcomes
requires characterizing behavioural responses and the associated incentives [11–14]. Behavioural heterogeneity arises over time
and across regions, driven by socio-economic composition, cultural and political polarization, among other factors [15,16]. In
turn, behavioural heterogeneity has a crucial impact on long-term trajectories. For example, adaptive human behaviour has
been a key component in modulating transmission, and its impact has been extensively documented in multiple regions during
the ongoing pandemic [17,18]. In general, adaptive behavioural responses against infection arise due to the interdependence
between individuals’ necessity to maintain social interactions and economic productivity, while minimizing their infection risk.
Furthermore, variations in the individuals’ immune profile may modulate their infection risk, which consequently can also
induce differential behavioural responses.

Despite increasing efforts on understanding the complex repercussions of behavioural responses during epidemics,
significantly less attention has been given to modelling the fundamental challenge of disease outbreak detection. Disease
surveillance systems are critical for achieving early warning and, provide valuable time to respond to emerging biological
threats [19,20]. Disease outbreak detection represents a tipping point that triggers emergency declarations, information
dissemination, adaptive behavioural responses and deployment of public health interventions [21,22].

While prior work has examined the role of host immune responses on potential post-pandemic trajectories, the concurrent
impacts and dynamics of human behaviour remain as outstanding questions. In this study, we examine these questions with
a behavioural-immuno-epidemiological model. We begin by schematically outlining the model framework. We examine the
multiple long-term dynamics scenarios generated by the feedback between different levels of behavioural adaptations and the
strength of immune responses. Our results show that behavioural responses can avoid dynamical resonance by avoiding large
outbreaks, producing subsequent uniform outbreaks. Furthermore, our forward-looking behaviour model exhibits an optimal
planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. Moreover, we find
that strong behavioural adaptations can compensate for heterogeneous immunity responses, producing that epidemics with
different immunity profiles would exhibit similar disease dynamics. Finally, as a case study, we use mobility data during the
COVID-19 pandemic from multiple US states as a proxy to test our adaptive behavioural model. With the calibrated behaviour
model, we studied the empirical and expected interactions of behavioural responses and host immunity on epidemic dynamics.
Extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, voluntary
reduction of contact rates by infected individuals, pandemic fatigue, information delay and disease surveillance systems, are
also explored in electronic supplementary material, appendix.

2. Model framework
We couple simple models of immuno-epidemiology and adaptive human behaviour, with three key components: (i) New York
City climate-dependent transmission incorporating seasonal changes in the magnitude of transmission [23]; (ii) differential infection
and immunity phenotypes, depending on individuals’ exposure history [2,4]; and (iii) heterogeneous behavioural adaptations, which
depend on individuals’ infection risk according to their health-state [24–26]. Thus, our framework incorporates processes acting
at different scales, from within hosts (differential susceptibility or infectiousness depending on individuals’ exposure history),
to individuals (behavioural decisions driven by the expected infection risk and the benefits of social activity) and finally to
populations (availability and effectiveness of vaccination, modulating population-level immunity).

To model adaptive human behaviour, we follow prior literature [24–26] and assume that, each day, an individual is simulta-
neously seeking to increase contacts (in order to maximize the benefits secured through social interactions), while minimizing
its infection risk (by reducing contacts). We assume that economic productivity depends on social interactions [27,28] and,
we use contacts as the mechanism by which behaviour is adapted, disease is transmitted and benefits are acquired. Finally,
the daily decision process evaluates the expected current and future costs/benefits based on a future projection over a finite
planning horizon, as well as potential future transitions to alternative infectious or (partially) immune states. Note that we
assume fully immune or infected individuals do not have incentive to behave strategically, and these individuals therefore make
the daily number of contacts that maximizes the net benefits. We model heterogeneous behavioural responses by coupling a set
of decentralized Markov decision processes, formalized via a set of Bellman equations. Our model framework is schematically
outlined in figure 1, and the detailed mathematical formulation of the behavioural model via the specific immune phenotype’s
optimization problems is in the electronic supplementary material, appendix.

Figure 1a illustrates the coupling between the disease progression model and the adaptive behaviour model. Each day,
the current disease prevalence gives the risk of infection associated with make different number of contacts for susceptible
individuals. However, while contacts pose a risk of infection, they also impart benefits. Thus, the trade-off between increasing
contacts to gain utility and decreasing contacts to reduce the infection probability defines a dynamic optimization problem
over the course of the epidemic. In our model, the decision making process, based on the current health distribution of the
population and on the future projection over a defined planning horizon, is potentially distinct for each class of susceptible
individuals. Furthermore, across the classes of susceptible individuals and depending on the immunity profiles of the popula-
tion, the adaptive behaviour model may exhibit homogeneous or heterogeneous behavioural responses (see figure 1b).
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To incorporate a seasonal force and in the absence of behaviour (i.e. the ‘constant-contacts model’), we assume that the
transmission is climate-dependent and we use a seasonal transmission likelihood derived from the New York City climate
[2,23]. As in [2], we assume that vaccination begins 1.5 years after the index case with a weekly rate of 1% (η = 0.0014 per day).
Since the dynamics of our coupled behavioural-immuno-epidemiological model hinge on the individual contact rates chosen

at each day, we use the per-contact likelihood of infection (C∗β̂(t) = β(t), where C* is the maximum contact rate). That is, in
the absence of behavioural adaptations, transmission follows the derived New York City’s seasonal transmission likelihood,
while the adaptive model modulates this via adjustment of the number of contacts. In the electronic supplementary material,
appendix, we explore the impact of varying these behavioural parameters.

