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A B S T R A C T

UVA-EpiHiper is a national scale agent-based model to support the US COVID-19 Scenario Modeling Hub
(SMH). UVA-EpiHiper uses a detailed representation of the underlying social contact network along with data
measured during the course of the pandemic to initialize and calibrate the model. In this paper, we study
the role of heterogeneity on model complexity and resulting epidemic dynamics using UVA-EpiHiper. We
discuss various sources of heterogeneity that we encounter in the use of UVA-EpiHiper to support modeling
and analysis of epidemic dynamics under various scenarios. We also discuss how this affects model complexity
and computational complexity of the corresponding simulations. Using round 13 of the SMH as an example,
we discuss how UVA-EpiHiper was initialized and calibrated. We then discuss how the detailed output
produced by UVA-EpiHiper can be analyzed to obtain interesting insights. We find that despite the complexity
in the model, the software, and the computation incurred to an agent-based model in scenario modeling,
it is capable of capturing various heterogeneities of real-world systems, especially those in networks and
behaviors, and enables analyzing heterogeneities in epidemiological outcomes between different demographic,
geographic, and social cohorts. In applying UVA-EpiHiper to round 13 scenario modeling, we find that disease
outcomes are different between and within states, and between demographic groups, which can be attributed
to heterogeneities in population demographics, network structures, and initial immunity.
1. Introduction

The world just witnessed the largest pandemic since 1918. The
COVID-19 pandemic led to significant social, economic and health
impacts worldwide. Computational models played an important role
in supporting the policy makers during the pandemic. The US COVID-
19 Scenario Modeling Hub (SMH) (Scenario Modeling Hub, 2023a)
was formed in late 2020 to support policy makers. The consortium of
modeling teams over the last 3 years considered 18 rounds of different
what-if scenarios and created ensemble models that provided senior
level policy makers analytical insights. The UVA-EpiHiper team was
one of the 15 models that has participated in this community effort. It
has contributed projections to the COVID-19 SMH in all rounds from 6
to 13 and most recently round 17. UVA-EpiHiper has also been adapted
to participate in the Flu Scenario Modeling Hub (Scenario Modeling
Hub, 2023b), the RSV Scenario Modeling Hub (Scenario Modeling Hub,
2023c), and the European COVID-19 Scenario Hub (Scenario Modeling
Hub, 2023d). UVA-adaptive was the other team from University of

∗ Corresponding authors.
E-mail addresses: chenj@virginia.edu (J. Chen), marathe@virginia.edu (M. Marathe).

Virginia (UVA) that also supported the SMH. The UVA teams after
much deliberations decided to keep these two models active throughout
the last 3 years, even though the computational and human costs
were significant. Our decision was based on the fact that we wanted
to provide results based on two different models; the key difference
between them was the level of aggregation. A companion paper on
UVA-adaptive (Porebski et al., 2024) describes the other effort. Here
we focus on UVA-EpiHiper.

UVA-EpiHiper is a national-scale individual-level agent-based model
among the models that participated in the COVID-19 SMH. This was
one of its unique features. Its modeling capabilities allow it to incor-
porate heterogeneities in various surveillance data sets; to implement
heterogeneities in the disease model, contact network, and behavior
between individuals and among subpopulations; to produce projections
that can be stratified to study outcome heterogeneities among geo-
graphical, social, or demographical groups. Such capabilities are made
computationally efficient by workflows that can handle computational
heterogeneities.
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It is crucial to be able to model the heterogeneities at all scales to
better understand an epidemic and better evaluate interventions. This is
challenging for the compartmental models or even the metapopulation
models. An agent-based networked model is a natural solution. While
such a model enables us to model heterogeneous data, policies, indi-
vidual behavior, and individual disease progression, it poses challenges
regarding computations, data needed for initialization, and analyses
due to its complexity. This paper describes how the UVA-EpiHiper
model handles the heterogeneities with its capabilities and how we
address the heterogeneities in the computation and analytics.

Overview of UVA-EpiHiper. UVA-EpiHiper includes a high perfor-
mance computing oriented pipeline designed for scalable epidemic
analytics. The pipeline has five steps. Step 1: Build a digital twin of
the social contact network. The digital twin is statistically similar to
the real-world network but preserves the privacy and confidential-
ity of individuals. Step 2: Initialize the digital twin with surveillance
data. Step 3: Use a high performance computing oriented simulation
(EpiHiper) to calibrate and execute a statistical experiment design to
study the specific decision-theoretic questions. Step 4: Create aggregate
projections from the simulation outputs to be comparable with data
from surveillance. Step 5: Analyze the simulation generated detailed
data to obtain policy insights. Additional details about the pipeline can
be found in Bhattacharya et al. (2021, 2023).

1.1. Summary of contributions

In this paper, we focus on three central questions: (𝑖) How does
UVA-EpiHiper capture various heterogeneities of real-world systems?
(𝑖𝑖) How do these heterogeneities affect UVA-EpiHiper in terms of
model complexity, software complexity, computational complexity, and
analytical complexity? (𝑖𝑖𝑖) How do the heterogeneities impact the re-
sulting epidemic dynamics in various counterfactual scenarios studied
as a part of SMH? For the first question, we describe the various
forms of heterogeneity that are represented within the UVA-EpiHiper
framework. This includes: network heterogeneity, disease model and in-
tervention heterogeneity, initialization heterogeneity in terms of diverse
data streams, and analytical heterogeneity that stems from the need to
analyze large detailed output data. For the second question, we describe
how each of these heterogeneities impacts UVA-EpiHiper with respect
to three important measures: (𝑎) model complexity – the complexity
of representing the underlying model, (𝑏) software complexity, and (𝑐)
omputational complexity – the computational resources used to com-
lete the needed analysis. For the third question, as a concrete example,
e discuss how UVA-EpiHiper was used to support SMH Round 13. Two
atural broad questions arise with such detailed models: (𝑖) when are
uch models needed and (𝑖𝑖) how does one validate such models. Both
re important questions and will be discussed in Section 6.

1.2. Related work

Over the last three decades, agent-based models have become a
popular modeling paradigm in epidemiology. Such models include
e.g. EpiSimdemics (Barrett et al., 2008), EpiFast (Bisset et al., 2009),
FRED (Grefenstette et al., 2013), Indemics (Bisset et al., 2014), EMOD
(Bershteyn et al., 2018), and more recent models developed for COVID-
19 modeling: Covid-Sim (Ferguson et al., 2020), Covasim (Kerr et al.,
2021), OpenABM-Covid19 (Hinch et al., 2021), OpenCOVID (Shattock
et al., 2022), and the model in Shoukat et al. (2020). A few agent-based
models, including our UVA-EpiHiper have participated in the SMH. The
NotreDame-FRED model (Moore et al., 2024) is based on FRED with
modifications for COVID-19 and is mainly used for Indiana. The UF-
ABM model (Pillai et al., 2023) is an agent-based model developed to
study COVID-19 pandemic in Florida. The COVSIM model (Rosenstrom
et al., 2024) is a stochastic agent-based COVID-19 simulation model

for North Carolina. A few compartmental models have participated
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in the SMH too, e.g. Porebski et al. (2024), Bouchnita et al. (2024),
Srivastava (2023). UVA-EpiHiper is the only agent-based model in
SMH that models the whole of USA. These agent-based models usually
have an explicit representation of the individuals and the underlying
social contact network on which the disease spreads. Comparing with
compartmental mass action models, such a representation can capture
heterogeneity between individual agents and in the contact structure.
The agent-based models allow us to directly capture behaviors and
interventions, and to study targeted policies and response strategies.
Our UVA-EpiHiper model aims to provide the following features which
are crucial in the SMH work: scalability in terms of ability to simulate
epidemics and interventions on national scale networks (with 100–300
million nodes), capabilities and expressiveness in terms of disease and
intervention modeling, and ease of specification in terms of ability to
specify disease models and interventions.

The use of agent-based models for scenario planning and projection
also has a rich history. See the paper by Runge et al. (2023) for a
more detailed account. Over the past two decades, we have used agent-
based models to support scenario projections in epidemic science for
various sponsors. Examples of our work include: (𝑖) supporting Office of
Homeland Security (OHS) and Joint Task Force Civil Support (JTF-CS)
on Smallpox (Eubank et al., 2004), (𝑖𝑖) targeted layered containment
(TLC) study done for the National Security Council (NSC) (Halloran
et al., 2008), (𝑖𝑖𝑖) studies on H1N1 pandemic (Barrett et al., 2011a;
Chen et al., 2010, 2018) (𝑖𝑣) studies on Ebola epidemic (Rivers et al.,
2014; Venkatramanan et al., 2018) (𝑣) tabletop exercise of pandemic
planning done for the Defense Threat Reduction Agency (DTRA) and
senior officials in the USG (Barrett et al., 2011b, 2015) (𝑣𝑖) studies done
for the Department of Defense (DoD) to support MEDCOM and National
Guard (Barrett et al., 2012). During the COVID-19 outbreak, we have
continued to support DTRA and Virginia Department of Health (VDH)
on various scenario planning exercises, using both metapopulation
and agent-based models (Venkatramanan et al., 2019; Chen et al.,
2019). The present paper describes our work done in the context of
the ongoing Scenario Modeling Hub (SMH) effort (Scenario Modeling
Hub, 2023a). This collaborative effort is novel in that it has brought
together a diverse group of modelers, policy makers, and analysts to
design and implement complex scenarios and has used the ensemble
results to inform policy makers as they plan and respond during an
ongoing epidemic outbreak. SMH has repeatedly shown that ensemble of
the projections from a diverse set of models provides a more robust set
of projections than a single model.

2. Heterogeneities in modeling capabilities of UVA-EpiHiper

UVA-EpiHiper is an individual-based model, in which each individ-
ual is explicitly modeled and represented. In this section we describe
(𝑖) how we model heterogeneities among individuals in terms of their
demographic and socio-economic attributes; (𝑖𝑖) how we model hetero-
geneities in the social contact network based on individuals interacting
with each other when they have activities at the same locations, instead
of a particular structural graph model; (𝑖𝑖𝑖) how we model heteroge-
neous disease transmission and progression for different individuals;
(𝑖𝑣) how we model heterogeneous behavior regarding mitigation mea-
sures, including compliance to pharmaceutical interventions (PIs) and
non-pharmaceutical interventions (NPIs).

The UVA-EpiHiper model was designed to support a broad range
of disease models and a large class of interventions needed to sup-
port policy makers in complex scenarios. The formal model is time
stepped and captures the following elements of a contagion propagating
over a network 𝐺(𝑉 ,𝐸) of vertices 𝑉 with an associated set  =
{𝑋1, 𝑋2,… , 𝑋𝑚} of health states: (𝑖) transmission of a contagion from
infectious vertices to susceptible vertices, (𝑖𝑖) disease progression within
each vertex that has become infected, and (𝑖𝑖𝑖) interventions which are
formal procedures applied to the states of associated set of vertices or
edges (intervention target) when certain predicate (trigger condition)
is satisfied. We often refer to vertices as people, and although that does

not need to be the case, it will be assumed in the following.
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2.1. Models of disaggregated populations and social contact networks

The UVA-EpiHiper model uses a digital twin of the population of the
study region. Such a digital twin captures the people with demographic
attributes, their partition into households with household attributes,
an activity sequence for each individual, and a set of residence and
activity locations where people conduct their activities. The mapping of
activities to locations allows one to infer a contact network which forms
the basis for disease transmission in the UVA-EpiHiper model. The
construction of the digital twin, which is illustrated in Fig. 1, is carried
out so that the synthetic population and network closely resemble their
real counterparts on dimensions relevant for epidemic scenarios.

In the constructed digital twin, individual demographic attributes
include age, gender, race/ethnicity, employment status, etc. Household
attributes include household size, income, and location (latitude/lon-
gitude). The construction of households and individuals is based on
iterative proportional fitting (IPF) (Beckman et al., 1996) using Public
Use Microdata Samples (PUMS) (U.S. Census, 2021b)) and US Census
demographic distributions, and is conducted at the resolution of census
block groups. A set of geographically embedded synthetic locations
is constructed through detailed modeling and data fusion involving
PostGIS and machine learning-based techniques, using the Microsoft
Building Data (Microsoft, 2020), HERE (HERE, 2020) and BuildingFoot-
printUSA (BuildingFootprintUSA, 2020) point-of-interest (POI) data,
National Center of Education Statistics (NCES) (NCES, 2021) data on
school and college locations, land-use classification data (HERE, 2020),
and urban/rural classifications (U.S. Census, 2021a).

Each individual is then assigned an activity sequence through Clas-
sification and Regression Trees (CART) and Finite Volume Method
(FVM) (Lum et al., 2016; Breiman, 1984), using harmonized data
rom the National Household Travel Survey (NHTS) (U.S. Department
f Transportation, Federal Highway Administration, 2020) and the
merican Time Use Survey (ATUS) (U.S. Department of Labor, Bureau
f Labor Statistics, 2020). Each activity in an individual’s activity
equence includes a type (e.g. home, work, school, college, shopping,
eligion, or other), a start time, duration in seconds, and a location.
he location of each activity is assigned with a set of rules, using
he American Community Survey (ACS) commute flow data (U.S. Cen-
us, 2020a) and the LEHD Origin–Destination Employment Statistics
LODES) (U.S. Census, 2020b). The location assignment of activities
an be represented by the people-location network 𝐺𝑃𝐿 illustrated in
he middle panel of Fig. 1.
From 𝐺𝑃𝐿 we derive a contact network 𝐺𝑃 in which vertices are

he people and edges are people–people contacts, as in the right panel
f Fig. 1. We apply an extension of the Erdős–Rényi random graph
odel (Erdős and Rényi, 1959) to each location to connect people
isiting the location simultaneously. The model is calibrated based
n SocioPatterns and POLYMOD data (SocioPatterns, 2023; Cattuto
t al., 2010; Mossong et al., 2008; Prem et al., 2017). The network 𝐺𝑃
forms a baseline for disease transmission in UVA-EpiHiper, and can be
changed by interventions. A more detailed overview of the construction
methodology and their validation is provided in Mortveit et al. (2020).

Other significant efforts on constructing digital twin populations
include (Tatem, 2017; Weber et al., 2021; Socioeconomic Data and
Applications Center, 2020) on gridded populations, and Mistry et al.
(2021), Wheaton et al. (2009), Gallagher et al. (2018) whose data
structure and details are closer to that in our work. Some epidemic
simulation models construct networks on the fly (Kerr et al., 2021;
Shattock et al., 2022) or obtain scaling (in terms of population size) by
allowing each agent to represent a given number 𝑘 of actual individuals.
A unique aspect of our digital twin is the level of detail included
and the diverse data sets used to synthesize the twin. As a result, a
population and the resulting network constructed using our approach
has extensive heterogeneity in all aspects including the individuals

and their attributes, in their household structures, in their activity
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patterns, and in the locations they visit and the contacts they form at
these locations. The heterogeneity is reflected spatially, temporally and
socially (e.g. mixing patterns).

The heterogeneity is manifested in the structural and dynamical
properties of the resulting social contact network 𝐺𝑃 . For example,
the ratio of the number of people to the number of activity locations
will clearly influence the number of simultaneous visits and thus the
potential for interactions (edges). Similarly, the number of activities
and their duration will shape densities and properties (labels) of edges:
more activities will typically lead to more interactions, albeit of shorter
duration. The network 𝐺𝑃 may thus get a larger average degree 𝑑 as
people have more activities, but durations of contact will diminish.
Flow data such as the American Community Survey (ACS) commute
data (U.S. Census, 2020a) will influence the spatial embedding of 𝐺𝑃 :
s the average commute distance increases, one would expect the
etwork to have ‘‘longer’’ edges (connecting people residing farther
way from each other) which in turn could make an epidemic outbreak
pread faster throughout a region and thus be harder to contain.
To illustrate the resulting heterogeneity, we computed a few struc-

ural measures for the contact networks 𝐺𝑃 generated across the set
f US states. A more detailed account will be discussed in a separate
anuscript that focuses on the construction of the digital twin. In our
nalysis, we found that some measures are sensitive to details whereas
thers are not. For example, the average degree 𝑑 varies across the
ange 27.59 ≤ 𝑑 ≤ 47.43 for the US states while the relative size 𝑟
f a giant component is quite stable satisfying 0.97 ≤ 𝑟 ≤ 1.00. A
iant component of a network is a connected component that contains
significant fraction of all the nodes and the fraction is called its
elative size. Focusing on the populations and networks for the states
f Massachusetts (MA) and Michigan (MI), their average degrees are
̄MA = 30.96 and 𝑑MI = 39.57. There is, however, virtually no difference
etween MA and MI in the average contact duration (total hours per
erson): 𝑇̄MA = 102 and 𝑇̄MI = 103. Their degree distributions and
ore number distributions are shown in Fig. 2, further illustrating
ifferences in structural characteristics. While such differences may not
mpact certain kinds of dynamics over the population networks, it can
till offer valuable insight when determining efficient interventions.
his structural insight obtained through the constructive model for
he populations and arising as emergent properties thereof, could be
hallenging to capture in agent-based models that do not consider this
evel of detail in their design approach.