3. Epidemic model
Similar to the work in [2], we use an SIRSI-like model incorporating three immunological profiles: completely susceptible S1,
partially immune individuals S2, and fully immune individuals R, due to previous infection or vaccination. Infected individuals
are divided into first time infected individuals I1, and reinfected individuals I2, and breakthrough infections IV. Individuals
are recruited being fully susceptible (S1), and the population is maintained constant, so that birth and natural death rates
balance (μ). Fully susceptible population may get the vaccine at a rate η or may get infected by making contacts with first-time
or reinfected individuals at a baseline likelihood β and σβ, respectively. Recovered individuals from first and reinfection are
assumed to have full immunity that wanes on average after 1/δR days. Moreover, we assume vaccinated individuals’ immunity
wanes on average after 1/δV days. After natural or vaccine acquired immunity wanes, susceptible individuals S2 are assumed
to show partial immunity, 0 < ϵ < 1. Partially immune susceptible individuals (S2) get reinfected by contacting either first-time
infected (I1) or reinfected individuals (I2) with likelihoods ϵβ and ϵσβ, respectively. The aforementioned model of disease
progression is sketched in figure 2 and formalized by the following set of equations.
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Figure 1. Schematic of the modelling framework components. We couple an epidemic model and a model of heterogeneous adaptive human behaviour driven
by distinct immunity phenotypes. (a) Individuals modulate their daily activity level according to the infection risk perceived, which in turn reshapes the epidemic
trajectory. The epidemic model incorporates individuals' immune life history and vaccination; where S1 and S2 denote the fully and partially immune susceptible
individuals, I1 and I2 denote the primary infected and reinfected individuals, V  and IV denote the vaccinated and infected vaccinated populations and, R denotes the
fully immune individuals. (b) Each immunity scenario induces different disease and behavioural dynamics (shown for the constant contacts model in dashed lines and,
for the adaptive behaviour model in thick lines).
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S1̇ = μN − β(t)S1
I1 + σI2 + σVIVN − μS1 − sVηS1,

V̇ = sVη(S1 + S2) − ϵVβ(t)V I1 + σI2 + σVIVN − (δV + μ)V ,

IV̇ = ϵVβ(t)V I1 + σI2 + σVIVN − (γ + μ)IV ,

İ 1 = β(t)S1
I1 + σI2 + σVIVN − (γ + μ)I1,

Ṙ = γ I1 + I2 − (δR + μ)R,

Ṡ2 = δRR − sVηS2 − ϵβ(t)S2
I1 + σI2 + σVIVN − μS2,

İ 2 = (ϵβ(t)S2 + ϵVβ(t)V) I1 + σI2 + σVIVN − (γ + μ)I2 .

The set of parameters used in our numerical experiments, unless otherwise indicated, are collected in table 1.

4. Results
(a) Adaptive human behaviour can homogenize future outbreaks
We examine the interplay between adaptive behaviour and the strength of immune responses on epidemic dynamics. For the
epidemic model with and without behaviour, figure 3a–c illustrates the time courses for primary infections (I1), reinfections
(I2) and infections in vaccinated individuals before vaccinal immunity has waned (IV), under different scenarios of relative
susceptibility after immunity has waned (ϵ). Figure 3d shows how the time series of associated activity levels changes with
increasing sensitivity to infection risk (i.e. from null adaptation to strong behavioural responses). As described in detail in [2],
without adaptive behaviour, the strength of immunity (captured via the relative susceptibility to secondary infection) can give
rise to a large range of medium-term dynamics (figure 3a), including sizable secondary peaks. In contrast, strategic behaviour of
susceptible individuals decreases the likelihood of large subsequent outbreaks and leads to uniform future outbreaks sizes with
inter-outbreak periods that follow the yearly seasonal forcing (figure 3b,c). Thus, regardless of the strength of host immunity,
behavioural responses that are driven by constant risk sensitivity over time tend to normalize inter-epidemics periods and peak
sizes of subsequent outbreaks.

The intuition behind this result is that behavioural adaptation tends to manage infections over time and across immunity
profiles. In turn, such ‘management’ prevents the formation of big susceptible pools (that would give rise to big outbreaks)
and therefore gives smaller periodic outbreaks. However, this effect comes at a cost to fully susceptible individuals: they must
increase their efforts (significantly decrease contacts) to avoid a primary infection. On the other hand, due to immunity obtained
from a primary infection, partially susceptible individuals (S2) can relax their behavioural responses. Finally, note that these
results are also modulated by the duration of natural and vaccinal waning immunity, as well as the infection risk sensitivity. We
explore the effects of variations in infection risk sensitivity (ν) in the electronic supplementary material, appendix.

(b) Optimal planning horizon reduces the pandemic size
In our model, the decision-making process for behavioural adaptation depends on the current and expected benefits of
maintaining social interactions during a predefined planning horizon. In figure 4a, we explore the impact of the planning
horizon length (τ) on epidemic dynamics. For this analysis, we assume that the planning horizon is fixed over time and
homogeneous across immune phenotypes. Our simulations illustrate the impact on the epidemic dynamics of varying the
planning horizon for individuals with different immune phenotypes (S1, S2 and V). Our results show that variations in the
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Figure 2. Schematic representation of the SV IRSI model flows for fully susceptible (S1), vaccinated (V ), infected vaccinated (IV ), first time infected (I1), partially
immune (S2), reinfected (I2) and recovered individuals (R).
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planning horizon dramatically impact the initial ‘pandemic’ size (left panel). Particularly, a planning horizon of two weeks
highly decreases the magnitude of the first outbreak relative to other planning periods we examined.

Extremely short or long planning horizons bias the individual risk–benefit trade-off, thus leading to high infection levels.
The intuition that underpins this result is as follows. First, short planning horizons tend to lead to individuals erroneously
underestimating the utility loss during the entire infectious period. On the other hand, long planning horizons also tend to
undervalue potential utility losses during infection by weighting the utility obtained during longer stages (i.e. susceptible and
recovered) [25]. Behavioural responses can also be modulated by the implementation of government actions (vaccination, social
distancing or other policies), which would shape the perceived risk–benefit trade-off [29]. While a planning horizon of two
weeks substantially reduces the magnitude of the initial peak, this causes subsequent medium-sized post-pandemic outbreaks.
In this scenario, the single peak initial outbreak produced in the absence of behavioural responses (see figure 3a), is reshaped
to a bi-modal outbreak due to a distribution of infections over time (figure 4a (right)). Moreover, we find that long planning
horizons tend to produce big and sparse outbreaks as in the model without behavioural adaption, see for instance, the disease
dynamics shown in figure 4a (right) for planning horizons of 8 or 10 weeks.
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Figure 3. Strong adaptive behaviour homogenizes future outbreaks. First-time infections (I1), reinfections (I2) and infections after vaccinated (IV), time courses
for varying partial immunity scenarios under (a) the constant contacts model, and (b–c) under adaptive behaviour. Strong behavioural adaptations (ν = 0.1 and
ν = 0.03) tend to uniform future outbreaks and produce inter-outbreak periods driven by the seasonal force of infection. We calibrated the model using the rest of
model parameters as indicated in table 1.

Table 1. Constant contact rates and adaptive behaviour model baseline parameters.

Par. description value ref

μ birth rate 0.02y−1 [2]

β likelihood of infection varies [23]ϵ natural reduced susceptibility varies —ϵv vaccine reduced susceptibility varies —

σ reduced infectiousness varies [2]

σv vaccine reduced infectiousness [0.1 − 0.5] [2]

γ recovery rate 1/5 [2]

δR natural waning immunity 1y−1 [2]

δV vaccine waning immunity 1
30(9)

[2]

η vaccination rate 1% week−1 [2]

sv vaccination starting time 1.5y [2]

ν utility function shape parameter 0.1 [24]

δ discount factor 0.99986 [24]

b max. number of contacts (day) 48 [24]

τ planning horizon length varies -
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Our results show that the impact of the planning horizon is mostly exhibited in the pandemic phase, where extremely high
infection levels are expected. After the initial peak, the epidemiological and behavioural dynamics tend to exhibit less variation
in epidemic peak sizes and inter-epidemic periods, with some scattered big outbreaks. Note that this is heavily driven by our
assumption of a time-independent risk sensitivity, which models individuals equally valuing their contacts over time. However,
in reality, the perceived value of social interactions may quickly change due to many different factors, like fear, awareness,
control policies compliance, fatigue and socio-economic stress, among other factors. In turn, this would adjust the individual
level risk–benefit trade-off and thus consequently impact epidemic dynamics. We explore the impact of waning risk sensitivity
in the electronic supplementary material, appendix.

(c) Behavioural adaptations compensate heterogeneous immunity responses
We explore the impact of different immunity levels acquired after infection (ϵ), on the daily behavioural responses and
the disease dynamics. The important result is that highly distinct population immunity landscapes may generate similar
epidemic dynamics, where behavioural responses balance the impact of immunity variations. Figure 4b (left) depicts the
disease dynamics for varying reinfection susceptibility levels. We found that behavioural adaptations change according to the
population’s immunity characteristics, across immunity landscapes. This in turn modulates the disease progression, producing
similar disease dynamics. Our simulations in figure 4b (centre) show that for low levels of acquired immunity (ϵ ≈ 1), the
equalizer effect is achieved under strong behavioural responses. In contrast, for high levels of acquired immunity (ϵ ≈ 0.5),
weak behavioural adaptations can attain similar disease dynamics. Moreover, we found that the response of the partially
susceptible populations differ for the different immunity scenarios assumed. Specifically, when low immunity is acquired after
infection, the contact rates of the partially immune individuals mimic that of the fully susceptible ones (figure 4b, for ϵ ≈ 1). In
contrast, when high immunity is acquired after infection, the contact rates of the partially immune individuals tend to follow
the corresponding to vaccinated individuals (figure 4b, for ϵ ≈ 0.5). The previous observation follows from our assumption of
a highly effective vaccine. Finally, the proportion of reinfections increases as the acquired immunity after infection decreases
(figure 4b (right)). In other words, in the scenario of low (high) immunity acquired after infection, the long-term epidemic is
mainly driven by reinfections (primary infections). Consequently, the expected behavioural responses are driven and drive the
immunity landscape, potentially producing that epidemics with different immunity landscapes exhibit similar dynamics.