.2. Models of within-host disease progression and between-host disease
ransmission

The disease model in UVA-EpiHiper consists of within-host disease
rogression and between-host disease transmission. The former refers
o an individual transitioning from one health state to another health
tate independent of other individuals. The latter refers to the disease
eing transmitted from an infectious individual A to a susceptible
ndividual B, causing B to transition to an infected state. The disease
rogression is represented using a probabilistic timed transition system
PTTS) (Bisset et al., 2014; Barrett et al., 2008) over the set of health
states  . PTTS extend the classical finite state machine by allowing
one to represent probabilistic and timed state transitions as specified
by per-edge dwell time distributions. For disease transmission, consider
a susceptible person 𝑃 in health states 𝑋𝑘 who is in contact with an
infectious persons 𝑃 ′ in state 𝑋𝑖. We combine the state infectivity 𝜄(𝑋𝑖)
and state susceptibility 𝜎(𝑋𝑘) of their health states with the infectivity
scaling factor 𝛽𝜄(𝑃 ′) of 𝑃 ′ and the susceptibility scaling factor 𝛽𝜎 (𝑃 ) of 𝑃
to form the propensity 𝜌 associated with the contact configuration 𝑇𝑖,𝑗,𝑘 =
𝑇 (𝑋𝑖, 𝑋𝑗 , 𝑋𝑘) for the potential transition of the health state of person 𝑃
to 𝑋𝑗 as:

𝜌(𝑃 , 𝑃 ′, 𝑇𝑖,𝑗,𝑘, 𝑒) =
[

𝑇 ⋅𝜏
]

×𝑤𝑒×𝛼𝑒×
[

𝛽𝜎 (𝑃 )⋅𝜎(𝑋𝑖)
]

×
[

𝛽𝜄(𝑃 ′)⋅𝜄(𝑋𝑘)
]

×𝜔(𝑇𝑖,𝑗,𝑘)
(1)
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Fig. 1. An illustration of the population and network components used in UVA-EpiHiper. On the left, synthetic people with demographic attributes and household structure are
illustrated along with their assignment to residence locations. Each person is assigned an activity sequence consisting of activities such as work and shopping. These activities are
mapped to appropriate activity locations (e.g., a government worker goes to work at a location with a government classification) as illustrated by the dashed paths. This complete
assignment of activities to locations is formally represented as the people-location network 𝐺𝑃𝐿 illustrated in the middle panel, which in turn gives rise to a social contact network

𝑃 as shown on the right. The latter captures person–person contacts, including their duration and location.
Fig. 2. Heterogeneities between states in terms of structural properties of their contact networks 𝐺𝑃 . The top row shows (undirected) degree distributions and the bottom row
shows the core number distributions for Massachusetts (left) and Michigan (right).
In Eq. (1), 𝑇 is the contact duration of the edge 𝑒 = (𝑃 ′, 𝑃 ,𝑤𝑒, 𝛼𝑒, 𝑇 ), 𝑤𝑒
s the edge weight, and 𝛼𝑒 is an indicator variable encoding whether
r not the edge is active (e.g., disabled because of an ongoing school
losure). Finally, 𝜔(𝑇𝑖,𝑗,𝑘) is the transmission weight of the contact con-
iguration 𝑇𝑖,𝑗,𝑘, and 𝜏 is the transmissibility. Propensities are determined
t each time step and for each person 𝑃 using Eq. (1) for all edges 𝑒 and
ontact configurations 𝑇𝑖,𝑗,𝑘, generating a sequence 𝜌𝑃 . A Gillespie pro-
ess (Gillespie, 1976, 1977) is used to determine if 𝑃 becomes infected.
Also, the person 𝑃 ′, to whom one attributes 𝑃 becoming infected,
is chosen randomly with probabilities weighted by the corresponding
propensities.

In Fig. 3, we show a simplified version of COVID-19 disease model
implemented by UVA-EpiHiper in the SMH work. It illustrates the PTTS
and the associated probability 𝑝 and dwell time 𝑑 of each state transi-
tion. Each state in the diagram is also associated with susceptibility
𝜎 and infectivity 𝜄, which can be regulated by different susceptibility
factor 𝛽𝜎 and infectivity factor 𝛽𝜄 for different individuals. In UVA-
EpiHiper, heterogeneities resulting from various diseases and its mani-
festation can be represented by (𝑖) a different PTTS structure for every
individual; (𝑖𝑖) the same PTTS structure across all individuals, but with

different parameterizations. The former can arise between different
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types of hosts, e.g., human and vector. The latter is more common,
where theoretically we can assign to each individual unique values for
the parameters (𝑝𝑖, 𝑑𝑖) depending on the individual’s attributes such as
their age, their immune profile and medical history. In actual studies,
we often partition the population by a set of variables, e.g. by age
into age groups. People in the same group have the same disease
model parameterizations. This substantially reduces the complexity of
representing and implementing the disease model in UVA-EpiHiper,
and improves the computational efficiency of the resulting simulations.

The disease models listed in Table 1 are variations of the COVID-19
disease model, which is an extension of the classical SEIR model, with
extra features added over the rounds of scenario modeling to handle
various scenarios. Their complexity can be represented by the number
of states and the number of state transitions.

Our scenario modeling work began long before SMH. In January
2020, we started with COVID v1 model to study asymptomatic ratio
and various outcomes including hospitalization, ventilation, and death.
In March 2020, we augmented our disease model to COVID v2 to
implement age stratification. We partition the population into five
age groups: p (preschooler, 0–4), s (school age, 5–17), a (adult, 18–

49), o (older adult, 50–64), and g (golden age, 65+), and assign
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Fig. 3. An illustration of disease models that can be potentially implemented in UVA-EpiHiper. The subgraph connected by solid arrows forms a PTTS for within-host progression.
Each arrow is associated with a state transition probability 𝑝 and a dwell time 𝑑 which may be a random variable. The dashed arrows are associated with disease transmission,
for which other nodes in the network are involved.
Table 1
Variations of COVID-19 disease model implemented by UVA-EpiHiper with different features and complexity.
Disease Features Implementation Complexity

States Transmissions Progressions

COVID v1 asymptomatic state; severe
outcomes

add states to a basic SEIR
model

13 6 16

COVID v2 v1 + age stratification states/transitions for each age
group; transmissions across
age groups

90 225 100

COVID v3 v2 + vaccines vaccinated states with
different transitions

105 300 120

COVID v4 v3 + multivariant variant-specific infectious
states

140 600 185

COVID v5 v4 + immune waning/escape transition from R to W;
transmission across variants

170 975 250
o
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different probabilities of transition to H (hospitalized) and D (dead)
states, to model e.g. higher likelihood of severe outcomes in senior
people if they are infected with COVID-19. At the end of 2020, when
vaccines began to be administered, we expanded our model to COVID
v3 with vaccinated states. Along the rounds of SMH, we extended
the disease model for various doses of vaccines, initially 𝑉1 for being
accinated with one mRNA dose (either Pfizer or Moderna), 𝑉2 for
eing vaccinated with two doses, and 𝑉𝑗𝑗 for being vaccinated with
Johnson&Johnson vaccine (from round 6 to round 9). When boosters
started to be administered, we added 𝑉𝑏1 for the first booster (from
round 10 to round 13), then 𝑉𝑏2 for the second booster (round 17).
These different vaccinated states differ by associated susceptibility, to
represent different efficacies of corresponding vaccines/doses. From
SMH round 6, to model multiple variants, we upgraded our disease
model to COVID v4 by creating infectious states for each variant and
expanded disease transmissions between each combination of infectious
state and susceptible state. From SMH round 11, we updated our
disease model to COVID v5, in which we implemented asymmetric
immune escape, where a node with immunity to an older variant
(e.g. Delta), obtained either by infection or by vaccination, can be
infected by a newer variant (e.g. Omicron), but not the opposite. In
UVA-EpiHiper, immunity waning is implemented as a discrete process
by state transition from a state with obtained immunity (natural or
vaccinal) to a state with waned immunity.