(d) COVID-19 epidemic in some US states: a case study
We compare behavioural responses derived from our adaptive model with empirically observed population mobility data as a
proxy of behavioural response. We fit average contact rates of susceptible from the adaptive behaviour model to averages of
daily mobility data that involve social interactions, for the states of New York, Massachusetts, Washington, Texas, California
and Arizona. Surprisingly, we find that our simple model can adequately capture complex empirical behavioural dynamics
observed. We tested our behaviour model using different US states during the COVID-19 pandemics, under a range of settings
(figure 5). Note that while our model focuses on endogenously driven individual behaviour, the empirical data reflect behaviou-
ral changes produced by a combination of endogenous and exogenous mechanisms, centralized mandates and decentralized
behavioural decisions, along with a set of heterogeneities across regions (see §5). In reality, the dramatic initial drop on the
population’s activity was mostly driven by centralized mandates and exogenous information, which produced a behavioural
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Figure 4. (a) The optimal planning horizon minimizes the initial outbreak’s peak size. (b) Strong adaptive behaviour compensates for the impact of differential
immunity. Panel (a) shows that there exists a best planning horizon (τ ≈ 2 weeks) that minimizes the initial outbreak’s peak size. Short and long planning horizons
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produce distinct outbreaks landscape. We calibrated the model assuming ν = 0.05 and the rest of parameters as indicated in table 1. Our simulations in panel (b)
show that in the absence of vaccination, a two weeks planning horizon and strong adaptive behaviour produce subsequent outbreaks exhibiting uniform sizes and
inter-epidemic periods, regardless of the partial immunity granted by previous infections (left). This equalizing effect across partial immunity levels is modulated
by the heterogeneous behavioural adaptations, which are driven by the health-specific infection risks (centre). It follows that epidemics with different immunity
landscapes would exhibit similar disease dynamics (right). We calibrated the model assuming {ν, τ} = {0.05,14} and the rest of parameters as indicated in table 1.
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response disproportional to the low infection risk experienced at that time. While our model of behavioural response was able
to reproduce the initial drop in the activity level, the behavioural response is driven by high prevalence levels, which were
not experienced in reality. After the initial strong response, our model was able to capture the seasonally driven mobility rates
exhibited by the empirical data for most of the selected states (see electronic supplementary material, appendix).

5. Caveats
The proposed epidemic and behavioural models made several simplifying assumptions. Following the work by Saad-Roy et al.
[2], we model immune responses by considering only primary infections, infections of vaccinated individuals and reinfections.
The epidemic model simplifies the population’s heterogeneities such as infection severity [30], regional mobility and health
disparities [31,32], age structure [33,34], vaccination regimes [5,35] and superspreading events [36,37], among other documented
factors. Furthermore, the impact of infections produced by asymptomatic individuals is not considered [38], and the complex
immune dynamics generated by co-circulating variants are not incorporated [1,39]. We assume seasonal transmission similar
to the one exhibited by the betacoronavirus HKU1 (HCoV-HKU1) [2,23]. The model assumes a single immunization tier, with
constant rate vaccination starting one and a half years after the beginning of the infectious process onset. The impact of multiple
vaccination regimes and differential effectiveness against variant-specific infection is not incorporated [40].

On the other hand, our behavioural model incorporates individual adaptive behaviour via contact rate modulation. Other
behavioural responses such as mask wearing [41], voluntary vaccination or testing [42,43] and behavioural dichotomy [44], are
not explicitly incorporated. Furthermore, we ignore individual decision-making regarding adherence to a particular interven-
tion, this could be modelled via game-theoretic approaches (e.g. [45–47]). It is known that behavioural choices regarding
compliance with interventions would lead to complex dynamics. Imperfect vaccination could show bistability on behavioural
decisions depending on the vaccine’s effectiveness and cost [48]. Moreover, social distancing is known to induce oscillatory
dynamics between disease prevalence and behavioural decisions, depending on the cost–benefit trade-off [49]. The simple
population structure assumed prevents us to incorporate the impact of sociocultural and economic determinants, as well as the
role of empathy or social group affinities [16,26,50]. We model the decision-making process exclusively driven by infection risk
aversion, based on the expected private benefits of social interactions and costs of infection during a planning horizon. Our
behaviour model assumes the population plan ahead using a fixed planning horizon, where the sensitivity to infection risk
remains constant over the epidemic period. Individuals neglect the impact that their behavioural decisions impose on others,
the effects of empathy or social group affinities are not incorporated in the decision-making process. Individuals risk assessment
is based on endogenous, reliable and complete information, and do not incorporate many factors or information sources
that would generate or shift social dynamics during pandemics [13,51–55]. We suppose individuals have perfect knowledge
of their own health class and the health class of others. We assumed information is immediately available and we do not
consider the impact of information accuracy and availability. Our model does not incorporate the different constraints faced by
individuals with limited capacity to respond, for instance, due to low incomes. Consequently, individuals’ are assumed to have
access to unlimited resources, which results in continuous and unconstrained adaptive behavioural responses. In this scenario,
susceptible individuals would reduce their contact rates as much as required by the cost–benefit trade-off, during the required
period. In reality, however, factors like economic stress and loss of work [56–58], pandemic fatigue or risk sensitivity decay [59],
may restrict the exhibited behavioural response of susceptible individuals over time. Our model does not account for the impact
of beliefs and personal knowledge about the epidemic, as these factors are recognized to have a big impact on individuals’
behavioural decisions [60,61].
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Figure 5. State-specific mobility data (in blue) and fitted mean activity level of susceptible and vaccinated populations derived from the adaptive model (in red). We
use the Google COVID-19 Community Mobility Reports data as a proxy for the population’s activity. Specifically, we consider the mean of the weekly activity reported
for the categories retail and recreation, transit stations and workplaces. We found the fitting results to be highly sensitive to the assumed population’s immunity profile.
Interestingly, the fitting results improve when assumed short natural waning immunity periods of around three months. We fitted the behavioural parameters ν and τ,
and calibrated the epidemic model assuming the parameters in table 1.
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6. Discussion
We formulate a behavioural-immuno-epidemic model to examine the interplay between adaptive human behaviour and
potential immunity landscapes produced on the mid- and long-term pandemic dynamics. We explore the impact of individual-
level behavioural responses driven by the risk of infection and immune response. Our model shows that risk-based behavioural
adaptations are effective on avoiding high prevalence levels, particularly during the early phase of the epidemic, when most of
the population is fully susceptible. Our results show that sustained strategic behaviour of susceptible, partially susceptible and
vaccinated individuals in general reduces the likelihood of large outbreaks. By reacting to the dynamic infection risk depending
on their immune-specific risk perception, individuals reshape epidemic dynamics by dynamically modifying their structures of
contacts. Consequently, large outbreaks avoidance produces uniform subsequent outbreaks with inter-outbreaks periods driven
by the seasonal infection force, due to the distribution of infections generated over time.