2.3. Models of pharmaceutical and non-pharmaceutical interventions

UVA-EpiHiper interventions describe both pharmaceutical (PIs) and
non-pharmaceutical interventions (NPIs). An UVA-EpiHiper interven-
tion consists of a trigger condition 𝐶, an intervention target 𝑇 , and a
collection of operations that are applied against the variables associated
with the elements of the target, or against variables not attached to

target entities (through the once construct).

5 
The trigger condition 𝐶 is a Boolean expression formed using time,
sizes of sets, and values of variables. The trigger sets as well as the
target sets consist of vertices or edges and can be formed using UVA-
EpiHiper internal attributes of individuals (nodes) or contacts (edges).
These attributes can be augmented through an external trait database
defining properties of individuals or contact locations. The target set
may be sampled and different operations can be specified for the
sampled and non-sampled subsets.

Operations are ordered, first by execution time and second by pri-
rity. Sub-sequences of operations of the same priority are processed
n random order. The operations are organized into the control blocks
pecified in Listing 1. More details about the semantics of each block
an be found in Appendix A.2. In each operation, a variable is assigned
he value of an expression, but the assignment is scheduled for exe-
ution after a delay 𝑑 ≥ 0 relative to the current time step. One may
dditionally assign it an integer priority (default value 0) and a condition
hich is a Boolean expression that must hold at execution time to avoid
he operation being canceled.

ntervention complexity. As a result of this formal set-based structure
VA-EpiHiper is able to implement a rich class of interventions without
ny coding. That is, modelers have full control over the interventions
ithout the help of programmers. Table 2 describes some common in-

terventions implemented in UVA-EpiHiper for various studies. Table 4
details their representational complexity. The column ‘‘Traits’’ refers
to the usage of custom, time-varying attributes of nodes, whereas the
column ‘‘Demographics’’ gives the number of fields accessed in the
UVA-EpiHiper person trait database. The demographic information in
these experiments is only used during initialization. Therefore it has
limited influence on the running time.

We investigate impacts of the disease model and intervention com-
plexity with a performance study on the synthetic population of Vir-

ginia using COVID v2 model in Table 1. The study included eight
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Table 2
Interventions and their descriptions.
Intervention Description

Voluntary home isolation Individuals who notice symptoms comply voluntarily (sampling with a compliance rate)
with the recommendation to stay at home. All non-home edges of the compliant
individuals are deactivated for 15 days.

School closure All students who go to school or college stay at home. This is implemented by
deactivating edges for which either source or target activity is either school or college.
Note that teachers or other school employees are still in contact with each other.

Stay at home orders These include date dependent stay at home orders (SH), reversal of such orders (RO), as
well as an automated policy where the order is triggered by more than 2000
hospitalizations and reversed once the number drops below 2000. Prior to the
simulation the individuals who will comply with these orders are selected (sampling
with compliance rate) to have the trait complyWhenOrdered. Non-home edges of
either the target or the source node who is complying are deactivated and activated
either at predetermined dates (SH, OR) or according to the prescribed threshold (PS).

Test and isolate asymptotic cases Individuals, up to a number determined by testing capacity, who do not show symptoms
are tested. Voluntary home isolation is applied to those tested with positive results.

Contact tracing distance 1 Close contacts reported by confirmed cases are recommended to quarantine themselves
at home. If they comply (sampling with a compliance rate), their non-home edges are
deactivated for 15 days.

Contact tracing distance 2 Close contacts reported by confirmed cases and the close contacts of these contacts are
recommended to quarantine themselves at home. If they comply (sampling with a
compliance rate), their non-home edges are deactivated for 15 days.
Table 3
Differences in the HPC clusters used for executing EpiHiper simulation workflows.

Rivanna Bridges 2 Anvil

# Total nodes 115 488 1000
# CPU cores per node 40 128 128
RAM per node (GB) 384 256 256
CPU make Intel Xeon Gold 6148 AMD EPYC 7742 AMD EPYC 7763
Network adapters Mellanox ConnectX-5 Mellanox ConnectX-6 Mellanox ConnectX-6
OS CentOS Linux 7 CentOS Linux 8 Rocky Linux 8.7
Filesystem GPFS Lustre GPFS
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computational experiments (labeled I through VIII in Table 5) with in-
creasing complexity. For reference, each experiment was conducted on
compute nodes with dual CPUs having 20 cores each and 375 GB total
memory with its specified collection of interventions for 15 replicates.

Fig. 8 shows the clear impact of intervention complexity on running
time. For each experiment we show the run time contribution from each
of the main simulation tasks (intervention, transmission, update, syn-
chronization, output, and initialization). The height of the ■-colored
bar segment shows the time spent executing the interventions across
experiments I through VIII. We find that contact tracing interven-
tions (CTD1, CTD2) have higher computational complexity than other
interventions, as indicated by Table 4.

. Heterogeneities in the input data

UVA-EpiHiper model is data-driven, i.e., it takes disease surveillance
ata and vaccination data to initialize the state of the system including
he initial health state of each individual, and to schedule interventions
or each individual. In this section, we describe (𝑖) how we take age
tratified, county level daily confirmed case data to assign individuals
o different initial health states and immunity classes, including naively
usceptible with no immunity, partially susceptible with waned immu-
ity, and non-susceptible with full immunity; (𝑖𝑖) how we take state
evel daily vaccine administration data stratified by age and dose to
ssign individuals to various vaccinated states at the beginning of the
imulation.

.1. Initializations of UVA-EpiHiper

The heterogeneities in UVA-EpiHiper not only originate from its
odels for disease spread and social contact networks, but also come
rom the data used to initialize the models and to drive the simulations.
n this section, we describe how UVA-EpiHiper takes surveillance data

ets of various resolutions and uses them to initialize the health state 𝑎

6 
of the population at individual level. We argue that UVA-EpiHiper
is able to leverage the details available in these data sets and that
the heterogeneities in the input are reflected in the output, which in
scenario modeling is the projections of epidemic outcomes.

In UVA-EpiHiper, we do not always model the whole history of a
pandemic from its very beginning. Specifically, in scenario modeling
of the COVID-19 pandemic which started in the U.S. from early 2020,
we initialize the system from time 𝑡0, where 𝑡0 + 𝛿 is the beginning
of the scenarios. We choose 𝛿 such that UVA-EpiHiper has sufficient
‘ramp-up’’ time to catch up with the most recent development of the
pidemic. Based on experimenting, 𝛿 is about 1–2 months. For example,
or scenario modeling in March 2022, we initialize our model from
ebruary 2022. We use the history before 𝑡0 to derive the distribution of
mmunity level in the population and initialize each individual’s health
tate at 𝑡0. This way, we do not need to calibrate and compute the whole
rajectory of the system from 𝑡 = 0 to 𝑡 = 𝑡0. We note that this approach
s common in e.g. Influenza modeling, where it is impossible to go back
o the first cases.
In the COVID-19 model of UVA-EpiHiper, there are four immunity

lasses: full susceptibility (S), natural immunity (R), vaccinal immunity
V), partial immunity (W). The nodes with vaccinal immunity are
artially protected from infection and severe outcomes. The nodes with
atural immunity are fully protected from infection (in the absence
f immune escape). The nodes with partial immunity are partially
rotected from infection. We initialize each node to one of the health
tates corresponding to these immunity classes in the following way.
ata from The New York Times (The New York Times, 2023), based on
eports from state and local health agencies, provides daily cumulative
umber of confirmed cases for each county 𝑐: 𝑋𝑐,𝑡 from Jan. 21st, 2020.
rom CDC website, we have the cumulative number of cases in each
ge group at national level, from which we compute a distribution 
f cases among age groups. We apply  to 𝑋𝑐,𝑡 to obtain age stratified
umulative confirmed cases 𝑋𝑐,𝑎,𝑡 for each county 𝑐, each age group
, and each day 𝑡. With a per-age group case ascertainment rate 𝛼 we
𝑎
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Table 4
UVA-EpiHiper interventions and factors influencing their representational complexity.
Intervention Details Node Edge Set Traits Demographics

sets sets operations

VHI Voluntary home isolation 1 2 2 1 2

SC School closure 0 1 0 1 2

SH, RO, PS order, reverse, alternate
stay at home order

1 1 1 1 2

TA Test and isolation of
asymptomatic cases

1 5 3 2 2

CTD1 Contact tracing distance 1 4 5 5 3 2

CTD2 Contact tracing distance 2 7 7 8 3 2
Table 5
The list of interventions used in experiments I through VIII.
Experiment Interventions