In countries where mandates rely on decentralized governance systems, variations in behavioural responses over time
and across geographical regions are expected. Previous studies have shown that even when similar policies are implemen-
ted, variation in responsiveness lead to different outcomes [12]. Moreover, political polarization and other trends involving
individual-level decisions (like vaccination, mask-wearing, social distancing, etc.) may tend to expand behavioural heteroge-
neities in any society [16,62]. We explored the impact of different behavioural response levels in rather a crude way, by
modulating individuals’ planning horizon and their risk sensitivity. Our model shows that behavioural responses based on
long or short planning horizons do not minimize the outbreaks’ sizes, since these bias the individual risk–benefit trade-offs. In
these scenarios, the epidemiological dynamics produced resemble those expected without behavioural responses. Intermediate
planning horizons minimize the outbreak sizes by adequately weighing the current and future expected utilities.

It is known that variations in the immune responses jointly acting with seasonal transmission generate a wide range of
epidemic dynamics depending on the duration of the acquired immunity. It follows that the unfolding of subsequent outbreaks
strongly depends on the underlying immunity landscapes. However, our results highlight the impact of sustained behaviou-
ral responses with low-risk acceptance (high-risk sensitivity), on equalizing the epidemic dynamics for scenarios where the
underlying population’s immunity profiles are highly different. This effect is driven by the modulation of behavioural responses
according to the immunity acquired through the epidemic.

Here, we aim to understand the epidemiological consequences of adaptive human behaviour driven by risk perception
and the associated population’s immunity landscape on the multiple potential long-term dynamic and immunity scenarios.
Our results emphasize the role of human behaviour on epidemic surveillance and highlight potential population scale effects
driven by the interaction between the population’s immunity landscape and the associated behavioural responses. Particularly,
our results show that depending on the complexity of the population’s immunity landscape and on the population’s risk
sensitivity, adaptive behavioural responses would avoid big outbreaks (produced due to the replenishment of the susceptible
populations), and would induce uniform inter-epidemic periods (driven by the seasonal force of infection). Extensions of
our baseline model incorporating information delay in the decision-making process show that behavioural-driven oscillatory
dynamics are a potential outcome (see electronic supplementary material, appendix). This occurs when the risk–response
trade-off produces appropriate feedback between the epidemic dynamics, information availability and risk sensitivity. Finally,
we showed that accurate characterization of the population’s behavioural responses during epidemics is intrinsically dependent
on the individuals’ immune life histories, which drive the population’s immunity landscape. Particularly, in a wider health
policy context, while adaptive responses are expected to occur during an epidemic, these behavioural decisions are driven by
individual-level incentives, which partially depend on the potential health status.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Google LLC 'Google COVID-19 Community Mobility Reports' is publicly available. Supplementary material is available online
[63].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. B.E.: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources,
software, supervision, validation, visualization, writing—original draft, writing—review and editing; C.M.S.-R.: investigation, methodology,
visualization, writing—original draft, writing—review and editing; B.T.G.: investigation, methodology, visualization, writing—original draft,
writing—review and editing; S.A.L.: funding acquisition, investigation, methodology, visualization, writing—original draft, writing—review
and editing; M.M.: conceptualization, funding acquisition, investigation, methodology, visualization, writing—original draft, writing—review
and editing. All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This work was partially supported by the NSF through DMS Award no. 2327710 and DMS Award no. 2327711; Centers for Disease
Control and Prevention (CDC) through Pathogen Genomics Centers of Excellence network (PGCoE) grant 6NU50CK000555-03-01; the Defense
Threat Reduction Agency (DTRA) contract HDTRA120F0017; the National Science Foundation (NSF) through Expeditions in Computing Grant
CCF-1918656 and CCF-1917819; Princeton Catalysis Initiative; Princeton Precision Health. C.M.S.-R. gratefully acknowledges funding from the
Miller Institute for Basic Research in Science of UC Berkeley via a Miller Research Fellowship. B.T.G. acknowledges funding from Princeton
Catalysis Initiative, Princeton Precision Health.

References
1. Espinoza B et al. 2023 Coupled models of genomic surveillance and evolving pandemics with applications for timely public health interventions. Proc. Natl Acad. Sci. USA 120,

e2305227120. (doi:10.1073/pnas.2305227120)

8

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241772

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ar
ch

 2
02

5 

http://dx.doi.org/10.1073/pnas.2305227120


2. Saad-Roy CM et al. 2020 Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science 370, 811–818. (doi:10.1126/science.abd7343)
3. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. 2020 Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860–868. (doi:

10.1126/science.abb5793)
4. Saad-Roy CM et al. 2021 Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science 372, 363–370. (doi:10.1126/science.abg8663)
5. Wagner CE et al. 2021 Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science 373, eabj7364. (doi:10.1126/science.abj7364)
6. Saad-Roy CM, Morris SE, Baker RE, Farrar J, Graham AL, Levin SA, Wagner CE, Metcalf CJE, Grenfell BT. 2023 Medium-term scenarios of COVID-19 as a function of immune

uncertainties and chronic disease. J. R. Soc. Interface 20, 20230247. (doi:10.1098/rsif.2023.0247)
7. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, Holmes EC. 2004 Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332.

(doi:10.1126/science.1090727)
8. Saad-Roy CM, Metcalf CJE, Grenfell BT. 2022 Immuno-epidemiology and the predictability of viral evolution. Science 376, 1161–1162. (doi:10.1126/science.abn9410)
9. Bavel JJV et al. 2020 Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 4, 460–471. (doi:10.1038/s41562-020-0884-z)
10. Lucchini L, Centellegher S, Pappalardo L, Gallotti R, Privitera F, Lepri B, De Nadai M. 2021 Living in a pandemic: changes in mobility routines, social activity and adherence to

COVID-19 protective measures. Sci. Rep. 11, 24452. (doi:10.1038/s41598-021-04139-1)
11. Rahmandad H, Xu R, Ghaffarzadegan N. 2022 A missing behavioural feedback in COVID-19 models is the key to several puzzles. BMJ Glob. Health 7, e010463. (doi:10.1136/bmjgh-

2022-010463)
12. Lim TY, Xu R, Ruktanonchai N, Saucedo O, Childs LM, Jalali MS, Rahmandad H, Ghaffarzadegan N. 2023 Why similar policies resulted in different COVID-19 outcomes: how

responsiveness and culture influenced mortality rates. Health Aff. 42, 1637–1646. (doi:10.1377/hlthaff.2023.00713)
13. Chen J, Marathe A, Marathe M. 2018 Feedback between behavioral adaptations and disease dynamics. Sci. Rep. 8, 12452. (doi:10.1038/s41598-018-30471-0)
14. Rahmandad H. 2022 Behavioral responses to risk promote vaccinating high-contact individuals first. Syst. Dyn. Rev. 38, 246–263. (doi:10.1002/sdr.1714)
15. Levin SA, Milner HV, Perrings C. 2021 The dynamics of political polarization. Proc. Natl Acad. Sci. USA 118, e2116950118. (doi:10.1073/pnas.2116950118)
16. Yang L, Constantino SM, Grenfell BT, Weber EU, Levin SA, Vasconcelos VV. 2022 Sociocultural determinants of global mask-wearing behavior. Proc. Natl Acad. Sci. USA 119,

e2213525119. (doi:10.1073/pnas.2213525119)
17. Wellenius GA et al. 2021 Impacts of social distancing policies on mobility and COVID-19 case growth in the US. Nat. Commun. 12, 3118. (doi:10.1038/s41467-021-23404-5)
18. Petherick A, Goldszmidt R, Andrade EB, Furst R, Hale T, Pott A, Wood A. 2021 A worldwide assessment of changes in adherence to COVID-19 protective behaviours and hypothesized

pandemic fatigue. Nat. Hum. Behav. 5, 1145–1160. (doi:10.1038/s41562-021-01181-x)
19. Chen C et al. 2024 Wastewater-based epidemiology for covid-19 surveillance: a survey. arXiv 2403.15291v1.
20. Margevicius KJ et al. 2016 The biosurveillance analytics resource directory (BARD): facilitating the use of epidemiological models for infectious disease surveillance. PLoS One 11,

e0146600. (doi:10.1371/journal.pone.0146600)
21. Perry HN, McDonnell SM, Alemu W, Nsubuga P, Chungong S, Otten MW, Lusamba-dikassa PS, Thacker SB. 2007 Planning an integrated disease surveillance and response system: a

matrix of skills and activities. BMC Med. 5, 1–8. (doi:10.1186/1741-7015-5-24)
22. Wolfe CM et al. 2021 Systematic review of integrated disease surveillance and response (IDSR) implementation in the African region. PLoS One 16, e0245457. (doi:10.1371/journal.

pone.0245457)
23. Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. 2020 Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science 369, 315–319. (doi:10.1126/

science.abc2535)
24. Fenichel EP et al. 2011 Adaptive human behavior in epidemiological models. Proc. Natl Acad. Sci. USA 108, 6306–6311. (doi:10.1073/pnas.1011250108)
25. Espinoza B, Marathe M, Swarup S, Thakur M. 2021 Asymptomatic individuals can increase the final epidemic size under adaptive human behavior. Sci. Rep. 11, 19744. (doi:10.1038/

s41598-021-98999-2)
26. Espinoza B, Swarup S, Barrett CL, Marathe M. 2022 Heterogeneous adaptive behavioral responses may increase epidemic burden. Sci. Rep. 12, 11276. (doi:10.1038/s41598-022-

15444-8)
27. Jackson MO, Rogers BW, Zenou Y. 2017 The economic consequences of social-network structure. J. Econ. Lit. 55, 49–95. (doi:10.1257/jel.20150694)
28. Granovetter M. 2005 The impact of social structure on economic outcomes. J. Econ. Perspect. 19, 33–50. (doi:10.1257/0895330053147958)
29. Campos-Mercade P, Meier AN, Schneider FH, Meier S, Pope D, Wengström E. 2021 Monetary incentives increase COVID-19 vaccinations. Science 374, 879–882. (doi:10.1126/science.

abm0475)
30. Verity R et al. 2020 Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 20, 669–677. (doi:10.1016/S1473-3099(20)30243-7)
31. Espinoza B, Castillo-Chavez C, Perrings C. 2020 Mobility restrictions for the control of epidemics: when do they work? PLoS One 15, e0235731. (doi:10.1371/journal.pone.0235731)
32. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, Leskovec J. 2021 Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87.

(doi:10.1038/s41586-020-2923-3)
33. Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, Eggo RM. 2020 Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med.