I VHI, SC, SH
II VHI, SC, SH, RO, TA
III VHI, SC, SH, TA
IV VHI, SC, SH, RO, PS
V VHI, SC, SH, RO
VI VHI, SC, SH, RO, CTD1
VII VHI, SC, SH, RO, CTD1, PS
VIII VHI, SC, SH, RO, CTD2

scale 𝑋𝑐,𝑎,𝑡 to estimate cumulative number of infections 𝑌𝑐,𝑎,𝑡 = 𝑋𝑐,𝑎,𝑡∕𝛼𝑎.
hese infections include those reported and those not reported. Now
e need to compute among these infections, how many still have full
atural immunity (in R state) and how many have waned immunity
in W state) at time 𝑡0. To this end, we consider that nodes can be
nfected multiple times (𝑆 → 𝑅 → 𝑊 → 𝑅 → … ). So we estimate the
robability of future reinfection for each infection in 𝑌𝑐,𝑎,𝑡 and consider
nly the last infections 𝑌 ′

𝑐,𝑎,𝑡. For each such infection in 𝑌 ′
𝑐,𝑎,𝑡, we apply

he waning process, which is based on an exponential distribution of
ime to wane, to compute the probability that the natural immunity on
he individual has waned by time 𝑡0. This way we get an estimate of
otal number of nodes 𝑊𝑐,𝑎,𝑡0 among all 𝑌

′
𝑐,𝑎,𝑡 that we will set to W state

t time 𝑡0 and the remaining number 𝑅𝑐,𝑎,𝑡0 = 𝑌 ′
𝑐,𝑎,𝑡0

− 𝑊𝑐,𝑎,𝑡0 of nodes
hat we will set to R state at 𝑡0, for each county each age group.
From CDC COVID Data Tracker (Centers for Disease Control and

revention, 2023), we obtain state level weekly cumulative vaccine
dministration data by age group by dose: 𝑍𝑠,𝑣,𝑎,𝑡 as number of people
f age group 𝑎 in state 𝑠 vaccinated with dose 𝑣 by time 𝑡, where 𝑡 ≤ 𝑡0.
For each vaccinated individual, we consider the last dose received, and
apply the waning process, which is based on an exponential distribution
of time to wane, to compute the probability that the vaccinal immunity
on the individual has waned by time 𝑡0. In the end, we get an estimate
of total number of nodes 𝑊 ′

𝑠,𝑣,𝑎,𝑡0
among all 𝑍𝑠,𝑣,𝑎,𝑡 that we will set to

W state at time 𝑡0 and the remaining number 𝑉𝑠,𝑣,𝑎,𝑡0 = 𝑍𝑠,𝑣,𝑎,𝑡0 −𝑊 ′
𝑠,𝑣,𝑎,𝑡0

f nodes that we will set to V state at time 𝑡0, for each state each dose
ach age group.
We initialize the individuals in a state population as follows. All

ndividuals are set to S state by default. For each age group 𝑎 of each
ounty 𝑐, we randomly choose 𝑊𝑐,𝑎,𝑡0 nodes and set them to 𝑊 state; in
he remaining people, we randomly choose 𝑅𝑐,𝑎,𝑡0 nodes and set them to
state. Then for each age group 𝑎 of the state population, we randomly
hoose 𝑊 ′(𝑠, 𝑣, 𝑎, 𝑡0) nodes for each dose 𝑣 and set them to W state; in
he remaining people, we randomly choose 𝑉𝑠,𝑣,𝑎,𝑡0 nodes and set them
o 𝑉𝑣 state.

eeding and calibration. We take the county level confirmed cases
𝑐,𝑡 of 𝑡 ∈ (𝑡0, 𝑡0 + 𝛿) and split the data into two series: (𝑡0, 𝑡0 + 𝛿1]

and (𝑡0 + 𝛿1, 𝑡0 + 𝛿). We apply age stratification and scaling to the
former to get daily number of new infections in each age group of each
county. We use this to seed the simulation by randomly select nodes
according to this time series and set them to E state. The time series
7 
𝑋𝑐,𝑡, 𝑡 ∈ (𝑡0 + 𝛿1, 𝑡0 + 𝛿) is scaled and aggregated to state level daily
number of new infections. It is taken as the target of calibration: we
calibrate transmissibility in the disease model to fit the simulated daily
number of new infections to this target.

The seeding period (about 2–4 weeks) is chosen so that in the
simulation the initial disease spread is stable and consistent with the
recent data. The calibration period (about 2–4 weeks) is chosen so
that we have enough data points in the target. We do not explicitly
model the trajectory before 𝑡0; instead we aggregate the infection and
vaccination history to get a snapshot of the immunity distribution in
the population at the beginning of our simulation. The parameter that
we calibrate combines the intrinsic transmissibility of the disease and
factors that affect the population universally. It changed over the course
of the pandemic as different variants emerged and social distancing
level changed. Our calibration is to identify its most recent value
that can be assumed to remain constant (except being modulated by
seasonality) for the projection period.

Note that through the modeling capabilities of UVA-EpiHiper, the
leverage of county level data or age distribution of cases is general-
izable. That is, if data is available at a different resolution or with a
different stratification, e.g. if cases by race/ethnicity are reported in
some state, then it is straightforward to use such data to initialize UVA-
EpiHiper for this particular population, since our synthetic population
has race/ethnicity attributes for each individual.

4. Heterogeneities in computation

One of our major goals is to aid policy makers with real-time, action-
able insights for their decision-making processes. This presents several
challenges due to the short-lived relevance of key questions and tight
deadlines, typically between three days and two weeks, as observed
during the COVID-19 pandemic. Within this time frame, we must design
and run simulations, gather and calibrate data, produce statistically
significant results, and analyze these results for presentation to policy
makers. The process may need repetition if errors occur at any stage.

UVA-EpiHiper uses agent-based fine-grained simulations, the ben-
efits and importance of which have been discussed earlier. These
simulations require significant compute resources, much beyond what
is available at our university’s local cluster, necessitating the use of
external, large-scale high performance computing (HPC) clusters. How-
ever, the demand for HPC systems is much greater than supply, which
leads to significant waiting time for compute jobs submitted to them.
Additionally, these systems, being complex, require regular mainte-
nance (planned or otherwise) which can often disrupt our schedules. To
mitigate these risks and ensure timely completion of jobs, we typically
utilize 2–3 HPC clusters. This approach speeds up the computationally
intensive parts of our workflow and allows us to deliver results on time
even if one of the clusters is unavailable due to maintenance.

Using multiple HPC clusters, however, introduces a number of
technical challenges stemming from the compute heterogeneities.

Table 3 shows the overall differences in the three compute clusters
that we have used to generate projections for SMH. The following
list summarizes some of the compute heterogeneities and complexities
arising from them.
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Fig. 4. Projected cumulative number of infections (per 100 K population size) over time after March 13, 2022, across different US states in different scenarios. Each curve is the
average over 50 simulation replicates. Between states, the curves show various differences in magnitude (normalized by population size), trends, and impact of waning and new
variant.
Fig. 5. Projected cumulative number of infections (per 100 K population size) over time after March 13, 2022, across different health districts in the state of Virginia, in different
scenarios. Each curve is the average over 50 simulation replicates. Between health districts, the curves show similar trends and impact of waning and new variant, but different
magnitude (even after normalization by population size).
s

• Difference in compute node configurations requires separate
optimization for different compute configurations, otherwise cause
underuse of compute on systems with low memory/CPU ratios.

• Difference in filesystem availability and limits requires cus-
tomization of workflows to account for the different setups, and
hinders debugging on systems with more expensive filesystems.

• Compute reservations vs. custom QoS (quality of service): This
difference requires extensive planning on systems that only sup-
port reservations to make large amounts of compute available,
otherwise we risk resource waste in case things do not go as
planned.
8 
• Difference in access control requirements makes development
of automate workflows for multi-cluster systems difficult.

Based on our application requirements we concluded that a multi-
cluster workflow pipeline should ideally be able to satisfy the following
requirements:

• Be able to efficiently execute multi-node distributed memory MPI
(Message Passing Interface) applications. In particular be able to
leverage existing HPC schedulers (such as Slurm), and use Process
Management Interface (PMI) for quick startup of multi-node MPI
applications.
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Fig. 6. Spatial heterogeneity — correlation plots: Comparing the overall spread in a state with the spread in top three counties by population. Two scenarios (B and D) and two
tates (MA and KS) are considered for comparison. In each case, 50 replicates are considered. The plots are ordered as follows: state followed by top three counties ordered by
ecreasing population. The diagonal plots show the histogram of infections per 100 K individuals over the simulation. The off-diagonal plots show the distribution of Pearson’s
orrelation coefficient of the infection time series (epicurves) corresponding to each pair of regions. Plots for scenarios A and C are in the appendix.
• Be able to run on modern secure clusters where login and services
like ssh are secured using single sign-on with central authenti-
cation, two-factor authentication, networks isolated with VPNs,
etc.