26, 1205–1211. (doi:10.1038/s41591-020-0962-9)
34. Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Liu Y, Mills MC. 2020 Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl

Acad. Sci. USA 117, 9696–9698. (doi:10.1073/pnas.2004911117)
35. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. 2020 Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 20, 615–632. (doi:10.1038/

s41577-020-00434-6)
36. Althouse BM, Wenger EA, Miller JC, Scarpino SV, Allard A, Hébert-Dufresne L, Hu H. 2020 Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for

interventions and control. PLoS Biol. 18, e3000897. (doi:10.1371/journal.pbio.3000897)
37. Dixit AK, Espinoza B, Qiu Z, Vullikanti A, Marathe MV. 2023 Airborne disease transmission during indoor gatherings over multiple time scales: modeling framework and policy

implications. Proc. Natl. Acad. Sci. U.S.A 120, e2216948120. (doi:10.1073/pnas.2216948120)
38. Laxminarayan R, Wahl B, Dudala SR, Gopal K, Mohan B C, Neelima S, Jawahar Reddy KS, Radhakrishnan J, Lewnard JA. 2020 Epidemiology and transmission dynamics of COVID-19

in two Indian states. Science 370, 691–697. (doi:10.1126/science.abd7672)
39. Callaway E. 2021 Fast-spreading COVID variant can elude immune responses. Nature 589, 500–501. (doi:10.1038/d41586-021-00121-z)
40. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. 2021 Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev.

Immunol. 21, 626–636. (doi:10.1038/s41577-021-00592-1)

9

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241772

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ar
ch

 2
02

5 

http://dx.doi.org/10.1126/science.abd7343
http://dx.doi.org/10.1126/science.abb5793
http://dx.doi.org/10.1126/science.abg8663
http://dx.doi.org/10.1126/science.abj7364
http://dx.doi.org/10.1098/rsif.2023.0247
http://dx.doi.org/10.1126/science.1090727
http://dx.doi.org/10.1126/science.abn9410
http://dx.doi.org/10.1038/s41562-020-0884-z
http://dx.doi.org/10.1038/s41598-021-04139-1
http://dx.doi.org/10.1136/bmjgh-2022-010463
http://dx.doi.org/10.1136/bmjgh-2022-010463
http://dx.doi.org/10.1377/hlthaff.2023.00713
http://dx.doi.org/10.1038/s41598-018-30471-0
http://dx.doi.org/10.1002/sdr.1714
http://dx.doi.org/10.1073/pnas.2116950118
http://dx.doi.org/10.1073/pnas.2213525119
http://dx.doi.org/10.1038/s41467-021-23404-5
http://dx.doi.org/10.1038/s41562-021-01181-x
http://dx.doi.org/10.1371/journal.pone.0146600
http://dx.doi.org/10.1186/1741-7015-5-24
http://dx.doi.org/10.1371/journal.pone.0245457
http://dx.doi.org/10.1371/journal.pone.0245457
http://dx.doi.org/10.1126/science.abc2535
http://dx.doi.org/10.1126/science.abc2535
http://dx.doi.org/10.1073/pnas.1011250108
http://dx.doi.org/10.1038/s41598-021-98999-2
http://dx.doi.org/10.1038/s41598-021-98999-2
http://dx.doi.org/10.1038/s41598-022-15444-8
http://dx.doi.org/10.1038/s41598-022-15444-8
http://dx.doi.org/10.1257/jel.20150694
http://dx.doi.org/10.1257/0895330053147958
http://dx.doi.org/10.1126/science.abm0475
http://dx.doi.org/10.1126/science.abm0475
http://dx.doi.org/10.1016/S1473-3099(20)30243-7
http://dx.doi.org/10.1371/journal.pone.0235731
http://dx.doi.org/10.1038/s41586-020-2923-3
http://dx.doi.org/10.1038/s41591-020-0962-9
http://dx.doi.org/10.1073/pnas.2004911117
http://dx.doi.org/10.1038/s41577-020-00434-6
http://dx.doi.org/10.1038/s41577-020-00434-6
http://dx.doi.org/10.1371/journal.pbio.3000897
http://dx.doi.org/10.1073/pnas.2216948120
http://dx.doi.org/10.1126/science.abd7672
http://dx.doi.org/10.1038/d41586-021-00121-z
http://dx.doi.org/10.1038/s41577-021-00592-1


41. Qiu Z et al. 2022 Understanding the coevolution of mask wearing and epidemics: a network perspective. Proc. Natl Acad. Sci. USA 119, e2123355119. (doi:10.1073/pnas.
2123355119)

42. Machingaidze S, Wiysonge CS. 2021 Understanding COVID-19 vaccine hesitancy. Nat. Med. 27, 1338–1339. (doi:10.1038/s41591-021-01459-7)
43. Prieto Curiel R, González Ramírez H. 2021 Vaccination strategies against COVID-19 and the diffusion of anti-vaccination views. Sci. Rep. 11, 6626. (doi:10.1038/s41598-021-85555-

1)
44. Kuhlman CJ, Marathe A, Vullikanti A, Halim N, Mozumder P. 2022 Natural disaster evacuation modeling: the dichotomy of fear of crime and social influence. Soc. Netw. Anal. Min.

12, 1–18. (doi:10.1007/s13278-021-00839-8)
45. Bauch CT. 2005 Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B Biol. Sci. 272, 1669–1675. (doi:10.1098/rspb.2005.3153)
46. Traulsen A, Levin SA, Saad-Roy CM. 2023 Individual costs and societal benefits of interventions during the COVID-19 pandemic. Proc. Natl Acad. Sci USA 120, e2303546120. (doi:10.