• Be able to support complex task dependencies via task-dependency
graphs. Additionally, they must support dynamic on-the-fly task
creation, which is important for settings such as calibration.

• Be able to do task semantic-aware fault detection and recovery.
• Be able to support disparate HPC site-specific configurations.
• Provide a simple centralized interface to submit tasks that can be
run on available HPC clusters.

ormulon. To be able to answer policy driven questions related to
epidemiological modeling in real-time we developed a custom work-
flow pipeline called Wormulon (Bhattacharya et al., 2023). Wormulon’s
9 
design was driven by practical considerations and was guided heavily
by the mult-cluster system development issues described above. While
many systems existed that addressed some of the above issues — such
as: HPC cluster schedulers like Slurm (Yoo et al., 2003) and PBS (Feng
et al., 2007), pilot-based systems such as Radical Pilot (Merzky et al.,
2021), multi-cluster schedulers like Argo and Balsam (Childers et al.,
2017; Salim et al., 2019) and Leiden Grid Infrastructure (Somers,
2019), and modern big data and machine learning-oriented schedulers
like Mesos (Hindman et al., 2011), Yarn (Vavilapalli et al., 2013),
Dask (Rocklin, 2015) and Ray (Moritz et al., 2018), — none of these
systems satisfied all of the requirements as stated above. Wormu-
lon was developed to satisfy our task-specific needs. This workflow
pipeline helps UVA-EpiHiper to handle computational heterogeneities
and provide real-time epidemiological modeling capability.
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Fig. 7. Spatial heterogeneity — epicurves: Continuing from Fig. 6, we compare disease spread over time in a state with that in top three counties by population size. Plots are for
subset of cascades. The x-axis of each plot shows days from simulation starting date (2022-02-13); the y-axis shows new infection counts per 100 K individuals. The title of each
lot contains the cascade number followed by correlation coefficients between the state infection counts and the county infection counts in the descending order of populations.
lots for scenarios A and C are in the appendix.
r

. Example: Scenario modeling hub round 13

Round 13 of the Scenario Modeling Hub (SMH) focused on modeling
he epidemiological implications of waning immunity from previous
nfections and vaccinations, and emergence of a new significant SARS-
oV-2 variant. It was performed in March 2022 and aimed to project
pidemic outcomes from mid-March 2022 to mid-March 2023.
Overall Round 13 models four scenarios: (𝑖) Scenario A: optimistic

mmunity waning with no new variant emergence; (𝑖𝑖) Scenario B: opti-
istic immunity waning with emergence of variant X; (𝑖𝑖𝑖) Scenario C:

pessimistic immunity waning with no new variant emergence; and (𝑖𝑣)
Scenario D: pessimistic immunity waning with emergence of variant X.
Immunity includes protections gained from infection and vaccination.
Waning is modeled as a transition from an immune state to a partially
immune state. In the optimistic (or pessimistic) scenarios, the transition
takes place after a median time of 10 (or 4) months with 40% (or 60%)
reduction in protection compared to the baseline immunity. Variant X
10 
was assumed to have the same transmissibility and severity as existing
variants. But an individual with immunity against existing variants has
a 30% larger risk to be infected by X. A detailed description of the
scenarios can be found at Scenario Modeling Hub (2022). Calibration
esults are shown in Fig. 9.
The spread pattern of a contagion is a result of the disease char-

acteristics (such as virulence and variants) and the dynamics of the
population affected by it (immunity levels, nature of interactions, epi-
demic response, etc.). To better understand the complex phase space
of the agent-based model, we conducted several fine-grained analyses
at different scales (node- and node-subset-level) across different Round
13 scenarios and different networks (state- and county-level). To this
end, we apply the graphical viewpoint of simulation outputs; each
instance of the simulation output can be viewed as cascade graph
ensembles, where each cascade (Newman, 2003) is a highly structured
who-infected-who graph with rich structural (network related) and
dynamical (disease and disease response related) attributes. We study



J. Chen et al. Epidemics 48 (2024) 100779 
Fig. 8. Impact of intervention complexity on computation time in experiments I–VIII (see text) factored by the main simulation tasks which include ■ intervention, ■ transmission,
■ update, ■ synchronization, ■ output, and ■ initialization. The unit on the 𝑦-axis is seconds. Clearly time spent on ■ intervention increases with the complexity of interventions
involved in the experiment. Specifically, contact tracing interventions (CTD1, CTD2) significantly increase computational complexity of simulations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Simulated data (black) vs. target data (red) in the calibration period for each state. Figure shows how well calibration result fits the time series of case counts from
surveillance (The New York Times, 2023). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
how heterogeneity in space, age, and socioeconomic status manifest in
the spread patterns.

Summary of findings. By analyzing the projected epidemic outcomes
in different scenarios of Round 13, as well as detailed simulated cas-
cades, we find that heterogeneities in our populations and networks,
disease models, interventions, and initialization data do lead to hetero-
geneities in the outcomes: 5.1 aggregate disease outcomes are different
between states or at sub-state level in terms of magnitude, trends, or
impact of scenario axes considered by the SMH, and differences in
network structures between states may have contributed to the differ-
ences in disease outcomes; 5.2 disease transmission is dominated by
interactions between children which mostly occur in schools. We argue
that even when an agent-based model like UVA-EpiHiper produces
results at aggregate levels similar to a compartmental or metapop-
ulation model, it provides the possible trajectories, with individual
11 
level details, among all trajectories that lead to the same aggregate
outcomes. The cascade data generated by UVA-EpiHiper simulations is
an example. This enables one to analyze not only what happens but
also how it happens, and to obtain unique insight regarding potential
interventions to mitigate disease spread.

5.1. Heterogeneities between and within states

Epidemic outcomes over time. We first analyze how heterogeneity
between and within different state networks impact the projected epi-
demic outcomes. In Fig. 4 we show projected cumulative number of
infections over time for all scenarios in each US state. We observe dif-
ferent states have different trends (e.g. between California and Oregon),
different magnitude (e.g. between California and Washington) even
after normalization to counts per 100 K population, different impact



J. Chen et al.

s

u
u
s

Epidemics 48 (2024) 100779 
Fig. 10. Decision tree for impacts of immunity waning and emergence of variant X on state level cumulative attack rate. The model includes features on demographics, network
tructure, initial immunity level, and vaccine coverage, and is fitted using rpart (Therneau and Atkinson, 2023). Figure (generated by rpart.plot (Milborrow, 2024)) shows
that between-state heterogeneity can be partly explained by average household size, average contact duration (the total hours each individual has with all their contacts, averaged
over all individuals), and initial immunity level (the immunity each individual has at the beginning of projection period averaged over all individuals).
c
b
i
S
o

5

i
n
c
t
g
t
a
e
T
s
h
c
t
t
o
n

t
b
p

of waning (e.g. minimal gap between scenarios A and C in Maryland
but significant difference between A and C in Vermont), or different
impact of new variant (e.g. minimal gap between scenarios A and B in
Vermont but significant difference between A and B in Maryland).

Based on whether waning and/or new variant X have significant
impacts on the cumulative infections (normalized by population size),
we categorize the states into four classes: neither has a significant im-
pact, only variant X does, only waning does, and both have significant
impacts. We fit a decision tree using features on demographics (aver-
age age, average household size), network structure (average contact
duration), initial immunity level, and vaccine uptake. We find that the
most important predictors are average household size, average contact
duration, and initial immunity — see Fig. 10.

On the other hand, in Fig. 5 we observe that different health districts
in Virginia seem to have similar trends of cumulative infections over
time, as well as similar impact of waning and new variant.1 But we do
observe different magnitude in infection numbers in different health
districts even after normalization to counts per 100 K people — higher
in Northern Virginia but much lower in the southwest districts.

Detailed comparison between two states. The heterogeneity in pop-
ulation distributions across the study region induces subgraphs of
varying density in the contact network. How does the spread in dense
subgraphs compare with the spread in the whole network? In this
analysis, we consider Massachusetts (MA) and Kansas (KS) which,
comparatively have very different county population distributions. MA
has one large county, with population around double that of the next
largest county, while the top two counties of KS are comparable in size.
We analyze the evolution of the infection count over time in the state
and in each of the top three counties, and compare them with each
other. For scenarios B and D, both of which correspond to emergence of
a new variant, we show within-state correlations in Fig. 6 and projected
epidemic curves in Fig. 7. The plots for scenarios A and C are in Figs. 11
and 12 in the appendix.

In Fig. 6 we observe that, in both networks and for both scenarios,
the state counts are generally more correlated with the top county

1 It is to be noted that while the team had access to heterogeneous vaccine
ptake data within Virginia, these were not used for the SMH models, to ensure
niform approach across states. This could partially explain the apparent
imilarity across Virginia health districts.
 i

12 
than with others. For the MA network, we generally observe that the
infection curves in the top three counties are representative of the trend
for the entire state. One reason for this could be that all these counties
are geographically very close to each other (around the Boston area),
and therefore, there is a lot of mixing between the populations of these
areas. Fig. 13 (in the appendix) shows high edge density between the
top county (Middlesex) and the other two counties.

In the case of KS, we observe a similar trend, but there are instances
of widely differing infection curves. See for example cascades 2, 4, 7, 8,
and 9 in Fig. 7(d). Unlike MA, the top counties of KS are geographically
far. Fig. 13 shows relatively low edge density across counties when
ompared with MA. In Fig. 6, many outliers can be observed for KS in
oth Scenarios B and D. This can be attributed to the spatial uncertainty
n the weekly importation rates of the new variant in the case of
cenarios B and D. In the case of Scenarios A and C, we generally
bserve very high correlation values.

.2. Heterogeneities between demographic groups

Here we study the transmissions between and within subpopulations
nduced by different age groups. Again we consider the KS and MA
etworks. We partition each state population into three subpopulations:
hildren 𝑐 (0–17), adults 𝑎 (18–64), and elderly 𝑔 (65+). Fig. 14 (in
he appendix) shows the number of infections per cascade by age
roup relative to the subpopulation sizes across scenarios. We first note
hat in both the KS and MA networks, approximately 60% of nodes
re adults and 25% are children. However, the number of infection
vents (including reinfections) do not reflect the subpopulation sizes.
he share of infections for the children is around 40% while this
ubpopulation only constitutes around 25% of the total population. The
igher attack rate in the children, comparing with the other groups,
an be explained by the initial immunity level and node degrees in
he contact network. Children have higher attack rates than adults due
o lower initial immunity levels in children (see Fig. 15(a)). On the
ther hand, children have higher attack rates than elderly due to higher
etwork degrees of children nodes (see Fig. 15(b)).
We use labeled path motif counts to characterize and quantify the

ransmissions. For example, a child-infecting-adult event is denoted
y 𝑐 → 𝑎. We also consider longer chains of transmission, such as
aths of length two. The results of the KS network are in Fig. 16

n the appendix. We observe that transmissions within and across
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Fig. 11. Continued from Fig. 6: Spatial heterogeneity — correlation plots: Comparing the overall spread in a state with the spread in top three counties by population. Two
cenarios (A and C) and two states (MA and KS) are considered for comparison. In each case, 50 replicates are considered. The plots are ordered as follows: state followed by top
hree counties ordered by decreasing population size. The diagonal plots show the histogram of number of infections per 100 K individuals over the simulation. The off-diagonal
lots show the distribution of Pearson’s correlation coefficient of the infection time series (epicurves) corresponding to each pair of regions.
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ubpopulations of children and adults dominate the counts. These
orrespond to mainly school, workplace, and household transmissions.
n average, the number of 𝑐 → 𝑐 counts (and 𝑐 → 𝑐 → 𝑐 counts among
aths of length 2) are the highest, mainly corresponding to school and
ousehold transmissions. Many of the transmissions to the elderly are
hrough household contacts. Note that the number of 𝑔 → 𝑎 → 𝑔 counts
s much higher than 𝑔 → 𝑐 → 𝑔. The former count corresponds to
ransmissions in households as well as in assisted living facilities, while
he latter corresponds to only household transmissions. We have similar
bservations for the MA network in Fig. 17 in the appendix.

. Discussion

In Section 1, we raised two broad questions that naturally arise
hen developing and using ABMs such as UVA-EpiHiper: (𝑖) when are
uch models needed and (𝑖𝑖) how does one validate such models. Both
re important questions, we discuss them briefly below.
 m

13 
ole of ABMs in epidemic scenario modeling. Modeling environments
uch as UVA-EpiHiper (also see other papers in this issue on use of
gent-based models (Moore et al., 2024; Pillai et al., 2023; Rosenstrom
t al., 2024)) provide diversity to the pool of models used in the SMH.
hey are often computationally resource intensive and challenging
rom the standpoint of software maintenance and model enhancements.
n the other hand, such models allow one to: (𝑖) get a more detailed
icture of the epidemic spread and incorporate the diverse data sets
hat are often available; (𝑖𝑖) look at the model output in ways that
re not typically possible in compartmental and statistical models,
.g. looking at the transmission trees to understand chains of trans-
ission; and (𝑖𝑖𝑖) study the impact of the epidemic and intervention
n any desired subgroup so far as it is represented in the digital twin.
he last part is important — the basic premise is that models do
ot have to be made for every question that might arise but a more
eneral model can be used. For instance, a simple compartmental model
ight not have age-stratified population. Making inferences on age
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Fig. 12. Spatial heterogeneity — epicurves: continued from Fig. 7. We compare disease spread over time in a state with that in top three counties by population size. The x-axis
of each plot shows days from simulation starting date (2022-02-13); the y-axis shows new infection counts per 100 K individuals. Plots are for a subset of cascades. The title of
each plot contains the cascade number followed by correlation coefficients between the state infection counts and the county infection counts in the descending order of population
size. Plots for Scenarios B and D are in the main text.

Fig. 13. Edge densities within and across counties. For the non-diagonal entries, the plot shows the ratio of number of edges between two counties to the population of the county
in the row. For the diagonal entries, it is the ratio of the number of edges in the county to the population of the county.
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Fig. 14. Fraction of infections per age group and its comparison with population sizes. For each age group, we show the number of infections as a fraction of total infections in
different scenarios. It seems about 40% of all infections belong to 𝑐 and 𝑎 while 20% belong to 𝑔. We also show the number of individuals in each age group as a fraction of
total population. Clearly adults (𝑎) has a lower attack rate relative to its group size. This is true in both networks and all scenarios.

Fig. 15. (a) In all scenarios, initial immunity levels in children and elderly are lower than in adults. (b) Children and adults have more contacts than elderly. The higher attack
rate in children is due to the combined effect from both (a) and (b). Figure shows analysis results for MA. The results for KS are similar.

Fig. 16. Transmission motifs for studying the propagation within and across different subpopulations. In this case, we have plotted labeled path motif counts corresponding to
adults 𝑎, children 𝑐 and elderly 𝑔. We have shown counts of labeled path motifs of lengths 1 and 2 in the transmission cascade. Each row focuses on one subpopulation. The left
column corresponds to how the rest of the population affects the focus population. The center column corresponds to how the focus population affects the rest of the population.
The right column corresponds to how the transmission occurs from focus population to itself. The results are for the KS network.
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Fig. 17. Continued from Fig. 16: Transmission motifs for studying the propagation within and across different subpopulations. In this case, we have plotted labeled path motif
ounts corresponding to adults 𝑎, children 𝑐 and elderly 𝑔. We have shown counts of labeled path motifs of lengths 1 and 2 in the transmission cascade. Each row focuses on one
subpopulation. The left column corresponds to how the rest of the population affects the focus population. The center column corresponds to how the focus population affects the
rest of the population. The right column corresponds to how the transmission occurs from focus population to itself. The results are for the MA network.
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stratified populations would need compartmental models to include age
stratification. But now if one wants to understand the heterogeneity in
space, the model will have to add compartments for say each county
and each age group. In agent-based models such as UVA-EpiHiper, one
gets this for free and it is largely a question of analyzing the output
data than constantly changing the model structure. Another use of
such models in our opinion is that they provide an impetus to collect
highly resolved data sets. The advent of personalized digital devices has
already facilitated collection of highly detailed and personalized data
sets. We believe these data sets can be used to initialize and calibrate
ABMs leading to a more nuanced picture of the epidemic outbreak,
see Grekousis and Liu (2021), Aleta et al. (2020), Cencetti et al. (2021),
ogt et al. (2022) for further discussion on this topic.