1073/pnas.2303546120)
47. Saad-Roy CM, Traulsen A. 2023 Dynamics in a behavioral-epidemiological model for individual adherence to a nonpharmaceutical intervention. Proc. Natl Acad. Sci. USA 120,

e2311584120. (doi:10.1073/pnas.2311584120)
48. Chen X, Fu F. 2019 Imperfect vaccine and hysteresis. Proc. R. Soc. B 286, 20182406. (doi:10.1098/rspb.2018.2406)
49. Glaubitz A, Fu F. 2020 Oscillatory dynamics in the dilemma of social distancing. Proc. R. Soc. A. 476, 20200686. (doi:10.1098/rspa.2020.0686)
50. Bauch CT, Galvani AP. 2013 Social factors in epidemiology. Science 342, 47–49. (doi:10.1126/science.1244492)
51. De Domenico M, Altmann EG. 2020 Unraveling the origin of social bursts in collective attention. Sci. Rep. 10, 4629. (doi:10.1038/s41598-020-61523-z)
52. Gallotti R, Valle F, Castaldo N, Sacco P, De Domenico M. 2020 Assessing the risks of 'infodemics' in response to COVID-19 epidemics. Nat. Hum. Behav. 4, 1285–1293. (doi:10.1038/

s41562-020-00994-6)
53. Towers S et al. 2015 Mass media and the contagion of fear: the case of Ebola in america. PLoS One 10, e0129179. (doi:10.1371/journal.pone.0129179)
54. Vosoughi S, Roy D, Aral S. 2018 The spread of true and false news online. Science 359, 1146–1151. (doi:10.1126/science.aap9559)
55. Barrett C, Bisset K, Leidig J, Marathe A, Marathe MV. 2010 An integrated modeling environment to study the coevolution of networks, individual behavior, and epidemics. AI Mag.

31, 75–87. (doi:10.1609/aimag.v31i1.2283)
56. Bitler M, Hoynes H, Schanzenbach DW. 2020 Why the safety net might not respond as effectively to COVID-19 as it should. Milbank Quarterly Opinion. 30 April 2020. (doi:10.1599/

mqop.2020.0401)
57. Weill JA, Stigler M, Deschenes O, Springborn MR. 2020 Social distancing responses to COVID-19 emergency declarations strongly differentiated by income. Proc. Natl Acad. Sci. USA

117, 19658–19660. (doi:10.1073/pnas.2009412117)
58. Yesuf M, Bluffstone RA. 2009 Poverty, risk aversion, and path dependence in low‐income countries: experimental evidence from Ethiopia. Am. J. Agric. Econ. 91, 1022–1037. (doi:10.

1111/j.1467-8276.2009.01307.x)
59. Kluwe-Schiavon B, Viola TW, Bandinelli LP, Castro SCC, Kristensen CH, Costa da Costa J, Grassi-Oliveira R. 2021 A behavioral economic risk aversion experiment in the context of the

COVID-19 pandemic. PLoS One 16, e0245261. (doi:10.1371/journal.pone.0245261)
60. Moore CA, Ruisch BC, Granados Samayoa JA, Boggs ST, Ladanyi JT, Fazio RH. 2021 Contracting COVID-19: a longitudinal investigation of the impact of beliefs and knowledge. Sci.

Rep. 11, 20460. (doi:10.1038/s41598-021-99981-8)
61. Singh M, Marathe A, Marathe MV, Swarup S. 2018 Behavior model calibration for epidemic simulations. Proc. Int. Joint Conf. Auton. Agents Multiagent Syst. 2018, 1640–1648.
62. Moya C, Cruz Y Celis Peniche P, Kline MA, Smaldino PE. 2020 Dynamics of behavior change in the COVID world. Am. J. Hum. Biol. 32, e23485. (doi:10.1002/ajhb.23485)
63. Espinoza B, Saad-Roy C, Grenfell BT, Levin S, Marathe M. 2024 Supplementary material from: Adaptive human behavior modulates the impact of immune life history and

vaccination on long-term pandemic dynamics. Figshare (doi:10.6084/m9.figshare.c.7481230)

10

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241772

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ar
ch

 2
02

5 

http://dx.doi.org/10.1073/pnas.2123355119
http://dx.doi.org/10.1073/pnas.2123355119
http://dx.doi.org/10.1038/s41591-021-01459-7
http://dx.doi.org/10.1038/s41598-021-85555-1
http://dx.doi.org/10.1038/s41598-021-85555-1
http://dx.doi.org/10.1007/s13278-021-00839-8
http://dx.doi.org/10.1098/rspb.2005.3153
http://dx.doi.org/10.1073/pnas.2303546120
http://dx.doi.org/10.1073/pnas.2303546120
http://dx.doi.org/10.1073/pnas.2311584120
http://dx.doi.org/10.1098/rspb.2018.2406
http://dx.doi.org/10.1098/rspa.2020.0686
http://dx.doi.org/10.1126/science.1244492
http://dx.doi.org/10.1038/s41598-020-61523-z
http://dx.doi.org/10.1038/s41562-020-00994-6
http://dx.doi.org/10.1038/s41562-020-00994-6
http://dx.doi.org/10.1371/journal.pone.0129179
http://dx.doi.org/10.1126/science.aap9559
http://dx.doi.org/10.1609/aimag.v31i1.2283
http://dx.doi.org/10.1599/mqop.2020.0401
http://dx.doi.org/10.1599/mqop.2020.0401
http://dx.doi.org/10.1073/pnas.2009412117
http://dx.doi.org/10.1111/j.1467-8276.2009.01307.x
http://dx.doi.org/10.1111/j.1467-8276.2009.01307.x
http://dx.doi.org/10.1371/journal.pone.0245261
http://dx.doi.org/10.1038/s41598-021-99981-8
http://dx.doi.org/10.1002/ajhb.23485
http://dx.doi.org/10.6084/m9.figshare.c.7481230

	Adaptive human behaviour modulates the impact of immune life history and vaccination on long-term epidemic dynamics
	1. Introduction
	2. Model framework
	3. Epidemic model
	4. Results
	(a) Adaptive human behaviour can homogenize future outbreaks
	(b) Optimal planning horizon reduces the pandemic size
	(c) Behavioural adaptations compensate heterogeneous immunity responses
	(d) COVID-19 epidemic in some US states: a case study

	5. Caveats
	6. Discussion