alidating agent-based epidemic models used for scenario modeling. Vali-
ation of complex systems and large ABMs is challenging as well (Car-
ey, 2017; Adiga et al., 2019; Popper, 2005; Oreskes, 2003; Forrester,
971; Senge and Forrester, 1980; Oreskes, 2018). When using such
odels for scenario modeling, we can consider three components of
alidation: (𝑖) Data (or external) validation: comparing model output
ata with real life, in-situ, and in-vivo measurements where state–
pace predictions by the model are matched with measured data; (𝑖𝑖)
tructural validation: ensure that local functions or rules used to repre-
ent agent (component) interaction, behavior, and decision-making are
orrect and adequate; and (𝑖𝑖𝑖) Functional validation: the model should
eproduce global well-known structural features of the complex system
hat is being modeled. In general, data validation alone is not adequate
or large scale ABMs, where data matching exercises are usually post-
ictions of historical information such as matching an epidemiological
odel output to an infection time series of the 1968 flu season. While
seful, such examination can also be misleading and inadequate. In
eneral, postdiction is challenging for SMH; see Runge et al. (2023)
or further discussions. Nevertheless, one way to do this is to con-
ider synthetic data based scenarios. We have begun initial discussion
n such scenarios as a future SMH round. Beyond retroactive and
redictive validity, external validity should also reproduce important

eatures of the state–space of the complex system that is being modeled. i

16 
ver the last two decades, we have developed a formal computational
heory of coevolving graphical dynamical systems (CGDS) (Adiga et al.,
019). The theory allows us to address questions related to structural
alidation; e.g. comparing two simulations, ensuring the networks are
ynthesized correctly, etc. Nevertheless this remains an active area of
esearch and much needs to be done in terms of developing formal
ethods.

imitations. The heterogeneities in an agent-based model are limited
y the heterogeneities in the input data. For example, health dis-
arities between race and ethnicity groups can be modeled directly
y UVA-EpiHiper, but meaningfully only if we have relevant data,
uch as surveillance of cases and deaths and vaccine coverage in each
acial/ethnic group. We did not model racial/ethnic disparities in SMH
ounds until the recent equity round, where we have race/ethnicity
pecific data for California and North Carolina to calibrate our model.
n SMH work, for the calibration of UVA-EpiHiper we have mainly used
urveillance data on confirmed cases as the target. As the collection
f such data was discontinued by The New York Times (The New
ork Times, 2023) in March 2023 and other agents (e.g. The Johns
opkins Coronavirus Resource Center (The Johns Hopkins Coronavirus
esource Center, 2023)), we have to look for other data sources as
he calibration target. Wastewater surveillance data is an option. We
lan to expand our digital twin with an additional layer of wastew-
ter surveillance and update the UVA-EpiHiper pipeline to integrate
astewater data-based calibration.

. Concluding remarks

We described UVA-EpiHiper modeling framework that has been
sed to support the US COVID-19 SMH over the last 2.5 years. This
long with UVA-adaptive (Porebski et al., 2024) were two models used
y the UVA team throughout the pandemic. The development, exten-
ion, and use of the model as the pandemic evolved required significant
fforts by the team. New problems arose as pandemic evolved and in
eneral the models had to be updated constantly. The SMH played an
mportant role in guiding the development of the model. In each round
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the scenarios were novel and required new capabilities to be added to
the modeling environment. The lively discussions that took place on
Fridays proved invaluable in this regard.

As we move forward, the UVA-EpiHiper modeling framework will
need to be enhanced for new questions that are likely to arise. This
includes: (𝑖) further improving the performance of the system; (𝑖𝑖)
new capabilities in terms of modeling multi-network dynamical pro-
cesses (e.g. modeling mask wearing or hesitancy and its coevolution
at individual level), (𝑖𝑖𝑖) taking new data sources into account to
improve model calibration, (𝑖𝑣) modeling inter-state disease transmis-
sions, and (𝑣) network-aware initializations that take into account
different susceptibility levels of nodes due to their network properties
(e.g. degree).
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Appendix

A.1. EpiHiper: HPC-enabled simulation platform for agent-based epidemic
models

The UVA-EpiHiper modeling process was conducted with a clear
path towards a highly efficient and scalable implementation. It is
based on our simulation engine, EpiHiper, which can routinely handle
populations of size 108 − 109 and their detailed contact networks. The
EpiHiper software architecture is a hybrid MPI/OpenMP design that is
implemented in C++ for high performance. The contact networks can
be represented either as text or binary files, with the option to perform
pre-partitioning for the desired target combinations of compute nodes
and cores. The population (vertices) and their contacts (edges) can
be equipped with customizable traits which are exposed to EpiHiper
through a Postgres database. This database, which can be shared among
computational experiments, has been finely tuned to handle a large
number of simultaneous queries, particularly as they occur at the
initialization stage of large EpiHiper compute jobs. Similarly, EpiHiper
supports a location trait database. As detailed in Section 2.1, each
edge is associated with a location, and locations can be augmented
with attributes and presented to EpiHiper through this database. This
provides a flexible approach to modulating transmission by location (or
location type) and constructing highly location-specific interventions.
The same applies to interventions cast in terms of the person/edge trait
database.

One of the key designs that set EpiHiper apart from other epidemic
simulation tools (e.g., (Bershteyn et al., 2018; Ferguson et al., 2020;
Hinch et al., 2021; Kerr et al., 2021; Shattock et al., 2022)) is that
the disease models and interventions are specified externally. Many mod-
els support configuration of existing models and interventions. New
disease models or interventions will require adding new code to the
simulation code base. This design decision for EpiHiper was to cleanly
disentangle this aspect and, at least in principle, lower the bar for ease-
of-use by removing the need for programming skills from the user as
well as the need to understand the software design and implementa-
tion encountering such cases. Further while initializing the simulation
extensive checks are performed in order to assure contact network, the
person and location trait database, the contagion model, initialization,
and the interventions are consistent and all required operations can
be performed during runtime. If validation fails a detailed message
pinpointing the problem location in the configuration files is generated
to help problem solving.

A.2. Semantics of interventions in UVA-EpiHiper

Semantics of intervention blocks. The operations within the once block
are executed whenever the trigger condition 𝐶 holds, even if the
target set is empty. It is used to set variables that are not attached
to elements of the intervention target (e.g., the number of available
vaccines on a given day). All operations within the foreach block
are applied to the matching variables of the target elements. Aspects
such as compliance are handled through the sampling block: several
sampling methods are supported where operations are applied to the
sampled and nonsampled sets. We note that recursive application of
operation ensembles are supported in the sampling control structure.

Semantics of operations. The syntax of operations is provided in Listing
1. In an operation, a variable is assigned the value of an expression, the
assignment being scheduled for execution using a non-negative offset
delay relative to the current time step. The assignment may optionally
be assigned an integer priority (default value 0) and a condition
(default value True) which is a Boolean expression that must hold at

the scheduled execution time for the assignment to be carried out.

https://covid19-hpcconsortium.org/
https://covid19-hpcconsortium.org/
https://covid19-hpcconsortium.org/
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Operation execution. All operations enter a priority queue which is
sorted first by scheduled execution time and second by priority. Within
a time step, all operations scheduled are processed in priority order.
Collections of operations of equal priority are processed in random
order. Finally, an operation is executed only if its condition is true at
the time of processing. Priorities and conditions allow for fine grained
conflict resolution. Regarding the processing order of interventions,
one needs to pay careful attention when designing interventions where
the order of operations may matter. It is the responsibility of the user
constructing the (set of) interventions to assign priorities and conditions
to ensure interventions are applied in the intended order.

Set construction. UVA-EpiHiper interventions can target any subset of
individuals or edges. Set elements can be selected by internal at-
tributes which may be user defined (traits). Furthermore the external
PostgreSQL database allows a user to define arbitrary properties of
individuals and locations. Association between UVA-EpiHiper and the
database are achieved through unique IDs. Thus sets created through
internal attributes or external properties can be combined through set
operations (intersection and union). This allows the user to construct
any subset of individuals or edges which may be used as targets or in
triggers.

Listing 1: The UVA-EpiHiper block structure for operations used in
interventions expressed in grammar form.
operationEnsemble :=
once <opera t ionL i s t >
foreach <opera t ionL i s t >
sampling <sampl ingSpec i f i ca t ion >
sampled <operationEnsemble>
nonsampled <operationEnsemble>

sampl ingSpec i f i ca t ion :=
(
relativeSampling ( individual | group ) <percentage> |
absoluteSampling <integer >

)

ope ra t i onL i s t := <operation>+

operat ion := <var iab le > <operator> <express ion> \
delay(< integer >) \

[ pr ior i ty (< integer >) ] \
[ condition (<bool _express ion >) ]

operator := ( = | ∗= | /= | += | −= )
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